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Introduction  

• Information Theory is seemingly neither inspired by, nor a 
result of, observing or analyzing any natural phenomena. 

• Yet, it has a huge influence on the life engineered around 
us. 

• “The underlying philosophy of using simple models to 
understand the essence of an engineering problem has 
pervaded the development of the communication field ever 
since.” – David Tse. 

• Should Information Theory not be given greater importance 
in the undergraduate EE curriculum ? 
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Pedagogical Issues  

• Ideally, a study of an engineering subject should start with 
a statement of the goal, followed by a study of the building 
blocks, and their design, to achieve that goal. 

• Thus, a study of communications should start by providing 
a way to quantify or measure information that needs to be 
communicated, followed by a design of the resources 
required to communicate it over a given channel. 

• The situation is further not helped by the fact that  analog 
communication is taught before digital communications. 

• Interestingly, this order is reversed when information theory 
is taught. Thus differential entropy can be taught only after 
entropy has been taught. 
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A Beginner’s Perspective   

• Is there a result in analog communications which can be 
related to Information Theory ? 

• Yes, frequency modulation can trade-off bandwidth with 
signal to noise ratio. 

• How does Shannon’s AWGN capacity result: 
– Reconcile with the Nyquist rate for avoiding inter symbol 

interference in a given finite bandwidth ? 
– Compare with the bit rate on the channel of any 

communication system ? 
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Understanding Modern Communication 
Systems 

Let 
• W denote the bandwidth of the signal 
• No denote the spectral density of the AWGN 
• C denote the capacity of the channel 
• P denote the power of the signal 

 
 
• Let R denote the information rate, then R < C 
• If Eb denotes the energy per information bit, then P=EbR 
 
        
 

 

 
 



Understanding Modern Communication 
Systems 

• Define r=R/W as the spectral efficiency 
• Using the fact P=EbR and C > R, and the relation 
 
        

 
• We obtain the following condition for reliable 

communication 
 

 
 



Insights for Physical Layer Design 

 
 
 
 
 

 
• As we let spectral efficiency r → 0, we enter a power-

limited regime  

 



Insights into Wireless Communications   

• Consider the following SISO fading channels: 
• Slow fading channel 
• Fast fading channel 
• CSI at the transmitter 

• Density of log(1+|h|2SNR), for Rayleigh fading. For any 
target rate R, there is a non-zero outage probability. 
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Slow Fading Channel 

• If the channel realization h is such that log(1+|h|2SNR) < R, 
then whatever the code used by the transmitter, the 
decoding error probability cannot be made arbitrarily small.  

• The system is said to be in outage, and the outage 
probability is 
 
 

• Thus, the capacity of the slow fading channel in the strict 
sense is zero. An alternative performance measure is the ϵ-
outage capacity Cϵ . 
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Slow Fading Channel 
 

• This is the largest rate of transmission R such that the outage 
probability pout(R) is less than ϵ. 
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Fast Fading Channel 

• Suppose coding is done over L coherence periods, each of 
Tc symbols. If Tc  >>1, we can model this as L parallel sub-
channels that fade independently. The outage probability  is 

 
 

• For finite L, the quantity 
 
 

    is random and there is a non-zero probability that it will drop 
below any target rate R. Hence we have to again resort to 
the notion of outage. 
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Fast Fading Channel 

• However as L → ∞, the law of large numbers says that 
 
 

• Now we can average over many independent fades of the 
channel by coding over a large number of coherence time 
intervals and a reliable rate of communication can indeed 
be achieved. 

• In this situation it is now meaningful to assign a positive 
capacity to the fast fading channel 
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CSI at the Transmitter 

• With channel knowledge, we can control the transmit power 
such that R can be delivered no matter what the fading 
state is. 

• This is known as the channel inversion strategy: the 
received SNR is kept constant irrespective of the channel 
state. 

• This means that huge amount of paper is required when the 
channel is bad. 

• Practical systems are peak-power constrained and this will 
not be possible beyond a threshold. 
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CSI at the Transmitter 
• The capacity of the fast fading channel with CSI at the 

transmitter is given by 
 

 
    where 
 
• λ depends only on the channel statistics but not on the 

specific realization of the fading process. 
• In general, the transmitter allocates more power when the 

channel is good and less or even no power when the 
channel is poor. 

• This is opposite of the channel inversion strategy. 
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Performance as a Fraction of AWGN Capacity 

 
 
 
 
 
 

 
• At low SNR, the capacity with full CSI is significantly 

larger than the CSIR capacity. 
• This means that the capacity of the fading channel can 

be much larger than when there is no fading. 
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Discussion 
• In a fading channel when SNR is low, with CSI the 

transmitter opportunistically transmits only when the channel 
is near it peak. 

• In contrast, in a non-fading AWGN channel the channel 
stays constant and there are no peaks to take advantage of. 

• Overall the performance gain from full CSI is not that large 
compared to CSIR, unless the SNR is very low. 

• Channel inversion is power inefficient as compared to 
waterfilling, but it offers a constant rate of flow of information 
and so the associated delay is independent of channel 
variations. 
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2G (IS-95) and 3G (IS-856) 

• The contrast between power control in IS-95 and rate 
control in IS-856 is roughly analogous to that between 
channel inversion and waterfilling. 

• In IS-95 power is allocated dynamically to a user to 
maintain a constant target rate at all times. 

• In IS-856 rate is adapted to transmit more information 
when the channel is strong. This is suitable for data 
since it does not have a stringent delay requirement. 

• However, unlike waterfilling there is no dynamic power 
adaptation in IS-856, only rate adaptation. 
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Rate Adaptation in IS-856 
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Rate Adaptation in IS-856 
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Conventional versus Modern Viewpoint 
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