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The purpose of this supplement is to provide details of the numerical scheme that we have used

in studying the problem of coupled grain boundary (GB) motion in the main paper. Our simulations

are based on the local level set method of Peng et al. [11], which is a modification of the classical

level set method [10, 13], combined with discretization and reinitialization schemes of Jiang and

Peng [7], Russo and Smereka [12], and Smereka [14]. We have tailored the numerical schemes for

problems related to GB motion. We also provide several examples to verify our numerical procedure,

including surface diffusion driven by Laplacian of curvature, Wulff shape, and shrinkage of grains

with anisotropic GB energy. Other simulations, in particular those involving coupled motion and

anisotropic kinetic coefficients are provided in the main paper. The notation in this note is consistent

with the main text.

1 Introduction

We begin with a GB energy of the form [2]

γ(φ, κ) = γc(φ) +
1

2
δrκ

2, (1.1)

where φ represents the orientation of the two-dimensional GB, κ is the curvature, and δr << 1 is the

regularization parameter. The misorientation dependence of γc has been dropped for convenience.

The governing equation for GB normal motion is given by [3]

V = −M(∇ · ξ + δr(∆
Sκ+ 1/2κ3)), (1.2)

where M is the mobility of the boundary and ξ is the Cahn-Hoffman vector given by

ξ = γcn− γ′ct, (1.3)

with γ′c denoting the derivative of γc w.r.t. φ, and n and t are unit normal and tangent to the GB

(see Fig. 2(b)). The term ∇ · ξ stands for the divergence of ξ and ∆S for the surface Laplacian
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Figure 1: Polar plots of γc given by Eq. (1.4) for different n indicated in the figure.

operator. The surface gradient of a scalar field g, defined on a surface C with normal n, is given

as a vector field ∇Sg = P∇g, where P = 1 − n ⊗ n is the projection tensor and 1 is the identity

tensor. The surface divergence of a vector field g on C is defined as ∇S · g = trace(∇Sg). The

surface Laplacian of g is a scalar field defined as ∆Sg = ∇S · (∇Sg). That the relation (1.2) is same

as that derived in the main paper (but restricting to normal motion) can be seen by first noting that

∇S · ξ = ∇ · ξ (see Ch. 1 of [5] for proof) and then writing ∇S · ξ as ∂ξ
∂s · t for the closed GB of our

consideration. Moreover, ∆sκ is simply ∂2κ/∂s2.

For the purpose of this supplement, we assume the form for smooth anisotropic boundary energy

as [16]

γc = 1− αe cos(nφ), (1.4)

where n is an integer and 0 < αe < 1 is a phenomenological constant determining the degree of

anisotropy. The nature of this energy is represented in the polar plots shown in Figure 1 for different

n.

There are two major challenges associated with solving the problem of boundary motion with

anisotropic boundary energy having curvature regularization. The first term on the R.H.S. of (1.2)

introduces backward parabolicity in the PDE, since γc(φ) is generally non-convex [2]. This leads to

unstable solutions in the absence of regularization, i.e., δr = 0. The introduction of the regularization

term however raises the order of the PDE to four in space variables due to the presence of the surface

Laplacian of κ in (1.2). The higher order derivatives are very sensitive to errors in κ during numerical

computations, thereby requiring special treatment. Here we have followed the scheme proposed by

Smereka [14] for computing ∆Sκ. To verify our computations, we have simulated surface diffusion

driven by surface Laplacian of the mean curvature for an elliptic and a star shaped crystal. We also

verify our numerical scheme when both ∇ · ξ and the regularization terms are present. To do so, we

consider problems involving normal motion of closed boundaries. This includes recovering the Wulff

shapes for isolated crystal with free boundaries, and studying the shrinkage of isolated GBs (without

any GB junction).
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Figure 2: (a) The zero level set (the curve with z = 0) embedded in a higher dimensional surface

z = ψ(x, y; t) where x = xe1 + ye2. (b) C, which is the zero level set, represents a smooth closed

GB with the inward normal n and a tangent t in the direction of increasing arc length.

2 Level set method and numerical schemes

Level set method is a numerical technique which was developed by Osher and Sethian [10] to study

the evolution of moving boundaries. Within the present context, GB is considered to be the zero

level curve of a function ψ(x, t), as shown in Figure 2, where ψ is initialized as a signed distance

function (SDF) such that it is positive inside of ω+ and negative outside (cf. Ch. 2 of [9]). By

choosing a parametrization such that n points in the direction of increasing ψ, we obtain the following

expressions for the normal, tangent, and curvature [9]

n =
∂ψ/∂x

||∇ψ|| e1 +
∂ψ/∂y

||∇ψ|| e2, (2.1)

t =
∂ψ/∂y

||∇ψ|| e1 −
∂ψ/∂x

||∇ψ|| e2, and (2.2)

κ = −∇ ·
( ∇ψ
||∇ψ||

)
. (2.3)

For a given boundary normal velocity V , ψ is updated w.r.t. time in the whole domain ω using

the following Hamilton-Jacobi equation (cf. Ch. 3 of [9])

∂ψ

∂t
+ V ||∇ψ|| = 0. (2.4)

The updated level set curve, given by ψ = 0, which gives the new location for the GB, is then captured

by interpolations. Hence it is a front capturing method, rather than a front tracking method.1

1In the front tracking method, the interfaces (or boundaries) themselves are discretized and evolved under the

governing kinetic laws. It is computationally cheap, but has many other inherent drawbacks as discussed by Sethian

in Ch. 2 of [13].
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A computationally less expensive local level set scheme, proposed by Peng at el. [11], alternatively

updates the level set function only in a small neighborhood of the zero level set by making use of

the modified Hamilton-Jacobi equation

∂ψ

∂t
+ c(ψ)Vext||∇ψ|| = 0, (2.5)

where c(ψ) is a cut-off function introduced to ensure that ψ is updated only in a narrow region

surrounding ψ = 0 and Vext is the extended normal velocity. Following [11], we take the cut-off

function as

c(ψ) =


1, if |ψ| ≤ c1
(|ψ| − c2)2(2|ψ|+ c2 − 3c1)/(c2 − c1)3, if c1 < |ψ| ≤ c2
0, if |ψ| > c2,

(2.6)

where c1 and c2(> c1) are constants such that the computational domain in divided into two tubes

|ψ| ≤ c1 and |ψ| ≤ c2, denoted by T1 and T2, respectively. The cut-off function is unity within the

tube |ψ| ≤ c1, reducing smoothly to zero at the boundary of T2. On the other hand we can construct

extension qext of a given field q by solving the hyperbolic PDE [11]

∂q

∂t
+ (sign q)(n · ∇q) = 0. (2.7)

The steady state solution of this equation is taken as qext. It satisfies qext = q on C and remains

constant along the normal to C. This follows from observing that the direction of ∇q is perpendicular

to the normal to C, since we want constant q curves to lie parallel to the normal vector; hence

n · ∇q = 0. We use this procedure to evaluate the extension Vext of V .

After solving (2.5), the updated ψ will not necessarily remain an SDF [11]. This is resolved by

reinitializing ψ to an SDF by solving (locally) the PDE [11]

∂d

∂t
+ (sign di)(||∇d|| − 1) = 0, (2.8)

such that di = d(x, 0) = ψ(x, t), i.e. the initial condition for (2.8) is the solution of (2.5). The steady

state solution of (2.8), which solves the special form of the Eikonel equation ||∇d|| = 1, will be an

SDF.

During reinitialization the zero level set remains stationary, but other level curves (contours)

in the neighborhood of C move with unit speed (with proper sign) along the characteristics in the

normal direction, and converge to an SDF in the neighborhood of the interface of width ∆t around

C after one iteration, where ∆t is the time step for updating reinitialization equation. Following

Peng et al. [11], we take

sign d =
d√

d2 + (||∇d||h)2
, (2.9)

where h is the mesh size. The second term under the square root in (2.9) has been added to avoid

division by zero.
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2.1 Discretization

2.1.1 Hamilton-Jacobi equation

We use the method of lines to solve (2.5) and (2.8). We start by discretizing (2.5) in space and

then integrate the resulting system of ODEs with respect to time [13]. For spatial discretization, we

use the upwind finite difference scheme (cf. Ch. 6 of [13]). The domain ω is discretized uniformly

along e1 and e2 directions with N number of grid points and a mesh size given by h. Let (xi, yj) be

the (i, j)th node in the 2D lattice grid. At time tn and at the (i, j)th node, we denote the level set

function by ψni,j , occasionally omitting the superscript n when the time is fixed.

The semi-discrete form of (2.5) is given as

dψi,j
dt

= L(x, ψ±x i,j , ψ
±
y i,j , κi,j , ni,j , θ̇), (2.10)

where L = −cVext||∇ψ||. The discretized form of L is

Li,j = −max((cVext)i,j , 0)||∇+ψ||i,j −min((cVext)i,j , 0)||∇−ψ||i,j , (2.11)

where

||∇±ψ||i,j = [max(ψ∓x i,j , 0)2 + min(ψ±x i,j , 0)2 + max(ψ∓y i,j , 0)2 + min(ψ±y i,j , 0)2]1/2. (2.12)

To compute ψ±x i,j and ψ±y i,j , a fifth order weighted essentially non-oscillatory (WENO) scheme [7]

has been used. This higher order scheme ensures good numerical accuracy in computing the spatial

derivatives while solving the Hamilton-Jacobi equation and the reinitialization equation. The spatial

discretization of the fifth order WENO scheme is briefly outlined below (see [7] for details).

Introduce

∆+
x ψi,j = ψi+1,j − ψi,j , ∆−x ψi,j = ψi,j − ψi−1,j ,

∆+
y ψi,j = ψi,j+1 − ψi,j , ∆−y ψi,j = ψi,j − ψi,j−1 (2.13)

to define

ψ±x i,j =
1

12h

(
−∆+

x ψi−2,j + 7∆+
x ψi−1,j + 7∆+

x ψi,j −∆+
x ψi+1,j

)
±ΦWENO

(
∆−x ∆+

x ψi±2,j
h

,
∆−x ∆+

x ψi±1,j
h

,
∆−x ∆+

x ψi,j
h

,
∆−x ∆+

x ψi∓1,j
h

)
and (2.14)

ψ±y i,j =
1

12h

(
−∆+

y ψi,j−2 + 7∆+
y ψi,j−1 + 7∆+

y ψi,j −∆+
y ψi,j+1

)
±ΦWENO

(
∆−y ∆+

y ψi,j±2

h
,
∆−y ∆+

y ψi,j±1

h
,
∆−y ∆+

y ψi,j

h
,
∆−y ∆+

y ψi,j∓1

h

)
, (2.15)

where

ΦWENO(a, b, c, d) =
1

3
w0(a− 2b+ c) +

1

6

(
w2 −

1

2

)
(b− 2c+ d). (2.16)
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The weights w0 and w2 are given by

w0 =
α0

α0 + α1 + α2
and w2 =

α2

α0 + α1 + α2
,

where

α0 =
1

(IS0 + ε1)2
, α1 =

6

(IS1 + ε1)2
, α2 =

3

(IS2 + ε1)2
,

IS0 = 13(a− b)2 + 3(a− 3b)2, IS1 = 13(b− c)2 + 3(b+ c)2, and IS2 = 13(c− d)2 + 3(3c− d)2.

In the above expressions, ε1 has been used just to avoid the division by zero. Following [7] we take

it to be 10−6.

2.1.2 Boundary integrals

The expression for misorientation (denoted by θ) evolution during the coupled GB motion involves

line integrals over the whole GB. Additionally, the area enclosed by the GB (denoted by A) is given

in terms of an integral over the domain ω+. There are two ways to evaluate these integrals. We can

trace the actual position of the GB (the zero level set) by interpolation, and then numerically evaluate

the integrals by discretizing the closed curve into small arc lengths. However the interpolations used

to capture C introduce errors in the computation. This problem can be avoided if we evaluate the

integrals implicitly in the form ∫
ω
f(x)δ(ψ(x))||∇ψ(x)||da, (2.17)

which is same as
∫
C f(x) ds (cf. §1.5 of [9]). In the above integral δ(ψ(x)) is the Dirac delta

generalized function. Similarly, an area integral over the inner grain ω+ can be calculated using∫
ω
f(x)H(ψ)da, (2.18)

where H(ψ) is a one dimensional Heaviside function. We use the following approximate functional

form to represent the Heaviside function (see §1.5 of [9]):

H(ψ) =


0, if ψ < −ε
1
2 + ψ

2ε + 1
2π sin(πψε ), if |ψ| ≤ ε

1, if ψ > ε,

(2.19)

where 0 < ε � 1. We use the following first order accurate Dirac delta function for computing the

boundary integrals [15]:

δ(ψi,j) = δ
(+x)
i,j + δ

(−x)
i,j + δ

(+y)
i,j + δ

(−y)
i,j , (2.20)
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where

δ
(+x)
i,j =


|ψi+1,jD

0
xψi,j |

h2|D+
x ψi,j ||∇0ψi,j |

, if ψi,jψi+1,j ≤ 0,

0, otherwise,

δ
(−x)
i,j =


|ψi−1,jD

0
xψi,j |

h2|D−
x ψi,j ||∇0ψi,j |

, if ψi,jψi−1,j < 0,

0, otherwise,

δ
(+y)
i,j =


|ψi,j+1D

0
yψi,j |

h2|D+
y ψi,j ||∇0ψi,j |

, if ψi,jψi,j+1 ≤ 0,

0, otherwise,

δ
(−y)
i,j =


|ψi,j−1D

0
yψi,j |

h2|D−
y ψi,j ||∇0ψi,j |

, if ψi,jψi,j−1 < 0,

0, otherwise;

D+
x ψi,j =

ψi+1,j−ψi,j

h , D−x ψi,j =
ψi,j−ψi−1,j

h , D0
xψi,j =

ψi+1,j−ψi−1,j

2h , D+
y ψi,j , D

−
y ψi,j , D

0
yψi,j are com-

puted in a similar way, and |∇0ψi,j | =
√

(D0
xψi,j)

2 + (D0
yψi,j)

2 + ε2, with ε2 taken to be 10−10.

2.1.3 Normal velocity

We now shift our focus to the discretization of the normal velocity associated with the grain boundary.

This involves computing the weighted curvature and the surface Laplacian of the mean curvature

inside the tube T1.

Divergence of ξ Using (2.1) and (2.2) in (1.3) and taking a divergence, we write

∇ · ξ = ∇ · (γcn− γ′ct) =
∂

∂x

(
γc
∂ψ/∂x

||∇ψ|| − γ
′
c

∂ψ/∂y

||∇ψ||

)
+

∂

∂y

(
γc
∂ψ/∂y

||∇ψ|| + γ′c
∂ψ/∂x

||∇ψ||

)
. (2.21)

To discretize (2.21), we invoke the following spatial discretization scheme of Cecil and Osher [3] with

a compact stencil

(∇ · ξ)i,j =
1

h

[(
γc
∂ψ/∂x

||∇ψ|| − γ
′
c

∂ψ/∂y

||∇ψ||

)
i+1/2,j

−
(
γc
∂ψ/∂x

||∇ψ|| − γ
′
c

∂ψ/∂y

||∇ψ||

)
i−1/2,j

+

(
γc
∂ψ/∂y

||∇ψ|| + γ′c
∂ψ/∂x

||∇ψ||

)
i,j+1/2

−
(
γc
∂ψ/∂y

||∇ψ|| + γ′c
∂ψ/∂x

||∇ψ||

)
i,j−1/2

]
, (2.22)

where

(∂ψ/∂x)i+1/2,j = (ψi+1,j − ψi,j)/h, (∂ψ/∂y)i+1/2,j = (ψi+1,j+1 − ψi+1,j−1 + ψi,j+1 − ψi,j−1)/4h,

(∂ψ/∂x)i−1/2,j = (ψi,j − ψi−1,j)/h, (∂ψ/∂y)i−1/2,j = (ψi,j+1 − ψi,j−1 + ψi−1,j+1 − ψi−1,j−1)/4h,

(∂ψ/∂x)i,j+1/2 = (ψi+1,j+1 − ψi−1,j+1 + ψi+1,j − ψi−1,j)/4h, (∂ψ/∂y)i,j+1/2 = (ψi,j+1 − ψi,j)/h,

(∂ψ/∂x)i,j−1/2 = (ψi+1,j − ψi−1,j + ψi+1,j−1 − ψi−1,j−1)/4h, and (∂ψ/∂y)i,j−1/2 = (ψi,j − ψi,j−1)/h.
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The GB energy γc and its derivative γ′c are functions of φ = tan−1(n2/n1), where n1 = n·e1 and n2 =

n ·e2. The components of the normal at the grid point (i+ 1/2, j) are calculated using (n1)i+1/2,j =

(ψx)i+1/2,j/||∇ψ||i+1/2,j and (n2)i+1/2,j = (ψy)i+1/2,j/||∇ψ||i+1/2,j . The mean curvature can be

computed from (2.21) by setting γc = 1 and γ′c = 0. Anisotropic kinetic coefficients can be computed

using the φ as calculated above.

Computation of ∆Sκ Note that ∆Sκ contains second order derivatives of κ in x and y, whose

computation is highly sensitive to errors in ψ and κ. Following Smereka [14], we write the surface

Laplacian term as

∆Sκ = trace{P∇(P∇κ)} =
∂A

∂x
+
∂B

∂y
− n1(n · ∇A)− n2(n · ∇B), (2.23)

where A = (∂κ/∂x) − n1(n · ∇κ), and B = (∂κ/∂y) − n2(n · ∇κ). The spatial derivatives of κ, A,

and B are computed using the central difference scheme:

(ψx)i,j = (ψi+1,j − ψi−1,j)/2h and (ψy)i,j = (ψi,j+1 − ψi,j−1)/2h. (2.24)

Once the weighted curvature, mean curvature, and the Laplacian of mean curvature are known, the

kinetic relations can be easily calculated (see the main paper).

2.1.4 Extension of quantities

We find the first order upwind scheme in space and the forward Euler time integration sufficient for

our purposes to deal with extension of various quantities. The discrete version of (2.7) is obtained

as [11]

qn+1
i,j = qni,j −∆t

[
(Si,j(n1)i,j)+

(
qi,j − qi−1,j

h

)
+ (Si,j(n1)i,j)−

(
qi+1,j − qi,j

h

)
+ (Si,j(n2)i,j)+

(
qi,j − qi,j−1

h

)
+ (Si,j(n2)i,j)−

(
qi,j+1 − qi,j

h

)]
, (2.25)

where (a)+ = max(a, 0), and (a)− = min(a, 0). The sign function has been approximated as S =

ψ/
√
ψ2 + h2, and the components of the normal vector are computed from (2.1) using the central

difference scheme given by (2.24).

2.1.5 Reinitialization

According to Russo and Smereka [12], the first order discretization in spatial derivative of the reini-

tialization equation (2.8) shifts the zero level set, leading to a change in its shape. This can have a

considerable effect on the final results. To avoid this problem, we use the fifth order WENO scheme

(described above) for spatial discretization in the reinitialization equation. This higher order scheme

eliminates all the problems pointed out in [12]. The semi-discrete version of (2.8) will be the same

as (2.10), but with L = −(sign(di))(||∇d|| − 1) having the following discrete form

Li,j = −[max(sign(di)
+
i,j , 0)(||∇+d||i,j − 1) + min(sign(di)

−
i,j , 0)(||∇−d||i,j − 1)], (2.26)
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where ||∇+(·)||i,j and ||∇−(·)||i,j are given in (2.12), and

sign(di)
± =

di√
d2i + ||∇±di||2h2

. (2.27)

2.1.6 Time integration scheme

The semi-discrete equation (2.10) is integrated using the third order total variation diminishing

(TVD) Runge-Kutta scheme [9]. In this scheme the level set is first advanced to time tn + ∆t, using

the Euler Method, to obtain

ψn+1 = ψn + ∆tLn (2.28)

and then ψn+1 is advanced to time tn + 2∆t to yield

ψn+2 = ψn+1 + ∆tLn+1. (2.29)

Averaging the previous two steps leads to the following approximate value of ψ at time tn + 1
2∆t:

ψn+1/2 =
3

4
ψn +

1

4
ψn+2. (2.30)

Another Euler step is then taken to evaluate ψn+3/2 at time tn + 3
2∆t:

ψn+3/2 = ψn+
1
2 + ∆tLn+

1
2 . (2.31)

Finally, ψn+1 is obtained by the following average:

ψn+1 =
1

3
ψn +

2

3
ψn+

3
2 (2.32)

at time tn+∆t. This scheme has been also used for the time integration of the reinitialization equation

(2.8). For the extension equation, however, we have used the forward Euler method given by (2.25).

Since we are using an explicit time integration, ∆t must satisfy the Courant-Friedrichs-Lewy (CFL)

condition (cf. Ch. 3 in [9]) given by

∆t < h/max(|V |). (2.33)

The CFL condition for (2.5), in the presence of ∆Sκ, yields ∆t ∼ h4 [4].2

2.1.7 Summary

We now summarize the overall computational algorithm.

(i) Initialize ψ and θ: Initialize ψi = ψ(x, 0) as an SDF. If ψi is not an SDF, apply the reinitial-

ization equation (2.8) to convert it to an SDF in the domain of computation. Also initialize θ

during the coupled GB motion.

2We took ∆t = 0.5h4 to avoid numerical instabilities in our computations.
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(ii) Construct computational tubes: Construct two computational tubes T1 and T2 surrounding the

zero level set such that |ψi| ≤ c1 in T1 and |ψi| ≤ c2 in T2. We have taken c1 = 2h and c2 = 4h,

where h is the mesh size. We also construct a third tube T3 = {x : ψi(x+ δ) < c2, for |δ| < h}
[11]. The tube T3 contains T2 and the grid points which are just adjacent to T2.

(iii) Constitutive relations: Compute γ, M , S, and β as functions of θ and φ.

(iv) Computations of κ and ∆Sκ: Start with computing κ and ∇·ξ within tube T1 and then extend

these quantities into T2\T1 using extension equation (2.25). Similarly, wherever ∆Sκ is present,

we first discretize it over T1 using the scheme described above, and then extend it to T2\T1.
For solving the extension equations, we have taken ∆t = 0.6h, and used six iterations so that

the extended quantities in T2\T1 reach their steady state values.

(v) Computations of the kinetic relations: Evaluate the kinetic relations for the normal velocity and

the misorientation rate using the above quantities. The computational details for calculating

the boundary and the area integrals have been provided above, where we take ε = c1 in (2.20).

Finally, V is computed inside T1 and then extended to T2\T1.

(vi) Updating of ψ and θ: Integrate the modified Hamilton-Jacobi equation (2.5) inside T2, along

with updating θ. The time steps are to be taken appropriately for different problems while

satisfying the corresponding CFL conditions.

(vii) Reinitialization: Reinitialize ψ (which was computed in step (vi)) inside region T3 using the

reinitialization equation (2.8). We have iterated the reinitialization equation once after every

time update of ψ in Step (vi) by taking ∆t = 0.6h.

(viii) Once the new ψ (which is an SDF) is obtained, go to step (i) and repeat the calculations.

3 Examples

We now provide several examples, which are well established in the available literature, to verify our

level set code. Firstly, we reproduce the boundary diffusion results (driven by ∆Sκ driven) of Smereka

[14] for initially elliptic and star shaped boundaries. Next, we simulate the migration of a circular GB

with γc = −1, followed by a study of the classical Wulff problem with anisotropic boundary energy.

Finally, we investigate the shape evolutions of shrinking GBs. All the simulations, except the

ones in Sec. 3.1, have been performed in a square domain [− 1, 1]× [− 1, 1] with N = 50,

M = 1, and δr = 0.01.

3.1 Normal motion due to surface diffusion

The surface diffusion simulations of Smereka [14], with kinetic relation given by V = ∆Sκ, for the

initial boundary geometries such as an ellipse and a seven lobbed star are reproduced. See Figure
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Figure 3: (a) The evolution of an ellipse under surface diffusion. The initial configuration of the ellipse

has the semi-major and semi-minor axes length 2.25 and 0.45, respectively; the major axis makes 45◦

angle with e1. For computation, we have divided a square domain [−2.6, 2.6]×[−2.6, 2.6] with N = 50

grid points in both the directions. (b) The initial geometry is given by ψi = 1.2 + 0.55 cos(7χ) −√
x2 + y2, where χ = tan−1(y/x). The domain of computation is [ − 2.4, 2.4] × [ − 2.4, 2.4], and

N = 100.

3(a) and 3(b), respectively, for the simulation results which are in good match with those of [14].

3.2 Migration of a circular GB with γc = −1

We consider the migration of an initially circular GB of radius Ri, where γc = −1. The kinetic

equation, which is now a backward parabolic PDE everywhere, simplifies to

Ṙ =
M

2R

(
1 +

δr
2R2

)
, (3.1)

whereR is the radius of the evolving GB. Its solution is approximately given byR ≈
√
R2
i + 2M(1 + δr/2R2)t,

where the regularity term has been assumed to be constant. The second term in the parenthesis is at

least two order of magnitudes smaller than unity when δr = 0.01 and R(t) is of the same order as Ri.

Without loosing any accuracy in the solution, we can therefore replace R by Ri in the denominator

of the regularity term in the solution. According to our level set simulations, the initial circular

profile only increases in size without changing its shape. The approximate analytical solution and

the level set result are in very good agreement, as shown in Figure 4, where the maximum difference

between two solutions is less than 1%.

3.3 Wulff problem

Wulff problem is a classical constrained optimization problem which includes solving for the optimal

shape of an isolated crystalline grain such that the total interfacial energy is minimized. For the
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Figure 4: Area evolution of a circular GB with Ri = 0.4 and γc = −1.
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Figure 5: Evolution of Wulff crystals from a circle when (a) n = 3 (first row), 4 (second row), and (b)

n = 5 (first row), 6 (second row) in (1.4). The computations have been performed with αe = 0.25.

The shapes do not evolve significantly beyond the time instances indicated in the final figure of the

respective rows.

level set simulations of the Wulff problem, we adopt the method of Cecil and Osher [3]. The method

requires solving (2.5) for ψ (V is given by (1.2)), and then adding λ to ψ after every time update,

where λ is computed by expanding the area constraint∫
ω
H(ψ(x) + λ)da = Ai (3.2)

in Taylor series about ψ and then making use of a first order approximation. Hence

λ =
Ai −

∫
ωH(ψ)da∫

ω δ(ψ)||∇ψ||da . (3.3)

Figures 5(a) and 5(b) present evolution of isolated circular crystals, with anisotropic boundary

energy given by (1.4), towards the equilibrium shapes. The facets are formed according to the

angles in γc plot for which the energy has a local minima. The corners correspond to those angles for

which the stiffness γc+γ′′c is negative. Such angular ranges are called surface spinodals (or interfacial

spinodal in case of an interface), due to their similarity with the spinodals in the Cahn-Hilliard theory
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Figure 6: Wulff shape of an initially elliptical crystal with free boundary. We have taken αe = 0.25

and n = 4.
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Figure 7: (a) Evolution of initially circular GB when (a) n = 3 (first row), 4 (second row), and (b)

n = 5 (first row) and 6 (second row) in (1.4). We have taken αe = 0.25.

of phase transformations [2]. It is not necessary that all non-convex surface energy will have spinodals.

For example, if a smooth and non-convex energy is given by (1.4) with n = 4 and αe . 0.067, then

the surface stiffness is non-negative for all 0 ≤ φ < 2π. Whether a surface energy of a form (1.4) will

contain a spinodal or not, is governed by αe. However a smooth and non-convex energy, which does

not have any spinodal, will still force the crystals to attain the corresponding Wulff shapes, since the

inclinations corresponding to the lower energies will be preferred over the inclinations with higher

energies. Hence the shape of the crystal will contain faces with small curvatures, connected with

smooth corners. In crystalline materials, the surface energy (or the interfacial energy) is strongly

anisotropic (i.e. 0 � αe < 1), and hence always exhibits spinodals. This results in appearance

of facets in the equilibrium shapes of crystals. In Figure 6 we obtain the expected Wulff shape

starting from an elliptic crystalline grain. All the above results are consistent with the geometrical

constructions of Herring [6], see also [8].

3.4 Shrinkage and shape evolution of the GBs by normal motion

Finally, we study the evolution of initially circular GBs which are governed by kinetic relation given

in (1.2). We do not impose any constraint on the area thereby allowing the GBs to shrink. When

a circular GB, with an anisotropic energy given by (1.4), is evolved the inner grain shrinks and

eventually attains the Wulff shape as depicted in Figures 7(a) and 7(b). In all the cases, the grain
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Figure 8: Area evolution of the inner grain during normal motion with non-convex energies given by

(1.4). The curves represent the variation of the area A with varying n. We have taken αe = 0.25.
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Figure 9: A comparative study of shape evolution for two different values of αe, where n = 4. In

both the cases the initial boundaries are circular with Ri = 0.4. The snapshots have been taken at

t = 0.01.

size decays along with the evolution of the facets but eventually stabilizes at a finite size. This is

clearly illustrated in Figure 8 which depicts the change in the area of the inner grain for several

choices of n. According to this plot the area evolution stops after a short time period when n > 3,

with that saturation time becoming smaller with increasing n. In Figure 9 we note that the facets

appear much more rapidly for αe = 0.7 than for αe = 0.25. Moreover, the corners are also sharper.

As αe approaches 1 the smooth minimas of γc shown in Figure 1 become more cusp-like and hence

resulting into the observed shape. Our results are in good agreement with those provided in [3, 1].
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