Let V be the three dimensional Euclidean vector space and L be the set of all linear maps
from V to V. The set of real numbers is denoted by R. The identity element in L is denoted
by I.

Two theorems for symmetric tensors According to the spectral theorem, for every sym-
metric tensor A € L, there exists an orthonormal basis {u;} € V(i = 1,2,3) and numbers

A; € R such that
3

A= Z Aig; ® u,. (01)
=1

The numbers \; are the principal values associated with the tensor A and can be obtained
as the roots of the characteristic equation det(A — AI) = 0 with A\ € R. We now prove this
assertion. Let A and u be a principal value (eigenvalue) and the corresponding principal vector
(eigenvector) associated with A. Allow them to be complex, i.e. A = a+ib and u = a+ ib
for some {a,b} € R and {a,b} € V with i = /1. Therefore Au = Au. We also have
An = \u, where an over-bar represents the complex conjugate. Since A is symmetric, we
can write u- At = 4-Auor 0 = (A — A)u-@. This implies A\ = A\, as u-a > 0. We
now have to prove the existence of orthonormal {u;} such that (0.1) holds. For eigenvalues
A1, A2 and their corresponding eigenvectors u;, ug, we have Au; = Aju; and Aug = Agus.
As A is symmetric, uj - Aug = uy - Au; and thus 0 = (A} — Ag)u; - ug. If A\j # Ao, then
u; and uy are mutually orthogonal. Therefore if {\;} are distinct, {u;} necessarily forms an
orthonormal set. If A\; # A9 = A3, then u; - ug = 0. Define ug = u; x ug, so that {uj, ug, us}

is a right handed orthonormal set. The vector ug is the third principal vector of A. Indeed

Aus = 23: (u; - Auz)u; = 23: (us - Au;)u; = (usz - Aus)us where in the first equality, the vector
Aug is gci)ressed in termslz% the basis vectors {u;}. In the second equality, the symmetry of A
is used and in the third equality, the relations Au, = Ayu, (o = 1,2) and the orthonormality
of {u;} are employed. Finally, if Ay = A2 = A3 = A\, we can pick any orthonormal basis in V'
and in this case A = AL

According to the square root theorem, for every positive definite symmetric tensor A € L, there
exists a unique positive definite symmetric tensor G € L such that A = G2. By the spectral

theorem we have a representation (0.1) for A with \; > 0 (due to the positive definiteness of
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A). Define G = Y v \uw; ® u;. Then, G? = GG = Z\F(Gul) Ru; = Z)\ u,Qu, = A
=1

and it is obvious that G is symmetric and positive deﬁnlte To prove unlqueness we assume

that there exists a symmetric and positive definite tensor G such that G2 = A = G2 and show
that G = G. Let u be an eigenvector of A with eigenvalue A > 0. Then (G2 — AI)u = 0 or
(G 4+ VAI)v = 0, where v = (G — v/ AI)u. This requires v = 0 as otherwise —v/A becomes
an eigenvalue of G, contradicting the positive definiteness of G. Therefore Gu = vAu and
similarly Gu = VAu. Thus Gu; = Gu; and since an arbitrary vector f can be expressed as a

linear combination of {u;}, we obtain Gf = Gf. This implies G = G.



Polar decomposition theorem Every invertible tensor F € L can be uniquely decomposed
in terms of symmetric positive definite tensors {U, V} € L and a orthogonal tensor R € L such
that

F =RU = VR. (0.2)

The first of these equalities can be proved by using the right Cauchy Green tensor C = FTF.
By the square root theorem there exists a unique symmetric positive definite tensor U such
that U2 = C. Define R = FU™!. It follows, that RTR = I. If det F > 0 then det R = 1 (since
detF =detU = \/M), and therefore R is a proper orthogonal tensor. The relation F = VR

can be proved similarly via the left Cauchy Green tensor B = FFT.

Principal invariants The characteristic equation for A € L is

0 =det(A — MXI) = —=X3 + \2[1(A) — Mo (A) + I3(A), (0.3)
where
Il (A) =trA
L(A) = tr A* = %[(tr A)? — tr A?] (0.4)
I3(A) = det A

are the principal invariants of A. According to the Cayley-Hamilton theorem, A satisfies its

own characteristic equation, i.e.
—A% + I, (A)A? — [L(A)A + I3(A)I = 0. (0.5)

We now prove this theorem. Let D = ((A — MI)*)T, where A € R is such that det(A — \I) # 0
but otherwise arbitrary. Since A — Al is invertible, we have D = det(A — AI)(A — AXI)~! or
D(A—MI) = det(A—AI)I. The right hand side of this relation is cubic in A and the term A—A\I is
linear in A\. Therefore D has to be quadratic in A (by a theorem on factorization of polynomials).
Let D = Dg + D1\ + Do)? for some Dg, Dy and Dy. Then (Dg + D1 + D2A?)(A — AI) =
det(A—ADI = (=A3+\2I; — Al +1I3)I. Matching coefficients of various powers of A between the
first and the last term and eliminating Do, D; and D» from these, we get the required relation
(0.5). The coefficients of all the powers of A have to vanish since otherwise we would obtain a
polynomial (of order 3) in A, which could then be solved to obtain roots for A, contradicting

the premise that A € R is arbitrary.



