
Week 6 Discussion Handout

Strain compatibility conditions for a simply connected body

At every point in the current configuration C, which is a simply connected domain,

curl curl ε = 0. (1)

In some Cartesian basis, the above vector equation looks like the following 81 scalar equations

eijk elmn εjm,kn = 0, (2)

out of which only the following 6 are independent.

ε11,22 + ε22,11 − 2 ε12,12 = 0,

ε22,22 + ε33,22 − 2 ε23,32 = 0,

ε33,11 + ε11,33 − 2 ε31,13 = 0,

(ε12,3 − ε23,1 + ε31,2),1 − ε11,23 = 0,

(ε23,1 − ε31,2 + ε12,3),2 − ε22,31 = 0,

(ε31,2 − ε12,3 + ε23,1),3 − ε33,12 = 0.

For a compatible strain field ε, the displacement field u for a simply connected body can be written as

u(x) =

∫ x

x0

(
ε(y) dy − (x− y)× curl ε(y) dy

)
, (3)

modulo a rigid deformation (which is of the form u0 + ω0 × (x− x0), for constant u0 and ω0). x0 is some fixed
point in C. curl inside the integral sign is with respect to the variable y. The integral in the above expression
for displacement is independent of the path that joins x0 and x, which can be embodied into the fact that the
following cyclic integral along any closed curve C in C is zero:∮

C

(
ε(y) dy − (x− y)× curl ε(y) dy

)
= 0. (4)

The above expression gives the global compatibility condition for a simply connected body.

Strain compatibility conditions for a multiply connected body

An (n+1)-tuply connected body has n holes and, consequently, there always exist n closed curves Ci, i = 1, . . . , n,
which cannot be continuously shrunk to a point without leaving the body, nor they can be deformed continuously
into one another without leaving the body. Such closed curves Ci are called irreducible.

At every point in the current configuration C, which is now an (n+ 1)-tuply connected domain,

curl curl ε = 0 (5)

and, additionally, ∮
Ci

(
ε(y) dy − (x− y)× curl ε(y) dy

)
= 0 (6)

for all irreducible curves Ci, i = 1, . . . , n.
Under the above hypothesis, the displacement field u for a multiply connected body can be written as

u(x) =

∫ x

x0

(
ε(y) dy − (x− y)× curl ε(y) dy

)
, (7)

modulo a rigid deformation (which is of the form u0 +ω0 × (x− x0), for constant u0 and ω0). x0 is, again, some
fixed point in C.

1



Example 1

For a simply connected body, we wish to find out the temperature distribution T (x) that gives a compatible
thermal strain field.

If the thermal conductivity is homogeneous and isotropic, we can write down the thermal strain as εij = β T δij ,
where β is the constant coefficient of thermal expansion. Putting this strain field in (1) implies

T,ij + T,kk δij = 0.

Taking trace of this expression implies T,kk = 0. Hence, T,ij = 0. The general solution is T (x) = a+ bi xi, where
a and bi, i = 1, 2, 3, are integration constants. Thus, for a simply connected body, the temperature distribution
must be necessarily linear in order to have a compatible thermal strain field.

Note. Example of a non-linear temperature distribution over a hollow cylindrical body (doubly connected)
which produces locally compatible thermal strain field would be T (r, θ, z) = Ar2 cos 2θ, where A is some constant.

Example 2

Consider simple shear of a simply connected cube in x1-x2 plane. We have seen that the displacement field for
such a deformation looks like u = λx2 e1, with λ constant. If |λ| << 1 (a measure of small deformation), the
small strain field in the Cartesian basis looks like

[ε] =

 0 λ
2 0

λ
2 0 0
0 0 0

 ,
which is a constant field and, hence, satisfies the compatibility conditions (2).

Taking x0 = 0, expression (3) gives

u(x) =
λ

2
x2 e1 +

λ

2
x1 e2.

Here is an example of a strain field that corresponds to two different displacement fields. As expected, these
displacement fields must be related through some rigid body deformation, which in this case is an infinitesimal
rigid rotation of amount −λ2 about x3 axis:

λx2 e1 =

(
− λ

2
e3 × x

)
+
λ

2
x2 e1 +

λ

2
x1 e2.

Example 3

Consider the following non-linear small strain field over a simply connected body, given in some Cartesian basis,

[ε] =

 0 λ
2x1x2 0

λ
2x1x2 0 0

0 0 0

 , λ 6= 0, |λ| << 1.

This strain field does not satisfy the condition (2) (ε11,22 + ε22,11 − 2 ε12,12 = −λ 6= 0). Hence, the above strain
field is an example of an incompatible strain field over a simply connected body.

Example 4

Let us consider now a long thin elastic tube (a model of an artery) which is a doubly connected domain. Let the
inner and outer radii be r1 and r2 respectively, with |r1 − r2| << 1 (thin-ness). Take the standard cylindrical
coordinate system {r1 < r < r2, θ ∈ [0, 2π], z ∈ R} and consider the following small strain field

εrr = 0, εθθ = k, ε33 = 0, k = cosntant, k 6= 0, |k| << 1.

The above is an example of an axisymmetric plane strain field (εrr, εθθ are functions of r only and all other strain
components are zero). For such fields,

curl ε =

(
∂εθθ
∂r
− εrr − εθθ

r

)
e3 ⊗ eθ.

For our case, curl ε =
k

r
e3 ⊗ eθ. To verify the local compatibility condition (5) for multiply connected bodies, we

need to take another curl. Now, since curl ε is not an axisymmetric field, we cannot use the above formula for
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curl. From the general formula of curl for planar fields (planar fields are fields which are functions of r and θ only)
in cylindrical coordinates, we can calculate that

curl curl ε =
1

r

∂

∂r

(
r (curl ε)3θ

)
e3 ⊗ e3 =

1

r

∂

∂r
(k)e3 ⊗ e3 = 0.

Hence, the strain field is locally compatible. It still remains to verify the global condition (6) to conclude about
strain compatibility.

To calculate the cyclic integral in (6), we can choose the circle x21 + x22 = a2, of radius a ∈ (r1, r2), in z = 0
plane, which, for this particular example, is an irreducible curve. Let y = a er(θ̃). Then dy = a der(θ̃) = a eθ(θ̃) dθ̃.
Further, let x = a er(θ).

Hence,

ε(y) dy − (x− y)× curl ε(y) dy =

{
k eθ(θ̃)⊗ eθ(θ̃)

}
a eθ(θ̃) dθ̃ −

(
a er(θ)− a er(θ̃)

)
×
({

k

a
e3 ⊗ eθ(θ̃)

}
a eθ(θ̃) dθ̃

)
= ka eθ(θ̃) dθ̃ −

(
a er(θ)− a er(θ̃)

)
×
(
k e3 dθ̃

)
=

[
ka eθ(θ̃)−

(
− ka eθ(θ) + ka eθ(θ̃)

)]
dθ̃

= ka eθ(θ) dθ̃.

Choose x0 = a er(0). Observe that x0 = a er(θ̃ = 0) and x = a er(θ̃ = θ). Thus, we have

u(x) =

∫ x

x0

(
ε(y) dy − (x− y)× curl ε(y) dy

)
=

∫ θ̃=θ

θ̃=0

ka eθ(θ) dθ̃

= kaθ eθ(θ),

and ∮
x2
1+x

2
2=a

2

(
ε(y) dy − (x− y)× curl ε(y) dy

)
=

∫ θ̃=2π

θ̃=0

ka eθ(θ) dθ̃

= 2πka eθ(θ) 6= 0.

Hence, the given strain field is not compatible, though it is compatible locally. It can be seen that, in this case,
the displacement field is multi-valued, e.g. the coordinates (r, θ, z) = (a, 0, 0) and (r, θ, z) = (a, 2π, 0) represent
the same material point but its displacement has both the values 0 and 2πka eθ(2π) = 2πka eθ(0). In fact, the
displacement field is discontinuous at every point in the doubly connected domain we are considering. At any
point (r, θ, z) in the domain, u has a discontinuity of amount 2πkr eθ(θ).

This simple example illustrates the important role that the topological properties (e.g. connectedness) of a
material body play in theory of elasticity. The strain field which is compatible over a simply connected body may
be incompatible over a multiply connected body.

Example 5

Consider a simply connected body and a non-homogeneous isotropic expansion of it given by the strain field

εij(x) = α |x|δij , α = constant, α > 0, |α| << 1,

expressed in some Cartesian basis. Such strain fields are used to model tumor growth. This strain field does not
satisfy the compatibility condition (1) and, hence, is not compatible. In fact, incompatibility in this case can be
also inferred from example 1, where it has been shown that the only non-homogeneous and isotropic strain field
which is compatible over a simply connected domain must be linear in space variables. But |x| is a non-linear
function of x.
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