
Let V be the three dimensional Euclidean vector space and L be the set of all linear maps

from V to V . The set of real numbers is denoted by R. Let E be the three dimensional Euclidean

point space. It can be identified with V . Let R be an open subset of E.

1. Localization theorem for volume integrals. Let ϕ be a continuous function defined on

an open set R ⊂ E. If for all closed sets π ⊂ R∫
π
ϕdV = 0, (1.1)

then ϕ(X) = 0 for all X ∈ R. To prove this, we start by defining

Iε =

∣∣∣∣ϕ(X0)−
1

Vε

∫
sε

ϕ(X)dV

∣∣∣∣ = ∣∣∣∣ 1Vε

∫
sε

(ϕ(X0)− ϕ(X))dV

∣∣∣∣ , (1.2)

where sε is a sphere of radius ε and volume Vε centered at X0 ∈ R. A theorem in analysis (W.

Rudin, Principles of Mathematical Analysis, 3rd Ed., McGraw-Hill (1976), p. 317) yields,

Iε ≤ 1

Vε

∫
sε

|ϕ(X0)− ϕ(X)|dV

≤ 1

Vε

∫
sε

sup
X∈sε

|ϕ(X0)− ϕ(X)|dV

= max
X∈sε

|ϕ(X0)− ϕ(X)|, (1.3)

where in (1.3)2, sup can be replaced by max due to continuity and compactness of sε. Since

ϕ(X) is continuous, we get Iε → 0 as ε → 0. It then follows from Eq. (1.2),

ϕ(X0) = lim
ε→0

1

Vε

∫
sε

ϕ(X)dV = 0, (1.4)

where the last equality is a consequence of (1.1). The point X0 can be chosen arbitrarily, and

thus we can conclude that ϕ(X) = 0 for all X ∈ R.

2. Divergence theorem. Let f , p and P be respectively, scalar, vector and tensor fields

defined on R × (t1, t2). Assume these fields to be continuously differentiable over R. Then for

any part Ω ⊂ R and at any time t ∈ (t1, t2)∫
Ω
(∇f)dV =

∫
∂Ω

fNdA, (2.1)∫
Ω
(Divp)dV =

∫
∂Ω

p ·NdA, (2.2)∫
Ω
(DivP)dV =

∫
∂Ω

PNdA, (2.3)

where N ∈ V is the outward unit normal to the boundary ∂Ω of Ω. We outline a brief

proof for (2.2). Let {E1,E2,E3} ∈ V be an orthonormal basis for V . Therefore there exists

{p1, p2, p3, X1, X2, X3} ∈ R such that p = piEi and X = XiEi, with i ∈ {1, 2, 3}. Consider a

cuboidR = {X ∈ Eκ : A < X1 < B, C < X2 < D, E < X3 < F}, where {A,B,C,D,E, F} ∈ R
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are constants. Then the surface integral in (2.2), when written for the two faces of the cuboid

which are orthogonal to E1, is∫ F

E

∫ D

C
(p1(B, Y, Z)− p1(A, Y, Z))dX2dX3

=

∫ F

E

∫ D

C

∫ B

A

∂p1
∂X1

dX1dX2dX3, (2.4)

which is obtained using the fundamental theorem of calculus (W. Rudin, ibid., p. 134). We can

write similar relations for the surfaces of the cuboid orthogonal to E2 and E3. We get∫
∂R

p ·NdA =

∫
R

( ∂p1
∂X1

+
∂p2
∂X2

+
∂p3
∂X3

)
dV =

∫
R
(Divp)dV. (2.5)

We have therefore proved the divergence theorem for a cuboidal region. Furthermore, we can

show that it holds for regions which are obtained by smooth deformations of the cuboid and

also for general regions which can be obtained by pasting together the deformed cuboids (This

argument can be found in the elementary texts on calculus. For a more advanced treatment see

W. Rudin, ibid., p. 288).

Equation (2.1) is obtained from (2.2) for a scalar p. A proof for (2.3) also follows from (2.2).

Indeed, for an arbitrary constant a ∈ V ,

a ·
∫
∂Ω

PNdA =

∫
∂Ω

(PTa) ·NdA =

∫
Ω
(DivPTa)dV =

∫
Ω
(DivP) · adV, (2.6)

where in the last equality, the definition of the Div operator has been used. Since a is arbitrary,

we get the desired result.

3. Stokes’ theorem. Let p and P be respectively, vector and tensor fields defined on R ×
(t1, t2). Assume these fields to be continuously differentiable over R. Then for any surface

F ⊂ R with normal N and boundary ∂F∫
F
(Curlp) ·NdA =

∮
∂F

p · dX, (3.1)∫
F
(CurlP)TNdA =

∮
∂F

PdX. (3.2)

A proof for (3.1) can be obtained from (Rudin, W. ibid., page 287). To verify (3.2), we use

(3.1). Indeed, for an arbitrary constant vector a ∈ V ,

a ·
∫
F
(CurlP)TNdA =

∫
F
(CurlPTa) ·NdA = a ·

∮
∂F

PdX, (3.3)

where in the first equality, the definition of the Curl of a tensor field is used. The desired result

follows upon using the arbitrariness of a.
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