
Let V be the three dimensional Euclidean vector space and L be the set of all linear maps

from V to V . The set of real numbers is denoted by R. The identity element in L is denoted

by I.

Two theorems for symmetric tensors According to the spectral theorem, for every sym-

metric tensor A ∈ L, there exists an orthonormal basis {ui} ∈ V (i = 1, 2, 3) and numbers

λi ∈ R such that

A =

3∑
i=1

λiui ⊗ ui. (0.1)

The numbers λi are the principal values associated with the tensor A and can be obtained

as the roots of the characteristic equation det(A − λI) = 0 with λ ∈ R. We now prove this

assertion. Let λ and u be a principal value (eigenvalue) and the corresponding principal vector

(eigenvector) associated with A. Allow them to be complex, i.e. λ = a + ib and u = a + ib

for some {a, b} ∈ R and {a,b} ∈ V with i =
√
−1. Therefore Au = λu. We also have

Aū = λ̄ū, where an over-bar represents the complex conjugate. Since A is symmetric, we

can write u · Aū = ū · Au or 0 = (λ − λ̄)u · ū. This implies λ = λ̄, as u · ū > 0. We

now have to prove the existence of orthonormal {ui} such that (0.1) holds. For eigenvalues

λ1, λ2 and their corresponding eigenvectors u1, u2, we have Au1 = λ1u1 and Au2 = λ2u2.

As A is symmetric, u1 · Au2 = u2 · Au1 and thus 0 = (λ1 − λ2)u1 · u2. If λ1 ̸= λ2, then

u1 and u2 are mutually orthogonal. Therefore if {λi} are distinct, {ui} necessarily forms an

orthonormal set. If λ1 ̸= λ2 = λ3, then u1 · u2 = 0. Define u3 = u1 × u2, so that {u1,u2,u3}
is a right handed orthonormal set. The vector u3 is the third principal vector of A. Indeed

Au3 =
3∑

i=1
(ui ·Au3)ui =

3∑
i=1

(u3 ·Aui)ui = (u3 ·Au3)u3 where in the first equality, the vector

Au3 is expressed in terms of the basis vectors {ui}. In the second equality, the symmetry of A

is used and in the third equality, the relations Auα = λαuα (α = 1, 2) and the orthonormality

of {ui} are employed. Finally, if λ1 = λ2 = λ3 = λ, we can pick any orthonormal basis in V

and in this case A = λI.

According to the square root theorem, for every positive definite symmetric tensor A ∈ L, there

exists a unique positive definite symmetric tensor G ∈ L such that A = G2. By the spectral

theorem we have a representation (0.1) for A with λi > 0 (due to the positive definiteness of

A). Define G =
3∑

i=1

√
λiui ⊗ ui. Then, G2 = GG =

3∑
i=1

√
λi(Gui) ⊗ ui =

3∑
i=1

λiui ⊗ ui = A

and it is obvious that G is symmetric and positive definite. To prove uniqueness we assume

that there exists a symmetric and positive definite tensor Ĝ such that G2 = A = Ĝ2 and show

that G = Ĝ. Let u be an eigenvector of A with eigenvalue λ > 0. Then (G2 − λI)u = 0 or

(G +
√
λI)v = 0, where v = (G −

√
λI)u. This requires v = 0 as otherwise −

√
λ becomes

an eigenvalue of G, contradicting the positive definiteness of G. Therefore Gu =
√
λu and

similarly Ĝu =
√
λu. Thus Gui = Ĝui and since an arbitrary vector f can be expressed as a

linear combination of {ui}, we obtain Gf = Ĝf . This implies G = Ĝ.
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Polar decomposition theorem Every invertible tensor F ∈ L can be uniquely decomposed

in terms of symmetric positive definite tensors {U,V} ∈ L and a orthogonal tensor R ∈ L such

that

F = RU = VR. (0.2)

The first of these equalities can be proved by using the right Cauchy Green tensor C = FTF.

By the square root theorem there exists a unique symmetric positive definite tensor U such

that U2 = C. Define R = FU−1. It follows, that RTR = I. If detF > 0 then detR = 1 (since

detF = detU =
√
detC), and therefore R is a proper orthogonal tensor. The relation F = VR

can be proved similarly via the left Cauchy Green tensor B = FFT .

Principal invariants The characteristic equation for A ∈ L is

0 = det(A− λI) = −λ3 + λ2I1(A)− λI2(A) + I3(A), (0.3)

where

I1(A) = trA

I2(A) = trA∗ =
1

2
[(trA)2 − trA2] (0.4)

I3(A) = detA

are the principal invariants of A. According to the Cayley-Hamilton theorem, A satisfies its

own characteristic equation, i.e.

−A3 + I1(A)A2 − I2(A)A+ I3(A)I = 0. (0.5)

We now prove this theorem. Let D = ((A− λI)∗)T , where λ ∈ R is such that det(A− λI) ̸= 0

but otherwise arbitrary. Since A − λI is invertible, we have D = det(A − λI)(A − λI)−1 or

D(A−λI) = det(A−λI)I. The right hand side of this relation is cubic in λ and the termA−λI is

linear in λ. Therefore D has to be quadratic in λ (by a theorem on factorization of polynomials).

Let D = D0 + D1λ + D2λ
2 for some D0, D1 and D2. Then (D0 + D1λ + D2λ

2)(A − λI) =

det(A−λI)I = (−λ3+λ2I1−λI2+I3)I. Matching coefficients of various powers of λ between the

first and the last term and eliminating D0, D1 and D2 from these, we get the required relation

(0.5). The coefficients of all the powers of λ have to vanish since otherwise we would obtain a

polynomial (of order 3) in λ, which could then be solved to obtain roots for λ, contradicting

the premise that λ ∈ R is arbitrary.
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