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Abstract

review Shannon’s notion of information theoretic secrecy

track the evolution of Shannon’s ideas into modern crypto

along the way, review some major breakthroughs∗

∗Terms and conditions apply.
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Communication Theory of Secrecy Systems



Secure Transmission Of A Message

two information sources—amessage source and a key source. The key source
produces a particular key from among those which are possible in the system.
This key is transmitted by some means, supposedly not interceptible, for ex-
ample by messenger, to the receiving end. The message source produces a
message (the “clear”) which is enciphered and the resulting cryptogram sent
to the receiving end by a possibly interceptible means, for example radio. At
the receiving end the cryptogram and key are combined in the decipherer to
recover the message.
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Fig. 1. Schematic of a general secrecy system

Evidently the encipherer performs a functional operation. IfM is the mes-
sage, K the key, and E the enciphered message, or cryptogram, we have

E = f(M, K)

that isE is function ofM andK. It is preferable to think of this, however, not
as a function of two variables but as a (one parameter) family of operations
or transformations, and to write it

E = TiM.

The transformation Ti applied to message M produces cryptogram E. The
index i corresponds to the particular key being used.

We will assume, in general, that there are only a finite number of possible
keys, and that each has an associated probability pi. Thus the key source
is represented by a statistical process or device which chooses one from
the set of transformations T1, T2, · · ·, Tm with the respective probabilities
p1, p2, · · ·, pm. Similarly we will generally assume a finite number of possible
messagesM1, M2, · · ·, Mn with associate a priori probabilities q1, q2, · · ·, qn.
The possible messages, for example, might be the possible sequences of En-
glish letters all of length N , and the associated probabilities are then the
relative frequencies of occurrence of these sequences in normal English text.
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How do we capture mathematically the notion of “secrecy”?
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Shannon’s “Secret”

Eavesdropper’s knowledge before observing the cryptogram:

Prior distribution on the message PM

Eavesdropper’s knowledge after observing the cryptogram:

Posterior distribution on the message PM |E=e

Let f(P) denote the level of “uncertainty” in P

Secrecy of the message is defined as

σ(M ;E) = f(PM )− E
[
f(PM |E)

]
Shannon chose his favorite concave function as f , namely

the Shannon entropy f(P) = H(P) = −
∑
x

P(x) log P(x)
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Real World Versus Ideal World

I The view in the real world: PME

I The view in the ideal world: PM × PE

σ(M ;E) = H(M)−H(M |E)

= I(M ∧ E) : Mutual Information between M and E

= D(PME‖PM × PE)

D(P‖Q) =
∑

x P(x) log
P(x)
Q(x) is the Kullback-Leibler divergence
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Analysis Of Theoretical Secrecy

Let M,K take values in an Abelian group (G,+)

Consider the encryption E =M +K

σ(M ;E) = I(M ∧ E)

= I(M ∧M +K)

= H(M +K)−H(M +K|M)

≤ log |G| −H(M +K|M)

= log |G| −H(K|M)

= log |G| −H(K)

I Related the secrecy of the message to the uniformity of the key

I Used nontrivial manipulations of “uncertainty” of the cryptanalyst
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Change In Secrecy Per Observed Cryptogram Bit

I Theoretical secrecy

Consider a message M that can take mN possible values

Let ND = N logm−H(M)

measured in bits per letter. This behavior is shown in Fig. 7, together with the
approximating curves.

By a similar argument the equivocation of message can be calculated. It
is

HE(M) = R0N for R0N≪HE(K)

HE(M) = HE(K) for R0N≫HE(K)

HE(M) = HE(K) − ϕ(N) for R0N∼HE(K)

where ϕ(N) is the function shown in Fig. 7 with N scale reduced by factor
of D

R0
. Thus,HE(M) rises linearly with slope R0, until it nearly intersects

Fig. 7. Equivocation for random cipher

theHE(K) line. After a rounded transition it follows theHE(K) curve down.
It will be seen from Fig. 7 that the equivocation curves approach zero

rather sharply. Thus we may, with but little ambiguity, speak of a point at
which the solution becomes unique. This number of letters will be called the
unicity distance. For the random cipher it is approximately H(K)

D
.

15 APPLICATION TO STANDARD CIPHERS

Most of the standard ciphers involve rather complicated enciphering and
deciphering operations. Furthermore, the statistical structure of natural lan-
guages is extremely involved. It is therefore reasonable to assume that the
formulas derived for the random cipher may be applied in such cases. It is
necessary, however, to apply certain corrections in some cases. The main
points to be observed are the following:

693
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Change In Secrecy Per Observed Cryptogram Bit

I Practical secrecy

W (N): Work in “human hours” used to ascertain the posterior PM |E

Although it is always possible in principle to determine these solutions
(by trial of each possible key for example), different enciphering systems
show a wide variation in the amount of work required. The average amount
of work to determine the key for a cryptogram of N letters, W (N), mea-
sured say in man hours, may be called the work characteristic of the system.
This average is taken over all messages and all keys with their appropriate
probabilities. The function W (N) is a measure of the amount of “practical
secrecy” afforded by the system.

For a simple substitution on English the work and equivocation charac-
teristics would be somewhat as shown in Fig. 12. The dotted portion of

Fig. 12. Typical work and equivocation characteristics

the curve is in the range where there are numerous possible solutions and
these must all be determined. In the solid portion after the unicity point only
one solution exists in general, but if only the minimum necessary data are
given a great deal of work must be done to isolate it. As more material is
available the work rapidly decreases toward some asymptotic value—where
the additional data no longer reduces the labor.

Essentially the behavior shown in Fig. 12 can be expected with any type
of secrecy system where the equivocation approaches zero. The scale of man
hours required, however, will differ greatly with different types of ciphers,
even when the HE(M) curves are about the same. A Vigenère or compound
Vigenère, for example, with the same key size would have a much better (i.e.,
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Germination Of Cryptographic Thinking

Secrecy of a cipher can be established only after a thorough
theoretical and practical evaluation of the power of a cryptanalyst

I Define secrecy

keeping the strengths and the limitations of the cryptanalyst in mind

I Measure secrecy

by the difference between the real world and the ideal worlds

I Analyze secrecy

of a message by reducing it to the secrecy of the corresponding key

I Quantize secrecy

by tracking each bit of information leaked
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Enter Diffie and Hellman



Diffie Hellman Key Exchange

“New Directions in Cryptography,” 1976.

Convert a difficult number theory problem into a secure system:

A computationally limited cryptanalyst deems all answers equally likely

Diffie Hellman Key Exchange
1. Party 1 chooses a uniformly over F and sends ga

2. Party 2 chooses b uniformly over F and sends gb

3. Both parties compute gab

Key principle: Discrete exp is easy, discrete log is difficult

First realization of Shannon’s “man hours” based practical security

Led to RSA, El Gamal’s encryption scheme, ...
11



How Do We Quantize The Secrecy Of Such Schemes?

1. From statistical difference between the real and the ideal world to

the difference in the power of a cryptanalyst in the two worlds

2. From randomness to pseudorandomness

A basic principle:

Instead of direct secrecy guarantees use reduction arguments

and keep a track of components with ambiguous secrecy guarantees
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Semantic Secrecy

Building towards semantic secrecy

Step 1. An alternative definition of Information Theoretic secrecy

σvar(M ;E) = dvar(PME ,PM × PE) = EPM

[
dvar(PE|M ,PE)

]
,

where dvar(P,Q) = supA P(A)−Q(A) is the total variation distance
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The two secrecy indices are related as

1

2 ln 2
σvar(M ;E)≤ σ(M ;E)

≤ σvar(M ;E) log(|M| − 1) + h(min{σvar(M ;E), 2}),

whereM≡ the set of messages and h(·) ≡ the binary entropy function
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Semantic Secrecy

Building towards semantic secrecy

Step 1. An alternative definition of Information Theoretic secrecy

σvar(M ;E) = dvar(PME ,PM × PE) = EPM

[
dvar(PE|M ,PE)

]
,

where dvar(P,Q) = supA P(A)−Q(A) is the total variation distance

σvar(M ;E) ≤ ε⇒

A randomized algorithm will attain the same performance guarantee

in the real world PME as in the secure ideal world PM × PE ,

up to an additional probability of error ε
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Semantic Secrecy

Building towards semantic secrecy

Step 2. A hypothesis testing interpretation of dvar(P,Q)

Let P0 = P and P1 = Q.

An unbiased coin B is tossed and a sample is generated from PB

An observer of the sample forms an estimate B̂ of B

The least probability of error P ∗e = minB̂ Pr
(
B̂ 6= B

)
satisfies

1

2
dvar(P,Q)=

1

2
− P ∗e = advantage over a random guess
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Semantic Secrecy

Building towards semantic secrecy

Step 3. Information theoretic semantic secrecy

σsem(M ;E) is the maximum advantage in guessing f(M) from E

in the real world has over the same guess in the ideal world, namely

σsem(M ;E) := min
G

max
f,f̂

Pr
(
f̂(E) = f(M)

)
− Pr

(
f̂(G) = f(M)

)
,

where the random variable G is independent of (M,E)

13



Semantic Secrecy

Building towards semantic secrecy

Step 4. Distributions free secrecy indices

I Assume the worst-case knowledge for cryptanalyst

I Encryption process is defined by T = PE|M

σvar(M;T ) = sup
PME :PE|M=T

σvar(M ;E)

σsem(M;T ) = sup
PME :PE|M=T

σsem(M ;E)

σsim(M;T ) ≤ σvar(M;T ) ≤ 2σsim(M;T )
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Goldwasser-Micali’s Semantic Secrecy

“Probabilistic Encryption,” 1976.

I Restrict the power of cryptanalyst to a computational class

I Asymptotic theory: Parameterize secrecy index with input-size

n = log |M|+ log |K|

Cryptanalyst can use only Prob. Poly. Time (PPT) in n functions f̂

σsem(M ;E) = min
G

max
f,f̂inPPT

Pr
(
f̂(E) = f(M)

)
− Pr

(
f̂(G) = f(M)

)
,
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Tricks Of The Trade

I Formulate the problem with information theoretic secrecy

I Take a “difference in statistician’s ability” view of distances

I Use reduction arguments to relate the secrecy of your system

to that of a well-studied secure primitive

I Replace your information theoretic reduction to computational

by imposing appropriate computational restrictions
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Eg. 1: Distinguishing Secrecy ≡ Semantic Secrecy

σdis(M;T ) = max
m0,m1∈M

(
max

B̂in PPT
Pr
(
B̂ (TmB

) = B
)
− 1

2

)

Step 1. Show equivalence for IT secrecy

σdis(M;T ) ≤ σsem(M;W ) ≤ 2σdis(M;W )

Proof. For a fixed m0, there exists m1 such that

Pr
(
f̂(TM ) = f(M)

)
− Pr

(
f̂(G) = f(M)

)
≤ Pr

(
f̂(Tm1) = f(m1)

)
− Pr

(
f̂(Tm0) = f(m1)

)
,

and so, for B̂(z) = 1

(
f̂(z) = f(m1)

)

(B̂ must be in PPT)

Pr
(
B̂(TmB ) = B

)
≥ 1

2
+

1

2

[
Pr
(
f̂(TM ) = f(M)

)
− Pr

(
f̂(G) = f(M)

)]
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Eg. 2: Defining Pseudorandomness

Let M,K take values in an Abelian group (G,+)

Consider the encryption E =M +K

Step 1. Uniform K implies IT distinguishable secrecy

Can distinguish K +m0 from K +m1 ⇒ can distinguish K from uniform

Step 2. “Pseudorandom” K implies IT distinguishable secrecy

Can distinguish K +m0 from K +m1 ⇒ can distinguish K from uniform
in PPT in PPT

Definition of pseudorandomness

K is pseudorandom if you cannot distinguish it from uniform in PPT
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Secure Public-Key Encryption Using Diffie-Hellman

Given a finite field F and its generator g (say):

1. Party 2 generates b ∼ unif(F) and publishes gb publicly

2. Party 1 seeks to send a message m ∈ F to Party 2

I It generates a ∼ unif(F) and sends (ga, (gb)a ⊕m)

3. Party 2 observes (ga, (gb)a ⊕m) and computes

m̂ = (ga)b ⊕ (gb)a ⊕m

The scheme is secure under σdis if gab constitutes

pseudorandomness for a “cryptanalyst with side-information” (ga, gb)
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Active Adversaries: Chosen Plaintext Attack

Hereto, the cryptanalyst was gives access to one cryptogram

In practise, however, often a malacious cryptanalyst
can obtain cryptograms for his chosen messages m1, ...,mt

Security can ensured using a pseudorandom function, namely
a function which cannot be distinguished from a random function

Pseudorandom functions can be constructed using pseudorandomness

We need one more tool from Shannon’s toolkit...
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Chain Rule: The So-Called Hybrid Argument

Just like Shannon’s measures of information, dvar, too, “tensorizes”:

dvar (PX1,...,Xn
,QX1,...,Xn

) ≤
n−1∑
i=0

dvar

(
PXiQXn

i+1|Xi ,PXi+1QXn
i+2|Xi+1

)
Used to reduce the ε-secrecy of a collection of n components

to ε/n-secrecy of one of the component
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Shannon’s Secret Is Secure Out In Open

An Information Theoretic approach to cryptography
I Formulate the problem requiring information theoretic secrecy

I Replace the distances with the difference in the outcome of a
cryptanalyst

I Use chain rules, chain saws, human chains and what not to

identify a basic primitive that will enable the required secure object
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