Week 4 Discussion Handout

Definitions

Let f, \mathbf{v} and \mathbf{A} be a scalar, a vector and a second order tensor fields, respectively, defined on an open domain U of \mathcal{V} and continuously differentiable on U. Let $\mathbf{c} \in \mathcal{V}$ be fixed. Then we have the following definitions. Last definition assumes twice continuously differentiable f and \mathbf{u}.

- $\operatorname{div} \mathbf{v}=\operatorname{tr} \nabla \mathbf{v}$.
- (curl $\mathbf{v}) \cdot \mathbf{c}=\operatorname{div}(\mathbf{v} \times \mathbf{c})$.
- $(\operatorname{div} \mathbf{A}) \cdot \mathbf{c}=\operatorname{div}\left(\mathbf{A}^{\mathrm{T}} \mathbf{c}\right)$.
- $(\operatorname{curl} \mathbf{A}) \mathbf{c}=\operatorname{curl}\left(\mathbf{A}^{\mathrm{T}} \mathbf{c}\right)$.
- $\Delta f=\operatorname{div}(\nabla f), \Delta \mathbf{v}=\operatorname{div}(\nabla \mathbf{v})$ and $(\Delta \mathbf{A}) \mathbf{c}=\Delta(\mathbf{S c})$ (Δ denotes the Laplacian operator).

Components in some standard basis $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$

- $(\nabla f)_{i}=f_{, i}$.
- $(\nabla \mathbf{v})_{i j}=v_{i, j}$.
- $\operatorname{div} \mathbf{v}=v_{i, i}$.
- $(\operatorname{curl} \mathbf{v})_{i}=e_{i j k} v_{k, j}$.
- $(\operatorname{div} \mathbf{A})_{i}=A_{i j, j}$.
- $(\operatorname{curl} \mathbf{A})_{i j}=e_{i m n} A_{j n, m}$.
- $\Delta f=f_{, i i}$.
- $(\Delta \mathbf{v})_{i}=v_{i, j j}$.
- $(\Delta \mathbf{A})_{i j}=A_{i j, k k}$.

Some useful identities
Let ϕ, \mathbf{v}, \mathbf{w} and \mathbf{S} be continuously differentiable fields with ϕ scalar valued, \mathbf{v} and \mathbf{w} vector valued, and \mathbf{S} tensor valued. Then we have the following identities. First six of these are applications of product rule (or the Leibniz's rule). 7 to 14 assume the corresponding fields to be twice continuously differentiable.

1. $\nabla(\phi \mathbf{v})=\phi \nabla \mathbf{v}+\mathbf{v} \otimes \nabla \phi$
2. $\operatorname{div}(\phi \mathbf{v})=\phi \operatorname{div} \mathbf{v}+\mathbf{v} \cdot \nabla \phi$
3. $\nabla(\mathbf{v} \cdot \mathbf{w})=(\nabla \mathbf{w})^{\mathrm{T}} \mathbf{v}+(\nabla \mathbf{v})^{\mathrm{T}} \mathbf{w}$
4. $\operatorname{div}(\mathbf{v} \otimes \mathbf{w})=\mathbf{v} \operatorname{div} \mathbf{w}+(\nabla \mathbf{v}) \mathbf{w}$
5. $\operatorname{div}\left(\mathbf{S}^{\mathrm{T}} \mathbf{v}\right)=\mathbf{S} \cdot \nabla \mathbf{v}+\mathbf{v} \cdot \operatorname{div} \mathbf{S}$
6. $\operatorname{div}(\phi \mathbf{S})=\phi \operatorname{div} \mathbf{S}+\mathbf{S} \nabla \phi$
7. curl $\nabla \phi=\mathbf{0}$.
8. div curl $\mathbf{v}=0$.
9. curl curl $\mathbf{v}=\nabla \operatorname{div} \mathbf{v}-\Delta \mathbf{u}$.
10. curl $\nabla \mathbf{u}=\mathbf{0}$.
11. $\operatorname{curl}\left(\nabla \mathbf{u}^{\mathrm{T}}\right)=\nabla \operatorname{curl} \mathbf{u}$.
12. div curl $\mathbf{S}=$ curl div \mathbf{S}^{T}.
13. div $(\operatorname{curl} \mathbf{S})^{\mathrm{T}}=\mathbf{0}$.
14. $(\operatorname{curl} \operatorname{curl} \mathbf{S})^{\mathrm{T}}=\operatorname{curl} \operatorname{curl} \mathbf{S}^{\mathrm{T}}$.

Exercises

1. Prove using divergence theorem: $\int_{\partial \Omega} \mathbf{v} \otimes \mathbf{n} d A=\int_{\Omega} \nabla \mathbf{v} d V$.
2. Show that $\operatorname{vol}(\Omega)=\frac{1}{3} \int_{\partial \Omega} \mathbf{x} \cdot \mathbf{n} d A$, where \mathbf{x} denotes the position vector of a point in Ω.
3. Let \mathbf{A} be a second order tensor field that satisfies $\operatorname{div} \mathbf{A}=\mathbf{0}$ over some open region \mathcal{R} of \mathcal{V}. Show that

$$
\int_{\partial \Omega} \mathbf{x} \times \mathbf{A n} d A=\mathbf{0} \quad \text { for all regular parts } \Omega \text { inside } \mathcal{R}
$$

implies that $\mathbf{A} \in \operatorname{Sym}$.

