Week 4 Discussion Handout

Definitions

Let f, \mathbf{v} and \mathbf{A} be a scalar, a vector and a second order tensor fields, respectively, defined on an open domain U of \mathcal{V} and continuously differentiable on U. Let $\mathbf{c} \in \mathcal{V}$ be fixed. Then we have the following definitions. Last definition assumes twice continuously differentiable f and \mathbf{u} .

- div $\mathbf{v} = \operatorname{tr} \nabla \mathbf{v}$.
- $(\text{curl } \mathbf{v}) \cdot \mathbf{c} = \text{div}(\mathbf{v} \times \mathbf{c}).$
- $(\operatorname{div} \mathbf{A}) \cdot \mathbf{c} = \operatorname{div}(\mathbf{A}^{\mathrm{T}}\mathbf{c}).$
- $(\operatorname{curl} \mathbf{A}) \mathbf{c} = \operatorname{curl} (\mathbf{A}^{\mathrm{T}} \mathbf{c}).$
- $\Delta f = \operatorname{div}(\nabla f)$, $\Delta \mathbf{v} = \operatorname{div}(\nabla \mathbf{v})$ and $(\Delta \mathbf{A}) \mathbf{c} = \Delta(\mathbf{Sc})$ (Δ denotes the Laplacian operator).

Components in some standard basis $(\mathbf{e}_1, \, \mathbf{e}_2, \, \mathbf{e}_3)$

- $(\nabla f)_i = f_{,i}$.
- $(\nabla \mathbf{v})_{ij} = v_{i,j}$.
- div $\mathbf{v} = v_{i,i}$.
- $(\operatorname{curl} \mathbf{v})_i = e_{ijk} v_{k,j}$.
- $(\operatorname{div} \mathbf{A})_i = A_{ij,j}$.
- (curl \mathbf{A})_{ij} = $e_{imn} A_{jn,m}$.
- $\Delta f = f_{,ii}$.
- $(\Delta \mathbf{v})_i = v_{i,jj}$.
- $(\Delta \mathbf{A})_{ij} = A_{ij,kk}$.

Some useful identities

Let ϕ , \mathbf{v} , \mathbf{w} and \mathbf{S} be continuously differentiable fields with ϕ scalar valued, \mathbf{v} and \mathbf{w} vector valued, and \mathbf{S} tensor valued. Then we have the following identities. First six of these are applications of product rule (or the Leibniz's rule). 7 to 14 assume the corresponding fields to be twice continuously differentiable.

- 1. $\nabla(\phi \mathbf{v}) = \phi \nabla \mathbf{v} + \mathbf{v} \otimes \nabla \phi$
- 2. $\operatorname{div}(\phi \mathbf{v}) = \phi \operatorname{div} \mathbf{v} + \mathbf{v} \cdot \nabla \phi$
- 3. $\nabla (\mathbf{v} \cdot \mathbf{w}) = (\nabla \mathbf{w})^{\mathrm{T}} \mathbf{v} + (\nabla \mathbf{v})^{\mathrm{T}} \mathbf{w}$
- 4. $\operatorname{div}(\mathbf{v} \otimes \mathbf{w}) = \mathbf{v} \operatorname{div} \mathbf{w} + (\nabla \mathbf{v}) \mathbf{w}$
- 5. $\operatorname{div}(\mathbf{S}^{\mathrm{T}}\mathbf{v}) = \mathbf{S} \cdot \nabla \mathbf{v} + \mathbf{v} \cdot \operatorname{div} \mathbf{S}$
- 6. $\operatorname{div}(\phi \mathbf{S}) = \phi \operatorname{div} \mathbf{S} + \mathbf{S} \nabla \phi$
- 7. curl $\nabla \phi = \mathbf{0}$.
- 8. div curl $\mathbf{v} = 0$.
- 9. curl curl $\mathbf{v} = \nabla \operatorname{div} \mathbf{v} \Delta \mathbf{u}$.
- 10. curl $\nabla \mathbf{u} = \mathbf{0}$.
- 11. $\operatorname{curl}(\nabla \mathbf{u}^{\mathrm{T}}) = \nabla \operatorname{curl} \mathbf{u}$.

12. div curl \mathbf{S} =curl div \mathbf{S}^{T} .

- 13. div (curl \mathbf{S})^T = $\mathbf{0}$.
- 14. $(\text{curl curl } \mathbf{S})^{\mathrm{T}} = \text{curl curl } \mathbf{S}^{\mathrm{T}}.$

Exercises

- 1. Prove using divergence theorem: $\int_{\partial\Omega}\mathbf{v}\otimes\mathbf{n}\,dA=\int_{\Omega}\nabla\mathbf{v}\,dV.$
- 2. Show that $\operatorname{vol}(\Omega) = \frac{1}{3} \int_{\partial \Omega} \mathbf{x} \cdot \mathbf{n} \, dA$, where \mathbf{x} denotes the position vector of a point in Ω .
- 3. Let **A** be a second order tensor field that satisfies div $\mathbf{A} = \mathbf{0}$ over some open region \mathcal{R} of \mathcal{V} . Show that

$$\int_{\partial\Omega} \mathbf{x} \times \mathbf{A} \mathbf{n} \, dA = \mathbf{0} \qquad \text{for all regular parts } \Omega \text{ inside } \mathcal{R}$$

implies that $A \in Sym$.