Shannon’s Secret

Himanshu Tyagi
Indian Institute of Science
Abstract

review Shannon’s notion of information theoretic secrecy
track the evolution of Shannon’s ideas into modern crypto
along the way, review some major breakthroughs*

*Terms and conditions apply.
Communication Theory of Secrecy Systems
How do we capture mathematically the notion of “secrecy”?
Shannon’s “Secret”

Eavesdropper’s knowledge before observing the cryptogram:

Prior distribution on the message P_M

Eavesdropper’s knowledge after observing the cryptogram:

Posterior distribution on the message $P_{M|E=e}$

Let $f(P)$ denote the level of “uncertainty” in P

Secrecy of the message is defined as

$$\sigma(M;E) = f(P_{M}) - \mathbb{E}[f(P_{M|E=e})]$$

Shannon chose his favorite concave function as f, namely

the Shannon entropy

$$f(P) = H(P) = -\sum x P(x) \log P(x)$$
Shannon’s “Secret”

Eavesdropper’s knowledge before observing the cryptogram:

Prior distribution on the message P_M

Eavesdropper’s knowledge after observing the cryptogram:

Posterior distribution on the message $P_{M|E=e}$

Let $f(P)$ denote the level of “uncertainty” in P

Secrecy of the message is defined as

$$\sigma(M; E) = f(P_M) - \mathbb{E}[f(P_{M|E})]$$
Shannon’s “Secret”

Eavesdropper’s knowledge before observing the cryptogram:

Prior distribution on the message P_M

Eavesdropper’s knowledge after observing the cryptogram:

Posterior distribution on the message $P_{M|E=e}$

Let $f(P)$ denote the level of “uncertainty” in P

Secrecy of the message is defined as

$$\sigma(M; E) = f(P_M) - \mathbb{E}[f(P_{M|E})]$$

Shannon chose his favorite concave function as f, namely

the Shannon entropy $f(P) = H(P) = - \sum_x P(x) \log P(x)$
The view in the *real world*: P_{ME}

The view in the *ideal world*: $P_M \times P_E$

$$\sigma(M;E) = H(M) - H(M|E)$$

$$= I(M \land E) \quad : \textit{Mutual Information} \text{ between } M \text{ and } E$$

$$= D(P_{ME} \parallel P_M \times P_E)$$

$$D(P\parallel Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)} \text{ is the Kullback-Leibler divergence}$$
Analysis Of Theoretical Secrecy

Let M, K take values in an Abelian group $(\mathbb{G}, +)$

Consider the encryption $E = M + K$

$$
\begin{align*}
\sigma(M; E) &= I(M \land E) \\
&= I(M \land M + K) \\
&= H(M + K) - H(M + K | M) \\
&\leq \log |\mathbb{G}| - H(M + K | M) \\
&= \log |\mathbb{G}| - H(K | M) \\
&= \log |\mathbb{G}| - H(K)
\end{align*}
$$

- Related the secrecy of the message to the uniformity of the key
- Used nontrivial manipulations of “uncertainty” of the cryptanalyst
Theoretical secrecy

Consider a message M that can take m^N possible values.
Let $ND = N \log m - H(M)$.

This behavior is shown in Fig. 7, together with the approximating curves.
Change In Secrecy Per Observed Cryptogram Bit

- Practical secrecy

\[W(N) \]: Work in “human hours” used to ascertain the posterior \(P_{M|E} \)
Secrecy of a cipher can be established only after a thorough theoretical and practical evaluation of the power of a cryptanalyst.

- **Define secrecy**
 keeping the strengths and the limitations of the cryptanalyst in mind

- **Measure secrecy**
 by the difference between the real world and the ideal worlds

- **Analyze secrecy**
 of a message by reducing it to the secrecy of the corresponding key

- **Quantize secrecy**
 by tracking each bit of information leaked
Enter Diffie and Hellman
Diffie Hellman Key Exchange

Diffie Hellman Key Exchange

1. Party 1 chooses a uniformly over \mathbb{F} and sends g^a
2. Party 2 chooses b uniformly over \mathbb{F} and sends g^b
3. Both parties compute g^{ab}

Key principle: Discrete exp is easy, discrete log is difficult

First realization of Shannon’s “man hours” based practical security

Led to RSA, El Gamal’s encryption scheme, ...
How Do We Quantize The Secrecy Of Such Schemes?

1. From statistical difference between the real and the ideal world to the difference in the power of a cryptanalyst in the two worlds

2. From randomness to pseudorandomness

A basic principle:
Instead of direct secrecy guarantees use reduction arguments and keep a track of components with ambiguous secrecy guarantees
Building towards semantic secrecy

Step 1. An alternative definition of Information Theoretic secrecy

\[
\sigma_{\text{var}}(M; E) = d_{\text{var}}(P_{ME}, P_M \times P_E) = \mathbb{E}_{P_M} \left[d_{\text{var}}(P_E|M, P_E) \right],
\]

where \(d_{\text{var}}(P, Q) = \sup_A P(A) - Q(A) \) is the total variation distance
Building towards semantic secrecy

Step 1. An alternative definition of Information Theoretic secrecy

\[\sigma_{\text{var}}(M; E) = d_{\text{var}}(P_{ME}, P_M \times P_E) = \mathbb{E}_{P_M} \left[d_{\text{var}}(P_{E|M}, P_E) \right], \]

where \(d_{\text{var}}(P, Q) = \sup_A P(A) - Q(A) \) is the total variation distance.

The two secrecy indices are related as

\[
\frac{1}{2 \ln 2} \sigma_{\text{var}}(M; E) \leq \sigma(M; E) \\
\leq \sigma_{\text{var}}(M; E) \log(|M| - 1) + h(\min\{\sigma_{\text{var}}(M; E), 2\}),
\]

where \(M \equiv \) the set of messages and \(h(\cdot) \equiv \) the binary entropy function.
Building towards semantic secrecy

Step 1. An alternative definition of Information Theoretic secrecy

\[
\sigma_{\text{var}}(M; E) = d_{\text{var}}(P_{ME}, P_M \times P_E) = \mathbb{E}_{P_M} \left[d_{\text{var}}(P_{E|M}, P_E) \right],
\]

where \(d_{\text{var}}(P, Q) = \sup_A P(A) - Q(A) \) is the total variation distance

\[
\sigma_{\text{var}}(M; E) \leq \epsilon \Rightarrow
\]

A randomized algorithm will attain the same performance guarantee in the real world \(P_{ME} \) as in the secure ideal world \(P_M \times P_E \), up to an additional probability of error \(\epsilon \).
Building towards semantic secrecy

Step 2. A hypothesis testing interpretation of $d_{\text{var}}(P, Q)$

Let $P_0 = P$ and $P_1 = Q$.

An unbiased coin B is tossed and a sample is generated from P_B.

An observer of the sample forms an estimate \hat{B} of B.

The least probability of error $P_e^* = \min_{\hat{B}} \Pr\left(\hat{B} \neq B\right)$ satisfies

$$\frac{1}{2} d_{\text{var}}(P, Q) = \frac{1}{2} - P_e^* = \text{advantage over a random guess}.$$
Building towards semantic secrecy

Step 3. Information theoretic semantic secrecy

\(\sigma_{\text{sem}}(M; E) \) is the maximum advantage in guessing \(f(M) \) from \(E \) in the real world has over the same guess in the ideal world, namely

\[
\sigma_{\text{sem}}(M; E) := \min_{G} \max_{\hat{f}, \hat{f}'} \Pr \left(\hat{f}(E) = f(M) \right) - \Pr \left(\hat{f}(G) = f(M) \right),
\]

where the random variable \(G \) is independent of \((M, E)\)
Semantic Secrecy

Building towards semantic secrecy

Step 4. Distributions free secrecy indices

- Assume the worst-case knowledge for cryptanalyst
- Encryption process is defined by \(T = P_{E|M} \)

\[
\sigma_{\text{var}}(\mathcal{M}; T) = \sup_{P_{ME}: P_{E|M} = T} \sigma_{\text{var}}(M; E)
\]

\[
\sigma_{\text{sem}}(\mathcal{M}; T) = \sup_{P_{ME}: P_{E|M} = T} \sigma_{\text{sem}}(M; E)
\]

\[
\sigma_{\text{sim}}(\mathcal{M}; T) \leq \sigma_{\text{var}}(\mathcal{M}; T) \leq 2\sigma_{\text{sim}}(\mathcal{M}; T)
\]
Building towards semantic secrecy

Step 4. Distributions free secrecy indices

- Assume the worst-case knowledge for cryptanalyst
- Encryption process is defined by $T = P_{E|M}$

$$
\sigma_{\text{var}}(\mathcal{M}; T) = \sup_{P_{M:E}:P_{E|M}=T} \sigma_{\text{var}}(M; E)
$$

$$
\sigma_{\text{sem}}(\mathcal{M}; T) = \sup_{P_{M:E}:P_{E|M}=T} \sigma_{\text{sem}}(M; E)
$$

$$
\sigma_{\text{sim}}(\mathcal{M}; T) \leq \sigma_{\text{var}}(\mathcal{M}; T) \leq 2\sigma_{\text{sim}}(\mathcal{M}; T)
$$
Goldwasser-Micali’s Semantic Secrecy

- Restrict the power of cryptanalyst to a computational class
- **Asymptotic theory**: Parameterize secrecy index with input-size

\[n = \log |\mathcal{M}| + \log |\mathcal{K}| \]

Cryptanalyst can use only Prob. Poly. Time (PPT) in \(n \) functions \(\hat{f} \)

\[
\sigma_{\text{sem}}(M; E) = \min_G \max_{f, \hat{f} \text{ in PPT}} \Pr \left(\hat{f}(E) = f(M) \right) - \Pr \left(\hat{f}(G) = f(M) \right),
\]
Tricks Of The Trade

- Formulate the problem with information theoretic secrecy
- Take a “difference in statistician’s ability” view of distances
- Use reduction arguments to relate the secrecy of your system to that of a well-studied secure primitive
- Replace your information theoretic reduction to computational by imposing appropriate computational restrictions
Eg. 1: Distinguishing Secrecy \equiv Semantic Secrecy

$$\sigma_{\text{dis}}(\mathcal{M}; T) = \max_{m_0, m_1 \in \mathcal{M}} \left(\max_{\hat{B} \in \text{PPT}} \Pr \left(\hat{B}(T_{m_B}) = B \right) - \frac{1}{2} \right)$$

Step 1. Show equivalence for IT secrecy

$$\sigma_{\text{dis}}(\mathcal{M}; T) \leq \sigma_{\text{sem}}(\mathcal{M}; W) \leq 2\sigma_{\text{dis}}(\mathcal{M}; W)$$

Proof. For a fixed m_0, there exists m_1 such that

$$\Pr \left(\hat{f}(T_M) = f(M) \right) - \Pr \left(\hat{f}(G) = f(M) \right) \leq \Pr \left(\hat{f}(T_{m_1}) = f(m_1) \right) - \Pr \left(\hat{f}(T_{m_0}) = f(m_1) \right),$$

and so, for $\hat{B}(z) = 1 \left(\hat{f}(z) = f(m_1) \right)$

$$\Pr \left(\hat{B}(T_{m_B}) = B \right) \geq \frac{1}{2} + \frac{1}{2} \left[\Pr \left(\hat{f}(T_M) = f(M) \right) - \Pr \left(\hat{f}(G) = f(M) \right) \right]$$
Eg. 1: Distinguishing Secrecy \equiv Semantic Secrecy

$$\sigma_{\text{dis}}(\mathcal{M}; T) = \max_{m_0, m_1 \in \mathcal{M}} \left(\max_{\hat{B} \text{ in PPT}} \Pr \left(\hat{B}(T_{m_B}) = B \right) - \frac{1}{2} \right)$$

Step 1. Show equivalence for IT secrecy

$$\sigma_{\text{dis}}(\mathcal{M}; T) \leq \sigma_{\text{sem}}(\mathcal{M}; W) \leq 2\sigma_{\text{dis}}(\mathcal{M}; W)$$

Proof. For a fixed m_0, there exists m_1 such that

$$\Pr \left(\hat{f}(T_M) = f(M) \right) - \Pr \left(\hat{f}(G) = f(M) \right) \leq \Pr \left(\hat{f}(T_{m_1}) = f(m_1) \right) - \Pr \left(\hat{f}(T_{m_0}) = f(m_1) \right) ,$$

and so, for $\hat{B}(z) = 1 \left(\hat{f}(z) = f(m_1) \right)$

$$\Pr \left(\hat{B}(T_{m_B}) = B \right) \geq \frac{1}{2} + \frac{1}{2} \left[\Pr \left(\hat{f}(T_M) = f(M) \right) - \Pr \left(\hat{f}(G) = f(M) \right) \right]$$

Step 2. Check the feasibility of steps under computational restrictions
Eg. 1: Distinguishing Secrecy ≡ Semantic Secrecy

\[
\sigma_{\text{dis}}(\mathcal{M}; T) = \max_{m_0, m_1 \in \mathcal{M}} \left(\max_{\hat{B} \text{ in PPT}} \Pr (\hat{B}(T_{m_B}) = B) - \frac{1}{2} \right)
\]

Step 1. Show equivalence for IT secrecy

\[
\sigma_{\text{dis}}(\mathcal{M}; T) \leq \sigma_{\text{sem}}(\mathcal{M}; W) \leq 2\sigma_{\text{dis}}(\mathcal{M}; W)
\]

Proof. For a fixed \(m_0\), there exists \(m_1\) such that

\[
\Pr \left(\hat{f}(T_M) = f(M) \right) - \Pr \left(\hat{f}(G) = f(M) \right)
\leq \Pr \left(\hat{f}(T_{m_1}) = f(m_1) \right) - \Pr \left(\hat{f}(T_{m_0}) = f(m_1) \right),
\]

and so, for \(\hat{B}(z) = 1 \left(\hat{f}(z) = f(m_1) \right)\) \((\hat{B} \text{ must be in PPT})\)

\[
\Pr \left(\hat{B}(T_{m_B}) = B \right) \geq \frac{1}{2} + \frac{1}{2} \left[\Pr \left(\hat{f}(T_M) = f(M) \right) - \Pr \left(\hat{f}(G) = f(M) \right) \right]
\]

Step 2. Check the feasibility of steps under computational restrictions
Eg. 2: Defining Pseudorandomness

Let \(M, K \) take values in an Abelian group \((\mathbb{G}, +)\)

Consider the encryption \(E = M + K \)

Step 1. Uniform \(K \) implies IT distinguishable secrecy

Can distinguish \(K + m_0 \) from \(K + m_1 \) \(\Rightarrow \) can distinguish \(K \) from uniform
Eg. 2: Defining Pseudorandomness

Let M, K take values in an Abelian group $(G, +)$
Consider the encryption $E = M + K$

Step 1. Uniform K implies IT distinguishable secrecy

Can distinguish $K + m_0$ from $K + m_1$ \Rightarrow can distinguish K from uniform

Step 2. “Pseudorandom” K implies IT distinguishable secrecy

Can distinguish $K + m_0$ from $K + m_1$ \Rightarrow can distinguish K from uniform in PPT
Let M, K take values in an Abelian group $(\mathbb{G}, +)$.

Consider the encryption $E = M + K$.

Step 1. Uniform K implies IT distinguishable secrecy

Can distinguish $K + m_0$ from $K + m_1$ \Rightarrow can distinguish K from uniform in PPT

Step 2. “Pseudorandom” K implies IT distinguishable secrecy

Can distinguish $K + m_0$ from $K + m_1$ \Rightarrow can distinguish K from uniform in PPT

Definition of pseudorandomness

K is pseudorandom if you cannot distinguish it from uniform in PPT.
Secure Public-Key Encryption Using Diffie-Hellman

Given a finite field \(\mathbb{F} \) and its generator \(g \) (say):

1. Party 2 generates \(b \sim \text{unif}(\mathbb{F}) \) and publishes \(g^b \) publicly

2. Party 1 seeks to send a message \(m \in \mathbb{F} \) to Party 2
 - It generates \(a \sim \text{unif}(\mathbb{F}) \) and sends \((g^a, (g^b)^a \oplus m)\)

3. Party 2 observes \((g^a, (g^b)^a \oplus m)\) and computes
 \[
 \hat{m} = (g^a)^b \oplus (g^b)^a \oplus m
 \]

The scheme is secure under \(\sigma_{\text{dis}} \) if \(g^{ab} \) constitutes pseudorandomness for a “cryptanalyst with side-information” \((g^a, g^b)\)
Active Adversaries: Chosen Plaintext Attack

Hereto, the cryptanalyst was given access to one cryptogram.

In practice, however, often a malicious cryptanalyst can obtain cryptograms for his chosen messages m_1, \ldots, m_t.

Security can be ensured using a pseudorandom function, namely a function which cannot be distinguished from a random function.

Pseudorandom functions can be constructed using pseudorandomness.

We need one more tool from Shannon’s toolkit…
Chain Rule: The So-Called Hybrid Argument

Just like Shannon’s measures of information, d_{var}, too, “tensorizes”:

$$d_{\text{var}} (P_{X_1,\ldots,X_n}, Q_{X_1,\ldots,X_n}) \leq \sum_{i=0}^{n-1} d_{\text{var}} \left(P_{X_i X_{i+1}|X^i}, P_{X_{i+1} X_{i+2}|X^{i+1}} \right)$$

Used to reduce the ϵ-secrecy of a collection of n components to ϵ/n-secrecy of one of the component
An Information Theoretic approach to cryptography

- Formulate the problem requiring information theoretic secrecy

- Replace the distances with the difference in the outcome of a cryptanalyst
An Information Theoretic approach to cryptography

- Formulate the problem requiring information theoretic secrecy

- Replace the distances with the difference in the outcome of a cryptanalyst

- Use chain rules, chain saws, human chains and what not to identify a basic primitive that will enable the required secure object