
1. Notes on compatibility equations and stress functions. We will use Stokes’ theorem

to develop strain compatibility equations in linear elasticity as well as to introduce the concept

of Airy stress functions.

E denotes the three-dimensional Euclidean point space; (e1, e2, e3) form an orthonormal

basis in a Cartesian coordinate system.

1.1 A corollary from Stokes’ theorem

Let v = viei be a smooth vector field on a simply-connected region Ω ⊂ E. A region is simply-

connected if any closed curve contained in it can be continuously shrunk to one of its point

without leaving the region; therefore a sphere with a central cavity is simply-connected but a

hollow cylinder with open ends is not. In two dimensions, the region should be essentially free

of holes. Let Γ be an arbitrary closed curve in Ω such that it bounds a smooth surface S in Ω.

Then by Stokes’ theorem ∫
S
curlv ·NdA =

∮
Γ
v · dX, (1.1)

where N is the normal associated with S and (curlv)i = eijkvk,j .

If curlv = 0, then eijkvk,j = 0 implying that vk,j = vj,k or (∇v) = (∇v)T , i.e. the gradient

of a vector, whose curl is zero, is a symmetric tensor. Moreover (1.1) implies that∮
Γ
v · dX = 0, (1.2)

for all closed curves in Ω. Therefore ∫ Y

X0

v · dX, (1.3)

where X0 is some fixed point in Ω, is independent of the path from X0 to Y ∈ Ω. Indeed,

consider two paths along the curves Γ1 and Γ2 such that their initial point is X0 and end point

is Y and that Γ1 ∪ Γ2 = Γ is a closed curve in Ω. The path independence of (1.3) then follows

from (1.2) (write the integral in (1.2) as a sum of two line integrals). Therefore, (1.3) defines a

function of Y alone and we can posit the existence of a scalar function ϕ which satisfies

ϕ(Y) = ϕ(X0) +

∫ Y

X0

v · dX, (1.4)

or equivalently v(X) = ∇ϕ(X). Conversely, if v = ∇ϕ then curlv = 0. We have proved that

curlv = 0 is necessary and sufficient for the existence of a scalar field ϕ such that v = ∇ϕ.

We will also require the two dimensional version of this result. Consider the vector v such

that v3 = 0. Moreover, assume that v1 and v2 depend only on X1 and X2. In such a case

curlv = 0 is reduced to a single equation given by

∂v2
∂X1

− ∂v1
∂X2

= 0. (1.5)
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According to our result above, this is equivalent to the existence of a scalar field (say F ) such

that

v1 =
∂F

∂X1
and v2 =

∂F

∂X2
. (1.6)

It should be noted that the above corollary is valid only for simply-connected domains.

1.2 Strain compatibility

Given a single-valued continuously differentiable displacement field, the strain field (for small

deformations) is defined as the symmetric part of the displacement gradient tensor. If however

we are given a (smooth) symmetric tensor, then what are the necessary and sufficient conditions

that there exist a single-valued continuously differentiable vector field whose symmetric gradient

is equal to the given tensor field? The answer is provided by the strain compatibility equations

for simply-connected domains. For multiply-connected domains, additional conditions need to

be imposed for the single-valuedness of the displacement.

For a displacement field u = uiei, the strain field ϵ = ϵijei ⊗ ej is given by

ui,j + uj,i = 2ϵij . (1.7)

Take another derivative of the above equation (w.r.t Xp) and then multiply the whole equation

by erip. Use eripuj,ip = 0 to obtain

eripui,jp = 2eripϵij,p. (1.8)

Differentiate this again w.r.t Xq and multiply both sides with esjq. The resulting equation is

eripesjqϵij,pq = 0 (1.9)

or equivalently curl(curl ϵ) = 0. The relations (1.9) are called strain compatibility conditions.

We have shown them to be necessary for (1.7) to hold true. Since erip is skew w.r.t. i and p index,

(1.9) implies that the tensor esjqϵij,pq will be symmetric w.r.t. i and p, i.e. esjq(ϵij,pq−ϵpj,iq) = 0.

This in turn implies that ϵij,pq − ϵpj,iq must be symmetric w.r.t. j and q, i.e.

ϵij,pq − ϵpj,iq = ϵiq,pj − ϵpq,ij . (1.10)

This is an equivalent form of strain compatibility conditions. These are 81 equations, out of

which only 6 are independent. These are

ϵ11,22 + ϵ22,11 − 2ϵ12,12 = 0,

ϵ22,33 + ϵ33,22 − 2ϵ23,23 = 0,

ϵ11,33 + ϵ33,11 − 2ϵ13,13 = 0,

(ϵ12,3 − ϵ23,1 + ϵ31,2),1 − ϵ11,23 = 0,

(ϵ23,1 − ϵ31,2 + ϵ12,3),2 − ϵ22,31 = 0, and

(ϵ31,2 − ϵ12,3 + ϵ23,1),3 − ϵ33,12 = 0.
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We will now show that (1.10) (where ϵij is symmetric) is also a sufficient condition for the

existence of ui for simply connected domains. Define a third order tensor with components Iijk

as

Iijk = ϵik,j − ϵjk,i. (1.11)

It follows immediately that Iijk = −Ijik. Moreover, note that Iijk,l − Iijl,k = 0 is equivalent to

(1.10). Therefore if we assume (1.10) then, using results from previous section, we can define a

second order tensor field w = wijei ⊗ ej such that

wij(X) = w0
ij +

∫ X

X0

IijkdX̂k, or wij,k = Iijk, (1.12)

where w0 = w(X0). The tensor w is skew (due to skew symmetry of Iijk with respect to i and

j). Let vik = ϵik + wik. Then

vik,l − vil,k = 0, (1.13)

which follows upon using (1.12)2 and (1.11). Thus, according to the corollary from Stokes’

theorem, there exist a vector field u = uiei such that

ui(X) = ui(X0) +

∫ X

X0

(ϵik + wik)dX̂k, or ui,k = (ϵik + wik). (1.14)

As a result (1.7) holds and ui qualifies as a displacement field. We can rewrite (1.14)1 such that

the integrand is given purely in terms of strain field. For a fixed point X, the chain rule gives

wikdX̂k = wikd(X̂k −Xk) = d(wik(X̂k −Xk))− dwik(X̂k −Xk), where dwik = IikldX̂l; the later

relation follows from (1.12)2. As a result (1.14)1 becomes

ui(X) = ui(X0) + wij(X0)(Xj −X0j) +

∫ X

X0

Uij(X̂)dX̂j , (1.15)

where Uij(X̂) = ϵij(X̂) + (Xl − X̂l)Iilj(X̂) (note: Uij(X̂)dX̂j are Cartesian components of a

vector given by
(
ϵ(X̂) − (X − X̂) × (curl ϵ)dX̂

)
. The above relation (called Cesàro integral)

provides us with an explicit relation to solve for displacement field from a given strain field.

If ϵij(X) = 0 then ui(X) = ai + w0
ijXj , where ai = ui(X0) − w0

ijX0j . Therefore displacement

field reduces down to a rigid body displacement for vanishing strain field. Moreover if two

displacement fields have a common strain field, then they differ by a rigid body displacement.

The single-valuedness of the displacement field is guaranteed by the part independent integral

in (1.15), whose path-independence is equivalent to compatibility equations (1.9).

The situation is more involved for a multiply-connected domain. The conditions (1.9) are still

necessary for the existence of a single-valued continuously differentiable displacement field. They

are however not sufficient. To this end, we consider a three-dimensional multiply-connected

body as shown in Figure 1 (it can be thought of as a potato with three holes drilled across). We

note that any closed curve within the body is either reducible (to a point without leaving the

body), for e.g. curve A, or irreducible, for e.g. curves C1 and C2. Consider an arbitrary point
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Figure 1: A multiply-connected body.

in the body; there will always exist infinitely many reducible curves containing it. Therefore,

starting with strain compatibility equation (1.9), we can always construct a displacement field

given by (1.15). The integral therein has to be path-independent for the single-valuedness of

displacement. This is indeed so for simply-connected domains, for which the path-independence

is equivalent to compatibility equations. However, for single-valuedness in a multiply-connected

domain we would need to impose the path-independence, i.e.∮
C
Uij(X̂)dX̂j = 0, (1.16)

for any irreducible curve C in the body. This needs to be enforced for any one irreducible curve

around every hole; therefore these are three additional relations which need to be enforced for a

body with three holes as shown in the figure, corresponding to each hole. The integral in (1.16)

is invariant for any two irreducible curves around the same hole, i.e. (see figure)∮
C1

Uij(X̂)dX̂j =

∮
C2

Uij(X̂)dX̂j . (1.17)

Thus enforcing (1.16) around C1 implies that it is satisfied for any irreducible curve around the

particular hole. That (1.17) is true can be shown by considering a simply-connected domain

enclosed by the curve constructed as following (see figure): start at A1, go around C1 to reach

A2, go to B2, go around C2 (in the opposite direction as shown in the figure) to reach B1, go

to A1. The points A1 and B1 are infinitesimally close to A2 and B2, respectively. It is as if

we have made a cut in the hollow cylinder to make it simply-connected. The integral (1.16)

vanishes in this domain because of strain compatibility; moreover the continuity of strains and
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its gradients will ensure the contribution from the integral over A2B2 and B1A1 to cancel. We

are finally left with (1.17). Note that the validity of this equation rests on the validity of strain

compatibility equation (1.9).

Summarizing our result, the strain compatibility relations (1.9) are necessary and sufficient

for the existence of a single-valued and continuously differentiable displacement field (given a

strain field) for a simply-connected domains. For multiply-connected domains, with say n holes,

the strain field should additionally satisfy n equations given by (1.16) (one equation for each

hole, the choice of irreducible curve around a hole is arbitrary).

[References: i) A. E. H. Love, The mathematical theory of elasticity, fourth edition, Dover,

1944, §156A. ii) B. A. Boley and J. H. Weiner, Theory of thermal stresses, Dover, 1997, pp.

84-100.]

1.3 Examples

(Courtesy Ayan)

Example 1 For a simply connected body, we wish to find out the temperature distribution

T (x) that gives a compatible thermal strain field.

If the thermal conductivity is homogeneous and isotropic, we can write down the thermal

strain as εij = β T δij , where β is the constant coefficient of thermal expansion. Putting this

strain field in (1.9) implies

T,ij + T,kk δij = 0.

Taking trace of this expression implies T,kk = 0. Hence, T,ij = 0. The general solution is

T (x) = a + bi xi, where a and bi, i = 1, 2, 3, are integration constants. Thus, for a simply

connected body, the temperature distribution must be necessarily linear in order to have a

compatible thermal strain field.

Note. Example of a non-linear temperature distribution over a hollow cylindrical body

(doubly connected) which produces locally compatible thermal strain field would be T (r, θ, z) =

Ar2 cos 2θ, where A is some constant.

Example 2 Consider simple shear of a simply connected cube in x1-x2 plane. We have seen

that the displacement field for such a deformation looks like u = λx2 e1, with λ constant. If

|λ| << 1 (a measure of small deformation), the small strain field in the Cartesian basis looks

like

[ε] =


0 λ

2 0
λ
2 0 0

0 0 0

 ,

which is a constant field and, hence, satisfies the compatibility conditions (1.9).
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Example 3 Consider the following non-linear small strain field over a simply connected body,

given in some Cartesian basis,

[ε] =


0 λ

2x1x2 0
λ
2x1x2 0 0

0 0 0

 , λ ̸= 0, |λ| << 1.

This strain field does not satisfy the condition (1.9) (ε11,22+ ε22,11− 2 ε12,12 = −λ ̸= 0). Hence,

the above strain field is an example of an incompatible strain field over a simply connected

body.

Example 4 Let us consider now a long thin elastic tube (a model of an artery) which is

a doubly connected domain. Let the inner and outer radii be r1 and r2 respectively, with

|r1 − r2| << 1 (thin-ness). Take the standard cylindrical coordinate system {r1 < r < r2, θ ∈
[0, 2π], z ∈ R} and consider the following small strain field

εrr = 0, εθθ = k, ε33 = 0, k = cosntant, k ̸= 0, |k| << 1.

The above is an example of an axisymmetric plane strain field (εrr, εθθ are functions of r only

and all other strain components are zero). For such fields,

curl ε =

(
∂εθθ
∂r

− εrr − εθθ
r

)
e3 ⊗ eθ.

For our case, curl ε =
k

r
e3 ⊗ eθ. To verify the strain compatibility conditions we need to take

another curl. Now, since curl ε is not an axi-symmetric field, we cannot use the above formula

for curl. From the general formula of curl for planar fields (planar fields are fields which are

functions of r and θ only) in cylindrical coordinates, we can calculate that

curl curl ε =
1

r

∂

∂r

(
r (curl ε)3θ

)
e3 ⊗ e3 =

1

r

∂

∂r
(k)e3 ⊗ e3 = 0.

Hence, the strain field is locally compatible. It still remains to verify the condition (1.16) to

conclude single-valuedness of the displacement.

To calculate the cyclic integral, we can choose the circle x21+x22 = a2, of radius a ∈ (r1, r2),

in z = 0 plane, which, for this particular example, is an irreducible curve. Let y = a er(θ̃).

Then dy = a der(θ̃) = a eθ(θ̃) dθ̃. Further, let x = a er(θ).

Hence,

ε(y) dy − (x− y)× curl ε(y) dy ={
k eθ(θ̃)⊗ eθ(θ̃)

}
a eθ(θ̃) dθ̃ −

(
a er(θ)− a er(θ̃)

)
×

({
k

a
e3 ⊗ eθ(θ̃)

}
a eθ(θ̃) dθ̃

)
= ka eθ(θ̃) dθ̃ −

(
a er(θ)− a er(θ̃)

)
×

(
k e3 dθ̃

)
=

[
ka eθ(θ̃)−

(
− ka eθ(θ) + ka eθ(θ̃)

)]
dθ̃

= ka eθ(θ) dθ̃.
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Choose x0 = a er(0). Observe that x0 = a er(θ̃ = 0) and x = a er(θ̃ = θ). Thus, we have

u(x) =

∫ x

x0

(
ε(y) dy − (x− y)× curl ε(y) dy

)
=

∫ θ̃=θ

θ̃=0
ka eθ(θ) dθ̃

= kaθ eθ(θ),

and ∮
x2
1+x2

2=a2

(
ε(y) dy − (x− y)× curl ε(y) dy

)
=

∫ θ̃=2π

θ̃=0
ka eθ(θ) dθ̃

= 2πka eθ(θ) ̸= 0.

Hence, the given strain field is not compatible, though it is compatible locally. It can be seen

that, in this case, the displacement field is multi-valued, e.g. the coordinates (r, θ, z) = (a, 0, 0)

and (r, θ, z) = (a, 2π, 0) represent the same material point but its displacement has both the

values 0 and 2πka eθ(2π) = 2πka eθ(0). In fact, the displacement field is discontinuous at every

point in the doubly connected domain we are considering. At any point (r, θ, z) in the domain,

u has a discontinuity of amount 2πkr eθ(θ).

This simple example illustrates the important role that the topological properties (e.g. con-

nectedness) of a material body play in theory of elasticity. The strain field which is compatible

over a simply connected body may be incompatible over a multiply connected body.

Example 5 Consider a simply connected body and a non-homogeneous isotropic expansion

of it given by the strain field

εij(x) = α |x|δij , α = constant, α > 0, |α| << 1,

expressed in some Cartesian basis. Such strain fields are used to model tumor growth. This

strain field does not satisfy the compatibility conditions and, hence, is not compatible. In fact,

incompatibility in this case can be also inferred from example 1, where it has been shown that

the only non-homogeneous and isotropic strain field which is compatible over a simply connected

domain must be linear in space variables. But |x| is a non-linear function of x.

1.4 Airy stress function

Our aim is to show that equilibrium equations for stress in two dimensions (with body forces

derived from a potential) is equivalent to existence of a potential, the Airy stress function, which

is related to stresses by (1.24).

The equilibrium equations in two dimensions (i.e. for plane stress and plane strain problems)

are given by

σ11,1 + σ12,2 + f1 = 0, and σ21,1 + σ22,2 + f2 = 0, (1.18)
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where fα denotes the body force. Assume that there exists a potential Ω(X1, X2) such that

fα = − ∂Ω
∂Xα

. The equilibrium equations then take the form

(σ11 − Ω),1 + σ12,2 = 0, and σ21,1 + (σ22 − Ω),2 = 0. (1.19)

According to the discussion at the end of first section, there exists potentials φ and χ such that

(cf. (1.5) and (1.6))

σ11 − Ω =
∂φ

∂X2
, and σ12 = − ∂φ

∂X1
, (1.20)

σ21 = − ∂χ

∂X2
, and σ22 − Ω =

∂χ

∂X1
. (1.21)

Use σ21 = σ12 to write
∂φ

∂X1
− ∂χ

∂X2
= 0. (1.22)

Therefore, there exists a potential Φ(X1, X2) such that (cf. (1.5) and (1.6))

φ =
∂Φ

∂X2
, and χ =

∂Φ

∂X1
. (1.23)

The potential Φ is called the Airy stress function. Substitute (1.23) into (1.20) and (1.21) to

write

σ11 − Ω = Φ,22, and σ12 = −Φ12, and σ22 − Ω = Φ,11. (1.24)

Conversely, if relations (1.24) are satisfied then equilibrium equations (1.18) are satisfied. This

can be checked by direct substitution.
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