### Shannon's Secret



Himanshu Tyagi Indian Institute of Science



### **Abstract**

review Shannon's notion of information theoretic secrecy track the evolution of Shannon's ideas into modern crypto along the way, review some major breakthroughs\*

<sup>\*</sup>Terms and conditions apply.



# Secure Transmission Of A Message



How do we capture mathematically the notion of "secrecy"?

### Shannon's "Secret"

Eavesdropper's knowledge before observing the cryptogram:

Prior distribution on the message  $P_M$ 

Eavesdropper's knowledge after observing the cryptogram:

Posterior distribution on the message  $P_{M\mid E=e}$ 

### Shannon's "Secret"

Eavesdropper's knowledge before observing the cryptogram:

Prior distribution on the message  $P_M$ 

Eavesdropper's knowledge after observing the cryptogram:

Posterior distribution on the message  $P_{M|E=e}$ 

Let f(P) denote the level of "uncertainty" in P

Secrecy of the message is defined as

$$\sigma(M; E) = f(P_M) - \mathbb{E}[f(P_{M|E})]$$

### Shannon's "Secret"

Eavesdropper's knowledge before observing the cryptogram:

Prior distribution on the message  $P_{\it M}$ 

Eavesdropper's knowledge after observing the cryptogram:

Posterior distribution on the message  $P_{M\mid E=e}$ 

Let f(P) denote the level of "uncertainty" in P

Secrecy of the message is defined as

$$\sigma(M; E) = f(P_M) - \mathbb{E}[f(P_{M|E})]$$

Shannon chose his favorite concave function as f, namely

the Shannon entropy 
$$f(P) = H(P) = -\sum_x P(x) \log P(x)$$

### Real World Versus Ideal World

- ▶ The *view* in the *real world*:  $P_{ME}$
- ▶ The view in the ideal world:  $P_M \times P_E$

$$\sigma(M;E) = H(M) - H(M|E)$$
 
$$= I(M \wedge E) \quad : \textit{Mutual Information between } M \text{ and } E$$
 
$$= D(\mathrm{P}_{ME} \| \mathrm{P}_M \times \mathrm{P}_E)$$

$$D(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$
 is the Kullback-Leibler divergence

## Analysis Of Theoretical Secrecy

Let M,K take values in an Abelian group  $(\mathbb{G},+)$ Consider the encryption E=M+K

$$\sigma(M; E) = I(M \wedge E)$$

$$= I(M \wedge M + K)$$

$$= H(M + K) - H(M + K|M)$$

$$\leq \log |\mathbb{G}| - H(M + K|M)$$

$$= \log |\mathbb{G}| - H(K|M)$$

$$= \log |\mathbb{G}| - H(K)$$

- ▶ Related the secrecy of the message to the uniformity of the key
- Used nontrivial manipulations of "uncertainty" of the cryptanalyst

# Change In Secrecy Per Observed Cryptogram Bit

► Theoretical secrecy

Consider a message M that can take  $m^N$  possible values

Let 
$$ND = N \log m - H(M)$$



# Change In Secrecy Per Observed Cryptogram Bit

► Practical secrecy

W(N): Work in "human hours" used to ascertain the posterior  ${\rm P}_{M\mid E}$ 



## Germination Of Cryptographic Thinking

Secrecy of a cipher can be established only after a thorough theoretical and practical evaluation of the power of a cryptanalyst

- ► Define secrecy keeping the strengths and the limitations of the cryptanalyst in mind
- Measure secrecy by the difference between the real world and the ideal worlds
- Analyze secrecy
   of a message by reducing it to the secrecy of the corresponding key
- Quantize secrecy
   by tracking each bit of information leaked



# Diffie Hellman Key Exchange





"New Directions in Cryptography," 1976.

Convert a difficult number theory problem into a secure system:

A computationally limited cryptanalyst deems all answers equally likely

#### Diffie Hellman Key Exchange

- 1. Party 1 chooses a uniformly over  $\mathbb F$  and sends  $g^a$
- 2. Party 2 chooses b uniformly over  $\mathbb F$  and sends  $g^b$
- 3. Both parties compute  $g^{ab}$

Key principle: Discrete  $\exp$  is easy, discrete  $\log$  is difficult

First realization of Shannon's "man hours" based practical security

Led to RSA, El Gamal's encryption scheme, ...

### How Do We Quantize The Secrecy Of Such Schemes?

- 1. From statistical difference between the real and the ideal world to the difference in the power of a cryptanalyst in the two worlds
- 2. From randomness to pseudorandomness

#### A basic principle:

Instead of direct secrecy guarantees use *reduction arguments* and keep a track of components with ambiguous secrecy guarantees

#### **Building towards semantic secrecy**

Step 1. An alternative definition of Information Theoretic secrecy

$$\sigma_{\text{var}}(M;E) = d_{\text{var}}(\mathbf{P}_{ME},\mathbf{P}_{M}\times\mathbf{P}_{E}) = \mathbb{E}_{\mathbf{P}_{M}}\left[d_{\text{var}}(\mathbf{P}_{E|M},\mathbf{P}_{E})\right],$$

where  $d_{\text{var}}(P,Q) = \sup_A P(A) - Q(A)$  is the total variation distance

#### **Building towards semantic secrecy**

Step 1. An alternative definition of Information Theoretic secrecy

$$\sigma_{\mathtt{var}}(M;E) = d_{\mathtt{var}}(\mathbf{P}_{ME},\mathbf{P}_{M}\times\mathbf{P}_{E}) = \mathbb{E}_{\mathbf{P}_{M}}\left[d_{\mathtt{var}}(\mathbf{P}_{E|M},\mathbf{P}_{E})\right],$$

where  $d_{var}(P, Q) = \sup_A P(A) - Q(A)$  is the total variation distance

The two secrecy indices are related as

$$\frac{1}{2\ln 2}\sigma_{\text{var}}(M; E) \leq \sigma(M; E)$$

$$\leq \sigma_{\text{var}}(M; E)\log(|\mathcal{M}| - 1) + h(\min\{\sigma_{\text{var}}(M; E), 2\}),$$

where  $\mathcal{M}\equiv$  the set of messages and  $h(\cdot)\equiv$  the binary entropy function

#### **Building towards semantic secrecy**

Step 1. An alternative definition of Information Theoretic secrecy

$$\sigma_{\mathtt{var}}(M;E) = d_{\mathtt{var}}(\mathbf{P}_{ME},\mathbf{P}_{M}\times\mathbf{P}_{E}) = \mathbb{E}_{\mathbf{P}_{M}}\left[d_{\mathtt{var}}(\mathbf{P}_{E|M},\mathbf{P}_{E})\right],$$

where  $d_{\text{var}}(P, Q) = \sup_A P(A) - Q(A)$  is the total variation distance

$$\sigma_{\mathtt{var}}(M; E) \leq \epsilon \Rightarrow$$

A randomized algorithm will attain the same performance guarantee

in the real world  $\mathrm{P}_{ME}$  as in the secure ideal world  $\mathrm{P}_{M} \times \mathrm{P}_{E}$ ,

up to an additional probability of error  $\epsilon$ 

#### **Building towards semantic secrecy**

Step 2. A hypothesis testing interpretation of  $d_{\text{var}}(P,Q)$ 

Let 
$$P_0 = P$$
 and  $P_1 = Q$ .

An unbiased coin B is tossed and a sample is generated from  $\mathcal{P}_B$ 

An observer of the sample forms an estimate  $\hat{B}$  of B

The least probability of error  $P_e^* = \min_{\hat{B}} \Pr\left(\hat{B} \neq B\right)$  satisfies

$$\frac{1}{2}d_{\mathrm{var}}(\mathbf{P},\mathbf{Q}) = \frac{1}{2} - P_e^* = \text{ advantage over a random guess}$$

#### **Building towards semantic secrecy**

#### Step 3. Information theoretic semantic secrecy

 $\sigma_{ exttt{sem}}(M;E)$  is the maximum advantage in guessing f(M) from E in the real world has over the same guess in the ideal world, namely

$$\sigma_{\text{sem}}(M;E) := \min_{G} \max_{f,\hat{f}} \Pr\left(\hat{f}(E) = f(M)\right) - \Pr\left(\hat{f}(G) = f(M)\right),$$

where the random variable G is independent of (M,E)

#### **Building towards semantic secrecy**

#### Step 4. Distributions free secrecy indices

- ► Assume the worst-case knowledge for cryptanalyst
- Encryption process is defined by  $T = P_{E|M}$

$$\begin{split} \sigma_{\text{var}}(\mathcal{M};T) &= \sup_{\mathbf{P}_{ME}:\mathbf{P}_{E|M} = T} \sigma_{\text{var}}(M;E) \\ \sigma_{\text{sem}}(\mathcal{M};T) &= \sup_{\mathbf{P}_{ME}:\mathbf{P}_{E|M} = T} \sigma_{\text{sem}}(M;E) \end{split}$$

$$\sigma_{\texttt{sim}}(\mathcal{M};T) \leq \sigma_{\texttt{var}}(\mathcal{M};T) \leq 2\sigma_{\texttt{sim}}(\mathcal{M};T)$$

#### **Building towards semantic secrecy**

#### Step 4. Distributions free secrecy indices

- ► Assume the worst-case knowledge for cryptanalyst
- Encryption process is defined by  $T = P_{E|M}$

$$\begin{split} \sigma_{\text{var}}(\mathcal{M};T) &= \sup_{\mathbf{P}_{ME}:\mathbf{P}_{E|M} = T} \sigma_{\text{var}}(M;E) \\ \sigma_{\text{sem}}(\mathcal{M};T) &= \sup_{\mathbf{P}_{ME}:\mathbf{P}_{E|M} = T} \sigma_{\text{sem}}(M;E) \end{split}$$

$$\sigma_{\texttt{sim}}(\mathcal{M};T) \leq \sigma_{\texttt{var}}(\mathcal{M};T) \leq 2\sigma_{\texttt{sim}}(\mathcal{M};T)$$

### Goldwasser-Micali's Semantic Secrecy



"Probabilistic Encryption," 1976.

- Restrict the power of cryptanalyst to a computational class
- ► Asymptotic theory: Parameterize secrecy index with input-size

$$n = \log |\mathcal{M}| + \log |\mathcal{K}|$$

Cryptanalyst can use only Prob. Poly. Time (PPT) in n functions  $\hat{f}$ 

$$\sigma_{\text{sem}}(M;E) = \min_{G} \max_{f,\hat{f}inPPT} \Pr\left(\hat{f}(E) = f(M)\right) - \Pr\left(\hat{f}(G) = f(M)\right),$$

### Tricks Of The Trade

- ▶ Formulate the problem with information theoretic secrecy
- ► Take a "difference in statistician's ability" view of distances
- ► Use reduction arguments to relate the secrecy of your system to that of a well-studied secure primitive
- Replace your information theoretic reduction to computational by imposing appropriate computational restrictions

## Eg. 1: Distinguishing Secrecy $\equiv$ Semantic Secrecy

$$\sigma_{\mathrm{dis}}(\mathcal{M};T) = \max_{m_0,m_1 \in \mathcal{M}} \left( \max_{\hat{B} \text{in PPT}} \Pr\left(\hat{B}\left(T_{m_B}\right) = B\right) - \frac{1}{2} \right)$$

#### Step 1. Show equivalence for IT secrecy

$$\sigma_{\tt dis}(\mathcal{M};T) \leq \sigma_{\tt sem}(\mathcal{M};W) \leq 2\sigma_{\tt dis}(\mathcal{M};W)$$

*Proof.* For a fixed  $m_0$ , there exists  $m_1$  such that

$$\Pr\left(\hat{f}(T_M) = f(M)\right) - \Pr\left(\hat{f}(G) = f(M)\right)$$

$$\leq \Pr\left(\hat{f}(T_{m_1}) = f(m_1)\right) - \Pr\left(\hat{f}(T_{m_0}) = f(m_1)\right),$$

and so, for 
$$\hat{B}(z)=\mathbb{1}\left(\hat{f}(z)=f(m_1)\right)$$

$$\Pr\left(\hat{B}(T_{m_B}) = B\right) \ge \frac{1}{2} + \frac{1}{2} \left[\Pr\left(\hat{f}(T_M) = f(M)\right) - \Pr\left(\hat{f}(G) = f(M)\right)\right]$$

# Eg. 1: Distinguishing Secrecy $\equiv$ Semantic Secrecy

$$\sigma_{\mathrm{dis}}(\mathcal{M};T) = \max_{m_0,m_1 \in \mathcal{M}} \left( \max_{\hat{B} \text{in PPT}} \Pr\left(\hat{B}\left(T_{m_B}\right) = B\right) - \frac{1}{2} \right)$$

Step 1. Show equivalence for IT secrecy

$$\sigma_{\mathtt{dis}}(\mathcal{M};T) \leq \sigma_{\mathtt{sem}}(\mathcal{M};W) \leq 2\sigma_{\mathtt{dis}}(\mathcal{M};W)$$

*Proof.* For a fixed  $m_0$ , there exists  $m_1$  such that

$$\Pr\left(\hat{f}(T_M) = f(M)\right) - \Pr\left(\hat{f}(G) = f(M)\right)$$

$$\leq \Pr\left(\hat{f}(T_{m_1}) = f(m_1)\right) - \Pr\left(\hat{f}(T_{m_0}) = f(m_1)\right),$$

and so, for 
$$\hat{B}(z)=\mathbb{1}\left(\hat{f}(z)=f(m_1)\right)$$

$$\Pr\left(\hat{B}(T_{m_B}) = B\right) \ge \frac{1}{2} + \frac{1}{2} \left[\Pr\left(\hat{f}(T_M) = f(M)\right) - \Pr\left(\hat{f}(G) = f(M)\right)\right]$$

**Step 2.** Check the feasibility of steps under computational restrictions

# Eg. 1: Distinguishing Secrecy $\equiv$ Semantic Secrecy

$$\sigma_{\mathtt{dis}}(\mathcal{M};T) = \max_{m_0,m_1 \in \mathcal{M}} \left( \max_{\hat{B} \text{in PPT}} \Pr\left(\hat{B}\left(T_{m_B}\right) = B\right) - \frac{1}{2} \right)$$

#### Step 1. Show equivalence for IT secrecy

$$\sigma_{\mathtt{dis}}(\mathcal{M};T) \leq \sigma_{\mathtt{sem}}(\mathcal{M};W) \leq 2\sigma_{\mathtt{dis}}(\mathcal{M};W)$$

*Proof.* For a fixed  $m_0$ , there exists  $m_1$  such that

$$\Pr\left(\hat{f}(T_M) = f(M)\right) - \Pr\left(\hat{f}(G) = f(M)\right)$$

$$\leq \Pr\left(\hat{f}(T_{m_1}) = f(m_1)\right) - \Pr\left(\hat{f}(T_{m_0}) = f(m_1)\right),$$

and so, for  $\hat{B}(z)=\mathbb{1}\left(\hat{f}(z)=f(m_1)\right)$  ( $\hat{B}$  must be in PPT)

$$\Pr\left(\hat{B}(T_{m_B}) = B\right) \ge \frac{1}{2} + \frac{1}{2} \left[ \Pr\left(\hat{f}(T_M) = f(M)\right) - \Pr\left(\hat{f}(G) = f(M)\right) \right]$$

**Step 2.** Check the feasibility of steps under computational restrictions

# Eg. 2: Defining Pseudorandomness

Let M,K take values in an Abelian group  $(\mathbb{G},+)$ 

Consider the encryption E = M + K

**Step 1.** Uniform K implies IT distinguishable secrecy

Can distinguish  $K + m_0$  from  $K + m_1 \Rightarrow can distinguish K from uniform$ 

# Eg. 2: Defining Pseudorandomness

Let M,K take values in an Abelian group  $(\mathbb{G},+)$ 

Consider the encryption E = M + K

**Step 1.** Uniform K implies IT distinguishable secrecy

Can distinguish  $K + m_0$  from  $K + m_1 \Rightarrow can distinguish K from uniform$ 

Step 2. "Pseudorandom" K implies IT distinguishable secrecy

Can distinguish  $K+m_0$  from  $K+m_1 \Rightarrow$  can distinguish K from uniform in PPT in PPT

# Eg. 2: Defining Pseudorandomness

Let M,K take values in an Abelian group  $(\mathbb{G},+)$ 

Consider the encryption E = M + K

**Step 1.** Uniform K implies IT distinguishable secrecy

Can distinguish  $K + m_0$  from  $K + m_1 \Rightarrow can distinguish K from uniform$ 

**Step 2.** "Pseudorandom" K implies IT distinguishable secrecy

Can distinguish  $K+m_0$  from  $K+m_1 \Rightarrow \qquad$  can distinguish K from uniform in PPT  $\qquad \qquad \text{in PPT}$ 

#### **Definition of pseudorandomness**

K is pseudorandom if you cannot distinguish it from uniform in PPT

### Secure Public-Key Encryption Using Diffie-Hellman

Given a finite field  $\mathbb{F}$  and its generator g (say):

- 1. Party 2 generates  $b \sim \operatorname{unif}(\mathbb{F})$  and publishes  $g^b$  publicly
- 2. Party 1 seeks to send a message  $m \in \mathbb{F}$  to Party 2
  - ▶ It generates  $a \sim \mathtt{unif}(\mathbb{F})$  and sends  $(g^a, (g^b)^a \oplus m)$
- 3. Party 2 observes  $(g^a,(g^b)^a\oplus m)$  and computes

$$\hat{m} = (g^a)^b \oplus (g^b)^a \oplus m$$

The scheme is secure under  $\sigma_{\tt dis}$  if  $g^{ab}$  constitutes pseudorandomness for a "cryptanalyst with side-information"  $(g^a,g^b)$ 

### Active Adversaries: Chosen Plaintext Attack

Hereto, the cryptanalyst was gives access to one cryptogram

In practise, however, often a malacious cryptanalyst can obtain cryptograms for his chosen messages  $m_1,...,m_t$ 

Security can ensured using a pseudorandom function, namely a function which cannot be distinguished from a random function

Pseudorandom functions can be constructed using pseudorandomness

We need one more tool from Shannon's toolkit...

### Chain Rule: The So-Called Hybrid Argument

Just like Shannon's measures of information,  $d_{var}$ , too, "tensorizes":

$$d_{\text{var}}\left(\mathbf{P}_{X_{1},...,X_{n}},\mathbf{Q}_{X_{1},...,X_{n}}\right) \leq \sum_{i=0}^{n-1} d_{\text{var}}\left(\mathbf{P}_{X^{i}}Q_{X_{i+1}^{n}|X^{i}},\mathbf{P}_{X^{i+1}}Q_{X_{i+2}^{n}|X^{i+1}}\right)$$

Used to reduce the  $\epsilon$ -secrecy of a collection of n components to  $\epsilon/n$ -secrecy of one of the component

### Shannon's Secret Is Secure Out In Open

#### An Information Theoretic approach to cryptography

- ► Formulate the problem requiring information theoretic secrecy
- ► Replace the distances with the difference in the outcome of a cryptanalyst

### Shannon's Secret Is Secure Out In Open

#### An Information Theoretic approach to cryptography

- ► Formulate the problem requiring information theoretic secrecy
- ► Replace the distances with the difference in the outcome of a cryptanalyst
- Use chain rules, chain saws, human chains and what not to identify a basic primitive that will enable the required secure object