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Abstract

review Shannon's notion of information theoretic secrecy
track the evolution of Shannon's ideas into modern crypto

along the way, review some major breakthroughs*

*Terms and conditions apply.






Secure Transmission Of A Message
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How do we capture mathematically the notion of “secrecy”?



Shannon's “Secret”

Eavesdropper’s knowledge before observing the cryptogram:

Prior distribution on the message P,
Eavesdropper's knowledge after observing the cryptogram:

Posterior distribution on the message Py p—.
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Shannon's “Secret”

Eavesdropper’s knowledge before observing the cryptogram:
Prior distribution on the message P,
Eavesdropper's knowledge after observing the cryptogram:

Posterior distribution on the message Py p—.

Let f(P) denote the level of “uncertainty” in P

Secrecy of the message is defined as

o(M;E) = f(Py) —E[f(Punp)]

Shannon chose his favorite concave function as f, namely

the Shannon entropy f(P) = ZP )log P(x



Real World Versus Ideal World

» The view in the real world: Py

» The view in the ideal world: Py x Pg

o(M;E)=H(M)—- H(M|E)
=I(M A E) : Mutual Information between M and FE

= D(Pyg|Py % Pp)

D(P||Q) = 32, P(x)log % is the Kullback-Leibler divergence



Analysis Of Theoretical Secrecy

Let M, K take values in an Abelian group (G, +)

Consider the encryption £ = M + K

o(M;E)=I(M ANE)
=I(MANM+K)
=HM+K)—H(M+ K|M)
<log|G|— H(M + K|M)
~ log G| — H(K|M)
— log |G| — H(K)

> Related the secrecy of the message to the uniformity of the key

» Used nontrivial manipulations of “uncertainty” of the cryptanalyst



Change In Secrecy Per Observed Cryptogram Bit

» Theoretical secrecy

Consider a message M that can take m®™ possible values

Let ND = Nlogm — H(M)
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Change In Secrecy Per Observed Cryptogram Bit

» Practical secrecy

W(N): Work in "human hours” used to ascertain the posterior P/
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Germination Of Cryptographic Thinking

Secrecy of a cipher can be established only after a thorough
theoretical and practical evaluation of the power of a cryptanalyst

» Define secrecy

keeping the strengths and the limitations of the cryptanalyst in mind

» Measure secrecy

by the difference between the real world and the ideal worlds

» Analyze secrecy

of a message by reducing it to the secrecy of the corresponding key

» Quantize secrecy

by tracking each bit of information leaked






Diffie Hellman Key Exchange

“New Directions in Cryptography,” 1976.

Convert a difficult number theory problem into a secure system:

A computationally limited cryptanalyst deems all answers equally likely

Diffie Hellman Key Exchange
1. Party 1 chooses a uniformly over F and sends g“
2. Party 2 chooses b uniformly over F and sends ¢"
3. Both parties compute g

Key principle: Discrete exp is easy, discrete log is difficult
First realization of Shannon’s “man hours” based practical security

Led to RSA, El Gamal's encryption scheme, ... 1



How Do We Quantize The Secrecy Of Such Schemes?

1. From statistical difference between the real and the ideal world to

the difference in the power of a cryptanalyst in the two worlds

2. From randomness to pseudorandomness

A basic principle:
Instead of direct secrecy guarantees use reduction arguments

and keep a track of components with ambiguous secrecy guarantees

12



Semantic Secrecy

Building towards semantic secrecy

Step 1. An alternative definition of Information Theoretic secrecy
Uvar(M§ E) = dvar(PMEpr X PE) = EPM [dvar(PE\M7PE>] 5

where dyar (P, Q) = sup 4 P(A) — Q(A) is the total variation distance

13



Semantic Secrecy

Building towards semantic secrecy

Step 1. An alternative definition of Information Theoretic secrecy
Uvar(M; E) = dvar(PMEyPM X PE) - EPM [dvar(PE\M7PE)] )

where dyar (P, Q) = sup 4 P(A) — Q(A) is the total variation distance

The two secrecy indices are related as

1
[ER— . < .
21n20'var(M, E)< o(M;E)
< Oyar(M; E)log(IM| — 1) + h(min{ovar (M; E), 2}),

where M = the set of messages and h(-) = the binary entropy function
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Semantic Secrecy

Building towards semantic secrecy
Step 1. An alternative definition of Information Theoretic secrecy
Jvar(M; E) = dvar(PME; 1:)M X PE) - IEPM [dvar(PE\MapE)] )

where dyar (P, Q) = sup 4 P(A) — Q(A) is the total variation distance

Uvar(M; E) <e=
A randomized algorithm will attain the same performance guarantee
in the real world P as in the secure ideal world P; x Pg,

up to an additional probability of error e
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Semantic Secrecy

Building towards semantic secrecy

Step 2. A hypothesis testing interpretation of dyar (P, Q)

Let P =P and P; = Q.

An unbiased coin B is tossed and a sample is generated from Pg

An observer of the sample forms an estimate B of B
The least probability of error P} = min g Pr (B’ + B) satisfies

1 1
idvar(P7 Q)= 5 Pr= advantage over a random guess
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Semantic Secrecy

Building towards semantic secrecy
Step 3. Information theoretic semantic secrecy

Osen(M; E) is the maximum advantage in guessing f(M) from E

in the real world has over the same guess in the ideal world, namely

Tsea(M; ) 5= tyjn mas P (F(B) = ra)) = Pr (f(G) = £(0))

where the random variable G is independent of (M, E)

13



Semantic Secrecy

Building towards semantic secrecy

Step 4. Distributions free secrecy indices

» Assume the worst-case knowledge for cryptanalyst

» Encryption process is defined by 7' = P g,

Uvar(M; T) = sup Uvar(M; E)
PuePpu=T
Usem<M; T) = sup Usem<M; E)

PuePpiu=T

Osim(M; T) S Uvar(M; T) S 2O-sim(-/\/l; T)
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Goldwasser-Micali's Semantic Secrecy

“Probabilistic Encryption,” 1976.

» Restrict the power of cryptanalyst to a computational class
» Asymptotic theory: Parameterize secrecy index with input-size
n = log| M| + log |K|

Cryptanalyst can use only Prob. Poly. Time (PPT) in n functions f

Teea(Mi ) = i ma Pr(f() = J(M) = Pr (f(G) = fD))

14



Tricks Of The Trade

Formulate the problem with information theoretic secrecy

v

v

Take a "difference in statistician’s ability” view of distances

v

Use reduction arguments to relate the secrecy of your system

to that of a well-studied secure primitive

v

Replace your information theoretic reduction to computational

by imposing appropriate computational restrictions

15



Eg. 1: Distinguishing Secrecy = Semantic Secrecy

cais(M;T) = max ( max Pr (B (Tyy) = B) _ 1)

mo,m1E€EM \ Bin PPT

Step 1. Show equivalence for IT secrecy
Udis(M; T) S Usem(M; W) § 2Udis(M; W)

Proof. For a fixed mg, there exists m1 such that

Pr(f(Ta) = £(M) = Pr (£(G) = f(a))

< Pr (f(Tn) = f(m1)) = Pr (f(Tng) = Fm1))
and so, for B(z) =1 (f(z) = f(ml))

Pr (B(TmB) - B) >

16
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Step 2. Check the feasibility of steps under computational restrictions
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Eg. 1: Distinguishing Secrecy = Semantic Secrecy

oais(M;T) =  max < max Pr (E (Trnpy) = B) _ 1)

mo,m1E€M \ Bin PPT

Step 1. Show equivalence for IT secrecy
Tais(M;T) < Tgen(M; W) < 20455 (M; W)
Proof. For a fixed mo, there exists m; such that
Pr (f(Tw) = 7)) = Pr (£(G) = f(a))
< Pr (f(T) = £m) = Pr (£(Tmy) = Fmn))

and so, for B(z) =1

Voumn

fz) = f(ml)) (B must be in PPT)

\%

Pr(B(Twg) = B) > 4 + 3 [Pr(f(Ta) = 1) — Pr (f(G) = 7)) ]

Step 2. Check the feasibility of steps under computational restrictions



Eg. 2: Defining Pseudorandomness

Let M, K take values in an Abelian group (G, +)

Consider the encryption £ = M + K

Step 1. Uniform K implies IT distinguishable secrecy

Can distinguish K + mo from K +m; = can distinguish K from uniform
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Eg. 2: Defining Pseudorandomness

Let M, K take values in an Abelian group (G, +)

Consider the encryption £ = M + K
Step 1. Uniform K implies IT distinguishable secrecy

Can distinguish K + mo from K +m; = can distinguish K from uniform

Step 2. “Pseudorandom” K implies IT distinguishable secrecy

Can distinguish K 4+ mq from K +m; = can distinguish K from uniform
in PPT in PPT

Definition of pseudorandomness

K is pseudorandom if you cannot distinguish it from uniform in PPT
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Secure Public-Key Encryption Using Diffie-Hellman

Given a finite field F and its generator g (say):

1. Party 2 generates b ~ unif(FF) and publishes ¢° publicly
2. Party 1 seeks to send a message m € F to Party 2
> It generates a ~ unif(F) and sends (g%, (g°)* & m)
3. Party 2 observes (g%, (g°)® @ m) and computes
m= (") @ (¢") ®m
The scheme is secure under og5 if g*° constitutes

pseudorandomness for a “cryptanalyst with side-information” (g%, g*)

18



Active Adversaries: Chosen Plaintext Attack

Hereto, the cryptanalyst was gives access to one cryptogram

In practise, however, often a malacious cryptanalyst
can obtain cryptograms for his chosen messages my, ..., m;

Security can ensured using a pseudorandom function, namely

a function which cannot be distinguished from a random function
Pseudorandom functions can be constructed using pseudorandomness

We need one more tool from Shannon’s toolkit...

19



Chain Rule: The So-Called Hybrid Argument

Just like Shannon’s measures of information, dy.r, too, “tensorizes’:

n—1

dyar (P, X, Q1) < ) duar (PXiQXI?EH\XiaPXi+1QXi”+2\Xi+1)
i=0

Used to reduce the e-secrecy of a collection of n components

to €/n-secrecy of one of the component

20



Shannon's Secret Is Secure Out In Open

An Information Theoretic approach to cryptography

» Formulate the problem requiring information theoretic secrecy

» Replace the distances with the difference in the outcome of a
cryptanalyst

21



Shannon's Secret Is Secure Out In Open

An Information Theoretic approach to cryptography

» Formulate the problem requiring information theoretic secrecy

» Replace the distances with the difference in the outcome of a
cryptanalyst

» Use chain rules, chain saws, human chains and what not to

identify a basic primitive that will enable the required secure object
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