
Let V be the three dimensional Euclidean vector space and L be the set of all linear maps

from V to V . The set of real numbers is denoted by R. Let E be the three dimensional Euclidean

point space. It can be identified with V .

Derivatives of fields By fields we mean scalar, vector and tensor valued functions defined

on position (X) and time (t). In the following we are mainly concerned with the derivatives

with respect to the position and therefore dependence of fields on time is suppressed.

A scalar-valued field ϕ(X) is differentiable at X0 ∈ U(X0), where U(X0) ⊂ E is an open

neighborhood of X0, if there exists a unique c ∈ V such that

ϕ(X) = ϕ(X0) + c(X0) · (X−X0) + o(|X−X0|), (0.1)

where o(ϵ)
ϵ → 0 as ϵ→ 0. We call c(X0) = ∇ϕ|X0 (or ∇ϕ(X0)) the gradient of ϕ at X0. Consider

a curve X(u) in E parameterized by u ∈ R. Let ψ(u) = ϕ(X(u)) and X1 = X(u1), X0 = X(u0)

for {u1, u0} ∈ R. Then from (0.1),

ψ(u1)− ψ(u0) = ∇ϕ(X0) · (X1 −X0) + o(|X1 −X0|). (0.2)

Moreover X1 −X0 = X′(u0)(u1 − u0) + o(|u1 − u0|), where X′(u0) is the derivative of X with

respect to u at u = u0. Therefore, |X1 −X0| = O(|u1 − u0|) and consequently we can rewrite

(0.2)
ψ(u1)− ψ(u0)

u1 − u0
= ∇ϕ(X0) ·X′(u0) +

o(|u1 − u0|)
u1 − u0

. (0.3)

For u1 → u0 we obtain the chain rule, ψ′(u0) = ∇ϕ(X(u0)) ·X′(u0), which can also be expressed

as dϕ
du = ∇ϕ(X) · dX

du or

dϕ(X) = ∇ϕ(X) · dX. (0.4)

A vector-valued field v(X) is differentiable at X0 ∈ U(X0) if there exists a unique tensor l ∈ L

such that

v(X) = v(X0) + l(X0)(X−X0) + r, (0.5)

where |r| = o(|X − X0|). We call l(X0) = ∇v|X0 (or ∇v(X0)) the gradient of v at X0. The

chain rule in this case can be obtained following the procedure preceding equation (0.4):

dv(X) = (∇v)dX. (0.6)

The divergence of a vector field is a scalar defined by

Divv = tr(∇v). (0.7)

The curl of a vector field is a vector defined by

(Curlv) · c = Div(v × c) (0.8)

for any fixed c ∈ V .
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Differentiability of a tensor-valued function is defined in a similar manner. In particular, for a

tensor field A(X), we write

dA(X) = (∇A)dX. (0.9)

The divergence of A is the vector defined by

(DivA) · c = Div(ATc) (0.10)

for any fixed c ∈ V . The curl of A is the tensor defined by

(CurlA)c = Curl(ATc) (0.11)

for any fixed c ∈ V .

Derivatives of functions on tensor spaces A function f(A) : L → R is said to be differ-

entiable at A ∈ L if there exists a linear mapping ∂Af (which maps tensors in L to scalars)

such that for all B ∈ L (B should belong to some open neighborhood of A)

f(A+B)− f(A) = ∂Af(A)[B] + o(B). (0.12)

This definition is equivalent to

∂Af(A)[B] =
d

ds
f(A+ sB)|s=0. (0.13)

A similar definition holds for vector and tensor valued functions (and also for vector arguments).

The notation α[β] is clear from the context at hand. For example, if α = A (tensor) and β = B

(tensor) then A[B] = A ·B. If instead β = b (vector) then A[b] = Ab. If α = a (vector) then

a[b] = a · b. See (Gurtin (Introduction to Continuum Mechanics), Chapter 2) for examples.

Kinematic constraints These are a set of local constraints on F (deformation gradient).

Examples include incompressibility, rigidity, etc. The tensor F can be seen as an element of

a nine dimensional space. Therefore the number of constraints cannot exceed nine. However,

due to material frame indifference, the dependence of any function (which in the present case

defines a constraint) on F is through C = FTF, thereby reducing the dimension of the space to

six. The number of independent kinematic constraints can thus be no more than six. Let these

be denoted by

ϕ(i)(F) = 0, i = 1, . . . n ≤ 6. (0.14)

We denote by M, the constrained manifold, which is a subset of L and constitutes all the

deformation gradients which satisfy the given constraints. Consider a curve on this manifold,

parameterized by u. Let

f (i)(u) = ϕ(i)(F(u)). (0.15)
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Since f (i)(u) = 0 identically over the manifold M, we can write (the derivative ḟ is with respect

to u)

0 = ḟ (i)(u) = ϕ
(i)
F (F) · Ḟ(u). (0.16)

But Ḟ(u) ∈ TM(F) i.e. the tangent space associated with M at F. Therefore ϕ
(i)
F are orthogonal

to TM(F). If the set of constraints are independent to each other, then the set {ϕ(i)F } constitutes

a basis for the vector space orthogonal to TM(F).

We have, for a perfectly elastic material, P · Ḟ = Ẇ (F) =WF · Ḟ, which implies that

(P−WF) · Ḟ = 0 (0.17)

for all Ḟ ∈ TM(F). Therefore (P−WF) belongs to the orthogonal vector space to TM(F), and

can be expressed as

(P−WF) =
n∑

i=1

λiϕ
(i)
F (0.18)

for some scalars λi (Lagrange multipliers).

Remark: The function W (contrary to ϕ(i)) are defined only for F ∈ M. The derivative WF is

calculated by first assuming that there exists an extension Ŵ of W such that Ŵ = W for all

F ∈ M. The extension can be differentiated and evaluated on M. It can be shown that any

extension can be used without any loss of generality.

Consider incompressibility as an example. Here we have only one constraint of the form

ϕ(F) = detF − 1 = 0. Then ϕF = F∗ = F−T on M (since detF = 1 on M). Then P =

WF + λF−T , which on using P = TF∗ gives us an expression of the form T = WFF
T − p1

where p(X, t) is the constraint pressure.
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