
1. Surface interactions and the stress tensor. Recall the balance of linear momentum

for Ω ⊂ R: ∫
Ω
ρRv̇dV =

∫
∂Ω

tdA+

∫
Ω
ρRbdV, (1.1)

where ρR is the referential mass density, v is the material velocity, t is the traction vector, and b

is the body force per unit mass. Given that a balance law of the form (1.1) exists, we now show

that the surface interaction vector t depends on the surface only through the unit normal and

moreover the dependence is linear. The first claim was introduced by Augustin-Louis Cauchy

in 1823 as a hypothesis (Cauchy, A. L., Bulletin de la Sociètè Philomatique, pp. 9-13 (1823).

For an historical account see footnotes in Truesdell, C. & Toupin, R. A., The Classical field

Theories, Handbuch der Physik, Vol III/1, Springer, Berlin (1960), Sects. 200 & 203), but was

proved much later in 1957 by Walter Noll (Noll, W., The foundations of classical mechanics

in the light of recent advances in continuum mechanics, pp. 266-281, The Axiomatic Method,

with Special Reference to Geometry and Physics (Symposium at Berkeley, 1957), North-Holland

Publishing Co., Amsterdam (1959)). The second claim, which is also known as the Cauchy’s

theorem, is based on the classical tetrahedron argument first proposed by Cauchy and is now

recognized as a result of fundamental importance in continuum physics.

1.1. Cauchy’s hypothesis (Noll’s theorem) Let N be the outward unity normal to the posi-

tively oriented surface ∂Ω. Then

t(X, t; ∂Ω) = t(X, t;N), (1.2)

i.e. the dependence of the surface interaction vector on the surface on which it acts is only
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Figure 1: Two surfaces with a common tangent plane

through the normal N. To prove this assertion let s1 and s2 be two surfaces in Ω such that

they have a common tangent plane (denoted by T ) at some X̂ ∈ s1 ∩ s2. Let N be the common

unit normal to both surfaces at X̂. Let P1 be a bounded region such that ∂P1 = d1 ∪ f1 ∪ e,

where d1 is a subset of s1, f1 is a piece of the lateral surface of the circular cylinder with axis

N and radius R, and e is a part of the surface of the cylinder which is common to both ∂P1

and ∂P2 (P2 is the region bounded on the top by s2). The quantities f2 and d2 are defined in a

way similar to f1 and d1, respectively. Furthermore, ∂P2 = d2 ∪ f2 ∪ e. If we denote the surface
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area of a surface s by A(s) and the volume of a region P by V (P ), then for a = 1, 2,

A(da) = πR2 + o(R2),

A(fa) = o(R2), (1.3)

V (Pa) = o(R2).

The first of these relations is true since both d1 and d2 approach T as R approaches 0. Also,

A(fa) → 0 as R → 0.

We now apply the balance law (1.1) to regions P1 and P2. We obtain∫
∂P1

t(X, t; ∂P1)dA =

∫
P1

ρR(v̇ − b)dV,∫
∂P2

t(X, t; ∂P2)dA =

∫
P2

ρR(v̇ − b)dV.

Subtract these two relations to get∫
d1

tdA−
∫
d2

tdA =

∫
P1

ρR(v̇ − b)dV −
∫
P2

ρR(v̇ − b)dV +

∫
f2

tdA−
∫
f1

tdA. (1.4)

Assume all the fields to be bounded over the domain of their integration. Then,∫
Pa

ρR(v̇ − b)dV ≤ max
X∈Pa

|ρR(v̇ − b)|V (Pa),∫
fa

tdA ≤ max
X∈fa

|t|A(fa).

Based on relations (1.3)2,3, equation (1.4) can then be rewritten as∫
d1

t(X, t; d1)dA =

∫
d2

t(X, t; d2)dA+ o(R2). (1.5)

Divide equation (1.5) throughout by πR2 and use (1.3)1. As a result obtain

1

A(d1)

∫
d1

t(X, t; d1)dA =
1

A(d1)

∫
d2

t(X, t; d2)dA+
o(R2)

πR2
. (1.6)

Since t(X) is assumed to be continuous, an application of the Mean-value theorem gives

lim
R→0

1

A(da)

∫
da

t(X, t; da)dA = t(X̂, t; da), (1.7)

where X̂ is the common point of d1 and d2. Therefore letting R → 0 in (1.6) yields

t(X̂, t; d1) = t(X̂, t; d2). (1.8)

Thus, the surface interaction vector t takes the same value for all surfaces with a common unit

normal and therefore its dependence on the surface is only through the normal vector. The

assertion (1.2) is proved.
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Figure 2: Tetrahedron T

1.2. Cauchy’s lemma The balance law (1.1) implies that

t(X, t;−N) = −t(X, t;N). (1.9)

This result will be used in the proof of the Cauchy’s theorem. To verify this relation consider

a pillbox Pϵ of thickness ϵ, centered at X, and with its flat surfaces parallel to N. As we let

ϵ → 0, the pillbox flattens to its middle surface S. The relation (1.1) for bounded fields then

reduces to

lim
Rϵ→0

∫
∂Pϵ

tdA = 0 (1.10)

or ∫
S
(t(N) + t(−N))dA = 0. (1.11)

Finally, shrink the disk S to the middle point X and use the continuity of t to obtain (1.9).

1.3. Cauchy’s theorem The surface interaction vector t depends linearly on N. Therefore,

there exists a tensor σ such that

t(X, t;N) = σ(X, t)N. (1.12)

We now prove this theorem. Consider a tetrahedron T ⊂ Ω with vertex X0 ∈ Ω. The surface

of the tetrahedron normal to the axis ei is denoted by si. Let δ be the distance along the

unit normal m from the vertex to the fourth surface s (see figure 2). Then, the volume of the

tetrahedron V (T ) and the surface area A(s) of the face s can be calculated as respectively, c1δ
3

and c2δ
2, where {c1, c2} ∈ R+ are constants. The area of the remaining faces (given by A(si))

can be obtained from A(s):

A(si) = (m · ei)A(s). (1.13)

This relation can be verified by first noting, using the divergence theorem, that
∫
∂T NdA = 0,

where ∂T is piecewise smooth. Since N is constant on each face of T , (1.13) follows.
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We will now use the balance law (1.1) and the assumption of the continuity of the fields to

arrive at the relation (1.12). The balance law when restricted to the tetrahedron T implies∣∣∣ ∫
∂T

tdA
∣∣∣ = ∣∣∣ ∫

T
ρR(v̇ − b)dV

∣∣∣ ≤ ∫
T
|ρR(v̇ − b)|dV ≤ kV (T ), (1.14)

where k = max
X∈T

|ρR(v̇ − b)| is finite. Therefore,

O(δ) =
1

A(s)

∫
∂T

tdA =
1

A(s)

(∫
s
t(X;m)dA+

3∑
i=1

∫
si

t(X;−ei)dA
)

=
1

A(s)

(∫
s
t(X;m)dA−

3∑
i=1

∫
si

t(X; ei)dA
)
, (1.15)

where the last equality is a consequence of the Cauchy’s lemma. By the Mean-value theorem,

for continuous t, we obtain ∫
s
t(X;m)dA = A(s)t(X̃;m),∫

si

t(X; ei)dA = A(si)t(X̃i; ei) (1.16)

for some X̃ ∈ s and X̃i ∈ si, respectively. Let δ → 0. Then X̃ → X0 and X̃i → X0. As a result,

equations (1.13), (1.15) and (1.16) yield

t(X0;m) = (m · ei)t(X0; ei), (1.17)

where summation over i is implicit. As the choice of the vertex X0 and the unit normal m is

arbitrary, the relation (1.17) holds for all X ∈ R and all unit vectors. Equation (1.17) shows

that t is linear in m. Therefore there exists a tensor σ, the stress tensor, such that

t(X, t;m) = σ(X, t)m (1.18)

for all X ∈ R and any unit vector m. The proof is complete.

Note that we have restricted our attention to only continuously differentiable fields defined on

domains with piecewise smooth boundaries. Much research has been done in the past fifty years

to investigate these results under less stringent smoothness requirements. Such considerations

are indeed necessary for many practical problems in mechanics such as those involving shocks,

fracture, dislocations and corner singularities (For a recent contribution, where the past work is

carefully reviewed, see Schuricht, F., A new mathematical foundation for contact interactions in

continuum physics, Archive of Rational Mechanics and Analysis, 184(3), pp. 495-551 (2007)).
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