Let V be the three dimensional Euclidean vector space and L be the set of all linear maps from V to V. The set of real numbers is denoted by \mathbb{R}. Let E be the three dimensional Euclidean point space. It can be identified with V.

Derivatives of fields By fields we mean scalar, vector and tensor valued functions defined on position (\mathbf{X}) and time (t). In the following we are mainly concerned with the derivatives with respect to the position and therefore dependence of fields on time is suppressed.
A scalar-valued field $\phi(\mathbf{X})$ is differentiable at $\mathbf{X}_{0} \in \mathcal{U}\left(\mathbf{X}_{0}\right)$, where $\mathcal{U}\left(\mathbf{X}_{0}\right) \subset E$ is an open neighborhood of \mathbf{X}_{0}, if there exists a unique $\mathbf{c} \in V$ such that

$$
\begin{equation*}
\phi(\mathbf{X})=\phi\left(\mathbf{X}_{0}\right)+\mathbf{c}\left(\mathbf{X}_{0}\right) \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)+o\left(\left|\mathbf{X}-\mathbf{X}_{0}\right|\right), \tag{0.1}
\end{equation*}
$$

where $\frac{o(\epsilon)}{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$. We call $\mathbf{c}\left(\mathbf{X}_{0}\right)=\left.\nabla \phi\right|_{\mathbf{x}_{0}}\left(\right.$ or $\left.\nabla \phi\left(\mathbf{X}_{0}\right)\right)$ the gradient of ϕ at \mathbf{X}_{0}. Consider a curve $\mathbf{X}(u)$ in E parameterized by $u \in \mathbb{R}$. Let $\psi(u)=\phi(\mathbf{X}(u))$ and $\mathbf{X}_{1}=\mathbf{X}\left(u_{1}\right), \mathbf{X}_{0}=\mathbf{X}\left(u_{0}\right)$ for $\left\{u_{1}, u_{0}\right\} \in \mathbb{R}$. Then from (0.1),

$$
\begin{equation*}
\psi\left(u_{1}\right)-\psi\left(u_{0}\right)=\nabla \phi\left(\mathbf{X}_{0}\right) \cdot\left(\mathbf{X}_{1}-\mathbf{X}_{0}\right)+o\left(\left|\mathbf{X}_{1}-\mathbf{X}_{0}\right|\right) \tag{0.2}
\end{equation*}
$$

Moreover $\mathbf{X}_{1}-\mathbf{X}_{0}=\mathbf{X}^{\prime}\left(u_{0}\right)\left(u_{1}-u_{0}\right)+o\left(\left|u_{1}-u_{0}\right|\right)$, where $\mathbf{X}^{\prime}\left(u_{0}\right)$ is the derivative of \mathbf{X} with respect to u at $u=u_{0}$. Therefore, $\left|\mathbf{X}_{1}-\mathbf{X}_{0}\right|=O\left(\left|u_{1}-u_{0}\right|\right)$ and consequently we can rewrite (0.2)

$$
\begin{equation*}
\frac{\psi\left(u_{1}\right)-\psi\left(u_{0}\right)}{u_{1}-u_{0}}=\nabla \phi\left(\mathbf{X}_{0}\right) \cdot \mathbf{X}^{\prime}\left(u_{0}\right)+\frac{o\left(\left|u_{1}-u_{0}\right|\right)}{u_{1}-u_{0}} \tag{0.3}
\end{equation*}
$$

For $u_{1} \rightarrow u_{0}$ we obtain the chain rule, $\psi^{\prime}\left(u_{0}\right)=\nabla \phi\left(\mathbf{X}\left(u_{0}\right)\right) \cdot \mathbf{X}^{\prime}\left(u_{0}\right)$, which can also be expressed as $\frac{d \phi}{d u}=\nabla \phi(\mathbf{X}) \cdot \frac{d \mathbf{X}}{d u}$ or

$$
\begin{equation*}
d \phi(\mathbf{X})=\nabla \phi(\mathbf{X}) \cdot d \mathbf{X} \tag{0.4}
\end{equation*}
$$

A vector-valued field $\mathbf{v}(\mathbf{X})$ is differentiable at $\mathbf{X}_{0} \in \mathcal{U}\left(\mathbf{X}_{0}\right)$ if there exists a unique tensor $\mathbf{l} \in L$ such that

$$
\begin{equation*}
\mathbf{v}(\mathbf{X})=\mathbf{v}\left(\mathbf{X}_{0}\right)+\mathbf{l}\left(\mathbf{X}_{0}\right)\left(\mathbf{X}-\mathbf{X}_{0}\right)+\mathbf{r} \tag{0.5}
\end{equation*}
$$

where $|\mathbf{r}|=o\left(\left|\mathbf{X}-\mathbf{X}_{0}\right|\right)$. We call $\mathbf{l}\left(\mathbf{X}_{0}\right)=\left.\nabla \mathbf{v}\right|_{\mathbf{X}_{0}}$ (or $\nabla \mathbf{v}\left(\mathbf{X}_{0}\right)$) the gradient of \mathbf{v} at \mathbf{X}_{0}. The chain rule in this case can be obtained following the procedure preceding equation (0.4):

$$
\begin{equation*}
d \mathbf{v}(\mathbf{X})=(\nabla \mathbf{v}) d \mathbf{X} \tag{0.6}
\end{equation*}
$$

The divergence of a vector field is a scalar defined by

$$
\begin{equation*}
\operatorname{Div} \mathbf{v}=\operatorname{tr}(\nabla \mathbf{v}) \tag{0.7}
\end{equation*}
$$

The curl of a vector field is a vector defined by

$$
\begin{equation*}
(\operatorname{Curl} \mathbf{v}) \cdot \mathbf{c}=\operatorname{Div}(\mathbf{v} \times \mathbf{c}) \tag{0.8}
\end{equation*}
$$

for any fixed $\mathbf{c} \in V$.

Differentiability of a tensor-valued function is defined in a similar manner. In particular, for a tensor field $\mathbf{A}(\mathbf{X})$, we write

$$
\begin{equation*}
d \mathbf{A}(\mathbf{X})=(\nabla \mathbf{A}) d \mathbf{X} \tag{0.9}
\end{equation*}
$$

The divergence of \mathbf{A} is the vector defined by

$$
\begin{equation*}
(\operatorname{Div} \mathbf{A}) \cdot \mathbf{c}=\operatorname{Div}\left(\mathbf{A}^{T} \mathbf{c}\right) \tag{0.10}
\end{equation*}
$$

for any fixed $\mathbf{c} \in V$. The curl of \mathbf{A} is the tensor defined by

$$
\begin{equation*}
(\operatorname{Curl} \mathbf{A}) \mathbf{c}=\operatorname{Curl}\left(\mathbf{A}^{T} \mathbf{c}\right) \tag{0.11}
\end{equation*}
$$

for any fixed $\mathbf{c} \in V$.

Derivatives of functions on tensor spaces A function $f(\mathbf{A}): L \rightarrow \mathbb{R}$ is said to be differentiable at $\mathbf{A} \in L$ if there exists a linear mapping $\partial_{\mathbf{A}} f$ (which maps tensors in L to scalars) such that for all $\mathbf{B} \in L(\mathbf{B}$ should belong to some open neighborhood of $\mathbf{A})$

$$
\begin{equation*}
f(\mathbf{A}+\mathbf{B})-f(\mathbf{A})=\partial_{\mathbf{A}} f(\mathbf{A})[\mathbf{B}]+o(\mathbf{B}) \tag{0.12}
\end{equation*}
$$

This definition is equivalent to

$$
\begin{equation*}
\partial_{\mathbf{A}} f(\mathbf{A})[\mathbf{B}]=\left.\frac{d}{d s} f(\mathbf{A}+s \mathbf{B})\right|_{s=0} \tag{0.13}
\end{equation*}
$$

A similar definition holds for vector and tensor valued functions (and also for vector arguments). The notation $\alpha[\beta]$ is clear from the context at hand. For example, if $\alpha=\mathbf{A}$ (tensor) and $\beta=\mathbf{B}$ (tensor) then $\mathbf{A}[\mathbf{B}]=\mathbf{A} \cdot \mathbf{B}$. If instead $\beta=\mathbf{b}$ (vector) then $\mathbf{A}[\mathbf{b}]=\mathbf{A b}$. If $\alpha=\mathbf{a}$ (vector) then $\mathbf{a}[\mathbf{b}]=\mathbf{a} \cdot \mathbf{b}$. See (Gurtin (Introduction to Continuum Mechanics), Chapter 2) for examples.

Kinematic constraints These are a set of local constraints on \mathbf{F} (deformation gradient). Examples include incompressibility, rigidity, etc. The tensor \mathbf{F} can be seen as an element of a nine dimensional space. Therefore the number of constraints cannot exceed nine. However, due to material frame indifference, the dependence of any function (which in the present case defines a constraint) on \mathbf{F} is through $\mathbf{C}=\mathbf{F}^{T} \mathbf{F}$, thereby reducing the dimension of the space to six. The number of independent kinematic constraints can thus be no more than six. Let these be denoted by

$$
\begin{equation*}
\phi^{(i)}(\mathbf{F})=0, \quad i=1, \ldots n \leq 6 \tag{0.14}
\end{equation*}
$$

We denote by \mathcal{M}, the constrained manifold, which is a subset of L and constitutes all the deformation gradients which satisfy the given constraints. Consider a curve on this manifold, parameterized by u. Let

$$
\begin{equation*}
f^{(i)}(u)=\phi^{(i)}(\mathbf{F}(u)) \tag{0.15}
\end{equation*}
$$

Since $f^{(i)}(u)=0$ identically over the manifold \mathcal{M}, we can write (the derivative \dot{f} is with respect to u)

$$
\begin{equation*}
0=\dot{f}^{(i)}(u)=\phi_{\mathbf{F}}^{(i)}(\mathbf{F}) \cdot \dot{\mathbf{F}}(u) . \tag{0.16}
\end{equation*}
$$

But $\dot{\mathbf{F}}(u) \in T_{\mathcal{M}}(\mathbf{F})$ i.e. the tangent space associated with \mathcal{M} at \mathbf{F}. Therefore $\phi_{\mathbf{F}}^{(i)}$ are orthogonal to $T_{\mathcal{M}}(\mathbf{F})$. If the set of constraints are independent to each other, then the set $\left\{\phi_{\mathbf{F}}^{(i)}\right\}$ constitutes a basis for the vector space orthogonal to $T_{\mathcal{M}}(\mathbf{F})$.

We have, for a perfectly elastic material, $\mathbf{P} \cdot \dot{\mathbf{F}}=\dot{W}(\mathbf{F})=W_{\mathbf{F}} \cdot \dot{\mathbf{F}}$, which implies that

$$
\begin{equation*}
\left(\mathbf{P}-W_{\mathbf{F}}\right) \cdot \dot{\mathbf{F}}=0 \tag{0.17}
\end{equation*}
$$

for all $\dot{\mathbf{F}} \in T_{\mathcal{M}}(\mathbf{F})$. Therefore $\left(\mathbf{P}-W_{\mathbf{F}}\right)$ belongs to the orthogonal vector space to $T_{\mathcal{M}}(\mathbf{F})$, and can be expressed as

$$
\begin{equation*}
\left(\mathbf{P}-W_{\mathbf{F}}\right)=\sum_{i=1}^{n} \lambda_{i} \phi_{\mathbf{F}}^{(i)} \tag{0.18}
\end{equation*}
$$

for some scalars λ_{i} (Lagrange multipliers).
Remark: The function W (contrary to $\phi^{(i)}$) are defined only for $\mathbf{F} \in \mathcal{M}$. The derivative $W_{\mathbf{F}}$ is calculated by first assuming that there exists an extension \hat{W} of W such that $\hat{W}=W$ for all $\mathbf{F} \in \mathcal{M}$. The extension can be differentiated and evaluated on \mathcal{M}. It can be shown that any extension can be used without any loss of generality.

Consider incompressibility as an example. Here we have only one constraint of the form $\phi(\mathbf{F})=\operatorname{det} \mathbf{F}-1=0$. Then $\phi_{\mathbf{F}}=\mathbf{F}^{*}=\mathbf{F}^{-T}$ on $\mathcal{M}($ since $\operatorname{det} \mathbf{F}=1$ on $\mathcal{M})$. Then $\mathbf{P}=$ $W_{\mathbf{F}}+\lambda \mathbf{F}^{-T}$, which on using $\mathbf{P}=\mathbf{T} \mathbf{F}^{*}$ gives us an expression of the form $\mathbf{T}=W_{\mathbf{F}} \mathbf{F}^{T}-p \mathbf{1}$ where $p(\mathbf{X}, t)$ is the constraint pressure.

