Week 2 Discussion Handout

\mathcal{V} is the three dimensional Euclidean space, which is a three dimensional vector space equipped with the Euclidean inner product $\mathbf{x} \cdot \mathbf{y}=x_{i} y_{i}$, where $\mathbf{x}, \mathbf{y} \in \mathcal{V}$ and $\mathbf{z}=z_{i} \mathbf{e}_{i}$ is the representation of any $\mathbf{z} \in \mathcal{V}$ in the standard orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ of \mathcal{V}. This inner product induces the Euclidean norm on \mathcal{V} : $|\mathbf{x}|=\sqrt{\mathbf{x} \cdot \mathbf{x}}$. With this norm, \mathcal{V} becomes a normed vector space. Elements of the set Lin of all linear transformations from \mathcal{V} into itself are called second order tensors. We denote vectors by lowercase boldfaced letters and second order tensors by uppercase boldfaced letters. Sym, Skw and Orth ${ }^{+}$are subsets of Lin containing symmetric, skew and proper orthogonal (or rotation) tensors respectively.

1. $\mathbf{A x} \cdot \mathbf{y}=\mathbf{B x} \cdot \mathbf{y} \forall \mathbf{x}, \mathbf{y} \in \mathcal{V} \Rightarrow \mathbf{A}=\mathbf{B}$. [Hint: Use the definition of norm of a vector and the notion of equality of two second order tensors.]

Tensor product
Given $\mathbf{a}, \mathbf{b} \in \mathcal{V}$, their tensor product $\mathbf{a} \otimes \mathbf{b}$ is a second order tensor (linear transformation from \mathcal{V} into itself) defined by $(\mathbf{a} \otimes \mathbf{b}) \mathbf{x}=(\mathbf{x} \cdot \mathbf{b}) \mathbf{a}$. It has the following properties.
2. $(\mathbf{a} \otimes \mathbf{b})^{\mathrm{T}}=\mathbf{b} \otimes \mathbf{a}$. [Hint: Use the definition of tensor product.]
3. For any $\mathbf{S} \in \operatorname{Lin}, \mathbf{S}(\mathbf{a} \otimes \mathbf{b})=\mathbf{S a} \otimes \mathbf{b},(\mathbf{a} \otimes \mathbf{b}) \mathbf{S}=\mathbf{a} \otimes \mathbf{S}^{\mathrm{T}} \mathbf{b}$. [Hint: Use the definition of composition of two tensors: $\mathbf{S T}(\mathbf{x})=\mathbf{S}(\mathbf{T x}) \forall \mathbf{x} \in \mathcal{V}$.]
4. $(\mathbf{a} \otimes \mathbf{b})(\mathbf{c} \otimes \mathbf{d})=(\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \otimes \mathbf{d}$. [Hint: Use above results.]
5. $I_{1}(\mathbf{a} \otimes \mathbf{b})=\mathbf{a} \cdot \mathbf{b}, I_{2}(\mathbf{a} \otimes \mathbf{b})=0$ and $I_{3}(\mathbf{a} \otimes \mathbf{b})=0$. [Hint: Use the definition of principal invariants.]
6. For non-zero $\mathbf{a}, \mathbf{b} \in \mathcal{V}$, range of $\mathbf{a} \otimes \mathbf{b}=$ span of \mathbf{a} and null space of $\mathbf{a} \otimes \mathbf{b}=$ orthogonal complement of b. Hence, $\operatorname{Rank}(\mathbf{a} \otimes \mathbf{b})=1$. Use this fact and 12 to justify the choice of $\left\{\mathbf{e}_{i} \otimes \mathbf{e}_{j}\right\}$, for $i, j=1,2,3$, as a standard 'orthonormal' basis of Lin.. [Hint: Use the definition of tensor product.]

Inner product in Lin
$\mathbf{A} \cdot \mathbf{B}=\operatorname{tr}\left(\mathbf{A B}^{\mathrm{T}}\right)$, where $\operatorname{tr}(\mathbf{A})$ is the trace of $\mathbf{A} \in \operatorname{Lin}$ and has been defined in class. This inner product induces a norm on Lin: $|\mathbf{A}|=\sqrt{\mathbf{A} \cdot \mathbf{A}}$. Trace is a linear function and it has the following two properties:
7. $\operatorname{tr}\left(\mathbf{S}^{\mathrm{T}}\right)=\operatorname{tr}(\mathbf{S})$. [Hint: Use the definition trace.]
8. $\operatorname{tr}(\mathbf{S T})=\operatorname{tr}(\mathbf{T S})$. [Hint: Use the definition trace.]

Linearity of trace and 8 confirm that the above definition of inner product is indeed an inner product. [Check!]
These further implies
9. $\operatorname{tr}(\mathbf{A})=\mathbf{I} \cdot \mathbf{A}$. [Hint: Use the definition of inner product, 7 and 8.]
10. $\mathbf{R} \cdot(\mathbf{S T})=\left(\mathbf{S}^{\mathrm{T}} \mathbf{R}\right) \cdot \mathbf{T}=\mathbf{R T}^{\mathrm{T}} \cdot \mathbf{S}$. [Hint: Use the definition of inner product, 7 and 8.]
11. $\mathbf{u} \cdot \mathbf{S v}=\mathbf{S} \cdot(\mathbf{u} \otimes \mathbf{v})$. [Hint: Use the definition of inner product, 3,7 and 8.]
12. $(\mathbf{a} \otimes \mathbf{b}) \cdot(\mathbf{c} \otimes \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})$. [Hint: Use the definition of inner product, 4,7 and 8.]

Few more important facts
13. If $\mathbf{S} \in \operatorname{Sym}$ and $\mathbf{T} \in \operatorname{Lin}$, then $\mathbf{S} \cdot \mathbf{T}=\mathbf{S} \cdot \mathbf{T}^{\mathrm{T}}=\mathbf{S} \cdot\left\{\frac{1}{2}\left(\mathbf{T}+\mathbf{T}^{\mathbf{T}}\right)\right\}$. [Hint: Use 7, 8, 9 and 10.]
14. If $\mathbf{W} \in \operatorname{Skw}$ and $\mathbf{T} \in \operatorname{Lin}$, then $\mathbf{W} \cdot \mathbf{T}=-\mathbf{W} \cdot \mathbf{T}^{\mathrm{T}}=\mathbf{W} \cdot\left\{\frac{1}{2}\left(\mathbf{T}-\mathbf{T}^{\mathbf{T}}\right)\right\}$. [Hint: Use 7, 8, 9 and 10.]
15. For $\mathbf{S} \in \operatorname{Sym}$ and $\mathbf{W} \in \operatorname{Skw}, \mathbf{S} \cdot \mathbf{W}=0$. [Hint: Use 13 and 14.]
16. If $\mathbf{A} \cdot \mathbf{B}=0 \forall \mathbf{B} \in \operatorname{Lin}$, then $\mathbf{A}=\mathbf{0}$. [Hint: Choose \mathbf{B} as \mathbf{A}.]
17. If $\mathbf{A} \cdot \mathbf{S}=0 \forall \mathbf{S} \in \operatorname{Sym}$, then $\mathbf{A} \in \operatorname{Skw}$. [Hint: Use 15 and 16.]
18. If $\mathbf{A} \cdot \mathbf{W}=0 \forall \mathbf{W} \in \operatorname{Skw}$, then $\mathbf{A} \in \operatorname{Sym}$. [Hint: Use 15 and 16.]
$\underline{\epsilon-\delta \text { relations }}$
19.

$$
\epsilon_{i j k} \epsilon_{l m n}=\operatorname{det}\left[\begin{array}{ccc}
\delta_{i l} & \delta_{i m} & \delta_{i n} \\
\delta_{j l} & \delta_{j m} & \delta_{j n} \\
\delta_{k l} & \delta_{k m} & \delta_{k n}
\end{array}\right] .
$$

20. $\epsilon_{i j p} \epsilon_{l m p}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}$. [Hint: Use 19.]
21. $\epsilon_{i p q} \epsilon_{l p q}=2 \delta_{i l}$. [Hint: Use 20.]
22. $\epsilon_{i j k} \epsilon_{i j k}=6$. [Hint: Use 21.]

Skew tensors
23. $\mathbf{W} \in \operatorname{Skw} \Leftrightarrow \mathbf{W} \mathbf{x} \cdot \mathbf{x}=0$ for all $\mathbf{x} \in \mathcal{V}$. [Hint: Use the definition of a skew tensor and symmetricity of the inner product.]
24. $\mathbf{W} \in \operatorname{Skw} \Rightarrow \exists$ unique $\mathbf{w} \in \mathcal{W}$ such that $\mathbf{W} \mathbf{x}=\mathbf{w} \times \mathbf{x}$ for all $\mathbf{x} \in \mathcal{V}$. Conversely, for any $\mathbf{0} \neq \mathbf{w} \in \mathcal{V}, \exists$ unique $\mathbf{W} \in$ Skw such that $\mathbf{W} \mathbf{x}=\mathbf{w} \times \mathbf{x}$ for all $\mathbf{x} \in \mathcal{V}$. \mathbf{w} is called the axial vector of \mathbf{W}.
25. Let \mathbf{W} be a skew tensor and \mathbf{w} be its axial vector. Then $I_{1}(\mathbf{W})=0, I_{2}(\mathbf{W})=|\mathbf{w}|^{2}$ and $I_{3}(\mathbf{W})=0$. Deduce that \mathbf{W} has only one real eigenvalue which is zero. [Hint: Use the definitions and properties of principal invariants.]

Proper orthogonal tensors
26. For $\mathbf{Q} \in \mathrm{Orth}^{+}, \exists$ a unit vector \mathbf{p}, called the axis of \mathbf{Q}, such that $\mathbf{Q} \mathbf{p}=\mathbf{p}=\mathbf{Q}^{\mathrm{T}} \mathbf{p}$. Further, \exists right handed orthonormal basis $\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$ (\mathbf{p} as before) and an angle $\theta \in(0,2 \pi]$ such that \mathbf{Q} has the representation

$$
\mathbf{Q}=\mathbf{p} \otimes \mathbf{p}+\cos \theta(\mathbf{q} \otimes \mathbf{q}+\mathbf{r} \otimes \mathbf{r})+\sin \theta(\mathbf{r} \otimes \mathbf{q}-\mathbf{q} \otimes \mathbf{r}) .
$$

Deduce that $I_{1}(\mathbf{Q})=I_{2}(\mathbf{Q})=1+2 \cos \theta$ and if $\theta \neq 0,2 \pi, \mathbf{Q}$ has only one real eigenvalue which is 1 .

Let us identify first the Euclidean point space \mathcal{E} (set of all points in our physical space) with the three dimensional Euclidean vector space \mathcal{V} by fixing a suitable origin $o \in \mathcal{E}$. Then each point $x \in \mathcal{E}$ can be identified with a three dimensional Euclidean vector $\mathbf{x} \in \mathcal{V}$ as $\mathbf{x}=x-o$. Fields are, by definition, functions on \mathcal{E} or on subsets of \mathcal{E}. But with this identification, we can consider fields as functions on \mathcal{V} or on subsets of \mathcal{V}.

Definition 1. Let U be an open subset of \mathcal{V}. A function $f: U \rightarrow \mathbb{R}$ (i.e. a scalar valued field) is differentiable at $\mathbf{x} \in U$ if there exists a linear map $A: \mathcal{V} \rightarrow \mathbb{R}$ such that

$$
\lim _{|\mathbf{h} \rightarrow 0|} \frac{f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-A(\mathbf{h})}{|\mathbf{h}|}=0
$$

According to the Riesz representation theorem of linear algebra, the linear map $A: \mathcal{V} \rightarrow \mathbb{R}$ has the unique representation $A(\mathbf{h})=\left.\nabla f\right|_{\mathbf{x}} \cdot \mathbf{h}$, where $\left.\nabla f\right|_{\mathbf{x}}$ is a unique fixed vector. The vector $\left.\nabla f\right|_{\mathbf{x}}$ is called the gradient (or the Fréchet derivative) of f at \mathbf{x}.

Definition 2. Let U be an open subset of \mathcal{V}. A function $\mathbf{f}: U \rightarrow \mathcal{V}$ (i.e. a vector valued field) is differentiable at $\mathbf{x} \in U$ if there exists a linear map $\mathbf{A}: \mathcal{V} \rightarrow \mathcal{V}$ such that

$$
\lim _{|\mathbf{h} \rightarrow 0|} \frac{|\mathbf{f}(\mathbf{x}+\mathbf{h})-\mathbf{f}(\mathbf{x})-\mathbf{A}(\mathbf{h})|}{|\mathbf{h}|}=0
$$

According to the Riesz representation theorem of linear algebra, the linear map $\mathbf{A}: \mathcal{V} \rightarrow \mathcal{V}$ has the unique representation $\mathbf{A}(\mathbf{h})=\left.\nabla \mathbf{f}\right|_{\mathbf{x}} \mathbf{h}$, where $\left.\nabla \mathbf{f}\right|_{\mathbf{x}}$ is a unique fixed second order tensor. The second order tensor $\left.\nabla \mathbf{f}\right|_{\mathbf{x}}$ is called the gradient (or the Fréchet derivative) of \mathbf{f} at \mathbf{x}.

Definition 3. Let U be an open subset of \mathcal{V}. A function $\mathbf{F}: U \rightarrow$ Lin (i.e. a tensor valued field) is differentiable at $\mathbf{x} \in U$ if there exists a linear map $\mathcal{A}: \mathcal{V} \rightarrow$ Lin such that

$$
\lim _{|\mathbf{h} \rightarrow 0|} \frac{|\mathbf{F}(\mathbf{x}+\mathbf{h})-\mathbf{F}(\mathbf{x})-\mathcal{A}(\mathbf{h})|}{|\mathbf{h}|}=0 .
$$

According to the Riesz representation theorem of linear algebra, the linear map $\mathcal{A}: \mathcal{V} \rightarrow$ Lin has the unique representation $\mathcal{A}(\mathbf{h})=\left.\nabla \mathbf{F}\right|_{\mathbf{x}} \mathbf{h}$, where $\left.\nabla \mathbf{F}\right|_{\mathbf{x}}$ is a unique fixed third order tensor (a third order tensor, roughly speaking, is a linear map from \mathcal{V} to Lin). The third order tensor $\left.\nabla \mathbf{F}\right|_{\mathbf{x}}$ is called the gradient (or the Fréchet derivative) of \mathbf{F} at \mathbf{x}.

Alternate and more useful definitions

We will denote by Φ a scalar or vector or tensor valued field. The nature of $\nabla \Phi$ (i.e. whether it is a vector or a second order tensor or a third order tensor) will be clear from the context.

Alternate Definition 1. For fixed $\mathbf{x} \in U \subseteq \mathcal{V}$, if the limit

$$
\lim _{t \rightarrow 0} \frac{|\Phi(\mathbf{x}+t \mathbf{h})-\Phi(\mathbf{x})|}{t}
$$

exists for all $\mathbf{h} \in \mathcal{V}$ and depends continuously on \mathbf{h}, then

$$
\left.\nabla \Phi\right|_{\mathbf{x}} \mathbf{h}=\left.\frac{d}{d t}\right|_{t=0} \Phi(\mathbf{x}+t \mathbf{h})
$$

Alternate Definition 2. If $d \Phi$ and $d \mathbf{x}$ denote the respective total differential increment in Φ and \mathbf{x}, then the linear map $\left.\nabla \Phi\right|_{\mathbf{x}}$, defined by $d \Phi=\left.\nabla \Phi\right|_{\mathbf{x}}[d \mathbf{x}]$, is called the gradient of Φ at $\mathbf{x} \in U \subseteq \mathcal{V}$.

