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Shannon Entropy

Definition

Let X be a random variable taking finitely many values, and P be
its probability distribution. The Shannon Entropy of X is

HIX) = 3 p(i) gz .
ieX

This measures the average uncertainty of X in terms of the
number of bits.



The Triad

Figure: Claude Shannon

Figure: A. N. Kolmogorov

Figure: Alan Turing



Just Electrical Engineering

“Shannon's contribution to pure mathematics was denied
immediate recognition. | can recall now that even at the
International Mathematical Congress, Amsterdam, 1954, my
American colleagues in probability seemed rather doubtful about
my allegedly exaggerated interest in Shannon's work, as they
believed it consisted more of techniques than of mathematics itself.

... However, Shannon did not provide rigorous mathematical
justification of the complicated cases and left it all to his followers.
Still his mathematical intuition is amazingly correct.”

A. N. Kolmogorov, as quoted in [Shi89].




Kolmogorov and Entropy

Kolmogorov's later work was fundamentally influenced by
Shannon’s.

@ Foundations: Kolmogorov Complexity - using the theory of
algorithms to give a combinatorial interpretation of Shannon
Entropy.

@ Analogy: Kolmogorov-Sinai Entropy, the only
finitely-observable isomorphism-invariant property of
dynamical systems.



Three approaches to the definition of entropy

@ Combinatorial
@ Probabilistic
© Algorithmic



Combinatorial Approach - Ralph Hartley, 1928

To represent an element in a set with N objects, you need log, N
bits. So the information content is the logarithm of the size of the
population.



Combinatorial Approach - Ralph Hartley, 1928

To represent an element in a set with N objects, you need log, N
bits. So the information content is the logarithm of the size of the
population.

This leads to a derivation of Shannon Entropy via multinomial
coefficients:

n n! Kook n—k . n—k
— M o[ log s+  log 1K 1
<k> KI(n — k)! : (1)

via Stirling’s approximation, for large k and n.
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© 0000000000000000000000000000000000000000
@ 1011110011010110000010110001111000111010



Kolmogorov Complexity - Motivation

Which of the following data looks “more random”? Why?

© 0000000000000000000000000000000000000000
@ 1011110011010110000010110001111000111010

The second does not seem to have recognizable patterns.



Shannon: A brief interlude

“A Mind-Reading Machine”, by Shannon plays a game of
“matching pennies” with a human player, remembers the pattern
of play of the player, and uses it to match the player’s strategy.


http://seed.ucsd.edu/~mindreader/MindReader.pdf

Kolmogorov Complexity- Definition 1

Let U be a universal Turing Machine.

Definition

The (plain) Kolmogorov complexity of a string x is
C(x) = min{length(p) | U(p) outputs x}.

The (plain) conditional Kolmogorov complexity of x given y is

C(x) = min{length(r) | m(y) = x}.




Some Examples

The string x=00000000000000000000000000000000 can be
compressed as “a string of 32 zeroes”.
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Some Examples

The string x=00000000000000000000000000000000 can be
compressed as “a string of 32 zeroes”. 32 itself can be compressed
in binary as 1 followed by 5 zeroes. So C(x) < 3 (approximately!).

But a string y = 1011110011010110000010110001111000111010
produced by a random coin toss cannot have any shorter
description than

print 1011110011010110000010110001111000111010. J

So C(y) =~ |yl



Incompressible strings

Definition

A string x is incompressible if C(x) > |x|.

Most strings are incompressible. I




Kolmogorov Complexity is Uncomputable
C is uncomputable. I

The most popular proof involves Berry's Paradox : “the smallest
number that cannot be expressed in less than 20 words” .




Universal Compressors

“ Also in those years | began my interest in universal source
coding. Shmuel Winograd (who was visiting Israel from IBM) and |
ran a seminar on Kolmogorov complexity. | found this concept very
unsatisfying. The presence of the large constant in the complexity
measure makes it impossible to calculate the Kolmogorov
complexity for a specific non-trivial sequence. It was the search for
a better complexity measure that began my work on universal data

compression.”

- Jacob Ziv, “A Conversation with Jacob Ziv"' 1997J




Some Information-Theoretic Inequalities

(Shannon Inequality)

H(X | Y) < H(X)

Proof is by the convexity of x log x for x € [0, 1], setting
0log0 = 0.



Some Information-Theoretic Inequalities - |l

Clx|y) < C(x) + O(1).

Let £ be a shortest 0 argument program which outputs x.
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Some Information-Theoretic Inequalities - |l

Clx |y) < C(x) + O(1).

Proof.

Let £ be a shortest 0 argument program which outputs x.
Construct a 1-argument program 7
1. Input w // ignore input

2. Output U(§).

Then || < [¢] + O(1). O




Some Information Theoretic Inequalities - I

(Data Processing Inequality) If X — Y — Z forms a Markov
Chain, then
1X; Y) > I(X; Z).

v

Corollary

I(X;Y) > 1(X;g(Y))

\




Some Information Theoretic Inequalities 1V

Let x be an arbitrary string, and f be a total computable function
on strings. Then C(f(x)) < C(x) + O(1).

Proof.

Let £ be the shortest program for x, and ¢ be the shortest program
to compute f. Then consider the program ¢ o . Its length proves
the inequality. O

| \

v




The Goal

Clearly, C(x) is a notion of information content.



The Goal

Clearly, C(x) is a notion of information content.

We want to claim that C(x) is approximately the same as H(x),
when x is viewed as a binary random vector. (What is the
distribution of x7?)



Subadditivity and Chain Rule

For any two random variables X and Y

H(X,Y) = H(X|Y) + H(Y).

For any two strings x and y

C(x,y) < C(x|y)+ C(y)+2log C(y) + O(1).




Some Curious Properties

@ C is non-monotone in the length of the string.
@ C is not additive:

Clx,y) £ C(x) + Cly [ x) + O(1).

The last property ends our hope of treating C as H!



Take Two: Prefix-free Kolmogorov Complexity

Let 7o, 71, ..., form a prefix-free encoding P of Turing machines.

Definition

The prefix-free complexity of a string x given a string y is

K(x | y) = min{|m;| | m; outputs x}.
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Since P is a prefix-free set, it obeys Kraft's inequality:
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Kraft's inequality and Universal Semimeasure

Since P is a prefix-free set, it obeys Kraft's inequality:

Z lml

Hence

1
m(x) = Z Tl

neN,R(mn)=x

can be viewed as a (semi)measure on the set of strings (almost a
probability measure on strings.)

This is called the universal semimeasure.



A way of thinking about the universal semimeasure

Toss a fair coin repeatedly until you produce a string in P.




A way of thinking about the universal semimeasure

Toss a fair coin repeatedly until you produce a string in P.

What is the probability that the produced string m is a program for
x? This is m(x).

Not: toss a coin repeatedly until you produce x itself.



A landmark result:

(Levin's coding theorem)

K(x) = —log m(x) + O(1).

i.e. K is H when the underlying probability on strings is m!!



A landmark result:

(Levin's coding theorem)

K(x) = —log m(x) + O(1).

i.e. K is H when the underlying probability on strings is m!!

Leonid Levin's paraphrase: “If there are a lot of long programs
producing a string, then there is a short program for that string.”



Symmetry of Information (sort of)

Let x and y be arbitrary strings. Then

K(x)+ K(y | x,K(x)) = K(x,y)+ O(1).

The proof establishes

K(y [ x,K(x)) < K(x,y) = K(x).



Some Open Areas

Definition

(Yeung and Zhang 98) An information-theoretic inequality is said
to be of non-Shannon type if it cannot be derived as a linear
combination of inequalites of the form /(X; Y) > 0.

Leung and Yeung showed that there are non-Shannon type
inequalities involving 4 or more random variables.



Some Open Areas

Definition

(Yeung and Zhang 98) An information-theoretic inequality is said
to be of non-Shannon type if it cannot be derived as a linear
combination of inequalites of the form /(X; Y) > 0.

Leung and Yeung showed that there are non-Shannon type
inequalities involving 4 or more random variables.

A good theory of non-Shannon-type inequalities is lacking in
algorithmic information theory.
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