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A Mathematical Theory of Communication
By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM
and PPM which exchange bandwidth for signal-to-noise ratio has in-
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist' and Hartley?
on this subiect. In the present paper we will extend the theory to include a
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First published in two parts in the July and October 1948 issues of
BSTJ.

A number of republications since, notably in 1949 by the Ul Press
(with a preface by W. Weaver) as “The Mathematical Theory of
Communication”.
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Origins of A Mathematical Theory Communication

Shannon's 1949 paper Communication Theory or Secrecy Systems
was already published in classified literature in 1945, and contains
ideas also present in the AMTC. This leads some to believe that
Shannon arrived to his Mathematical Theory of Communication via
Cryptography.

My understanding is that this is not the case. Shannon had been
working on developing his Mathematical Theory of Communication
since late 1930's — and his cryptography work was built upon his
communication ideas, not vice-versa.



Letter to Vannevar Bush — Feb 16, 1939

Dear Dr. Bush,

Off and on I have been working on an analysis of some of the fundamental properties of
general systems for the transmission of intelligence, including telephony, radio, television,
telegraphy, etc. Practically all systems of communication may be thrown into the following
form:

[ > T |- F() - R - fr(1)

fi1(r) is a general function of time (arbitrary except for certain frequency limitations)
representing the intelligence to be transmitted. It represents, for example, the pressure-time
function in radio and telephony, or the voltage-time curve output of an iconoscope in television.

T is a transmission element which operates on f, (¢) through modulation, distortion, etc. to
give a new function of time F(t), which is actually transmitted. F(r) in radio and television is
the electromagnetic wave sent out by the transmitter, and in general need not be at all similar to
f1 (1), although, of course, they are closely related. I consider T to be a mathematical operator
which transforms f into F, thus F(r) = T{f,(¢)].
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“The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at
another point. Frequently the messages have meaning; [...] These
semantic aspects of communication are irrelevant to the engineering
problem. The significant aspect is that the actual message is selected
from a set of possible messages. The system must be designed to
operate for each possible selection [...]”
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“The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at
another point. Frequently the messages have meaning; [...] These
semantic aspects of communication are irrelevant to the engineering
problem. The significant aspect is that the actual message is selected
from a set of possible messages. The system must be designed to
operate for each possible selection [...]”

@ It is the choice (selection) that matters.

@ Net neutrality.
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Information source

@ Shannon models the information source as a probabilistic
device that chooses among possible messages. A message is
taken to be a sequence of symbols, this makes the message a
stochastic process.

@ Such a model remains non-intuitive to students even today.
Shannon dedicates quite some space and gives numerous
examples to motivate the model. “It appears then that a
sufficiently complex stochastic process will give a satisfactory
representation of a discrete source.”

@ His running example is the class of Markov sources: in a /th
order Markov source the successive symbols are generated one
by one, the statistics of the next letter to be generated
depends only on the ¢ most recent letters already generated.
Call this the state of the source.

@ Online example?
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Information source

More generally, Shannon seems to have the following type of “finite
state information source” in mind:

The source possesses an internal state. The set of possible
states S is finite. Denote by S; the state at instant /.

If S; = s, the source generates the letter U; from a finite
alphabet U/ according to a fixed probability law

Pr(U; = u|S; = s) = P(uls), independent of past S's and U's.
The next state S;y; is determined by S; and U;.

Moreover, U; is uniquely determined by S; and S; 1.

The first three assumptions make {S;} a Markov process;

Shannon further assumes that this process is stationary and
ergodic.
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Quantifying choice — Entropy

When one of K items is chosen — kth item with probability p, —
how much “choice” is there?

@ Shannon proposes the entropy, H = — ", pk log px, as the
natural answer to this question.

@ The answer generalizes to two (or more) choices and
conditional choices:

H(UV) = Zp u,v)log p(u, v)

u,v

H(VIU) == p(u,v)log p(v|u)

u,v



Entropy of a source

Shannon motivates “H = — ) _ plog p" by an axiomatic approach
— listing desirable properties of any quantification that measures
“choice” and showing that entropy is the only possible answer. A
more important justification is found when Shannon considers
entropy in the context of an information source.
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length n with nH bits.
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Entropy of a source

Suppose ..., U1, U, ... are the letters produced by a finite state
source and ..., 51,5, ... is the corresponding state sequence. Let
H = H(U;|S;) denote the entropy of the source letter produced
conditional on the current state.

o Moreover, if A, C U",

n=1,2,... is such that
Pr((Ui,...,Us) € Ap) > ¢, then
|Aq| 2 277,

@ That is, representing any subset
of source sequences of
non-vanishing probability requires
nH bits.
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Data compression

@ Having shown that = nH bits is necessary and sufficient to
represent sequences of n letters from a finite state source,
Shannon also gives an explicit method of doing so.

@ Shannon's method represents all source sequences of length n
using a variable number of bits, requiring on the average, less
than nH + 1 bits.

@ The method is a precursor of Huffman coding, and contains
the essence of modern arithmetic coding.
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Discrete Channel with Noise

Shannon'’s (first) model of a transmission medium (channel) is
discrete in time and value:

@ The channel accepts a sequence of letters xq1, x5, ..., from a
finite alphabet,

@ Produces a sequence of letters Y7, Y5, ..., from a finite
alphabet.

@ The output sequence is related probabilistically to the input
sequence.

@ This model is much more readily accepted by students, that

the transmission medium should be noisy, and noise is modeled
by a random process is intuitive to most.



Discrete Channel with Noise

Shannon chooses to model the stochastic nature of the channel
with the help of a hidden channel state that allows the channel
keep some memory of the past, and a probability kernel
P(y,s'|x,s) that generates the current output and next state based
on the current input and state

Pr(Yi=y,Si11=5|Xi=x,5 =5s) = P(y,s'|x,s),

independently of the past X's, S's, Y's. A simplified model is
obtained when there is a single state. The simplified model is
specified by P(y|x) and is known as the Discrete Memoryless
Channel.
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Reliable Communication

INFORMATION
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Given the source and channel, say that reliable communication is
possible if for every ¢ > 0 we can design the transmitter and
receiver such that the probability of a source symbol is reproduced
incorrectly is less than e.
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Shannon defines the capacity of a noisy channel as

€ ~limsup % TH(X™) — H(X"|Y™)] )

with the supremum taken over all sources X.

Shannon's general channel model is slightly too general for all of his
subsequent claims to hold. Nevertheless they do hold under mild
regularity conditions (e.g., indecomposability) and his proof
technique gives the right tools to attack more general cases.

To simplify the presentation let us proceed with the memoryless
case which already illustrates the essential ideas.
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Capacity of the DMC

@ For a discrete memoryless channel all the expressions in the
previous slide lead to the same value — the supremums are
attained by a memoryless source — and are in a ‘single letter’

form:
C= m)?xH(X) — H(XY)

@ Shannon shows that, given an information source of entropy H
and communication channel with capacity C reliable
communication is possible if and only if H < C.
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Transmitter/Receiver design by Probabilistic method

Shannon's proof of the ‘noisy channel coding theorem’ — that
good transmitters and receivers exist — is not by an explicit
construction but via the probabilistic method:

@ Consider an auxiliary memoryless source that attains the max
in the definition of C. Consider its transmission over the
DMC. The pairs (X1, Y1), ..., (Xn, Yn) then form an i.i.d.
sequence of random variables with entropy H(XY').

o Thus there are 2""(X) typical x"'s; 2"H(Y) typical y"'s; and
2mH(XY) typical (x", y") pairs.

@ The typicality picture now looks as follows:
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Transmitter/Receiver design by Probabilistic method

Ta(Y)
L]
Ta(X) *
. . @ Randomly choose 2"R messages
° ° from the left column. This is
L] . .
. our transmitter design.
SnH(X)
HIGH PROBABILITY 2”H(Y)
MESSAGES . HIGH PROBABILITY
2nH(X|Y) . RECEIVED SIGNALS
o ROREAGH T @ Upon observing Y, the receiver
. . declares a message that is a
y ‘reasonable cause’ of Y.
L]
o R < H(X)— H(X|Y)
. 2PH(Y1X) guarantees that with high
REASONABLE EFFECTS e .
® " rormackx” o * probability the true message will
L]

be receiver’s only choice.



Converse

Shannon shows that if H > C then no matter how the transmitter
and receiver are designed %H(U”\Y”) will be at least H — C > 0.
In light of the later part of the paper that sets up rate—distortion
theory, this is — in principle — sufficient to show that the symbol
error probability cannot be made arbitrarily close to zero. Shannon
does not state this explicitly. However he does state a ‘strong
converse' without proof.
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Shannon shows that if H > C then no matter how the transmitter
and receiver are designed %H(U”\Y”) will be at least H — C > 0.
In light of the later part of the paper that sets up rate—distortion
theory, this is — in principle — sufficient to show that the symbol
error probability cannot be made arbitrarily close to zero. Shannon
does not state this explicitly. However he does state a ‘strong
converse' without proof.

| have a preference for proving the converse for the symbol error
probability. After all, the user of the communication system will
interact with our design by supplying a sequence of symbols and
may not even be aware of the designers notion of ‘block’, or
whether the system works with block codes.
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Both for sources and channels, one can question if Shannon's
model is appropriate, and if so, how accurate our knowledge of the
‘true’ source of channel can be.

On the first question, Shannon's models have withstood the test of
time — at this point we don’t give much thought about the
appropriateness. However, one should note that Shannon's
techniques to show that the existence of good transducers depend
crucially on accurate knowledge of the ‘true’ source or channel.

Shannon's engineering instincts presumably did tell him that
slightly imperfect knowledge of the model only slightly diminishes
the achievable compression/transmission rates. Nevertheless, the
development of universal compression schemes and coding
theorems for the compound channels were a theoretical necessity.



Waveform sources and channels

Shannon next generalizes his source and channel models to those
that produce and accept real-valued signals of continuous time.
However, he dismisses with the continuity of time by assuming the
signals are bandlimited to a certain band W, and thus, the during a
time interval T (via the sampling theorem) can be specified by

n =2WT samples.



Waveform sources and channels

Shannon next generalizes his source and channel models to those
that produce and accept real-valued signals of continuous time.
However, he dismisses with the continuity of time by assuming the
signals are bandlimited to a certain band W, and thus, the during a
time interval T (via the sampling theorem) can be specified by

n =2WT samples.

While intuitively plausible, that this is (essentially) indeed the case
took some effort to establish rigorously.
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Entropy for real-valued random variables

Shannon generalizes the definition of entropy to real valued random
variables as

HOX) = = [ el log () o,

and notes that unlike the discrete case, H is not invariant under
one-to-one transformations.

However, the difference H(X) — H(X]|Y) is invariant, and so, the
notion of channel capacity is well defined. Furthermore, given a
channel with real-valued inputs and outputs, one can use finer and
finer quantization of its input and output to get a discrete channel
that has capacity as close to the original as desired.
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Gaussians and entropy power

Among random variables of given second moment o the Gaussian

has the largest entropy H(X) = 1 log(2mrec?).

Shannon makes the claim that if X; and X5 are independent
random variables with entropies 3 log(2meN;) and 3 log(2mels,),
then

1
H(Xl + Xg) > E |og(27re(N1 + Ng))

This is the entropy power inequality. The argument Shannon gives
is the only one in the paper that can’t be turned into a real proof.
This, if anything, is a testament to the strength Shannon's insight,
and his acuity in sensing the truth.



Capacity of waveform channels

Generically, without some sort of cost constraint on the input
signals the capacity of a channels with real-valued inputs/outputs
will turn out to be infinity.

Shannon pays particular attention to additive noise channels. In the
case of the AWGN with input power constraint, he derives its

capacity as
P+ N
C = Wlog -
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many bits are required to quantize a source U if we are willing to
tolerate some distortion in its reconstruction?
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The last topic Shannon touches upon is lossy compression: how
many bits are required to quantize a source U if we are willing to
tolerate some distortion in its reconstruction?

Shannon motivates the question from the case of continuous valued
sources which generally require an infinite number of bits to
represent exactly and thus distortion is a necessary evil. However,
his treatment is completely general.



Rate distortion theory

Shannon makes the case that the only natural way to evaluate the
quality of a quantization scheme is to measure its distortion by

E[p(U, V)]

where U is a source letter, V is the reconstruction of U from its
quantization, p is some cost function giving the the penalty of
representing u by v.
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tolerable distortion v, and a communication channel with capacity
C, can we design a transmitter and receiver so that the information
is reconstructed at the destination within the tolerable distortion?



Rate distortion theory

Given an information source U, a distortion measure p(u, v), a
tolerable distortion v, and a communication channel with capacity
C, can we design a transmitter and receiver so that the information
is reconstructed at the destination within the tolerable distortion?

Shannon shows that the answer to this question is yes if and only if
C > R(v) where
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where the inf is taken over all V" jointly distributed with U" such
that 13", E[p(U;, V)] < v.



Rate distortion theory

Given an information source U, a distortion measure p(u, v), a
tolerable distortion v, and a communication channel with capacity
C, can we design a transmitter and receiver so that the information
is reconstructed at the destination within the tolerable distortion?

Shannon shows that the answer to this question is yes if and only if
C > R(v) where

1
R(v) = liminf =[H(U") — H(U"|V")]

n vnn
where the inf is taken over all V" jointly distributed with U" such
that 3, Elp(Ur, Vi)l < v.
In the case of a memoryless source this expression can be evaluated
for n = 1. Shannon gives examples, notably when U is Gaussian
and p is squared error.
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Shannon's proof of this ‘rate—distortion theorem' follows the same
logic as his proof of the noisy channel coding theorem and subject
to similar caveats.



Rate distortion theory

Shannon's proof of this ‘rate—distortion theorem' follows the same
logic as his proof of the noisy channel coding theorem and subject
to similar caveats.

While proving the theorem Shannon also establishes (but does not
comment on) an architectural principle: when a
transmitter/receiver pair satisfying the distortion criteria can be
designed, they can designed in a modular way.



TRANSMITTER

MESSAGE SIGNAL




Modular design — Universal digital interface

TRANSMITTER

MESSAGE SIGNAL

The transmitter can be implemented in two steps: (1) a source
coder (designed with the knowledge only of py, p, ) that maps
the source into R(v) bits per source letter, (2) a channel coder
(designed with the knowledge only of channel statistics) that maps
bit sequences into channel input sequences. Similarly at the
receiver (1) a channel decoder recovers the bits, (2) a source
decoder maps the bits into the reconstruction of the source.
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TRANSMITTER

MESSAGE SIGNAL

The transmitter can be implemented in two steps: (1) a source
coder (designed with the knowledge only of py, p, ) that maps
the source into R(v) bits per source letter, (2) a channel coder
(designed with the knowledge only of channel statistics) that maps
bit sequences into channel input sequences. Similarly at the
receiver (1) a channel decoder recovers the bits, (2) a source
decoder maps the bits into the reconstruction of the source.

Consequently bits (or any other digital format) may be used as a
universal interface between sources and channels without sacrificing
feasibility. This is precisely what distinguishes ‘digital’ from ‘analog’
communication systems.



Remarks

Shannon's “A mathematical theory of communication” is a most
eloquent elaboration of an end-to-end theory of communication
systems. It never fails to amaze no matter how often one consults

it. How often do we see a research field arise fully formed from the
mind of a single man?
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Shannon's “A mathematical theory of communication” is a most
eloquent elaboration of an end-to-end theory of communication
systems. It never fails to amaze no matter how often one consults
it. How often do we see a research field arise fully formed from the
mind of a single man?

Despite its mathematical nature AMTC is written in a very didactic
style. Criticism along the lines ‘Shannon did not dot this i and cross
that t' completely misses the point. A fully rigorous treatment
would not have had a fraction of the impact of AMTC (and would
have arrived a decade too late).



Remarks

Any mathematical theory is concerned with mathematical models
of reality, not reality itself. In a mathematical theory for an
engineering discipline one has to make a tradeoff: if the models are
very accurate, they represent reality well, but they are hard to
analyze/understand/intuit; if they are too simple, they ignore
crucial parts of reality to the point of being useless to
analyze/understand/.... What AMTC has done for communication
engineering has no parallel in any engineering field.



