Let $V$ be the three dimensional Euclidean vector space and $L$ be the set of all linear maps from $V$ to $V$. The set of real numbers is denoted by $\mathbb{R}$. The identity element in $L$ is denoted by I .

Two theorems for symmetric tensors According to the spectral theorem, for every symmetric tensor $\mathbf{A} \in L$, there exists an orthonormal basis $\left\{\mathbf{u}_{i}\right\} \in V(i=1,2,3)$ and numbers $\lambda_{i} \in \mathbb{R}$ such that

$$
\begin{equation*}
\mathbf{A}=\sum_{i=1}^{3} \lambda_{i} \mathbf{u}_{i} \otimes \mathbf{u}_{i} . \tag{0.1}
\end{equation*}
$$

The numbers $\lambda_{i}$ are the principal values associated with the tensor $\mathbf{A}$ and can be obtained as the roots of the characteristic equation $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$ with $\lambda \in \mathbb{R}$. We now prove this assertion. Let $\lambda$ and $\mathbf{u}$ be a principal value (eigenvalue) and the corresponding principal vector (eigenvector) associated with A. Allow them to be complex, i.e. $\lambda=a+i b$ and $\mathbf{u}=\mathbf{a}+i \mathbf{b}$ for some $\{a, b\} \in \mathbb{R}$ and $\{\mathbf{a}, \mathbf{b}\} \in V$ with $i=\sqrt{-1}$. Therefore $\mathbf{A u}=\lambda \mathbf{u}$. We also have $\mathbf{A} \overline{\mathbf{u}}=\bar{\lambda} \overline{\mathbf{u}}$, where an over-bar represents the complex conjugate. Since $\mathbf{A}$ is symmetric, we can write $\mathbf{u} \cdot \mathbf{A} \overline{\mathbf{u}}=\overline{\mathbf{u}} \cdot \mathbf{A u}$ or $0=(\lambda-\bar{\lambda}) \mathbf{u} \cdot \overline{\mathbf{u}}$. This implies $\lambda=\bar{\lambda}$, as $\mathbf{u} \cdot \overline{\mathbf{u}}>0$. We now have to prove the existence of orthonormal $\left\{\mathbf{u}_{i}\right\}$ such that (0.1) holds. For eigenvalues $\lambda_{1}, \lambda_{2}$ and their corresponding eigenvectors $\mathbf{u}_{1}, \mathbf{u}_{2}$, we have $\mathbf{A} \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1}$ and $\mathbf{A} \mathbf{u}_{2}=\lambda_{2} \mathbf{u}_{2}$. As $\mathbf{A}$ is symmetric, $\mathbf{u}_{1} \cdot \mathbf{A} \mathbf{u}_{2}=\mathbf{u}_{2} \cdot \mathbf{A} \mathbf{u}_{1}$ and thus $0=\left(\lambda_{1}-\lambda_{2}\right) \mathbf{u}_{1} \cdot \mathbf{u}_{2}$. If $\lambda_{1} \neq \lambda_{2}$, then $\mathbf{u}_{1}$ and $\mathbf{u}_{2}$ are mutually orthogonal. Therefore if $\left\{\lambda_{i}\right\}$ are distinct, $\left\{\mathbf{u}_{i}\right\}$ necessarily forms an orthonormal set. If $\lambda_{1} \neq \lambda_{2}=\lambda_{3}$, then $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=0$. Define $\mathbf{u}_{3}=\mathbf{u}_{1} \times \mathbf{u}_{2}$, so that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a right handed orthonormal set. The vector $\mathbf{u}_{3}$ is the third principal vector of $\mathbf{A}$. Indeed $\mathbf{A} \mathbf{u}_{3}=\sum_{i=1}^{3}\left(\mathbf{u}_{i} \cdot \mathbf{A} \mathbf{u}_{3}\right) \mathbf{u}_{i}=\sum_{i=1}^{3}\left(\mathbf{u}_{3} \cdot \mathbf{A} \mathbf{u}_{i}\right) \mathbf{u}_{i}=\left(\mathbf{u}_{3} \cdot \mathbf{A} \mathbf{u}_{3}\right) \mathbf{u}_{3}$ where in the first equality, the vector $\mathbf{A} \mathbf{u}_{3}$ is expressed in terms of the basis vectors $\left\{\mathbf{u}_{i}\right\}$. In the second equality, the symmetry of $\mathbf{A}$ is used and in the third equality, the relations $\mathbf{A} \mathbf{u}_{\alpha}=\lambda_{\alpha} \mathbf{u}_{\alpha}(\alpha=1,2)$ and the orthonormality of $\left\{\mathbf{u}_{i}\right\}$ are employed. Finally, if $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda$, we can pick any orthonormal basis in $V$ and in this case $\mathbf{A}=\lambda \mathbf{I}$.
According to the square root theorem, for every positive definite symmetric tensor $\mathbf{A} \in L$, there exists a unique positive definite symmetric tensor $\mathbf{G} \in L$ such that $\mathbf{A}=\mathbf{G}^{2}$. By the spectral theorem we have a representation (0.1) for $\mathbf{A}$ with $\lambda_{i}>0$ (due to the positive definiteness of
A). Define $\mathbf{G}=\sum_{i=1}^{3} \sqrt{\lambda_{i}} \mathbf{u}_{i} \otimes \mathbf{u}_{i}$. Then, $\mathbf{G}^{2}=\mathbf{G G}=\sum_{i=1}^{3} \sqrt{\lambda_{i}}\left(\mathbf{G} \mathbf{u}_{i}\right) \otimes \mathbf{u}_{i}=\sum_{i=1}^{3} \lambda_{i} \mathbf{u}_{i} \otimes \mathbf{u}_{i}=\mathbf{A}$ and it is obvious that $\mathbf{G}$ is symmetric and positive definite. To prove uniqueness we assume that there exists a symmetric and positive definite tensor $\hat{\mathbf{G}}$ such that $\mathbf{G}^{2}=\mathbf{A}=\hat{\mathbf{G}}^{2}$ and show that $\mathbf{G}=\hat{\mathbf{G}}$. Let $\mathbf{u}$ be an eigenvector of $\mathbf{A}$ with eigenvalue $\lambda>0$. Then $\left(\mathbf{G}^{2}-\lambda \mathbf{I}\right) \mathbf{u}=\mathbf{0}$ or $(\mathbf{G}+\sqrt{\lambda} \mathbf{I}) \mathbf{v}=\mathbf{0}$, where $\mathbf{v}=(\mathbf{G}-\sqrt{\lambda} \mathbf{I}) \mathbf{u}$. This requires $\mathbf{v}=\mathbf{0}$ as otherwise $-\sqrt{\lambda}$ becomes an eigenvalue of $\mathbf{G}$, contradicting the positive definiteness of $\mathbf{G}$. Therefore $\mathbf{G u}=\sqrt{\lambda} \mathbf{u}$ and similarly $\hat{\mathbf{G}} \mathbf{u}=\sqrt{\lambda} \mathbf{u}$. Thus $\mathbf{G} \mathbf{u}_{i}=\hat{\mathbf{G}} \mathbf{u}_{i}$ and since an arbitrary vector $\mathbf{f}$ can be expressed as a linear combination of $\left\{\mathbf{u}_{i}\right\}$, we obtain $\mathbf{G f}=\hat{\mathbf{G}} \mathbf{f}$. This implies $\mathbf{G}=\hat{\mathbf{G}}$.

Polar decomposition theorem Every invertible tensor $\mathbf{F} \in L$ can be uniquely decomposed in terms of symmetric positive definite tensors $\{\mathbf{U}, \mathbf{V}\} \in L$ and a orthogonal tensor $\mathbf{R} \in L$ such that

$$
\begin{equation*}
\mathbf{F}=\mathbf{R U}=\mathbf{V R} \tag{0.2}
\end{equation*}
$$

The first of these equalities can be proved by using the right Cauchy Green tensor $\mathbf{C}=\mathbf{F}^{T} \mathbf{F}$. By the square root theorem there exists a unique symmetric positive definite tensor $\mathbf{U}$ such that $\mathbf{U}^{2}=\mathbf{C}$. Define $\mathbf{R}=\mathbf{F} \mathbf{U}^{-1}$. It follows, that $\mathbf{R}^{T} \mathbf{R}=\mathbf{I}$. If $\operatorname{det} \mathbf{F}>0$ then $\operatorname{det} \mathbf{R}=1$ (since $\operatorname{det} \mathbf{F}=\operatorname{det} \mathbf{U}=\sqrt{\operatorname{det} \mathbf{C}}$ ), and therefore $\mathbf{R}$ is a proper orthogonal tensor. The relation $\mathbf{F}=\mathbf{V R}$ can be proved similarly via the left Cauchy Green tensor $\mathbf{B}=\mathbf{F F}^{T}$.

Principal invariants The characteristic equation for $\mathbf{A} \in L$ is

$$
\begin{equation*}
0=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-\lambda^{3}+\lambda^{2} I_{1}(\mathbf{A})-\lambda I_{2}(\mathbf{A})+I_{3}(\mathbf{A}) \tag{0.3}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{1}(\mathbf{A})=\operatorname{tr} \mathbf{A} \\
& I_{2}(\mathbf{A})=\operatorname{tr} \mathbf{A}^{*}=\frac{1}{2}\left[(\operatorname{tr} \mathbf{A})^{2}-\operatorname{tr} \mathbf{A}^{2}\right]  \tag{0.4}\\
& I_{3}(\mathbf{A})=\operatorname{det} \mathbf{A}
\end{align*}
$$

are the principal invariants of $\mathbf{A}$. According to the Cayley-Hamilton theorem, $\mathbf{A}$ satisfies its own characteristic equation, i.e.

$$
\begin{equation*}
-\mathbf{A}^{3}+I_{1}(\mathbf{A}) \mathbf{A}^{2}-I_{2}(\mathbf{A}) \mathbf{A}+I_{3}(\mathbf{A}) \mathbf{I}=\mathbf{0} \tag{0.5}
\end{equation*}
$$

We now prove this theorem. Let $\mathbf{D}=\left((\mathbf{A}-\lambda \mathbf{I})^{*}\right)^{T}$, where $\lambda \in \mathbb{R}$ is such that $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) \neq 0$ but otherwise arbitrary. Since $\mathbf{A}-\lambda \mathbf{I}$ is invertible, we have $\mathbf{D}=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})(\mathbf{A}-\lambda \mathbf{I})^{-1}$ or $\mathbf{D}(\mathbf{A}-\lambda \mathbf{I})=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) \mathbf{I}$. The right hand side of this relation is cubic in $\lambda$ and the term $\mathbf{A}-\lambda \mathbf{I}$ is linear in $\lambda$. Therefore $\mathbf{D}$ has to be quadratic in $\lambda$ (by a theorem on factorization of polynomials). Let $\mathbf{D}=\mathbf{D}_{0}+\mathbf{D}_{1} \lambda+\mathbf{D}_{2} \lambda^{2}$ for some $\mathbf{D}_{0}, \mathbf{D}_{1}$ and $\mathbf{D}_{2}$. Then $\left(\mathbf{D}_{0}+\mathbf{D}_{1} \lambda+\mathbf{D}_{2} \lambda^{2}\right)(\mathbf{A}-\lambda \mathbf{I})=$ $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) \mathbf{I}=\left(-\lambda^{3}+\lambda^{2} I_{1}-\lambda I_{2}+I_{3}\right) \mathbf{I}$. Matching coefficients of various powers of $\lambda$ between the first and the last term and eliminating $\mathbf{D}_{0}, \mathbf{D}_{1}$ and $\mathbf{D}_{2}$ from these, we get the required relation (0.5). The coefficients of all the powers of $\lambda$ have to vanish since otherwise we would obtain a polynomial (of order 3) in $\lambda$, which could then be solved to obtain roots for $\lambda$, contradicting the premise that $\lambda \in \mathbb{R}$ is arbitrary.

