
Week 2 Discussion Handout

V is the three dimensional Euclidean space, which is a three dimensional vector space equipped with the
Euclidean inner product x · y = xi yi, where x, y ∈ V and z = zi ei is the representation of any z ∈ V in the
standard orthonormal basis {e1, e2, e3} of V. This inner product induces the Euclidean norm on V: |x| =

√
x · x.

With this norm, V becomes a normed vector space. Elements of the set Lin of all linear transformations from
V into itself are called second order tensors. We denote vectors by lowercase boldfaced letters and second order
tensors by uppercase boldfaced letters. Sym, Skw and Orth+ are subsets of Lin containing symmetric, skew and
proper orthogonal (or rotation) tensors respectively.

1. Ax ·y = Bx ·y ∀x, y ∈ V ⇒ A = B. [Hint: Use the definition of norm of a vector and the notion of equality
of two second order tensors.]

Tensor product

Given a, b ∈ V, their tensor product a⊗b is a second order tensor (linear transformation from V into itself)
defined by (a⊗ b)x = (x · b)a. It has the following properties.

2. (a⊗ b)T = b⊗ a. [Hint: Use the definition of tensor product.]

3. For any S ∈ Lin, S(a ⊗ b) = Sa ⊗ b, (a ⊗ b)S = a ⊗ STb. [Hint: Use the definition of composition of two
tensors: ST(x) = S(Tx)∀x ∈ V.]

4. (a⊗ b)(c⊗ d) = (b · c) a⊗ d. [Hint: Use above results.]

5. I1(a⊗ b) = a · b, I2(a⊗ b) = 0 and I3(a⊗ b) = 0. [Hint: Use the definition of principal invariants.]

6. For non-zero a, b ∈ V, range of a ⊗ b = span of a and null space of a ⊗ b = orthogonal complement of
b. Hence, Rank(a ⊗ b) = 1. Use this fact and 12 to justify the choice of {ei ⊗ ej}, for i, j = 1, 2, 3, as a
standard ‘orthonormal’ basis of Lin.. [Hint: Use the definition of tensor product.]

Inner product in Lin

A · B = tr(ABT), where tr(A) is the trace of A ∈ Lin and has been defined in class. This inner product
induces a norm on Lin: |A| =

√
A ·A. Trace is a linear function and it has the following two properties:

7. tr(ST) =tr(S). [Hint: Use the definition trace.]

8. tr(ST) =tr(TS). [Hint: Use the definition trace.]

Linearity of trace and 8 confirm that the above definition of inner product is indeed an inner product.
[Check!]

These further implies

9. tr(A) = I ·A. [Hint: Use the definition of inner product, 7 and 8.]

10. R · (ST) = (STR) ·T = RTT · S. [Hint: Use the definition of inner product, 7 and 8.]

11. u · Sv = S · (u⊗ v). [Hint: Use the definition of inner product, 3, 7 and 8.]

12. (a⊗ b) · (c⊗ d) = (a · c)(b · d). [Hint: Use the definition of inner product, 4, 7 and 8.]
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Few more important facts

13. If S ∈ Sym and T ∈ Lin, then S ·T = S ·TT = S · { 12 (T + TT)}. [Hint: Use 7, 8, 9 and 10.]

14. If W ∈ Skw and T ∈ Lin, then W ·T = −W ·TT = W · { 12 (T−TT)}. [Hint: Use 7, 8, 9 and 10.]

15. For S ∈ Sym and W ∈ Skw, S ·W = 0. [Hint: Use 13 and 14.]

16. If A ·B = 0 ∀B ∈ Lin, then A = 0. [Hint: Choose B as A.]

17. If A · S = 0 ∀S ∈ Sym, then A ∈ Skw. [Hint: Use 15 and 16.]

18. If A ·W = 0 ∀W ∈ Skw, then A ∈ Sym. [Hint: Use 15 and 16.]

ε-δ relations

19.

εijkεlmn = det

 δil δim δin
δjl δjm δjn
δkl δkm δkn

 .
20. εijpεlmp = δilδjm − δimδjl. [Hint: Use 19.]

21. εipqεlpq = 2δil. [Hint: Use 20.]

22. εijkεijk = 6. [Hint: Use 21.]

Skew tensors

23. W ∈ Skw ⇔Wx · x = 0 for all x ∈ V. [Hint: Use the definition of a skew tensor and symmetricity of the
inner product.]

24. W ∈ Skw⇒ ∃ unique w ∈ W such that Wx = w×x for all x ∈ V. Conversely, for any 0 6= w ∈ V, ∃ unique
W ∈ Skw such that Wx = w × x for all x ∈ V. w is called the axial vector of W.

25. Let W be a skew tensor and w be its axial vector. Then I1(W) = 0, I2(W) = |w|2 and I3(W) = 0. Deduce
that W has only one real eigenvalue which is zero. [Hint: Use the definitions and properties of principal
invariants.]

Proper orthogonal tensors

26. For Q ∈ Orth+, ∃ a unit vector p, called the axis of Q, such that Qp = p = QTp. Further, ∃ right handed
orthonormal basis {p, q, r} (p as before) and an angle θ ∈ (0, 2π] such that Q has the representation

Q = p⊗ p + cos θ (q⊗ q + r⊗ r) + sin θ (r⊗ q− q⊗ r).

Deduce that I1(Q) = I2(Q) = 1 + 2 cos θ and if θ 6= 0, 2π, Q has only one real eigenvalue which is 1.
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Differentiability of scalar, vector and tensor valued fields

Let us identify first the Euclidean point space E (set of all points in our physical space) with the three dimensional
Euclidean vector space V by fixing a suitable origin o ∈ E . Then each point x ∈ E can be identified with a three
dimensional Euclidean vector x ∈ V as x = x− o. Fields are, by definition, functions on E or on subsets of E . But
with this identification, we can consider fields as functions on V or on subsets of V.

Definition 1. Let U be an open subset of V. A function f : U → R (i.e. a scalar valued field) is differentiable
at x ∈ U if there exists a linear map A : V → R such that

lim
|h→0|

f(x + h)− f(x)−A(h)

|h|
= 0.

According to the Riesz representation theorem of linear algebra, the linear map A : V → R has the unique
representation A(h) = ∇f

∣∣
x
· h, where ∇f

∣∣
x

is a unique fixed vector. The vector ∇f
∣∣
x

is called the gradient (or
the Fréchet derivative) of f at x.

Definition 2. Let U be an open subset of V. A function f : U → V (i.e. a vector valued field) is differentiable
at x ∈ U if there exists a linear map A : V → V such that

lim
|h→0|

|f(x + h)− f(x)−A(h)|
|h|

= 0.

According to the Riesz representation theorem of linear algebra, the linear map A : V → V has the unique
representation A(h) = ∇f

∣∣
x

h, where ∇f
∣∣
x

is a unique fixed second order tensor. The second order tensor ∇f
∣∣
x

is called the gradient (or the Fréchet derivative) of f at x.
Definition 3. Let U be an open subset of V. A function F : U → Lin (i.e. a tensor valued field) is differentiable

at x ∈ U if there exists a linear map A : V → Lin such that

lim
|h→0|

|F(x + h)− F(x)−A(h)|
|h|

= 0.

According to the Riesz representation theorem of linear algebra, the linear map A : V → Lin has the unique
representation A(h) = ∇F

∣∣
x

h, where ∇F
∣∣
x

is a unique fixed third order tensor (a third order tensor, roughly

speaking, is a linear map from V to Lin). The third order tensor ∇F
∣∣
x

is called the gradient (or the Fréchet
derivative) of F at x.

Alternate and more useful definitions

We will denote by Φ a scalar or vector or tensor valued field. The nature of ∇Φ (i.e. whether it is a vector or
a second order tensor or a third order tensor) will be clear from the context.

Alternate Definition 1. For fixed x ∈ U ⊆ V, if the limit

lim
t→0

|Φ(x + th)− Φ(x)|
t

exists for all h ∈ V and depends continuously on h, then

∇Φ
∣∣
x
h =

d

dt

∣∣∣∣
t=0

Φ(x + th).

Alternate Definition 2. If dΦ and dx denote the respective total differential increment in Φ and x, then the
linear map ∇Φ

∣∣
x
, defined by dΦ = ∇Φ

∣∣
x

[dx], is called the gradient of Φ at x ∈ U ⊆ V.
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