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Abstract

The coupled motion of a closed non-circular grain boundary (GB) in a bicrystal, with both

isotropic and anisotropic GB energies, is studied using the level set method. The kinetic relations,

obtained within the framework of linear irreversible thermodynamics, govern the overall dynamics

including normal motion (migration) of the GB, viscous sliding along the GB, and tangential

motion of the grains which is geometrically coupled with the migration. The shape accommodation

necessary to maintain coherency of relatively rotating and non-deforming grains is accomplished

by allowing for diffusion along the GB. We solve the governing equations for the coupled motion to

determine the shape and the misorientation evolution of an isolated GB under various constitutive

assumptions. First, assuming both GB energy and kinetic coefficients to be isotropic, we study

the interplay between kinetic coefficients for initially circular, near-circular, and non-circular

GBs, as well as the role of stress and initial conditions on the GB dynamics. Next, we study the

influence of anisotropy in GB energy, mobility, and geometric coupling for various combinations

of parameters and initial conditions. Allowing for geometric coupling can in fact lead to distinctly

different shapes than what are usually predicted on the basis of migration alone. Our numerical

scheme provides a general framework to study these and other related problems of GB motion.

Keywords: grain boundary; coupled motion; level set method; anisotropic grain boundary energy;

anisotropic kinetic coefficients.
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1 Introduction

Grain boundary (GB) is a region in a crystalline solid which separates two crystals of identical phase

but oriented differently. Grain boundaries move in the presence of driving forces provided by the

stored energy in the grains, the stress field, the concentration gradient across the GB, the capillarity

forces, etc. (cf. Ch. 3 in [1]). During GB motion, the atoms from the shrinking grain are transferred

to the growing grain. Depending on the physical system, driving forces, and thermodynamical

conditions, the relevant kinetics can be broadly categorized into two fundamental modes: (i) GB

migration, where the GB moves along its normal direction (cf. Ch. 3 in [1]), and (ii) viscous GB

sliding, where the two grains slide along the GB (cf. Sec. 12.8 of [2]). According to Read [3], when

a bicrystal with a planar low angle tilt boundary is subjected to shear stress, the GB migration is

accompanied by shear deformation in the adjacent crystals through a collective dislocation motion.

On the other hand, Ashby’s analysis in [4] clearly demonstrated that sliding between two grains is also

accompanied by the normal motion of the GB. It has been observed that viscous sliding dominates

over migration at high temperatures close to the melting point [4, 5]. In any case, GB migration

and relative tangential motion of the grains are both coupled with each other. The kinetic laws

formalizing this coupled motion were first given by Cahn and Taylor [6, 7]; the resulting motion is

called the coupled GB motion. The tangential motion of a grain, when embedded inside another grain,

results into a relative rotation between the grains. The grains themselves behave like rigid bodies

in the absence of large external loading, allowing us to neglect their elastic and plastic deformation.

The significance of grain rotation has been emphasized in several experimental studies related to

plastic deformation in polycrystals with ultra fine and nano grains (cf. §7.2 of [8] and the references

therein). For instance, the rotation leads to coalescence thereby increasing the average grain size.

This naturally introduces a size effect on the mechanical properties of nanomaterials. The coupled

GB motion can also provide insights into the recovery process in polycrystals during heat treatment,

where subgrain rotation and coalescence are observed along with boundary migration (cf. §6.5.4

of [9] and the references therein).

The first experimental observation of a coupled GB motion is due to Li et al. [10], where the

migration of low angle GBs was seen to be accompanied by a shear deformation of the neighboring

grains. More recently, the coupling has been widely reported in the experiments on bicrystals with

planar GBs (both low and high misorientation angles) under axial stress by Gottstein and coworkers

[11, 12]. All of these experiments observe the region swept by the moving GB to be sheared with a

change in the misorientation angle. These studies have also verified the analytical expressions for the

geometric coupling factor derived by Cahn et al. [5]. A coupled GB motion has also been reported

in nanocrystalline aluminium films in the presence of external tensile stress [13].

Cahn and Taylor [6] proposed a formalism to study the coupled motion in a bicrystal, with a

circular columnar grain embedded inside a much bigger columnar grain. They introduced a pair of

2



kinetic relations which govern the normal motion of the GB and the relative rotation of the grains.

This work was extended to non-circular GBs in [7], where the linear kinetic relations were obtained

by first constructing a dissipation potential and then using the principle of minimum dissipation.

The motion was however analyzed only for near-circular GBs. Verification of the coupled motion

model has been achieved subsequently in several molecular dynamics (MD) [5,14–19] and phase field

simulations [15,16,20]. These simulations have in addition provided useful information on the nature

of GB energy and kinetic coefficients. Upmanyu et al. [16], in their MD simulations of the coupled

motion in bicrystals with curved GBs, have observed rigid body rotation of the grains along with

shrinkage of the inner grain. They also note that the grains stop rotating once the misorientation

angle approaches the local minima of the GB energy. That the relative rotation of the grains is

accompanied by viscous sliding along the GB has been shown in the MD simulations by Trautt and

Mishin [14].

The molecular simulation methods, although irreplaceable for the purpose of investigating the

constitutive character of the phenomena, are nevertheless computationally expensive limited by the

maximum size of the grain and the overall simulation time. It is usually advantageous to use the

information gathered from these simulations into the development of a macroscopic computational

model. Techniques such as level set method [21] are often found to be very efficient in studying

similar problems of boundary propagation. The Hamilton-Jacobi equation, which is the governing

equation for the level set method, requires a prescription for the normal velocity. In the case of GB

motion the normal velocity is given in terms of GB energy (and its derivatives), kinetic coefficients,

stress field, and the shape of the boundary. The resulting framework is appropriate to study the

evolution of arbitrary non-circular GBs with anisotropic GB energy and kinetic coefficients. To the

best of our knowledge, the present work is first such level set based study of coupled GB motion.

The level set method has been however extensively used to study recrystallization and grain growth

in polycrystalline materials [22–28].

The article is organized as follows. In Section 2 we formulate the problem of coupled GB motion

in the context of the present study including the kinetic relations and the constitutive specification

for GB energy and kinetic coefficients. The derivation of the kinetic relations has been given in

Appendix A. Our derivation is broader in scope; its extension to the three-dimensional case, and

also for situations involving grain deformation, is conceptually straightforward. The simulation

results are presented in Section 3. In Subsection 3.2 we study the coupled motion with isotropic

GB energy and isotropic kinetic coefficients. In addition to emphasizing the role of misorientation

dependence of the kinetic coefficients in the GB dynamics, we investigate the relative significance of

these coefficients. We also compare the dynamics of a circular, near-circular, and a non-circular GB.

Other results in this subsection include studying the role of viscous sliding and external stress in GB

motion, and investigating the misorientation evolution as a dynamical system. In Subsection 3.3 the

motion is studied for anisotropic GB energy and anisotropic kinetic coefficients. We divide our results
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into three parts, first looking at the effect of anisotropic energy, keeping coefficients isotropic, followed

by the combined effect of anisotropy in only energy and mobility, and finally allowing for anisotropy

in geometric coupling factor. Whereas the anisotropy in mobility renders the faceted shape rounder,

the presence of geometric coupling (not necessarily anisotropic) can lead to distinctively different

shapes compared to those obtained without it. In all these cases we discuss the relevance of initial

conditions, as well as stress, on the shape and the misorientation evolution. We conclude our study

in Section 4.

We would like to emphasize here that the level set computations with anisotropic GB energy are

in general very challenging. This is mainly due to the backward parabolic nature of the governing

partial differential equation (PDE) [29]. Towards this end, the PDE is regularized by introducing

a curvature dependent GB energy which in turn raises the order of the PDE, thereby introducing

additional complexity in the numerical algorithm. It is therefore not surprising that very few level

set studies in the context of anisotropic surface energies have appeared in the literature [30–32]. The

scarcity of level set simulations for GB studies was also pointed out in a recent review by Rollett [33].

To fill the gap in the available literature for a systematic write-up on the implementation of level set

methods to study GB motion, and also for making our presentation more complete, we have included a

supplementary document on the numerical algorithm along with its verification using several classical

problems like surface diffusion by the Laplacian of curvature, Wulff shape determination, and the

normal migration of a GB with anisotropic energy.

2 Kinetic relations for GB motion

We study the coupled GB motion in a bicrystal where a grain in the form of generalized cylinder

with arbitrary cross-section shape is embedded inside another generalized cylindrical grain of much

larger size. The two grains, otherwise free of defects, are oriented differently. The coupled motion,

which involves relative rotation of the grains in addition to the normal migration of the GB, is driven

by the capillarity forces, the external stress along the GB, and the bulk stored energy [6, 7].

Relative rotation of the grains with a non-circular GB will necessarily require some shape accom-

modation mechanism so as to ensure the continuity of material points across the GB. The mechanisms

can be drawn from one or more of the following possibilities: elastic deformation of the grains, plastic

deformation of the grains, diffusion across the GB, and diffusion along the GB (see §12.8 of [2] for de-

tails). However, during a purely capillarity driven coupled GB motion, the stress values in the grains

are such that no significant elastic deformation can take place (see Appendix B for an approximate

analysis). For the same reason, the possibility of shape accommodation through plastic deformation

of the grains can also be ruled out. In the absence of a concentration gradient across the GB, which

is presently the case, the shape accommodation process has to be accompanied by diffusion along

the GB. The latter is assumed to be driven by the non-uniform ‘force’ distribution on the GB, which
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Figure 1: (a) The zero level set (the curve with z = 0) embedded in a higher dimensional surface

z = ψ(x, y; t) where x = xe1 + ye2. (b) A cross-section of the bicrystal having a cylindrical grain

ω+ surrounded by another cylindrical grain ω− of much larger size.

arises due to the efforts put up by the grains to rotate along a non-circular boundary [7]. In our

considerations, GB diffusion is driven by the relative rotation rate of the grains. This should be

compared with the surface diffusion driven by the surface Laplacian of the curvature [34].

2.1 Kinematics

The GB geometry is as shown in Figure 1. We assume the GB to be a closed curve, denoted by C,

such that there is a well defined normal at all of its points. It separates two grains ω+ and ω−. Let

{e1, e2} form a Cartesian basis with a fixed origin O. We consider a smooth function ψ(x, t) such

that it is zero on the GB, positive within the inner grain ω+, and negative in the outer grain ω−,

where x = x e1 + y e2 is the position vector of a point in the domain and t represents time. The

normal n and the normal velocity V , associated with the GB, are defined as (evaluated at ψ = 0)

n =
∇ψ
||∇ψ|| and (2.1)

V = −∂ψ/∂t||∇ψ|| , (2.2)

respectively, where ∇ is the gradient operator and || · || is the Euclidean norm of a vector. Assuming

that the unit tangent vector t is directed in the direction of the increasing arc length along C, it can

be written as

t =
∂ψ/∂y

||∇ψ|| e1 −
∂ψ/∂x

||∇ψ|| e2. (2.3)

The curvature κ of the GB is defined by

κ = −∇ · n. (2.4)
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Neglecting rigid body translation, the material velocity v of the rigid motion of the grains can

be expressed as (cf. Chs. 10 and 11 in [35])

v = ṘRTx, (2.5)

where R is the rotation tensor, the superscript T stands for the transpose of a tensor, and the

superposed dot represents the time derivative. Without loss of generality we can assume the outer

grain to remain stationary, i.e. R− = 1 and v− = 0. The rotation tensor for ω+ can then be written

as (rotation occurs in the direction of the tangent vector)

R+ = cos θ e1 ⊗ e1 − sin θ e1 ⊗ e2 + sin θ e2 ⊗ e1 + cos θ e2 ⊗ e2, (2.6)

where θ is the misorientation angle between ω+ and ω−, and ⊗ denotes the dyadic product. The

relative tangential velocity, defined by Utan = (v+ − v−) · t, reduces to

Utan = −θ̇x · n. (2.7)

The normal component of the material velocity, given by vn = v · n, is discontinuous at the GB. It

takes the form

v+
n = (Ṙ

+
)(R+)Tx · n = θ̇x · t and v−n = 0 (2.8)

for material points approaching the GB from the inside and the outside, respectively.

2.2 Kinetic relations

The kinetic relations for the coupled GB motion are given by (see Appendix A for derivation)

V =
MS

S +Mβ2
fn −

Mβ

S +Mβ2
(x · n)θ̇ and (2.9)

θ̇ =
−
∮
C

Mβ
S+Mβ2 fn(x · n)ds−

∮
C fsds∮

C
1

S+Mβ2 (x · n)2ds−
∮
C

1
2Dm

(
R2 −R2

)2
ds
, where (2.10)

M - GB mobility (see Appendix A.3 and Subsection 2.3),

S - viscous sliding coefficient (see Appendix A.3 and Subsection 2.3),

β - geometric coupling coefficient (see Appendix A.3 and Subsection 2.3),

Dm - diffusion mobility (see Appendix A.2),

fn = [[E]]n·n+fcurv is the driving force for normal GB motion (see Appendix A.2), [[E]] = (E+−E−),

fs = (E+n ·n)x · t+ τx ·n+ ∂γc/∂θ is part of the driving force for tangential motion between the

grains (see (A.21)2),

E - bulk Eshelby tensor (see Appendix A.2),

τ - tangential stress along the GB,
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Figure 2: (a) Isotropic GB energy. The inset shows a zoomed picture of the sharp cusp and its

smoothening (using cubic splines) in the neighborhood of the cusp angle. (b) Polar plot of the

anisotropic GB energy for varying misorientation angles.

γc - GB energy without the curvature dependent part (see (A.14)),

fcurv - capillarity force at the GB (see (A.16)),

R - radial distance of the GB from the origin O,

R2 - mean square radius of the GB (see Equation (A.9)), and

ds - infinitesimal arc length along C,

The above relations are valid for M > 0 and S ≥ 0.

Similar kinetic relations for non-circular closed GBs were first derived by Taylor and Cahn in

[7] by minimizing a dissipation potential. Our derivation in Appendix A follows an alternative

approach where the kinetic relations are postulated directly from the dissipation inequality within

the framework of linear irreversible thermodynamics.

2.3 Constitutive relations

The coefficients M,S, and β in the above equations as well as the GB energy (denoted by γc),

which appear in the expressions for the driving forces, are all assumed to depend on the relative

misorientation between the two grains and the inclination of the GB. The former is independent

of the position, due to the absence of any defects within individual grains, and evolves in time

according to (2.10) above. The inclination of the GB, denoted by φ (such that cosφ = n · e1),

evolves according to a partial differential equation derivable from (2.9) [36]. In the present section

we collect constitutive prescriptions for γc,M, S, and β to be used in our numerical simulations. All

the relations have been written for crystalline grains with four-fold symmetry in the two-dimensional

plane.
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GB energy (γc) An expression for GB energy is derived from the disclination model of GB, where

the GB is modeled as an array of disclination dipoles [37, 38]. The energy obtained is valid for the

entire range of misorientation, unlike the energy calculated from a dislocation based model of GB.

The disclination model can also account for finite number of cusps in the GB energy. We consider

a model where a general GB is assumed to be composed of alternating segments of two special

boundaries at angles θA and θB, delimited by partial disclinations of strength ±(θB − θA) [38]. The

GB energy for θA ≤ θ ≤ θB and all φ is given by

γc(θ, φ) =

E(φ)(θ − θA) [Ac(φ)− ln(θ − θA)] , for θA ≤ θ ≤ θc,

E(φ)
[
(γ1 − γ2)

(
1− θ−θc

θB−θc

)
+ (θB − θ) (Ac(φ)− ln(θB − θ))

]
, for θc ≤ θ ≤ θB,

(2.11)

where

E(φ) = γ0(| cosφ|+ | sinφ|), (2.12)

Ac(φ) = ln

(
exp(3/2)(θB − θA)

2π

)
− | sin 2φ|

2
− | cosφ| ln |cosφ|+ | sinφ| ln |sinφ|

| cosφ|+ | sinφ| (2.13)

(see Chs. 11 and 12 in [3]), and γ0 is a material constant. For a 〈100〉 symmetric tilt boundary in

cubic crystals, θA = 0 and θB = π/2. In (2.11) θc represents the misorientation angle where γc has

a cusp; we take it as 36.9◦. The term γ1 is given by γc, evaluated at θc, using the first expression

in (2.11), whereas γ2, also evaluated from γc at θc, but after replacing θ − θA by θB − θ in the first

expression for γc in (2.11). It is to be noted that (2.11) coincides with the Read-Shockley energy [3]

in the small misorientation range (θ < 15◦). For an isotropic GB energy, E and Ac are both taken

to be constants given by γ0 and the first term on the R.H.S. of (2.13), respectively.

Figure 2(a) shows that the GB energy given by (2.11), and non-dimensionalized as γ̃c = γc/γ0,

has a sharp cusp (the red broken curve) at θc, making γ̃c(θ) non-differentiable at that point. The

differentiability is however required for the well-posedness of (2.9) and (2.10) at all values of θ.

We circumvent this problem by smoothening the energy with a cubic spline in the neighborhood

of θc, as shown by the solid blue line in the figure. Although this allows us to solve (2.9) and

(2.10) in the entire misorientation range, we can expect to miss the physical effect of cusp in our

simulations. For instance we fail to capture the freezing of rotation exactly at the cusp angle, observed

frequently in MD simulations [14,16], but instead find the fixed point at an angle slightly away from

θc. In Figure 2(b) we provide polar plots of the GB energy (2.11) for different misorientation

angles with cusps appearing at discrete inclination angles. These plots clearly show that, at higher

misorientation angles, additional local minima appear at inclination angles φ = π/4, 3π/4, 5π/4,

and 7π/4. The appearance of additional minima in the GB energy can be attributed to the fact that,

for high misorientation angles, grain boundaries corresponding to φ = 0 and φ = 45◦ have equivalent

dislocation structure [3, 39]. For small misorientation angles (θ < 15◦), since max(|Ac(φ)|) � | ln θ|
for 0 ≤ φ ≤ 2π, GB energy reduces to a decoupled function of θ and φ. That this is not so at

larger misorientation angles leads to some very interesting observations while solving the problem of
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Figure 3: (a) Misorientation dependent non-dimensional reduced mobility. (b) Polar plot for mobility

M̃2(φ) with αM = 0.9.

coupled GB motion, for instance the widening and the shortening of the corner region. Additionally,

we need a twice-differentiable γ̃c for all φ. Towards this end we have smoothened the cusps which

appear in Figure 2(b) using cubic splines. The arbitrary smoothening can be justified by assuming

the grains to be above the thermal roughening temperature [40].

Mobility (M) We assume the constitutive relation for mobility as a decoupled function of θ and

φ:

M(θ, φ) = M0M̃1(θ)M̃2(φ), (2.14)

where M0 is a constant coefficient (discussed further towards the end of the present section),

M̃1(θ) = 1− exp
(
−B(θ/θ0)A

)
, and (2.15)

M̃2(φ) = 1− αM cos 4φ. (2.16)

The overall non-dimensional mobility is defined as M̃ = M/M0. For an isotropic mobility function,

we take M̃ = M̃1(θ).

Equation (2.15) has been proposed by Humphreys [41] as a phenomenological model for mobility

during grain growth. The parameters A, B, and θ0 are taken as 4, 5, and 15◦ respectively [41].

Our choice of misorientation dependence of the mobility, illustrated in Figure 3(a) with the reduced

mobility M̃r(θ) = M̃1(θ)γ̃c(θ), is in good qualitative agreement with Figure 13 of [14] obtained by MD

simulations of coupled GB motion. On the other hand, in deciding the inclination dependence of GB

mobility we follow Kazaryan et al. [42] who proposed (2.16) for GBs in four-fold symmetric crystals,

where αM is a phenomenological parameter taken as 0.9 [42], see Figure 3(b). While studying the

shrinkage of an isolated GB using (2.16) they observed that, when both GB energy and mobility are

anisotropic (with four-fold symmetry), an initially circular GB remains almost circular throughout

the evolution. The phenomenon was confirmed in the MD simulations [43,44].
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Figure 4: (a) Non-dimensional sliding coefficient. (b) Isotropic coupling factor.

Sliding coefficient (S) To the best of our knowledge, a functional form for the sliding coefficient

S(θ, φ) is unavailable in the literature. For the lack of relevant data on inclination dependence, we

assume S to be only θ dependent. Following the data for GB sliding presented by Gifkins [45] and

Watanabe [46], we formulate the sliding coefficient as

S(θ) = S0 S̃(θ), (2.17)

where S0 is a constant coefficient, whose order has been estimated towards the end of this section,

and

S̃(θ) = max((sin 2θ − 0.05), 0.005) (2.18)

is the non-dimensional sliding coefficient. The graph for (2.18) in Figure 4(a) shows that sliding can

occur more easily at high angle boundaries compared to those with small misorientation angles. This

is consistent with the results of [5].

Coupling factor (β) Following Cahn et al. [5] we assume the form of isotropic coupling factor

β(θ) as

β(θ) =

2 tan(θ/2), if 0 ≤ θ ≤ θβ,

−2 tan(π/4− θ/2), if θβ < θ ≤ 90◦,
(2.19)

where θβ is a material constant denoting the misorientation angle at which mode switching occurs.

This relation has been subsequently verified using MD simulations [5,14,47], phase field simulations

[20], and experiments [11,12]. The coupling factor in (2.19) is discontinuous at θβ, which disturbs the

well-posedness of the differential equations (2.9) and (2.10). To avoid this shortcoming, we assume

the transition of β from one mode to another to occur smoothly within a narrow range of θ (∼ 6◦)

in the neighborhood of θβ, see Figure 4(b). Even from a practical viewpoint, this assumption is not

completely arbitrary. Both MD simulations and experiments predict the mode transition angle only
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Figure 5: Plot for anisotropic coupling factor β(θ, φ) with (a) θ = 16◦ and (b) θ = 38◦.

within a range of around 6◦, see §8 in [14] and the discussion in [12]. Following the cited studies, we

take θβ to be 36◦.

The anisotropic nature of the coupling factor has been investigated recently by Trautt et al. [14]

using MD and phase field simulations. Interestingly they find the coupling factor to be discontinuous

only within a range of inclination angles. Outside of this range it remains a continuous function of

the misorientation. Based on their simulation data we have constructed the following functional form

for β(θ, φ):

β(θ, φ) =


2 tan(θ/2)(2− | cos 4φ|), for 0 ≤ θ ≤ θβ and 0 ≤ φ ≤ 90◦,

2 tan(θ/2)(2− | cos 4φ|), for θβ < θ ≤ 90◦ and 30◦ ≤ φ ≤ 60◦,

−2 tan(π/4− θ/2)(2− | cos 4φ|), for θβ < θ ≤ 90◦ and {0 ≤ φ < 30◦ or 60◦ < φ ≤ 90◦}.

(2.20)

A graph of the anisotropic coupling factor with respect to inclination angles is shown in Figures

5(a) and 5(b) for θ = 16◦ and 38◦, respectively. These plots are in good qualitative agreement with

Figures 20 and 21 of [15].

Non-dimensional parameters r1 and r2 We introduce two non-dimensional parameters r1 and

r2 as

r1 =
S0

M0
, and r2 =

R2
0 M0

Dm
, (2.21)

where R0 is a characteristic length scale related to the embedded grain size. Both of these present

themselves naturally if we write the governing differential equations (2.9) and (2.10) in a non-

dimensional form. Whereas the former represents the relative magnitude of viscous sliding and mo-

bility, the latter provides a ratio of a geometrical length scale (provided by R0) and a material length

scale (obtained from
√
Dm/M0). In the following we motivate our choice for values of r1 and r2 to be

used in the numerical simulations. We start by noting that the GB diffusivityDGB ∼ 10−9m3/Ns near

melting point Tm [48]. We use this value in the microscopic model of the viscous sliding coefficient
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for high angle GBs, given by S0 ≈ bDGBδGB/kBT [4], to get S0 ≈ 2.2× 10−8m3/Ns, where Burgers

vector b = 0.36nm (for Cu), GB thickness δGB = 1nm, Boltzmann constant kB = 1.38× 10−23J/K,

and T = 1200K. On the other hand we estimate M0 ≈ 1.2 × 10−7m3/Ns using Figure 12 of [14]

and noting that γc ≈ 0.85N/m for high angle isotropic boundaries in Cu. Consequently we obtain

r1 ≈ 0.2 from high angle GB data close to the melting point. This value of r1 is calculated at favor-

able conditions for sliding. However, while sliding becomes increasingly difficult as the temperature

is decreased below Tm, the tangential motion as well as the normal GB motion remain active [5].

This will result into a r1 less than 0.2. In the present study we consider values of r1 between 0.01

and 1. The range of values given by r1 > 0.2 will accommodate cases where the expression for S0

contains a constant pre-multiplier greater than 1 (see e.g. Equation (7) in [4], where the multiplier

is 8 for a non-planar GB).

To evaluate r2 we need to first estimate a value for Dm. To this end, we recall a recent study on

sliding accommodated by GB diffusion for a hexagonal GB [49]. Comparing (A.23) with Equation

(15) in [49] we take Dm = DGBδGBva/kBT , where va (the atomic volume) is calculated using an

atomic radius of 0.128nm. With the obtained expressions for S0 and Dm, we can write

r2 =
1

r1

R2
0

`2
, (2.22)

where ` =
√
va/b is a length scale depending on the lattice constant. Using R0 = 10nm we get

r2 = 4.1 × 103/r1. It should be noted that (2.22) has been derived by accounting only for the

diffusion related to viscous sliding. The incorporation of geometric coupling in these calculations

warrant the use of an effective Dm which will take into account diffusivity both by viscous sliding and

dislocation climb. Additionally, with decreasing grain size the value of GB diffusivity increases [50]

thereby reducing r2 further below the above estimate. Taking all this into consideration, we restrict

ourselves to choosing r2 = 500 for our numerical simulations.

3 Results

Let x̃ and t̃ be the non-dimensional position vector and time such that

x̃ =
x

R0
and t̃ =

t

t0
, (3.1)

where R0 is a characteristic length and t0 is a characteristic time. We take R0 to be a representative

length of the initial shape of the embedded grain and t0 as the time taken for a circular GB with radius

R0, constant GB energy γ0, and constant mobility M0 to shrink to a point under curvature driven

normal motion. Hence, t0 = R2
0/2γ0M0 [6]. We substitute x and t from (3.1) into (2.9) and (2.10) to

obtain the non-dimensionalized kinetic relations involving non-dimensional kinetic parameters r1 and

r2 and non-dimensional constitutive functions M̃ , S̃, and β. The kinetic relations also include the

following non-dimensionalized quantities: stress τ̃ = R0τ/γ0, bulk stored energy Ψ̃± = R0Ψ±/γ0,
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and the regularization parameter for the GB energy δ̃r = δrR
2
0/γ0. All the non-dimensionalized

quantities are distinguished with a superposed tilde.

In this section we use the level set method to solve the coupled system of kinetic relations. The

coupled motion is studied first with isotropic GB energy and isotropic kinetic coefficients and then

with their anisotropic extensions. We assume throughout that there is no stored energy and stress

in the grains. We begin by discussing the essential details of the level set method and the associated

numerical schemes. Further details, with several illustrative examples, have been provided in the

supplementary document.

3.1 Level set method

In the level set method the isolated GB is considered as the zero level curve of a function ψ(x, t), as

shown in Figure 1, where we initialize ψ as a signed distance function (SDF) such that it is negative

outside and positive inside of ω+ (cf. Ch. 2 of [51]). For a given V , ψ is updated with respect to

time in the entire domain ω using the Hamilton-Jacobi equation (cf. Ch. 3 of [51])

∂ψ

∂t̃
+ Ṽ ||∇ψ|| = 0. (3.2)

The updated location of ψ = 0 gives the new position of the GB. A computationally less expensive

local level set scheme has been proposed by Peng at el. [52], in which ψ, instead of the entire

computational domain, is updated only in a small domain in the neighborhood of the zero level

curve using the following modified Hamilton-Jacobi equation

∂ψ

∂t̃
+ c(ψ)Ṽext||∇ψ|| = 0. (3.3)

Here c(ψ) is a cut-off function which ensures that ψ is updated only in a narrow region surrounding

ψ = 0, and Ṽext is the (non-dimensional) extended normal velocity (computed using (3.4)). An

expression for the cut-off function is provided in the accompanying supplementary document.

We compute extension qext (non-dimensional) of a given field q by solving the hyperbolic equation

[52]
∂q

∂t̃
+ (sign q)(n · ∇q) = 0, (3.4)

the steady state solution of which, denoted by qext, satisfies qext = q on C and remains constant in

the direction of the normal to C.

The updated ψ, obtained by solving (3.3), generally does not remain a SDF [52]. This is resolved

by reinitializing ψ to a SDF by solving (locally) [52]

∂d

∂t̃
+ (sign di)(||∇d|| − 1) = 0, (3.5)

such that di = d(x̃, 0) = ψ(x̃, t̃). Following Peng et al. [52], we consider

sign d =
d√

d2 + (||∇d||h)2
, (3.6)
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where we have discretized the square domain ω with uniform square grids with mesh size h̃. Let

(xi, yj) be the (i, j)th node in the 2D lattice grid. At time step tn and at the (i, j)th grid point,

denote the level set function by ψi,j .

We discretize (3.3) using the method of lines. Its semi-discrete form is given by

dψi,j

dt̃
= L(x̃, ψ±x̃ i,j , ψ

±
ỹ i,j , κ̃i,j , ni,j ,

˜̇
θ), (3.7)

where L = −cṼext||∇ψ|| and its discretized form is given by

Li,j = −max((cṼext)i,j , 0)||∇+ψ||i,j −min((cVext)i,j , 0)||∇−ψ||i,j , where (3.8)

||∇±ψ||i,j = [max(ψ∓x i,j , 0)2 + min(ψ±x i,j , 0)2 + max(ψ∓y i,j , 0)2 + min(ψ±y i,j , 0)2]1/2.

Here ψ∓x ,i,j and ψ∓y ,i,j have been calculated using the fifth order weighted essentially non-oscillatory

(WENO) scheme [53]. The time integration of (3.8) has been performed using the third order

total variation diminishing (TVD) Runge-Kutta scheme [52]. The reinitialization equation given

by (3.5) has also been solved using the same scheme. However first order upwind scheme in space

and forward Euler time integration scheme are found sufficient for solving (3.4) [52]. Since we have

used the explicit method for time integration of (3.3)-(3.5), the time step chosen must satisfy the

Courant-Friedreichs-Lewy (CFL) condition, given by (cf. Ch. 3 of [51])

time step ≤ h̃

max|velocity| , (3.9)

for maintaining stability, where the ‘velocity’ is referred to Ṽext, sign q, and sign di, respectively, in

(3.3)-(3.5). When the computations are done with isotropic GB energy and the isotropic kinetic

coefficients, the time step (non-dimensional) has been taken as ∆t̃ = 10−4 (for (3.3)) so as to satisfy

the CFL condition. However, if the GB energy is anisotropic, then we take ∆t̃ = 0.5h̃4 [30, 54]. For

integrating (3.4) and (3.5), we have taken the time step as 0.6h̃, which clearly satisfies the respective

CFL conditions.

To compute the boundary integrals in (2.10) of the form
∮
C f ds̃, we first replace them by the

following integral over the entire domain (cf. Ch. 1 of [51])∫
ω
f(x̃) δ(ψ(x̃))||∇ψ|| dã, (3.10)

where δ(ψ(x̃)) is the Dirac delta function, and then choose the first order accurate expressions for

the delta function from [55] for numerical evaluation.

Summary of the computational algorithm

(i) Initialize ψ and θ: Initialize ψi = ψ(x̃, 0) as a signed distance function (SDF). If ψi is not an

SDF, reinitialize it to convert to an SDF in the domain of computation. Also initialize θ.
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(ii) Construct computational tubes: Construct two computational tubes T1 and T2 surrounding the

zero level set such that |ψi| ≤ c1 in T1 and |ψi| ≤ c2 in T2. We have taken c1 = 2h̃ and c2 = 4h̃,

where h̃ is the mesh size. We also construct a third tube T3 = {x̃ : ψi(x̃+ δ) < c2, for |δ| < h̃}
[52]. Tube T3 contains T2 in addition to the grid points which are just adjacent to T2.

(iii) Constitutive relations: Compute γ̃, M̃ , S̃, and β as functions of θ and φ.

(iv) Computation of κ̃ and its surface Laplacian: Compute κ̃ and its surface Laplacian first inside T1,

and then extend it to T2\T1. For solving the extension equation (3.3) we have taken ∆t̃ = 0.6h̃,

and used six iterations so that the extended quantities in T2\T1 reach their steady state values.

(v) Computation of the kinetic relations: Compute
˜̇
θ and Ṽ inside T1 and then extend them to

T2\T1.

(vi) Updating of ψ and θ: Integrate the modified Hamilton-Jacobi equation given by (3.3) inside

T2, along with updating θ. For computations with isotropic GB energy and isotropic kinetic

coefficients, we have taken ∆t̃ = 10−4, whereas for those with anisotropic energy, we have

considered ∆t̃ = 0.5h̃4.

(vii) Reinitialization: Reinitialize ψ (which was computed in step (vi)) inside region T3 using the

reinitialization equation (3.5). We have iterated the reinitialization equation once after every

time update of ψ in Step (vi) by taking ∆t̃ = 0.6h̃.

(viii) Once the new ψ (which is a SDF) is obtained, go to step (i) and repeat the calculation.

3.2 Isotropic energy and isotropic kinetic coefficients

In their atomistic simulations Cahn et al. [5] observe viscous sliding of the grains along the GB

to be the dominant mechanism for grain rotation at high temperatures near the melting point,

and the geometric coupling factor β to govern the rotation at lower temperatures. It is therefore

important to compare the dynamics of coupled motion dominated by different kinetic coefficients

and observe their individual and collective role in influencing the overall GB motion. Depending on

the temperature of the specimen and the geometry of the boundary, some or all of the coefficients

may contribute to the resulting dynamics. The dependence of the coefficients on the misorientation

angle is also of crucial importance. The purpose of this section is to investigate the relative role

of these coefficients during GB motion with isotropic GB energy. The governing equations can be

obtained by substituting ∂2γ̃c/∂φ
2 = 0 and δ̃r = 0 in the non-dimensionalized form of (2.9) and

(2.10) combined with the isotropic M̃, S̃, and β. We study the effect of various kinetic coefficients on

the shape evolution of circular, near-circular, and non-circular GBs. We also verify our simulation

results with the analytical solutions obtained for circular and near-circular GBs. Additionally, our

results include studying the effect of misorientation dependence of coefficients on GB motion, the
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Figure 6: Evolution of (a) GB radius and (b) misorientation for circular GB with R̃i = 0.4 and

θi = 8◦. We have taken M̃ = 1, and r1 = 0.01, S̃ = 1 whenever sliding is present. In the legends,

‘LS’ and ‘A’ stand for level set results and analytical results, respectively.

role of viscous sliding in GB dynamics, the effect of external stress, and finding fixed points in the

evolution of misorientation angle.

For all our level set computations with isotropic energy and isotropic kinetic coefficients, we have

discretized a square domain [−1, 1]× [−1, 1] with N = 100 grid points at equal intervals along each

of e1 and e2 directions. We have taken ∆t̃ = 10−4. The external stress field is taken to be zero in

all our simulations except in Subsection 3.2.4.

3.2.1 Coupled motion of a circular GB

The kinetic relations can be solved analytically under various simplifying assumptions for a circular

GB. The reduced kinetic relations are derived from (A.27) and (A.28). We compare the following

four cases indicating the analytical result whenever possible, cf. [6, 7].

(i) (Both viscous sliding and geometric coupling absent) The kinetic relations reduce to Ṽ = M̃γ̃cκ̃/2

and θ̇ = 0, which can be solved to obtain

R̃(t̃) =

√
R̃i

2 − M̃γ̃ct̃ and θ = θi, (3.11)

where R̃i and θi denote the initial GB radius and the initial misorientation, respectively.

(ii) (Viscous sliding absent) The kinetic relations simplify to

Ṽ = − 1

β
(x̃ · ñ)θ̇ and θ̇ =

1

2R̃2
M̃β

(
γ̃c − β

∂γ̃c
∂θ

)
. (3.12)

This situation is typical of low angle boundary dynamics at temperatures much below the melting

point. To this end, we take γ̃c as the first expression in (2.11) (with φ = 0), and β = θ following

(2.19). The above equations can be solved, using x̃ · ñ = −R̃ and Ṽ = − ˙̃R, to obtain R̃θ = constant.
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For a given initial radius R̃i and misorientation θi, the constant is equal to R̃i θi. Finally, substituting

R̃ θ = R̃i θi into (3.12) and treating M̃ as a constant, we obtain

R̃(t̃) = R̃iθi

(
1

θ3
i

− 3M̃ t̃

2R̃2
i θ

2
i

)1/3

and θ(t̃) =

(
1

θ3
i

− 3M̃ t̃

2R̃2
i θ

2
i

)−1/3

. (3.13)

(iii) (Geometric coupling absent) This case is relevant when the tangential motion of the grains

is predominantly due to the viscous sliding, for instance with temperatures close to the melting

point [5]. The non-dimensional kinetic relations can be obtained as

Ṽ =
1

2
M̃γ̃cκ̃ and θ̇ = − r1S̃

2R̃2

∂γ̃c
∂θ

. (3.14)

For constant M̃ and S̃, these equations can be solved simultaneously to get the following relation

between R̃ and θ:

R̃(θ) = R̃i exp

(
M̃

r1S̃

{
(θ2 − θ2

i )

2
− e2(Ac−1)[E(1, ui)− E(1, u)]

})
, (3.15)

where u = 2(Ac − 1 − ln θ), ui = 2(Ac − 1 − ln θi), and E(n, x) =
∫∞
x

e−u

x1−nun
du (the exponential

integral). For plotting the analytical solution in Fig. 6(a) we have used θ from the numerical

simulations.

(iv) (Fully coupled) The governing equations, deducible directly from (2.9) and (2.10) by assuming

a circular GB, are given by

Ṽ =
r1M̃S̃

r1S̃ + M̃β2

γ̃c

R̃
+

M̃β

r1S̃ + M̃β2
R̃θ̇ and θ̇ =

M̃βγ̃c − (r1S̃ + M̃β2)(∂γ̃c/∂θ)

R̃2
, (3.16)

which cannot be solved analytically even for constant M̃ and S̃. The above pair of governing

equations, as well as the corresponding relations in all the preceding cases, indicate that the shrinkage

rate of the circular GB is inversely proportion to its radius while the rate of misorientation change

is inversely proportional to the square of the radius.

The analytical solutions derived in (3.11), (3.13), and (3.15) confirm well with our level set

simulation results, see Figures 6(a) and 6(b). The same figures are also used to compare the four cases

with respect to area and misorientation evolution. The results clearly demonstrate the distinctive

role of various kinetic parameters even in this simplified illustration. For instance, we note that the

inner grain, in all the cases, shrinks at a slower rate than it does during a purely normal motion.

In fact, for the fully coupled case, both the shrinkage rate as well as the misorientation evolution is

the slowest. On the other hand, the absence of coupling factor yields very distinctive results. Not

only the shrinkage rate is much faster, regardless of viscous sliding, it is only in this situation that

the misorientation is found to be non-increasing with time. With respect to the latter observation

we would like to add that, while in cases with β present the misorientation angles evolve toward a

fixed point around θβ, in the situation with β absent but sliding allowed it evolves to 0◦. The nature

of fixed points in the evolution of θ is even otherwise very sensitive to the choice of constitutive

assumptions and initial conditions, see Subsection 3.2.6 for further analysis.
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Figure 7: (a) Evolution of an initially near-circular GB with m = 6, R̃mi = 0.4, and ε = 0.05. (b)

Evolution for an initially elliptic GB with the semi-major axis of length 0.4 and the semi-minor axis

of length 0.24. The three cases shown here are: (i) viscous sliding absent, (ii) geometric coupling

absent with r1 = 0.01 and S̃ = 1, and (iii) fully coupled with r1 = 0.01 and S̃ = 1. For all of these

simulations, M̃ = 1 and θi = 8◦.

3.2.2 Coupled motion of a near-circular GB

Following Taylor and Cahn [7], we call a GB near-circular if its shape is represented by

R̃(ζ, t̃) = R̃m(t̃) + εR̃ε(t̃) cos(mζ), (3.17)

where R̃m(t̃) is the mean circular radius of the GB, ε � 1 is a constant parameter, εR̃ε(t) is the

amplitude of the deviation from the mean radius, ζ is the angle made by the radial vector with

e1-axis, and m is an integer which governs the shape of the perturbation. We restrict the latter such

that m ≥ 2, since m = 0 corresponds to a circle and m = 1 to an offset circle. We illustrate the

evolution of a near-circular GB with m = 6 in Figure 7(a) for various simplifying assumptions. We

note, in particular, that allowing for viscous sliding will eventually change the shape of an initially

near-circular grain to a circle, but its absence will restrict the grain to shrink in a self-similar manner.

The inclusion of coupling factor, on the other hand, always slows down the shrinkage rate of the inner

grain. These conclusions are corroborated in the following analysis.

(i) (Viscous sliding absent) The kinetic relation (A.27) is reduced by ˙̃R = −R̃θ̇/β. This can be

integrated to obtain
R̃(ζ1, t̃)

R̃(ζ2, t̃)
=
R̃(ζ1, 0)

R̃(ζ2, 0)
. (3.18)

According to the above solution, the shape of the GB at any time t̃ remains self-similar to the

initial shape, cf. [7]. Interestingly, the above analysis remains valid irrespective of grain shape and
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Figure 8: (a) Area and (b) misorientation evolutions of the elliptic GB under coupled motion with

θi = 8◦ and r1 = 0.01.

constitutive assumptions, i.e. it remains valid even for anisotropic GB energy and kinetic coefficients,

as long as β remains isotropic. It should be noted that a self-similar shape is obtained in the absence

of viscous sliding only when geometric coupling is present in the kinetic relations. Whenever coupling

is absent, regardless of viscous sliding, the normal and the tangential motion of the GB are decoupled

and the shape evolution is always driven by mean curvature. In a coupled motion, however, shape

smoothening driven by curvature can take place only when sliding is allowed.

(ii) (Geometric coupling absent) We can expand the kinetic relation (2.9), after reducing it for the

present case, in power series of ε to get

˙̃Rm + ε ˙̃Rε cos(mζ) = −M̃γ̃c

2R̃m

(
1 + ε(m2 − 1) cos(mζ)

R̃ε

R̃m

)
+O(ε2). (3.19)

Equating the leading order terms on both sides of the equation we get the governing equation

for R̃m, which is of the same form as (3.14)1. The O(ε) terms, on the other hand, yield ˙̃Rε =

−(m2 − 1)M̃γ̃cR̃ε/2R̃
2
m, which on integration gives

R̃ε(t̃) = R̃εi exp

(
−
∫ t̃

0

M̃γ̃c(m
2 − 1)

2R̃2
m

dt̃

)
, (3.20)

where R̃εi = R̃ε(ζ, 0). For m ≥ 2, the integrand in (3.20) is always a positive function of t̃, making the

resulting integral an increasing function of t̃. Thus R̃ε goes to zero with time and the near-circular

shape tends toward a circular form.

3.2.3 Coupled motion of a non-circular GB

Moving on to a more general case, we now investigate the coupled motion of a non-circular GB

with isotropic GB energy and isotropic kinetic coefficients from Subsection 2.3. For illustration we

consider an initially elliptic GB with aspect ratio 5/3. Figure 7(b) demonstrates that the shape
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Figure 9: Evolution of the (a) area enclosed by a circular GB, and (b) the misorientation angle with

τ̃ = 0, τ̃ = −3, and τ̃ = 3. We have taken r1 = 0.01, M̃ = 1, and S̃ = 1.

evolution behavior of the elliptic GB is qualitatively identical to the near-circular GB. The GB

always shrinks to a circular shape in the presence of viscous sliding but to a self-similar shape in its

absence. Moreover, the shrinkage is faster if the coupling factor is ignored. In Figures 8(a) and 8(b)

we have compared the evolution of both the area enclosed by the GB and the misorientation angle

under various assumptions on the kinetic coefficients. We find that the misorientation dependence

of the mobility, as well as of the sliding coefficient, yields significant influence on the GB dynamics.

These coefficients were taken to be unity, whenever present, in all of the previous simulations. The

misorientation dependence slows down the shrinkage rate and, unlike what was observed earlier, the

rate is slowest when both M̃ and S̃ depend on θ in addition to β being absent (the fully coupled case

is faster). The shrinkage rate remains fastest for a purely normal motion. The rate of misorientation

evolution is also considerably slower when the coefficients depend on θ. The misorientation angle

increases to a fixed point, close to θβ, for all the cases which incorporate geometric coupling. The

reason for θ to increase rapidly towards the end, before reaching the fixed point, can be explained

by noticing the almost shrunk size of the inner grain at these time instances. The absence of the

coupling factor however drives the misorientation towards zero. We provide a more detailed analysis

of the misorientation dynamics in Subsection 3.2.6. Finally we note that, although the shape of the

GB does not change without viscous sliding, the inner grain continues to rotate due to the geometric

coupling.

3.2.4 Effect of external stress

Assume the bicrystal arrangement to be under the influence of a uniform shear stress τ̃ . The kinetic

relations (2.9) and (2.10) incorporate the effect of stress through fs, see (A.21)2. To illustrate the

significance of stress we look at the area and the misorientation evolution of a circular GB with and

without the external stress. We find that, for τ̃ below a critical value, the direction of the evolution
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Figure 10: Evolution of (a) the radius and (b) the misorientation of a circular GB for varying r1,

where M̃ = 1 and S̃ = 1

is reversed. For r1 = 0.01 and a circular GB the critical stress is around −3. We have compared

the evolution of area and misorientation at τ̃ = ±3 with that at zero stress in Figure 9. For a

positive shear stress the grain continues to shrink but at an increased rate. Likewise the the change

of misorientation angle becomes more rapid as the stress is increased from zero level. We note that

the considered value of stress is insufficient to initiate plastic deformation of the grains. Indeed, for

τ̃ = 3, γ0 ∼ 1N/m, and R0 ∼ 20× 10−9m we get τ = γ0τ̃ /R0 ∼ 240MPa. For nanocrystalline grains

the yield stress is however of the order of several tens of GPa [8].

3.2.5 Role of sliding

The significance of viscous sliding along a GB increases as the operating temperatures tend towards

the melting point. It can be negligible for lower temperatures. We have already seen that the

presence of viscous sliding will always turn any arbitrary GB circular, while its absence will keep it

self-similar. In the present discussion we would like to investigate further the role of sliding in the

dynamic process. To do so, we study the area and the misorientation evolution of a circular GB

for different values of r1. The results are given in Figures 10(a) and 10(b). We note that with an

increasing r1, which is equivalent to an increasing sliding coefficient, the bicrystal turns into a single

grain much faster, either by shrinking of the inner grain or by diminishing of the misorientation angle

through the relative rotation. While looking at the plots, it should be remembered that the evolution

ceases as soon as the inner grain is completely shrunk or the misorientation angle has become zero.

3.2.6 Misorientation evolution as a dynamical system

We have observed, in several instances above, the misorientation angle to evolve to a fixed value

thereby freezing any further relative rotation of the grains. The nature of misorientation evolution

and the associated fixed points was found to be highly sensitive to the choice of constitutive as-
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Figure 11: Flow diagram for θ with (a) β as given in (2.19), and when (b) β = 2 tan(θ/2) for all

θ. Both the diagrams show two stable fixed points and one unstable fixed point. We have used

R̃i = 0.4, r1 = 0.01, M̃ = 1, S̃ = 1.

sumptions as well as the initial conditions such as shape, etc. It should be mentioned that the GB

continues to migrate even when the misorientation has reached a fixed point, unless the point cor-

responds to 0◦. The purpose of this subsection is to study misorientation evolution as a dynamical

system and analyze the nature of its fixed points. For illustration purposes we restrict our attention

to circular GBs with constant coefficients for mobility and viscous sliding. The fixed points for the

considered system can be obtained as the zeros of the right hand side of (3.16)2. In Figure 11 we

show the flow diagram for the misorientation angle for a circular GB with the mentioned parameters.

We investigate the effect of the sharp transition in the variation of β given in (2.19). In Figure 11(a)

we consider this β with the general form of isotropic GB energy to observe three fixed points in the

range 0◦ ≤ θ ≤ 45◦. The two stable points occur at 0◦ and at an angle close to θβ. The unstable

fixed point is located around 6.5◦. On the other hand, if we ignore the transition in β, and take it

to be 2 tan(θ/2) for all θ, then the second stable fixed point moves to a value close to θ = 40.6◦.

Whereas in the former case the transition in β dominates over the effect of cusp in γc in determining

the fixed point [14], it is the absence of change of mode in β that is responsible for the deviation of

the fixed point away from the cusp angle in the latter scenario. The MD simulation results in [16]

predict a stable fixed point in a very small neighborhood of the cusp angle θc = 36◦.

3.3 Anisotropic GB energy and anisotropic kinetic coefficients

We now turn our attention towards the coupled GB motion allowing for anisotropy in both the GB

energy and the kinetic coefficients. The form of the considered anisotropy has been already specified

in Subsection 2.3. The role of anisotropic GB energy in the determination of an equilibrium shape

(Wulff shape) of a GB, as well as in studying its migration, is well understood (cf. §5.6 of [2] and

the references therein). The anisotropy is known to yield faceted GBs such that, under capillarity
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Figure 12: Plot for the GB stiffness Γgb = γ̃c + ∂2γ̃c/∂φ
2, reduced mobility M̃r(φ) = M̃2(φ)Γgb, and

the term B = r1M̃2S̃/(r1S̃ + M̃2β
2)Γgb at θ = 10◦ and 30◦. We have taken r1 = 1, S̃ = 1, and β to

be anisotropic.

forces, any initial GB shape will turn into a polygon. The purpose of this section is to study the

influence of kinetic coefficients and their anisotropy on the shape and misorientation evolution of a

GB with anisotropic energy. We also provide a detailed comparative study to bring out the effect of

anisotropy in the mobility coefficient and the geometric coupling factor.

To appreciate the challenge in implementing a numerical procedure for anisotropic energies as-

sume for now that only migration (with constant mobility) is allowed. The GB stiffness Γgb =

γc + ∂2γc/∂φ
2 for anisotropic energies, such as those given in (2.11), is negative over certain values

of φ. The region spanned by these values constitute the GB spinodals [29]. Figure 12 shows the

GB stiffness (red lines) in the inclination range 0◦ < φ < 90◦ for different misorientation angles.

We notice that for any misorientation angle the GB stiffness changes sign at two fixed inclinations

φ = 22.5◦ and 67.5◦. This is due to the decoupled dependence of the stiffness on θ and φ for the

energy given by (2.11). For GB spinodals, the governing equation for normal velocity (2.9) becomes

backward parabolic and hence ill posed [30]. It therefore becomes necessary to regularize the GB

energy using a curvature dependent energy, see (A.14). A quadratic regularizing energy introduces

a surface Laplacian of the mean curvature in (2.9) and (2.10). This higher order derivative requires

a time step ∆t̃ ∼ h̃4, where h̃ is the grid size, when (2.9) is integrated using the explicit time in-

tegration scheme [54]. Therefore higher accuracy in the solution (lower h̃) has to be balanced with

increased simulation time.

The computational domain has been taken to be a square with coordinates [−1, 1]× [−1, 1] with

N = 45 grid points in each direction. The time step is taken as ∆t̃ = 0.5h̃4 to avoid instability in the

numerical calculations. In special cases, e.g. when the sliding is absent and the surface Laplacian

term disappears from (2.9), a larger time step ∆t̃ = 10−4 has been used.
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Ã

 

 

no S, A
no S, I
S̃ = 1, no β, A
S̃ = 1, no β, I
S̃ = 1, A
S̃ = 1, I

(a)

0 0.2 0.4 0.6 0.8
0

10

20

30

t̃

θ
(◦
) 0 0.05

7.95

8

8.05

(b)

Figure 13: (a) Area and (b) misorientation evolution when the GB energy is isotropic (denoted by I

in the legend) and anisotropic (denoted by A in the legend). We have used r1 = 0.01, M̃ = 1, and

S̃ = 1. The GB has been initially taken to be circular with R̃i = 0.4 and θi = 8◦. The legend is

shared between both the figures.

3.3.1 Effect of anisotropic energy

We start by looking at the coupled motion with anisotropic GB energy while keeping all the kinetic

coefficients either constant or isotropic. In Figures 13(a) and 13(b) we have compared the evolution

of the inner grain area and the misorientation under isotropic and anisotropic energies for various

choices of kinetic parameters. These choices as well as the initial conditions are kept identical to

those taken earlier in Figure 6. When viscous sliding is absent, the evolutions are initially similar

for both isotropic and anisotropic GB energy. However, after a while, the misorientation for the

latter case stops evolving due to a negligible contribution from the integral involving the torque term

∂γ̃c/∂θ. Moreover, the shape of the GB remains self-similar with area ceasing to evolve once the

rotation stops.

The dynamics is completely different when viscous sliding is active. First we consider the case of

zero geometric coupling. The non-dimensionalized form of (2.9) and (2.10) are then given by

Ṽ =
1

2
M̃f̃curv and θ̇ =

−
∮
C(∂γ̃c/∂θ)ds∮

C 2(x̃ · n)2/(r1S̃)ds−
∮
C r2

(
R̃2 − R̃2

)2
ds
. (3.21)

Equation (3.21)1 is of the same form as the well studied kinetic law for GB migration (cf. Ch. 8

of [36]) except for the fact that GB energy, and hence the stiffness, is now varying with misorientation.

The GB shapes are expected to evolve towards the local equilibrium (Wulff shapes) corresponding

to the instantaneous misorientation angle after a sufficiently long time from t̃ = 0. The equilibrium

shape reached at large time depends of course on the initial misorientation. This is confirmed from

the shape evolutions given in Figures 14(a)(i) and 14(b)(i), where we also note the existence of an

unstable fixed point between 22◦ and 23◦ in the evolution of θ. Whereas the former initial condition
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Figure 14: Evolution of an initially circular GB with (a) θi = 22◦ and (b) θi = 23◦ when (i) GB

energy is anisotropic and M̃ = 1 and (ii) both GB energy and mobility are anisotropic such that

M̃ = M̃2(φ). We have taken r1 = 1, S̃ = 1, τ̃ = 0, and geometric coupling to be absent.

θ = 30◦θ = 4◦

Figure 15: The graphs generated by the Cahn-Hoffman vector γ̃cn − ∂γ̃c
∂φ t for θ = 4◦ and θ = 30◦.

In plotting these graphs we have smoothened the cusps in the non-differentiable energy.

takes the GB towards a more square like shape, the latter develops it as an octagon. To explain

this, we recall that the Wulff shape of a crystal for a given energy has the form of the innermost

convex envelope generated by the graph of the Cahn-Hoffman vector (cf. §5.6.4 of [2]). The plots

for the Cahn-Hoffman vector corresponding to θ = 4◦ and 30◦ are given in Figure 15. The ‘ears’ in

these plots correspond to the spinodals. For θ = 4◦ the envelope is square with narrow truncated

corners, whereas, at a larger misorientation angle 30◦, the shape develops much wider corners. This

is due to the appearance of additional local minimas in the energy plot at higher misorientation

angles, see Figure 2(b). Hence, as the misorientation increases, the Wulff shape begins to contain

wider and flattened corners leading to an octagonal appearance. The area and the misorientation

evolution of an initially circular GB, in the absence of geometric coupling and constant mobility and

viscous sliding coefficients, are shown in Figures 13(a) and 13(b). The corresponding shape evolution

is shown in Figure 16(i). We observe an almost 10% drop in the area until t̃ = 0.04 after which the

area evolution becomes negligible; the misorientation however continues to decrease. The former

can be explained by noting the appearance of facets in Figure 16(i) as early as t̃ = 0.02, which

results in diminishing of the weighted curvature in the right hand side of (3.21)1. The evolution
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Figure 16: Shape evolutions of an initially circular GB under anisotropic GB energy for (i) no β and

(ii) the fully coupled case. We have taken M̃ = 1, S̃ = 1, and r1 = 0.01.

of the misorientation towards θ = 0 is dominated by the integral involving the torque term in the

numerator of (3.21)2.

Next we consider the fully coupled case with isotropic β in addition to constant mobility and

viscous sliding coefficients. The area and the misorientation evolution of an initially circular GB, as

shown in Figures 13(a) and 13(b), follow trends very similar to the preceding case. The corresponding

shape evolution is given in Figure 16(ii). Interestingly, for our choice of initial conditions and material

parameters, the misorientation evolution is briefly non-monotonic in the beginning, see inset in Figure

13(b) and Figure 16(ii). This can be explained by recalling (2.10). The first integral in the numerator,

which is initially greater than the integral containing the torque term ∂γ̃/∂θ, become vanishing small

as the facets are formed thereby allowing the torque term to dominate. Secondly, the misorientation

now approaches zero, unlike with isotropic energy where it increases to a finite value.

The effect of introducing isotropic β on the shape evolution, while keeping other parameters

unchanged, can be observed from Figure 16 as well as from Figures 14(a)(i) and 17(i). In Figure

14(a)(i) there is little difference in the shape evolution as well as the eventual direction of the

misorientation orientation, although one can notice a small delay in the appearance of facets. In

Figure 17(i) however the direction of misorientation evolution is reversed. Keeping β isotropic, the

influence of initial conditions on the shape evolution can be seen in Figures 18(a)(i) and 18(b)(i).

The shear stress is taken to be a finite value in both of these cases. The misorientation value of

around 30◦ is reached much faster in the former case without any appreciable shape change. That

the effect of stress is significant on both the shape and the misorientation evolution can be seen by

comparing Figures 17(i) and 18(a)(i).

We would like to mention that, for all the cases considered in Figure 18(a) including the one

mentioned above, the rate of misorientation change is extraordinarily large. This is happening

because of the two positive terms in the denominator of (2.10) becoming very close to each other.

We should recall that our derivation of linear kinetic laws is based on the assumption of slow kinetics

and therefore we should exercise caution in interpreting such results.
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3.3.2 Effect of anisotropic mobility

We investigate the influence of anisotropic mobility coefficient upon the GB evolution, starting by

assuming the geometric coupling to be absent, see Figures 14(a) and 14(b). The governing equations

are again reduced to (3.21) but now with M̃ depending additionally on φ. We note that, for the given

parameters, the unstable fixed point persists between 22◦ and 23◦. There are two noticeable points in

each of these two cases. With the introduction of anisotropic mobility the GB shape is more curved,

or in other words less faceted, and the inner grain experiences larger shrinkage. Both of these results

are in good qualitative agreement with the phase field and the molecular dynamic simulations of

Kazaryan et al. [42] and Lobkovsky et al. [44], respectively. To explain this we recall, using (3.21)1,

that the shape of the inner grain at large times (the equilibrium shape) is now governed by reduced

mobility M̃r(φ) = M̃2(φ)Γgb instead of just GB stiffness, where we have used M̃ = M̃2(φ). We

observe from Figure 12 that although the spinodals do not change, owing to the decoupling between

θ and φ, the reduced mobility for globally stable inclinations (where the GB stiffness is non-negative)

is higher than the GB stiffness. This forces the portions on the GB with globally stable inclinations

to move by larger distances compared to the case when the mobility is isotropic. As a result the

adjacent facetted regions are shrunk making the shapes look more rounder than before. The stiffness

difference, and therefore the rounding effect, is larger for higher misorientation angles.

Now we consider the evolution with anisotropic mobility with isotropic coupling factor. The shape

evolution is governed by (2.9), where the weighted curvature term tries to flatten out the spinodals

from the GB whereas the θ̇ dependent term tries to form a 45◦ rotated square like shape due to its

four-fold symmetry. The first term involves a modified stiffness factor B = r1M̃2S̃/(r1S̃ + M̃2β
2)Γgb

which reduces to M̃r when β is absent. The values of B remain very close to those of M̃r at lower

misorientation angles with increasing deviation for higher angles. The influence of incorporating β

on shape evolution can be seen by comparing Figures 14(a)(ii) and 17(ii). Most interestingly, the

direction of misorientation evolution is itself reversed suggesting that the earlier existence of a fixed

point between 22◦ and 23◦ is now lost. Hence the shape evolution in the latter case would look very

similar for θi = 23◦, thereby warranting a comparison between Figures 14(b)(ii) and 17(ii). For the

parameters considered, the shape evolution in Figure 17(ii) is dominated by the weighted curvature

term since the misorientation rates remain low. The situation is reversed if stress is introduced in

the problem as discussed next.

The presence of a constant shear stress field manifests itself on the numerator of the misorientation

evolution equation (2.10). It can have a significant effect on the shape evolution, as can be seen on

comparing Figures 17(ii) and 18(a)(ii). In the latter, the shape is evolved towards a rotated square.

Indeed, the introduction of stress greatly increases the misorientation rate forcing the θ̇ dependent

term in (2.9) to dominate over the weighted curvature term. The shapes are then governed by kinetic

relations of the form Ṽ = M̃2(φ) which owing to the four-fold symmetry of anisotropic mobility leads

to rotated squares. On the other hand, we see from Figure 18(b) that having a sufficiently large shear
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Figure 17: Evolutions of an initial circular GB with θi = 22◦ when (i) GB energy is anisotropic,

M̃ = 1, and β = β(θ), (ii) GB energy and mobility are anisotropic (M̃ = M̃2(φ)) while β = β(θ), and

(iii) GB energy, mobility, and β all are anisotropic, such that M̃ = M̃2(φ). We have taken r1 = 1,

S̃ = 1, and τ̃ = 0.

stress can also change the direction of misorientation evolution, which in this particular situation

would have been towards 0◦ in the absence of stress. A comparison between Figures 18(a) and 18(b)

is also instructive. We note that the misorientation evolution rates are comparatively lower when

θi = 4◦, although the shape evolution remains dominated by the θ̇ dependent term in (2.9).

3.3.3 Effect of anisotropic geometric coupling

Finally, we consider the case when energy, mobility, and coupling factor all are anisotropic. Although

the geometric coupling factor β(θ, φ), given by (2.20), is not differentiable at φ = 22.5◦ and 67.5◦ in

0◦ ≤ φ ≤ 90◦ and 0 ≤ θ ≤ θβ, the modified stiffness function B = r1M̃2S̃/(r1S̃ + M̃2β
2)Γgb remains

smooth. This can be confirmed from the Figure 12. As a result (2.9) remains well-posed. Some

illustrations of shape evolution under these conditions are given in Figures 17, 18(a), and 18(b).

Here also we see that at the intermediate time instance t̃ = 0.015 the shapes are circular, but the

shapes are controlled jointly by both the terms in (2.9). In all these cases, anisotropy in β accelerates

both the evolution in misorientation angle as well as the shrinkage of the inner grain. In Figure 17,

where the shape evolution is dominated by the weighted curvature and hence B, anisotropic β is seen

to force the grain to become more round, so much so that the overall evolution has the semblance of

isotropy. In Figures 18(a) and 18(b) the shape evolutions are dominated by the θ̇ dependent term

in (2.9) and hence we obtain rotated squares at sufficiently large times. The effect of anisotropy in

these cases is restricted to affecting the rate of misorientation evolution and the shrinkage.
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Figure 18: Evolution of an initially circular GB with (a) θi = 22◦ and (b) θi = 4◦ when (i) GB energy

is anisotropic, M̃ = 1, and β = β(θ), (ii) GB energy and mobility are anisotropic (M̃ = M̃2(φ))

while β = β(θ), and (iii) GB energy, mobility, and β all are anisotropic such that M̃ = M̃2(φ). We

have taken r1 = 1, S̃ = 1, and τ̃ = 6.

4 Concluding discussion

We have presented a detailed level set method based study of two-dimensional coupled GB motion in

a bicrystal. The normal motion of the GB is accompanied by the relative rotation between the grains

resulting in the evolution of misorientation. The rotational motion is the manifestation of the biased

motion of the atoms in tangential direction of the GB along with normal motion and/or viscous

sliding. Our level set simulations have mainly focused on the morphological evolution of the GBs.

Initially restricting ourselves to isotropic GB energy and kinetic coefficients we found, among other

things, the evolution to slow down for misorientation dependent mobility and sliding coefficients in

comparison to the cases when these are constant. We also observed the local minimum in energy

(at θ = 36.9◦) to introduce a stable fixed point at θ = 40.6◦ in the misorientation evolution, while

assuming the mode shifting of the coupling factor to be absent. The presence of mode shifting of the

coupling factor however brought down the stable fixed point to within the range of misorientation

angles in which the mode shifting occurs. The shape evolution of a GB with anisotropic energy was

seen to be influenced by both weighted curvature and geometric coupling. Whenever the former

dominated the GB dynamics the shape was dictated by Cahn-Hoffman vector plots. The roundness

of the shape was then governed by the generalized stiffness which was highest for anisotropic mobility.

On the other hand whenever the latter dominated the evolution, the nature of the shape was governed

by the symmetry of anisotropic mobility.
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One central shortcoming of our approach was regarding the treatment of singularities in the con-

stitutive prescription of GB energy and geometric coupling factor. Our framework required these

functions to be sufficiently smooth, which was ensured by using arbitrary smoothening procedures.

After doing so however, regardless of the precision in smoothening, there will always exist a possi-

bility of obtaining solutions which could deviate from the physically realizable ones. To solve the

governing equations while preserving the nature of singularity will potentially be the most impor-

tant improvement over the present work. Secondly, because of an explicit numerical scheme (for

anisotropic simulations) we had to work with very small time steps for avoiding numerical instabil-

ity. An implicit or a semi-implicit scheme will possibly allow us to take larger time steps. Finally, we

need to have a sufficiently refined mesh for accurate computation of the last integral in the denomi-

nator of (2.10). However our use of an explicit time integration scheme restricted us to go below a

certain mesh size.

The present study was restricted to two-dimensional GB motion. For its wider application it

should be extended to three-dimensional systems including junctions. Presently there is no framework

available to model such generalizations. A three-dimensional formulation of GBs will have five degrees

of freedom: three misorientation angles and two independent variables describing the GB orientation.

The dynamics will be governed by four coupled kinetic relations for normal motion and misorientation

evolution. The kinetic coefficients, presently all scalar, will now be higher order tensors. The presence

of junctions, on the other hand, will introduce additional kinetic equations for junction velocity and

constitutive coefficients such as junction mobility.

References

[1] Gottstein G and Shvindlerman L S 2010 Grain Boundary Migration in Metals: Thermodynam-

ics, Kinetics, Applications (CRC Press, Taylor & Francis Group, USA)

[2] Sutton A P and Balluffi R W 2003 Interfaces in Crystalline Materials (Clarendon Press, Oxford)

[3] Read W T and Shockley W 1950 Phys. Rev. 78 275–289

[4] Ashby M F 1972 Surf. Sci. 31 498–542

[5] Cahn J W, Mishin Y and Suzuki A 2006 Acta Mater. 54 4953–4975

[6] Cahn J W and Taylor J E 2004 Acta Mater. 52 4887–4898

[7] Taylor J E and Cahn J W 2007 Interfaces Free Bound. 9 493–512

[8] Ramesh K T 2009 Nanomaterials: Mechanics and Mechanisms (Springer, USA)

[9] Humphreys F J and Hatherly M 2004 Recrystallization and Related Annealing Phenomena (El-

sevier, UK)

30



[10] Li C H, Edwards E H, Washburn J and Parker E R 1953 Acta Metall. 1 223–229

[11] Molodov D A, Ivanov V A and Gottstein G 2007 Acta Mater. 55 1843–1848

[12] Gorkaya T, Molodov D A and Gottstein G 2009 Acta Mater. 57 5396–5405

[13] Legros M, Gianola D S and Hemker K J 2008 Acta Mater. 56 3380–3393

[14] Trautt Z T and Mishin Y 2012 Acta Mater. 60 2407–2424

[15] Trautt Z T, Adland A, Karma A and Mishin Y 2012 Acta Mater. 60 6528–6546

[16] Upmanyu M, Srolovitz D J, Lobkovsky A E, Warren J A and Carter W C 2006 Acta Mater. 54

1707–1719

[17] Bernstein N 2008 Acta Mater. 56 1106–1113

[18] Wan L and Li J 2013 Modelling Simul. Mater. Sci. Eng. 21 (055013) 1–22

[19] Warner D H and Molinari J F 2008 Modelling Simul. Mater. Sci. Eng. 16 (075007) 1–9

[20] Wu K A and Voorhees P W 2012 Acta Mater. 60 407–419

[21] Osher S and Sethian J A 1988 J. Comput. Phys. 79 12–49
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A Derivation of the kinetic relations

The purpose of this appendix is to derive the two-dimensional linear kinetic relations of coupled GB

motion as given in Equations (2.9) and (2.10). In order to do so systematically, we start by recalling

the basic theory pertaining to kinematics and balance laws. This is followed by a detailed formulation

of the dissipation inequality, which is a consequence of the second law of thermodynamics, to sub-

sequently derive the linear kinetic relations within the ambit of linear irreversible thermodynamics.

Similar results were previously obtained by Taylor and Cahn [7] using dissipation potentials. Our

approach allows us to work in a general framework which can be used to extend the derivation to

three-dimensional problems as well as those including deformation in the grain. We will demonstrate

these in a separate communication. Our treatment is closer in spirit to that of Gurtin and coau-

thors [56,57] but, unlike their method, we avoid postulating an a priori existence of configurational

forces [58].

A.1 Basic theory

We now collect various kinematical results and balance equations to be used in the following discus-

sion. For further details, including the derivations, we refer the interested readers to a comprehensive

account of boundary thermodynamics in [57]. For our purposes, we consider GB as a closed curve

C in a two-dimensional section ω of the body, see Figure 19. Let P be some arbitrary part of ω and

denote Γ as its intersection with C; we mark a and b as the end points of Γ. We use m to denote

the outward unit normal to the boundary ∂P of P , and n and t the unit normal and tangent vectors

associated with Γ, as shown in the figure. If {e1, e2} is a fixed Cartesian basis, with φ as the angle

between n and e1 (measured anticlockwise from e1), then

n = cosφ e1 + sinφ e2 and t = sinφ e1 − cosφ e2. (A.1)

Let x = r(s, t) represent the arc length parametrization of C, where s is the arc length parameter

which increases in the direction of t. The normal velocity and the curvature are given by (these are
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equivalent to the definition in (2.2) and (2.4))

V =
∂r

∂t
· n and κ =

∂φ

∂s
, (A.2)

respectively. The following relations follow immediately from (A.1) and (A.2)2

∂n

∂s
= −κ t and

∂t

∂s
= κn. (A.3)

A normal trajectory is a smooth curve, passing thorough a point s = s0 on C at time t0, given

by a function s = S(t) such that

t(S(t), t) · dr(S(t), t)

dt
= 0. (A.4)

The normal time derivative of a function f(s, t) defined on C, following the normal trajectory S(t),

is defined by

f̊(s, t) =
df(S(τ), τ)

dτ

∣∣∣
τ=t

. (A.5)

It represents the rate of change in f with respect to an observer sitting on C and moving with the

normal velocity of the interface. The following relations are easily verifiable (cf. pp. 67-68 in [57]):

t̊ = φ̊n, n̊ = −φ̊ t, φ̊ =
∂V

∂s
, and κ̊ =

∂2V

∂s2
+ κ2V. (A.6)

The end points a and b of Γ lie on curves along ∂P ; they can be parametrized with arc length

values Sa(t) and Sb(t), respectively such that xa,b = r(Sa,b(t), t) (with obvious notation). These are

not necessarily normal trajectories at the end points. The normal velocity of the end points, given

by Va,b = na,b · dxa,b/dt, is equal to the normal velocity of the curve at the respective points. The

tangential endpoint velocity is defined by Wa,b = ta,b ·dxa,b/dt. Here na and ta stand for the normal

and the tangent at a, etc. The following identities, with similar ones given at b, are straightforward

and will be useful in our subsequent discussion (cf. pp. 69-70 in [57]):

dxa
dt

= Vana +Wata and
dφa
dt

= φ̊|a + κaWa. (A.7)

Assuming zero excess mass density at the GB, the balance of mass requires [57]

[[ρU ]] =
∂h

∂s
+ [[j]] · n (A.8)

at every point on the GB, where h and j denote the diffusional flux along the boundary and in the

grain, respectively, ρ is the mass density, and U± = V − v± · n (v is the material velocity). We

have used the notation [[f ]] for (f+ − f−), where f+ is the limiting value of f as we approach the

boundary from the side into which n points and f− otherwise. When [[j]] · n = 0, we can use (2.8)

and [[ρ]] = 0 to integrate (A.8) over the entire GB to get [7]

h =
ρθ̇

2
(R2 −R2), (A.9)
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Figure 19: Domain ω containing a GB C.

where R2 =
∮
C R

2ds/length(C) is the mean square radius of the GB. We have also used the fact

that θ̇ is independent of s.

On the other hand, in the absence of body forces, inertia, and surface stress, the balance of linear

momentum yields

[[σ]]n = 0 (A.10)

at every point on the GB, where σ is the symmetric Cauchy stress tensor.

A.2 Dissipation inequality

Let Ψ and γ be the free energy densities per unit area of ω and per unit length of C, respectively.

The latter is to be understood as an excess quantity in the sense of Gibbs’ thermodynamics. We

assume body forces and inertial effects to be absent. The mechanical version of the second law

of thermodynamics, under isothermal conditions and chemical equilibrium, requires that for any

arbitrary part P of ω∫
∂P
σm · vds− d

dt

(∫
P

Ψda+

∫
Γ
γ ds

)
−
∫
∂P
µj ·mds− (µh)ba︸ ︷︷ ︸

α

+

(
c · dx

dt
+m

dφ

dt

)b
a︸ ︷︷ ︸

β

≥ 0, (A.11)

where µ is the chemical potential of the mobile atoms both on the GB and away from it. The left

hand side of the inequality gives the total entropy generation within P . The notation (f)ab is used for

fb− fa, i.e. for the difference in values of f when calculated at the end points. The first term in the

above inequality is the power input into P due to bulk stresses, while the next two terms represent

the change in total stored energy content in P . The pair of terms marked with α denote the power

input due to the additional mass flow in P [57]. The pair of terms marked as β has to be read as

cb ·
dxb
dt
− ca ·

dxa
dt

+mb
dφb
dt
−ma

dφa
dt

. (A.12)

They represent the power expended due to configurational changes in the portion of the GB contained

within P . The exact form of this expression depends on the constitutive prescription of GB energy.
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It ensures that the total entropy production at the boundary is given in terms of an entropy density

per unit length of the boundary and is independent of the choice of P ; this is further elaborated

below. The conjugate forces c and m at the end points are determined such that these requirements

are maintained. The requirements, it should be noted, are essentially on the nature of excess entropy

production and we are free to impose them on the system. The form that the variables c and m take

hence depends on the constitutive specification of the GB. Similar considerations, although within a

more formal framework of configurations forces, are made in [57], see for e.g. §XVIII therein. Using

the surface transport theorem (cf. p. 70 in [57]) and the balance relations (A.8) and (A.10) in (A.11),

and by reducing P to a pillbox around Γ, we can obtain∫
Γ

(
[[UE]]n · n+ τUtan − γ̊ + γκV − h∂µ

∂s

)
ds+

(
c · dx

dt
+m

dφ

dt
− γW

)b
a

≥ 0, (A.13)

where E = (Ψ− ρµ)1− σ is the Eshelby tensor, τ = σn · t, and Utan = [[v]] · t.
We consider the following regularized form for GB energy [29]

γ = γc(θ, φ) +
1

2
δrκ

2, (A.14)

where δr � 1 is a constant regularization parameter and γc is at least once differentiable w.r.t. θ and

twice differentiable w.r.t. φ. To evaluate γ̊ we use (A.6)3,4 with (A.14), in addition to noting that

θ̊ = θ̇ for θ is spatially homogeneous. Its substitution into (A.13), followed by some straightforward

manipulation, can be shown to yield∫
Γ

(
[[UE]]n · n+ τUtan + fcurvV −

∂γc
∂θ

θ̇ − h∂µ
∂s

)
ds

+

[(
c · n− ∂γc

∂φ
+ δr

∂κ

∂s

)
V +

(
c · t− γ + δrκ

2
)
W + (m− κδr)

dφ

dt

]b
a

≥ 0, (A.15)

where

fcurv =

(
γc +

∂2γc
∂φ2

)
κ− δr

(
∂2κ

∂s2
+

1

2
κ3

)
. (A.16)

The left hand side of (A.15) is the total entropy generation associated with a part Γ of the GB.

We would like to choose c and m such that it is expressed in terms of a surface entropy density

independent of P , i.e. there exist a density η such that the entropy generation is equal to
∫

Γ ηds. As

a result we require

c · n =
∂γc
∂φ
− δr

∂κ

∂s
, c · t = γc −

1

2
δrκ

2, and m = κ δr. (A.17)

These expressions are in agreement with those obtained in §XVIII of [57]. The dissipation inequality

is now reduced to an integral over Γ which, owing to the arbitrariness of Γ, is equivalent to

[[UE]]n · n+ fcurvV + τUtan −
∂γc
∂θ

θ̇ − h∂µ
∂s
≥ 0. (A.18)
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We assume Fick’s law for the diffusion flux h, i.e.

h = −D∂µ
∂s
, (A.19)

where D ≥ 0 is the diffusion mobility along the GB. Recall from Subsection 2.1 that Utan = −θ̇(x·n),

v+
n = θ̇(x · t), and v−n = 0. Using these in (A.18), along with substituting h and ∂µ/∂s from (A.9)

and (A.19), we can rewrite the dissipation inequality as

fnV + ftanUtan ≥ 0, (A.20)

where

fn = [[E]]n · n+ fcurv and ftan =
1

(x · n)

(
fs −

θ̇

2Dm

(
R2 −R2

)2
)
, (A.21)

with fs = (E+n · n)x · t+ τx · n+ ∂γc/∂θ and Dm = D/ρ2.

Remark A.1 (steady state pure sliding). For the case of steady state pure sliding [59], V = 0

and there is no internal entropy generation. With reference to (A.20) this implies ftan = 0 for

Utan 6= 0. The following kinetic relation readily emerges from (A.21)2

θ̇ =
2Dm

∮
C fsds∮

C

(
R2 −R2

)2
ds
. (A.22)

If we consider a hexagonal GB and assume τ = 0 then this relation reduces to

θ̇ = 60
Dm

L5

∮
C

∂γc
∂θ

ds, (A.23)

where L is the edge length of the hexagon. This expression matches well with the one obtained

recently in [49] except for the constant factor, which was calculated as 95 therein.

A.3 The kinetic relations

The dissipation inequality (A.20) leads us to identify fn and ftan as the driving forces for the normal

and the tangential motion of the GB, respectively. The simplest kinetic relations for the coupled GB

motion can be derived by positing a linear relationship between the driving forces and the velocities,

i.e.

V = M11fn +M12ftan and (A.24)

Utan = M21fn +M22ftan, (A.25)

where the coefficients can be at most functions of θ and φ. By Onsager’s symmetry principle,

M12 = M21. Moreover, dissipation inequality (A.20) requires that the matrix(
M11 M12

M21 M22

)
is positive definite. (A.26)
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If M11 = 0 then M12 necessarily vanishes so as to satisfy the condition (A.26). The normal motion

is then absent and the tangential motion is governed by Utan = M22ftan with M22 ≥ 0. The kinetic

coefficient M22 determines the nature of viscous sliding along the boundary. On the other hand if

M11 6= 0 the kinetic relations can be rewritten in the form

Utan = βV + Sftan and (A.27)

V = Mfn +Mβftan, (A.28)

where S = M22 −M2
12/M11, M = M11, and M12 = βM (when M 6= 0).

For simple GB migration ftan = 0 and Utan = 0, reducing the kinetic relations to the familiar

equation V = Mfn; the coefficient M therefore has the physical interpretation of GB mobility [1,9].

For a purely tangential motion the kinetic relations reduce to Utan = Sftan; the coefficient S hence

represents the pure viscous sliding coefficient [5, 7]. Furthermore, when ftan = 0, V = Mfn and

Utan = βV . This implies that, even when the tangential driving force is absent, the grains can move

in a tangential direction w.r.t. the GB due to the coupling between the normal and the tangential

motion. The coupling coefficient β, which turns out to be a geometrical quantity, has been a subject

of much interest in the recent theoretical and experimental literature [5,11,12]. Substituting (A.27)

and (A.28) back into (A.20), we obtain

M(fn + βftan)2 + Sf2
tan ≥ 0, (A.29)

according to which M and S are required to be strictly non-negative.

The kinetic relation for the normal velocity, given in (2.9), is obtained by replacing ftan in (A.28)

from (A.27). The other kinetic relation (2.10), for the evolution of misorientation θ, is derived by

first substituting V from (A.28) into (A.27) and then integrating the equation over the closed GB.

Recall that the misorientation angle is independent of s and depends only on time t.

Remark A.2. There are two differences in our expressions for the kinetic laws in comparison to

those derived by Taylor and Cahn [7]. In expression (2.10) for θ̇ their formula has a positive sign,

compared to the negative sign in (2.10), before the last term in the denominator. In the same term

there is also a mismatch of factor of 2. The negative sign in our expression is justified for it leads

to the correct expression for sliding rate in the case of steady state pure sliding (see Remark A.1).

Secondly, the expression for θ̇ in [7] contains an additional term in the denominator, which appears

due to their choice of dissipation functional.

B Role of elasticity of the grains

We present a small calculation to justify why we can neglect elastic deformation of the grains in

our present work. We consider the bicrystal of Section 2 with a circular GB of initial radius Ri

undergoing a purely normal motion due to its curvature. The driving force fn, which can be seen
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as a pressure on the outer surface of the inner grain, is given by γc/Ri, where γc is the GB energy

introduced in Section 2. To calculate a typical value for the total dissipation rate during migration,

we take Ri = 20nm, constant mobility M0 = 10−7m4/J/s [14], and GB energy γc = 0.76J/m2. The

energy has been evaluated using shear modulus µ = 46GPa, Poisson’s ratio ν = 0.34, and θ = 15◦ in

(2.11). The total dissipation rate at t = 0 is Dc = πfnV R
2
i = 18J/s per unit axial length of the GB.

On the other hand, we compute the rate of change of total elastic energy of the inner grain under

the influence of a hydrostatic pressure of similar magnitude as of fn. We take the inner grain to be

a solid cylinder of length L with one end fixed, while keeping the the other traction free. Assuming

the material response to be isotropic and the problem to be axisymmetric, we can calculate the total

strain energy rate at t = 0 as Ẇc ≈
(
πMγ3

c (λ+ 2µ)
)
/
(
2µR2

i (3λ+ 2µ)
)

per unit axial length of the

GB, where λ is a Lame constant. Substitution of various constants yields Ẇc = 1.8 × 10−3 J/s per

unit axial length of the GB. A comparison between the order of the magnitudes of the dissipation

rate and the rate of change of elastic energy will readily justify our assumption to neglect elasticity

of the grains. Even the inclusion of tangential shear in the grains will not change the order of the

net elastic energy rate significantly.
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