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Summary

Central to any theory of continuum mechanics, are balance laws of mass,
momentum, and energy. These provide us with universal relations, which
should be satisfied during every process associated with the continuous body.
However, to obtain general statements of these laws, several integral theorems
are required. A major portion of this chapter therefore deals with divergence
theorem, Stokes’ theorem and transport theorems, which are then used to
obtain the balance laws in the form of partial differential equations to be
satisfied away from the singular surface and jump conditions at the singular
surface.

In this chapter we use, unless specified otherwise, the notation introduced in
the previous chapter on kinematics. In particular, E denotes a three dimen-
sional Euclidean space, associated with which is its translation space V , a
three dimensional inner product vector space. We use in addition, the sub-
script κ or χ when referring to a reference or a spatial frame, respectively.
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Let κ(B) ⊂ E and χ(B) ⊂ E denote respectively, the fixed reference config-
uration and the current configuration. Let (t1, t2) be a fixed time interval,
where {t1, t2} ∈ R.

1. Integral theorems

In this subsection we state and prove the localization theorem, the divergence
theorem, the Stokes’ theorem, and the transport theorem for volume and sur-
face integrals. We have employed only elementary concepts from differential
geometry in proving these theorems.

Localization theorem for volume integrals Let ϕ be a continuous func-
tion defined on an open set R ⊂ E . If for all closed sets π ⊂ R∫

π

ϕdV = 0, (1)

then ϕ(u) = 0 for all u ∈ R. To prove this, we start by defining

Iε =

∣∣∣∣ϕ(u0)−
1

Vε

∫
sε

ϕ(u)dV

∣∣∣∣ = ∣∣∣∣ 1Vε

∫
sε

(ϕ(u0)− ϕ(u))dV

∣∣∣∣ , (2)

where sε is a sphere of radius ε and volume Vε centered at u0 ∈ R. A
theorem in analysis (Rudin, W. Principles of Mathematical Analysis, 3rd
Ed., McGraw-Hill (1976), page 317) yields,

Iε ≤ 1

Vε

∫
sε

|ϕ(u0)− ϕ(u)|dV

≤ 1

Vε

∫
sε

sup
u∈sε

|ϕ(u0)− ϕ(u)|dV

= max
u∈sε

|ϕ(u0)− ϕ(u)|, (3)

where in (3)2, sup can be replaced by max due to continuity and compactness
of sε. Since ϕ(u) is continuous, we get Iε → 0 as ε → 0. It then follows from
Eq. (2),

ϕ(u0) = lim
ε→0

1

Vε

∫
sε

ϕ(u)dV = 0, (4)

where the last equality is a consequence of (1). The point u0 can be chosen
arbitrarily, and thus we can conclude that ϕ(u) = 0 for all u ∈ R.
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Localization theorem for surface integrals Let φ be a continuous func-
tion defined on a surface F ⊂ E . If for all surfaces ς ⊂ F∫

ς

ϕdA = 0, (5)

then φ(u) = 0 for all u ∈ F . This can be proved using arguments similar to
those used above.

Divergence theorem for smooth fields Let f , p and P be respectively,
scalar, vector and tensor fields defined on κ(B)×(t1, t2). Assume these fields
to be continuously differentiable over κ(B). Then for any part Ω ⊂ κ(B)
and at any time t ∈ (t1, t2)∫

Ω

(∇f)dV =

∮
∂Ω

fNdA, (6)∫
Ω

(Divp)dV =

∮
∂Ω

p ·NdA, (7)∫
Ω

(DivP)dV =

∮
∂Ω

PNdA, (8)

where N ∈ Vκ is the outward unit normal to the boundary ∂Ω of Ω. We
outline a brief proof for (7). Let {E1,E2,E3} ∈ Vκ be an orthonormal basis
for Vκ. Therefore there exists {p1, p2, p3, X1, X2, X3} ∈ R such that p = piEi

and X = XiEi, with i ∈ {1, 2, 3}. Consider a cuboid R = {X ∈ Eκ : A <
X1 < B, C < X2 < D, E < X3 < F}, where {A,B,C,D,E, F} ∈ R are
constants. Then the surface integral in (7), when written for the two faces
of the cuboid which are orthogonal to E1, is∫ F

E

∫ D

C

(p1(B, Y, Z)− p1(A, Y, Z))dX2dX3

=

∫ F

E

∫ D

C

∫ B

A

∂p1
∂X1

dX1dX2dX3, (9)

which is obtained using the fundamental theorem of calculus (Rudin, W.
ibid., page 134). We can write similar relations for the surfaces of the cuboid
orthogonal to E2 and E3. We get∮

∂R
p ·NdA =

∫
R

( ∂p1
∂X1

+
∂p2
∂X2

+
∂p3
∂X3

)
dV =

∫
R
(Divp)dV. (10)
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We have therefore proved the divergence theorem for a cuboidal region. Fur-
thermore, we can show that it holds for regions which are obtained by smooth
deformations of the cuboid and also for general regions which can be obtained
by pasting together the deformed cuboids (This argument can be found in
the elementary texts on calculus. For a more advanced treatment see Rudin,
W. ibid., page 288).
Equation (6) is obtained from (7) for a scalar p. A proof for (8) also follows
from (7). Indeed, for an arbitrary constant a ∈ Vκ,

a ·
∮
∂Ω

PNdA =

∮
∂Ω

(PTa) ·NdA =

∫
Ω

(DivPTa)dV =

∫
Ω

(DivP) · adV,(11)

where in the last equality, the definition of the Div operator has been used.
Since a is arbitrary, we get the desired result.

Divergence theorem for piecewise smooth fields Assume p to be
piecewise continuously differentiable over κ(B), being discontinuous across
the singular surface St (with normalNs and speed U) and smooth everywhere
else. Then for a domain Ω such that S = Ω ∩ St ̸= ∅,∮

∂Ω

p ·NdA =

∫
Ω

(Divp)dV +

∫
S
JpK ·NsdA. (12)

Similar statements hold for scalar and tensor fields. We now prove (12). Let
Ω± ⊂ Ω be such that Ω+ ∪ Ω− = Ω and Ω+ ∩ Ω− = S. The normal to the
surface S is oriented such that it points into Ω+. Since p is smooth within
Ω+ and Ω−, we can use (7) to write∫

Ω+

(Divp)dV =

∫
∂Ω+\S

p ·NdA−
∫
S
p+ ·NsdA,∫

Ω−
(Divp)dV =

∫
∂Ω−\S

p ·NdA+

∫
S
p− ·NsdA,

where p± are the limiting values of p as it approaches S from the interior of
Ω±. The relation (12) is obtained by adding these two equations.
If q is a vector field defined on χ(B) × (t1, t2) and piecewise continuously
differentiable over χ(B), being discontinuous across the singular surface st
(with normal ns and speed u). Then for ω ⊂ χ(B) such that s = ω∩ st ̸= ∅,∮

∂ω

q · nda =

∫
ω

(div q)dv +

∫
s

JqK · nsda. (13)

The proof for (13) is similar to that of (12).
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Stokes’ theorem for smooth fields Let p and P be respectively, vec-
tor and tensor fields defined on κ(B) × (t1, t2). Assume these fields to be
continuously differentiable over κ(B). Then for any surface F ⊂ κ(B) with
normal N and boundary ∂F∫

F
(Curlp) ·NdA =

∮
∂F

p · dX, (14)∫
F
(CurlP)TNdA =

∮
∂F

PdX. (15)

A proof for (14) can be obtained from (Rudin, W. ibid., page 287). To verify
(15), we use (14). Indeed, for an arbitrary constant vector a ∈ Vκ,

a ·
∫
F
(CurlP)TNdA =

∫
F
(CurlPTa) ·NdA = a ·

∮
∂F

PdX, (16)

where in the first equality, the definition of the Curl of a tensor field is used.
The desired result follows upon using the arbitrariness of a.

Stokes’ theorem for piecewise smooth fields Consider p to be piece-
wise continuously differentiable over κ(B). Assume p to be discontinuous
across the singular surface St and smooth everywhere else. Let Γ = F ∩ St

be the curve of intersection. Then∫
F
(Curlp) ·NdA =

∮
∂F

p · dX+

∫
Γ

JpK · dX. (17)

To verify this relation start by considering two subsurfaces F± ⊂ F such
that F+ ∪ F− = F and F+ ∩ F− = Γ. Since p is smooth in regions F±, we
can write using (14)∫

F+

(Curlp) ·NdA =

∫
∂F+\Γ

p · dX+

∫
Γ

p+ · dX,∫
F−

(Curlp) ·NdA =

∫
∂F−\Γ

p · dX−
∫
Γ

p− · dX.

Adding these two relations we get (17). Similarly, we obtain for a piecewise
continuously differentiable tensor field P:∫

F
(CurlP)TNdA =

∮
∂F

PdX+

∫
Γ

JPKdX. (18)
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If q is a piecewise continuously differentiable vector field defined on χ(B)×
(t1, t2), being discontinuous across the singular surface st. Consider a surface
F ⊂ χ(B) with normal n and let γ = F ∩ st. Then∫

F

(curlq) · nda =

∮
∂F

q · dx+

∫
γ

JqK · dx. (19)

The proof for (19) is similar to that of (17).

Remark (Surface divergence theorem) Consider a vector field p continuously
differentiable over the surface S ⊂ κ(B) (with unit normal N and mean
curvature H) for a fixed time interval (t1, t2). Then∮

∂S

p · νdL =

∫
S

(DivS p + 2Hp ·N)dA, (20)

where ν is the outer unit normal to ∂S such that (N,ν, t) form a positively-
oriented orthogonal triad at ∂S with t being the tangent vector along ∂S.
Moreover, if p is tangential, i.e. Pp = p, then p ·N = 0 and (20) reduces to∮

∂S

p · νdL =

∫
S

DivS pdA. (21)

We now prove (20). By definition ν = t×N and therefore we can use Stokes’
theorem to rewrite the term on the left hand side of Eq. (20) as∮

∂S

p · νdL =

∮
∂S

p · (t×N)dL

=

∮
∂S

(N× p) · tdL

=

∫
S

Curl(N× p) ·NdA. (22)

Use the identity Curl(N× p) = Div(N⊗ p− p⊗N) to get

Curl(N× p) ·N = (∇N)TN · p− (p ·N)DivN+∇p · P. (23)

But (∇N)TN = 0 (follows from N ·N = 1) and ∇p · P = tr(∇pP) = DivS p.
Furthermore, DivN = −2H (using a result from the chapter on kinematics).
Therefore we can rewrite (23) to get

Curl(N× p) ·N = 2H(p ·N) + DivS p. (24)

Substituting this into (22) yields (20).
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Transport theorem for volume integrals with smooth fields Let P
and Q denote a scalar, vector or tensor field continuously differentiable on
κ(B) × (t1, t2) and χ(B) × (t1, t2), respectively. Then for arbitrary parts
Ω ⊂ κ(B), ω ⊂ χ(B) and at any time t ∈ (t1, t2)

d

dt

∫
Ω

PdV =

∫
Ω

Ṗ dV, (25)

d

dt

∫
ω

Qdv =

∫
ω

∂Q

∂t
dv +

∫
∂ω

Q(v · n)da. (26)

Since Ω is fixed with respect to time and P is smooth over Ω, the time
derivative and the volume integral in the left hand side of (25) can commute
to give the right hand side of the equation. Equation (26) can be proved by
first transforming the volume ω to a fixed reference volume, say Ω. We get

d

dt

∫
ω

Qdv =
d

dt

∫
Ω

QJdV

=

∫
ω

Q̇dv +

∫
ω

Q(div v)dv, (27)

where J is the Jacobian associated with the mapping which transforms Ω
to ω and J̇ = J(div v). Equation (26) follows from (27) upon recalling the
definition of the material time derivative and using the divergence theorem.

Transport theorem for volume integrals with piecewise smooth
fields Let Ω be such that S = Ω ∩ St ̸= ∅. Then for a P which is dis-
continuous across St but smooth everywhere else,

d

dt

∫
Ω

PdV =

∫
Ω

Ṗ dV −
∫
S
UJP KdA. (28)

We now prove this relation. Recall surface parametrization introduced at
the end of the chapter on kinematics. In a small neighborhood, say ΩS , of
the singular surface S we parameterize the domain by coordinates {ξ1, ξ2, ζ}
such that for X ∈ ΩS we can write X = X̂(ξ1, ξ2, t) + ζ(t)N(ξ1, ξ2, t), where
X̂ ∈ S and {ξ1, ξ2} are convected. Let −ς < ζ(t) < ς, where ς ∈ R+ is
constant. The position of the singular surface is indicated by ζ = 0 and it
is assumed that the surface S remains inside ΩS during the instantaneous
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motion. Obtain

d

dt

∫
Ω

PdV =
d

dt

∫
Ω\ΩS

PdV +
d

dt

∫
ΩS

PdV

=

∫
Ω\ΩS

Ṗ dV +

∫
(ξ1,ξ2)

d

dt

(∫ ς

−ς

PjAdζ

)
dAξ,

=

∫
Ω\ΩS

Ṗ dV

+

∫
(ξ1,ξ2)

{
d

dt

(∫ ζ1(t)

−ς

PjAdζ +

∫ ς

ζ2(t)

PjAdζ

)}
ζ1,ζ2=0

dAξ,

where jA is the Jacobian related to the change of coordinates. On the singular
surface, ζ1 = ζ2 = 0, ζ̇1 = ζ̇2 = U , jA = ξ and dA = ξdAξ, where ξ is the
surface Jacobian. Taking the limit |ς| → 0 we obtain the desired result.
The infinitesimal area of the surface in terms of the new coordinates can be
obtained by using Nanson’s formula, NdA = jAA

−T N̂dAξ, where N̂ = N
and A is the gradient of the map from the new coordinates to X. For the
considered transformation this formula reduces to dA = jAdAξ.
Let ω be such that s = ω ∩ st ̸= ∅. Then for a Q which is discontinuous
across st but smooth everywhere else,

d

dt

∫
ω

Qdv =

∫
ω

(
∂Q

∂t
+ div(Qv)

)
dv −

∫
s

(uJQK − JQvK · n)da, (29)

where u = U |(F±)Tn| + n · v± is the spatial speed of the singular surface
st. This relation can be proved by first transforming ω to Ω and then using
(28). We get

d

dt

∫
ω

Qdv =

∫
Ω

(JQ)̇dV −
∫
S

UJJQKdA. (30)

The term UJJQK can be expanded as

UJJQK = (Q+u+J+|(F+)−TN|)− (Q−u−J−|(F−)−TN|)
= (uJQK − JQvK · n)|(F−)∗N|, (31)

where u± = u−n·v±. Relations U = u±|(F±)−TN| and |(F+)∗N| = |(F−)∗N|
have also been used. Equation (29) follows immediately after substituting
(31) into (30).

8



Transport theorem for surface integrals with smooth fields Let p
be a scalar, vector or tensor field continuously differentiable on St × (t1, t2).
Then, for an arbitrary surface S ⊂ St

d

dt

∫
S
pdA =

∫
S
(̊p− 2pUH)dA, (32)

where N, U , and H are the unit normal, normal velocity, and the mean
curvature associated with St, respectively. We prove this relation using the
surface parametrization outlined in the chapter on kinematics. We assume
that p can be extended to the small neighborhood ΩS , and use the same
symbol to denote its extension. Obtain

d

dt

∫
S
pdA = { d

dt

∫
(ξ1,ξ2)

p(X(ξα, ζ(t)), t)jAdAξ}ζ=0

=

∫
(ξ1,ξ2)

{(ṗjA + jAζ̇(∇p ·N) + p ˙jA)dAξ}ζ=0

=

∫
S
{ṗ + ζ̇∇p ·N+ p ˙jAj

−1
A }ζ=0dA. (33)

At the surface, ζ = 0, we have ζ̇ = U , jA = ξ and ˙jA = −2UHξ. Substituting
these into (33) and recalling the definition of the normal time derivative, we
obtain (32).

2. Surface interactions

Let p, r and s be continuously differentiable vector fields on κ(B)× (t1, t2).
A global (or integral) balance law is a relation of the following form: For an
arbitrary Ω ⊂ κ(B),

d

dt

∫
Ω

pdV =

∫
Ω

rdV +

∫
∂Ω

sdA. (34)

This relation expresses the integral form of the balance of the change in the
quantity p with a volume supply/sink density r and a surface interaction s.
Given that a balance law of the form (34) exists, we now show that the surface
interaction vector s depends on the surface only through the unit normal and
moreover the dependence is linear. The first claim was introduced by Cauchy
in 1823 (Cauchy, A. L., Bulletin de la Sociètè Philomatique, pp. 9-13 (1823).
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X̂

R

R

P1

s2

s1

N
T

e

f1

d1

Figure 1: Two surfaces with a common tangent plane

For an historical account see footnotes in Truesdell, C. & Toupin, R. A., The
Classical field Theories, Handbuch der Physik, Vol III/1, Springer, Berlin
(1960), Sects. 200 & 203) as a hypothesis and was proved much later in 1959
by Noll (Noll, W., The foundations of classical mechanics in the light of recent
advances in continuum mechanics, pp. 266-281, The Axiomatic Method, with
Special Reference to Geometry and Physics (Symposium at Berkeley, 1957),
North-Holland Publishing Co., Amsterdam (1959)). The second claim, which
is also known as the Cauchy’s theorem, is based on the classical tetrahedron
argument first proposed by Cauchy and is now recognized as a result of
fundamental importance in continuum physics. The proofs below can be
easily reproduced for cases when the fields are scalar or tensorial in nature.

Cauchy’s hypothesis (Noll’s theorem) Let N be the outward unity nor-
mal to the positively oriented surface ∂Ω. Then

s(X, t; ∂Ω) = s(X, t;N), (35)

i.e. the dependence of the surface interaction vector on the surface on which
it acts is only through the normal N. To prove this assertion let s1 and s2 be
two surfaces in κ(B) such that they have a common tangent plane (denoted
by T ) at some X̂ ∈ s1 ∩ s2. Let N be the common unit normal to both
surfaces at X̂. Let P1 be a bounded region such that ∂P1 = d1∪f1∪e, where
d1 is a subset of s1, f1 is a piece of the lateral surface of the circular cylinder
with axis N and radius R, and e is a part of the surface of the cylinder
which is common to both ∂P1 and ∂P2 (P2 is the region bounded on the top
by s2). The quantities f2 and d2 are defined in a way similar to f1 and d1,
respectively. Furthermore, ∂P2 = d2∪f2∪ e. If we denote the surface area of
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a surface s by A(s) and the volume of a region P by V (P ), then for a = 1, 2,

A(da) = πR2 + o(R2),

A(fa) = o(R2), (36)

V (Pa) = o(R2).

The first of these relations is true since both d1 and d2 approach T as R
approaches 0. Also, A(fa) → 0 as R → 0.

We now apply the balance law (34) to regions P1 and P2. We obtain∫
∂P1

s(X, t; ∂P1)dA =

∫
P1

(ṗ− r)dV,∫
∂P2

s(X, t; ∂P2)dA =

∫
P2

(ṗ− r)dV.

Subtract these two relations to get∫
d1

sdA−
∫
d2

sdA =

∫
P1

(ṗ− r)dV −
∫
P2

(ṗ− r)dV +

∫
f2

sdA−
∫
f1

sdA. (37)

Assume all the fields to be bounded over the domain of their integration.
Then, ∫

Pa

(ṗ− r)dV ≤ max
X∈Pa

|ṗ− r|V (Pa),∫
fa

sdA ≤ max
X∈fa

|s|A(fa).

Based on relations (36)2,3, Eq. (37) can then be rewritten as∫
d1

s(X, t; d1)dA =

∫
d2

s(X, t; d2)dA+ o(R2). (38)

Divide Eq. (38) throughout by πR2 and use (36)1. As a result obtain

1

A(d1)

∫
d1

s(X, t; d1)dA =
1

A(d1)

∫
d2

s(X, t; d2)dA+
o(R2)

πR2
. (39)

Since s(X) is assumed to be continuous, an application of the Mean-value
theorem gives

lim
R→0

1

A(da)

∫
da

s(X, t; da)dA = s(X̂, t; da), (40)
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where X̂ is the common point of d1 and d2. Therefore letting R → 0 in (39)
yields

s(X̂, t; d1) = s(X̂, t; d2). (41)

Thus, the surface interaction vector s takes the same value for all surfaces
with a common unit normal and therefore its dependence on the surface is
only through the normal vector. The assertion (35) is proved.

Cauchy’s lemma The balance law (34) implies that

s(X, t;−N) = −s(X, t;N). (42)

This result will be used in the proof of the Cauchy’s theorem. To verify this
relation consider a pillbox Pϵ of thickness ϵ, centered at X, and with its flat
surfaces parallel to N. As we let ϵ → 0, the pillbox flattens to its middle
surface S. The relation (34) for bounded fields then reduces to

lim
Rϵ→0

∫
∂Pϵ

sdA = 0 (43)

or ∫
S

(s(N) + s(−N))dA = 0. (44)

Finally, shrink the disk S to the middle point X and use the continuity of s
to obtain (42).

Cauchy’s theorem The surface interaction vector s depends linearly on
N. Therefore, there exists a tensor S such that

s(X, t;N) = S(X, t)N. (45)

We now prove this theorem. Consider a tetrahedron T ⊂ κ(B) with vertex
X0 ∈ κ(B). The surface of the tetrahedron normal to the axis ei is denoted
by si. Let δ be the distance along the unit normal m from the vertex to the
fourth surface s (see figure 2). Then, the volume of the tetrahedron V (T )
and the surface area A(s) of the face s can be calculated as respectively, c1δ

3

and c2δ
2, where {c1, c2} ∈ R+ are constants. The area of the remaining faces

(given by A(si)) can be obtained from A(s):

A(si) = (m · ei)A(s). (46)
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e1

e2

e3

s3

s2

s1

s

X0

δ

m

Figure 2: Tetrahedron T

This relation can be verified by first noting, using the divergence theorem,
that

∫
∂T

NdA = 0, where ∂T is piecewise smooth. Since N is constant on
each face of T , (46) follows.
We will now use the balance law (34) and the assumption of the continuity
of the fields to arrive at the relation (45). The balance law when restricted
to the tetrahedron T implies∣∣∣ ∫

∂T

sdA
∣∣∣ = ∣∣∣ ∫

T

(ṗ− r)dV
∣∣∣ ≤ ∫

T

|ṗ− r|dV ≤ kV (T ), (47)

where k = max
X∈T

|ṗ− r| is finite. Therefore,

O(δ) =
1

A(s)

∫
∂T

sdA =
1

A(s)

(∫
s

s(X;m)dA+
3∑

i=1

∫
si

s(X;−ei)dA
)

=
1

A(s)

(∫
s

s(X;m)dA−
3∑

i=1

∫
si

s(X; ei)dA
)
,(48)

where the last equality is a consequence of Cauchy’s lemma. By the Mean-
value theorem, for continuous s, we obtain∫

s

s(X;m)dA = A(s)s(X̃;m),∫
si

s(X; ei)dA = A(si)s(X̃i; ei) (49)

for some X̃ ∈ s and X̃i ∈ si, respectively. Let δ → 0. Then X̃ → X0 and
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X̃i → X0. As a result, Eqs. (46), (48) and (49) yield

s(X0;m) = (m · ei)s(X0; ei), (50)

where summation over i is implicit. As the choice of the vertex X0 and the
unit normal m is arbitrary, the relation (50) holds for all X ∈ κ(B) and
all unit vectors. Equation (50) shows that s is linear in m. Therefore there
exists a tensor S such that

s(X, t;m) = S(X, t)m (51)

for all X ∈ κ(B) and any unit vector m. The proof is complete.
Note that we have restricted our attention to only continuously differentiable
fields defined on domains with piecewise smooth boundaries. Much research
has been done in the past fifty years to investigate these results under less
stringent smoothness requirements. Such considerations are indeed necessary
for many practical problems in mechanics such as those involving shocks, frac-
ture, dislocations and corner singularities (For a recent contribution, where
the past work is carefully reviewed, see Schuricht, F., A new mathematical
foundation for contact interactions in continuum physics, Archive of Rational
Mechanics and Analysis, 184(3), pp. 495-551 (2007)).

3. Balance laws and jump conditions

We now obtain local statements of the fundamental balance laws in contin-
uum mechanics. The fields are allowed to be piecewise continuously differ-
entiable so that they may suffer jump discontinuities across a surface in the
domain over which they are defined. Consider an arbitrary part of the body,
S ⊂ B, whose placement in the reference and current configurations is de-
noted by Ω = κ(S) and ω = χ(S), respectively. Let S = Ω∩St, where St is
the singular surface in κ(B) with normal Ns and speed U . Correspondingly
let s = ω ∩ st, where st is the singular surface in χ(B) with normal ns and
speed u.

Balance of mass Define a mass function m ∈ R such that:
(i) m(S) ≥ 0, ∀S ⊂ B,
(ii) m(∅) = 0 and
(iii) Let {Si}∞i=1 be a disjoint family of subsets of the body B, i.e. Si∩Sj =

∅, i ̸= j. Then m(
∞∪
i=1

Si) =
∞∑
i=1

m(Si).
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Therefore the function m is a measure on B. Denote by V and v respectively,
the volume of S in the reference configuration and the current configuration.
Define the density of mass in the reference and the current configuration by

0 < ρκ(X, t) = lim
V→0

m(S, t)

V
(52)

and

0 < ρ(x, t) = lim
v→0

m(S, t)

v
, (53)

respectively, where X ∈ Ω and x ∈ ω. The existence of limits is assumed in
the above definitions. The mass of the part S ⊂ B is then given by

m(S, t) =

∫
Ω

ρκ(X, t)dV =

∫
ω

ρ(x, t)dv. (54)

The reference mass density can be related to the current density of mass by
using the Jacobian JF = detF > 0, such that JFdV = dv (and dx = FdX),
and the localization theorem in (54). We get

ρκ = JFρ. (55)

Assuming an absence of diffusion and any external source of mass, we express
the law of balance of mass as

ṁ(S, t) = 0 (56)

or from (54)
d

dt

∫
Ω

ρκ(x, t)dv = 0, (57)

which, on using the transport theorem (28), reduces to∫
Ω

ρ̇κdV −
∫
S
UJρκKdA = 0. (58)

We can choose Ω such that S = ∅. Thereupon using the localization theorem
we obtain

ρ̇κ = 0 (59)

outside the singular surface. The referential mass density is therefore inde-
pendent of time. For S ≠ ∅, substitution of (59) in (58) reduces it to a surface
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integral. Using the arbitrariness of S, the localization theorem for surface
integrals then yields the following jump condition at the singular surface

UJρκK = 0, (60)

i.e. either the normal speed vanishes or the referential mass density is con-
tinuous across St.
The spatial form of the balance law reads

d

dt

∫
ω

ρ(x, t)dv = 0, (61)

which, on using the transport theorem (29) and the localization theorem,
yields

∂ρ

∂t
+ div(ρv) = 0 (62)

outside the singular surface and

(uJρK − JρvK · ns) = 0 (63)

on the singular surface st.

Balance of linear and angular momentum We assume that the forces
acting on S are either contact forces or body forces. A contact force arises
from the contact of two parts of B, say S1 and S2. The force exerted by S2

on S1 is given by

Fc(S1,S2, t) =

∫
I

pdA =

∫
i

tda, (64)

where I = κ(S1) ∩ κ(S2) and i = χ(S1) ∩ χ(S2). The vector p is the
contact force per unit area of ∂Ω (Piola traction force) and t is the contact
force per unit area of ∂ω (Cauchy traction force). A body force arises from
the interaction of S with sources external to S (e.g. gravitational force). It
can be of two kinds: one due to effects exterior to B and the other due to
effects due to the matter in B \ S. It acts on the particles comprising the
body and has a form

Fb(S, t) =

∫
Ω

ρκbdV =

∫
ω

ρbdv, (65)
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where b = b̂(X, t) = b̃(x, t) is the body force per unit mass. The total force
on S can then be written as

F(S, t) = Fc(S,B \S, t) + Fb(S, t). (66)

Associated with these forces are moments. The moments of the contact force
and the body force with respect to an arbitrary point x0 ∈ E are respectively,

Mc(S1,S2, t;x0) =

∫
I

(x− x0)× pdA =

∫
i

(x− x0)× tda, and

Mb(S, t;x0) =

∫
Ω

ρκ(x− x0)× bdV =

∫
ω

ρ(x− x0)× bdv. (67)

The total moment acting upon S is

M(S, t;x0) = Mc(S,B \S, t;x0) +Mb(S, t;x0). (68)

The linear momentum of S ⊂ B is given by

G(S, t) =

∫
Ω

ρκvdV =

∫
ω

ρvdv. (69)

The balance of linear momentum can be stated in the form of Euler’s first
postulate of motion: The rate of change of linear momentum of S is equal
to the total force acting on S, i.e.

Ġ(S, t) = F(S, t). (70)

The referential (or material) form of the balance of linear momentum ob-
tained by substituting definitions (66) and (69) into (70) is

d

dt

∫
Ω

ρκvdV =

∫
∂Ω

pdA+

∫
Ω

ρκbdV. (71)

By Noll’s and Cauchy’s theorems there exists a tensor field P such that
p = PN. The tensor P is called the Piola-Kirchhoff stress tensor. Use the
transport theorem (28) and the divergence theorem (12) to get∫

Ω

ρκv̇dV −
∫
S
UρκJvKdA =

∫
Ω

DivPdV +

∫
S
JPKNsdA+

∫
Ω

ρκbdV, (72)
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where we have also used (59) and (60). Since Ω is arbitrary, we can choose
it such that S = ∅. The localization theorem then yields the local form for
the balance of linear momentum

ρκv̇ = DivP+ ρκb, (73)

which holds outside the singular surface. Now consider S ̸= ∅. Substitute
(73) in (72) and use the arbitrariness of S to use the localization theorem to
obtain the jump condition across St

UρκJvK + JPKNs = 0. (74)

The spatial form of these equations can be obtained in a similar manner. We
write the spatial form of the balance of linear momentum as

d

dt

∫
ω

ρvdv =

∫
∂ω

tda+

∫
ω

ρbdv. (75)

By Noll’s and Cauchy’s theorems there exists a tensor field T such that
t = Tn. The tensor T is called the Cauchy stress tensor. The local form of
the balance law can be now obtained using the transport theorem (29), the
divergence theorem (13) and the localization theorem. We obtain outside the
singular surface and on the singular surface respectively,

ρv̇ = divT+ ρb (76)

and
jsJvK + JTKns = 0, (77)

where

js =
ρκU

|(F±)∗Ns|
is the flux of mass through the singular surface. Rewrite (77) as

ρ±(u− ns · v±)JvK + JTKns = 0. (78)

The moment of momentum of S ⊂ B relative to an arbitrary x0 ∈ E is given
by

H(S, t;x0) =

∫
Ω

ρκ(x− x0)× vdV =

∫
ω

ρ(x− x0)× vdv. (79)
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The balance of angular momentum in the form of Euler’s second postulate
of motion is the following: The rate of change of moment of momentum of
S is equal to the total moment acting on S, i.e.

Ḣ(S, t;x0) = M(S, t;x0). (80)

Substituting Eqs. (68) and (79) into (80) we get the referential form of the
balance of angular momentum

d

dt

∫
Ω

ρκ(x− x0)× vdV =

∫
∂Ω

(x− x0)× pdA+

∫
Ω

ρκ(x− x0)× bdV. (81)

The local form outside the singular surface is

ρκ((x− x0)× v)̇ = Div((x− x0)×P) + ρκ(x− x0)× b, (82)

where for any y ∈ V, (y ×P)il = eijkyjPkl. On using (73), (82) leads to

PFT = FPT . (83)

The jump condition is

UρκJ(x− x0)× vK + J(x− x0)×PNsK = 0, (84)

which can be rewritten as

⟨x− x0⟩ × (UρκJvK + JPKNs) + JxK × (Uρκ⟨v⟩+ ⟨P⟩Ns) = 0. (85)

Jump conditions (60) and (74) imply that the term (Uρκv+PNs) is contin-
uous across S, thereby reducing (85) to

JxK × (Uρκv
± +P±Ns) = 0, (86)

where the superscript ± indicates that either of the limits can be used. For a
motion which continuous across the singular surface,i.e. JxK = 0, this results
into a trivial relation, and therefore is of no consequence. But for JxK ̸= 0,
(86) provides us with an additional jump condition to be satisfied across the
singular surface.
The corresponding spatial form of the Eq. (83) is

T = TT . (87)
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Remark: The balance of angular momentum implies the balance of linear
momentum. Let c be an arbitrary vector. Rewrite Eq. (81) after replacing
x0 by (x0 + c). Subtract (81) from this equation to get

d

dt

∫
Ω

ρκc× vdV =

∫
∂Ω

c× pdA+

∫
Ω

ρκc× bdV. (88)

Since c is arbitrary, we get the desired result.

Balance of energy We restrict our attention to systems where the energy
is supplied to the body either through mechanical work (done by contact and
body forces) or via a supply of heat. We assume that the supply of heat to
S has two sources. The contact heating supplied to S1 by S2 through their
surface of contact is

Hc(S1,S2, t) =

∫
I

qdA =

∫
i

hda, (89)

where q ∈ R and h ∈ R are heat flux per unit area of I = κ(S1) ∩ κ(S2)
and i = χ(S1) ∩ χ(S2), respectively. The external supply of heat to S is
received from sources external to the body and is given by

He(S, t) =

∫
Ω

ρκrdV =

∫
ω

ρrdv, (90)

where r = r̂(X, t) = r̃(x, t) is the rate of heat supply to S per unit mass of
S. Therefore, the total heat supply to S is

H(S, t) = Hc(S,B \S, t) +He(S, t). (91)

The total energy U of the part S of the body at any time consists of the
kinetic energy and the internal energy of S

U(S, t) =

∫
Ω

1

2
ρκv · vdV +

∫
Ω

ρκedV, (92)

where e is the internal energy per unit mass ofS. The balance of total energy
is the first law of thermodynamics which postulates that a time-change in
total energy of S is balanced by the supply of the mechanical power and the
heat to (or from) S:

U̇(S, t) = P (S, t) +H(S, t), (93)
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where the mechanical power P is of the form

P (S, t) =

∫
∂Ω

p · vdA+

∫
Ω

ρκb · vdV. (94)

Upon substituting definitions (92), (94), and (91) into (93) we obtain the
referential form of the balance of energy

d

dt

∫
Ω

ρκ(e+
1

2
|v|2)dV =

∫
∂Ω

(v ·PN+ q)dA+

∫
Ω

ρκ(v · b+ r)dV. (95)

By Noll’s and Cauchy’s theorems, the balance law (95) implies the existence
of a vector q such that q = −q ·N (the − sign is conventional). The vector q
is the referential heat flux vector (we can similarly argue for the existence of
a vector h, the spatial heat flux vector, such that h = −h ·n). The local form
of the balance of energy can be obtained upon using the transport theorem
(28), the divergence theorem (12), and the localization theorem. We get

ρκ(e+
1

2
|v|2)̇ = Div(PTv − q) + ρκ(v · b+ r) (96)

outside the singular surface and

−UρκJe+ 1

2
|v|2K = JPTv − qK ·Ns (97)

on the singular surface St (the conditions for mass balance, (59) and (60),
have also been used). These two equations, on using the local forms of the
balance of linear momentum, reduce to

ρκė = P · Ḟ−Div q+ ρκr (98)

and
UρκJeK = −JvK · ⟨P⟩Ns + JqK ·Ns, (99)

respectively. For a coherent interface, rewrite (99) as

UρκJeK = U⟨P⟩ · JFK + JqK ·Ns. (100)

The spatial form of these balance equations can be derived in a similar man-
ner. We obtain

ρė = T · L− divh+ ρr (101)
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outside the singular surface st in χ(B) and

−jsJeK = ⟨T⟩JvK · ns − JhK · ns (102)

on the singular surface st.
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