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Abstract Boundaries and junctions (both internal and external) can contribute significantly to the plastic
deformation of metallic solids, especially when the average size of the grains (phases) is less than hundred
nanometres or when the size of the solid itself is of the order of microns. The overall permanent deformation
of the solid is a result of a coupling between bulk plasticity with moving interfaces/junctions/edges and
intrinsic plasticity of internal and external surfaces. We use a novel continuum thermodynamic theory of
plastic evolution, with incoherent interfaces and non-splitting junctions, to derive flow rules for bulk and
surface plasticity in addition to kinetic relations for interface, edge, and junction motion, all coupled to each
other. We assume rate-independent associative isotropic plastic response with bulk flow stress dependent on
accumulated plastic strain and an appropriate measure of inhomogeneity. The resulting theory has two internal
length scales: one given by the average grain size and another associated with the material inhomogeneity.

Keywords Plasticity · Strain gradient · Incoherent interface · Junction ·Multi-phase solid

1 Introduction

Multi-phase and polycrystalline solids of size of the order of microns, or having an average grain size of less
than hundred nanometres, have a large volume fraction of interfaces and junctions [22]. The internal boundaries
play a central role in themicrostructural evolution during phase transformations, shock propagation, and plastic
deformation in such solids, cf. [16,29], Chapter 12 of [34], and Chapter 5 of [22,26]. Boundaries and junctions
provide sites of resistance for continuing plastic flow in the bulk (thereby hardening the material), but can
also act as sources for initiating plastic deformation. They can have intrinsic defect content (e.g. dislocation
walls) and finite mobility. Moreover, allowing for excess free energy densities over the boundaries and surface
stresses, intrinsic plastic flow can exist at an interface and a free surface. The interaction of such surfaces with
bulk plasticity can indeed be very complex while involving multiple dissipative mechanisms [7,16,21,35].
The purpose of this work is to first develop a theoretical framework within which these couplings can be
incorporated and second to derive coupled kinetic relations, governing plastic flow and interface/junction/edge
dynamics, under various simplifying assumptions.We restrict ourmodel to two-dimensional (2D) solidsmainly
in order to present certain theoretical results in detail without getting lost in notational complexity.
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The main contributions of this paper are:

(i) Kinematics of incoherent interfaces in plastically deforming regions: The multiplicative decomposition
of the total deformation at the interface into elastic and plastic components is introduced; it takes a
simple yet instructive form in the 2D setting. The inhomogeneity at the interface is characterised with the
incoherency tensor. A new compatibility condition at the junction is derived in terms of the incoherency
tensor. Our kinematics is closely related to the framework developed in [17].

(ii) A novel continuum thermodynamic framework incorporating incoherent interfaces, external boundary of
the body, edges, and junctions: Assuming finite deformations, we consider interface energy to depend on
interfacial elastic strain, incoherency tensor, and orientation. Local dissipation rates per unit area in the
bulk, per unit length of the interface, and at the junction are obtained, where the latter two quantities are
interpreted as excess entropy generated in the domain. Irreversible thermodynamics of incoherent inter-
faces has been previously studied in a deforming solid, but without considerations of plasticity, external
surface, edges, and junctions [9,17]. On the other hand, junctions and edges have been incorporated in
a theory of deforming solids but only for coherent interfaces and without any plasticity [8,31,32]. The
present thermodynamic formalism, which follows our recent work on grain boundaries [3–5], should be
seen as an alternative to the configurational mechanics formalism proposed by Gurtin and his coauthors
[9,15].

(iii) Flow rules coupled with kinetic relations: Assuming rate-independent plasticity and isotropic material
response, we use maximum dissipation postulate to derive associative flow rules within the bulk and
at the surfaces. Accumulation of plastic flow near the boundaries and junctions affects the material
inhomogeneity distribution such that the solid hardens with an increase in the magnitude of the yield
stress. We include these effects by assuming the yield loci to depend on accumulated plastic strain and
appropriate measures of inhomogeneity. Incorporation of material inhomogeneities leads to two internal
length scales in the theory: one given by the average grain size and another associated with the density of
defects. In addition, we also propose kinetic relations governing the dynamics of interfaces, edges, and
junctions. We emphasise the coupling between various flow rules and kinetic relations. Whereas the bulk
flow rule is standard, although the considered yield locus is non-standard [23], the interfacial flow rules
have been previously obtained only for a small deformation theory and with stationary interfaces [13,14].

The paper is organised as follows. The kinematical aspects of the 2D theory and certain mathematical
preliminaries are elaborated in Sect. 2; in particular, we discuss interfacial kinematics and the nature of
multiplicative decomposition of the total deformation at the interface. This is followed by a derivation of various
local dissipation inequalities associated with the bulk, boundaries, and junctions in Sect. 3. The dissipation
inequalities are taken as the starting point in Sect. 4 to develop flow rules for associative rate-independent
isotropic plastic evolution in the bulk and at the surfaces (internal and external), as well for motivating linear
kinetic relations for interface/edge/junction dynamics.

2 Preliminaries

In this section, we fix the notation, introduce the relevant kinematics in the bulk, at the interface, and at the
junction, collect useful integral relations, and discuss the multiplicative decomposition in the bulk and at the
interface. We also take a brief diversion on the nature of defect densities present in our theory.

Let V be the translation space of a 2D Euclidean point space. We denote the space of all linear transfor-
mations from V to itself (second-order tensors) by Lin, its subspace of positive definite tensors by Lin+, the
subspace of invertible tensors by InvLin, the subspaces of symmetric and skew-symmetric tensors by Sym and
Skw, respectively, and the subgroups of orthogonal and rotation tensors by Orth and Orth+, respectively. The
determinant, transpose, and inverse of A ∈ Lin are denoted by JA, AT , and A−1, respectively. The identity
tensor in Lin is denoted by 1. The space Lin is equipped with the Euclidean inner product and norm defined
by A · B = tr(ABT ) and |A|2 = A · A, respectively, where B ∈ Lin and tr is the trace operator. We have
used sym(A) and skw(A) to denote the symmetric and the skew-symmetric part of A. The derivative of a
scalar-valued differentiable function of tensors, say G(A), is a tensor ∂AG defined by

G(A+ B) = G(A)+ ∂AG · B + o(|B|), (1)

where o(|B|)/|B| → 0 as |B| → 0. Similar definitions can bemade for vector- and tensor-valued differentiable
functions (of scalars, vectors, and tensors).
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Fig. 1 a Schematic of a 2D multi-phase solid with an arbitrary region ". b An arbitrary region " of the reference configuration
containing N subregions "i (i = 1, . . . , N ), N interfaces Si , and a junction J ; points Ai denote the edge of Si lying on ∂". The
normals to ∂" and Si are denoted by M and N i , respectively. A circular disc Dϵ , centred at J , is excluded from " to obtain the
punctured region "ϵ

2.1 Kinematics

Consider a 2D multi-phase solid as shown in Fig. 1a. The neighbouring grains in the body can be of the same
phase or different from each other, with varying lattice orientations. Let B0 be the reference configuration
(fixed in time) associated with the body and Bt be the current configuration. The bijective mapping χ from B0
to Bt is assumed to be continuous and piecewise differentiable map such that x = χ(X, t), where X and x
denote position vectors of a particle in B0 and Bt , respectively; the variable t represents time. The derivative
of a sufficiently smooth field defined over B0 with respect to X is denoted by the gradient operator ∇. The
divergence of a smooth vector field a ∈ V and a smooth tensor field A ∈ Lin are given by

Div a = tr∇a and Div A · c = Div
(
AT c

)
, (2)

respectively, for any fixed c ∈ V . The material time derivative of a function is the derivative with respect to
time for fixed X ; we denote it by a superimposed dot. The particle velocity v is defined as v = χ̇ . If χ is
differentiable at X , then the deformation gradient F ∈ InvLin exists at X and is given by F = ∇χ . We assume
v and F to be piecewise continuously differentiable over B0; they (and their derivatives) are allowed to be
discontinuous across the interfaces and singular at the junctions.

Let " be an arbitrary interior region of B0 such that it contains N subregions "1, . . . ,"N separated by N
interfaces S1, . . . , SN , all of them intersecting at a junction J , see Fig. 1b. Each of these interfaces is a smooth
one-dimensional curve with one end lying on the boundary of the region ∂" and the other at the junction J ; the
edge point of an interface Si , which lies on ∂", is denoted by Ai . The edge Ai should be differentiated from
a physical edge of an interface which is the intersecting point of the interface with the external boundary of
the body; we refer to the edges such as Ai as non-physical. For every interface Si , we introduce an arc-length
parameter si along the curve such that it starts at J and increases towards Ai . The unit normal N i to Si and
the unit tangent T i along it are chosen such that N i points inside "i and T i is oriented in the direction of
increasing si . To deal with singularities (at the junction) in various bulk fields, including stresses, strains, and
strain energy, we perform the analysis in a punctured region "ϵ obtained by excluding a circular disc Dϵ of
radius ϵ and centred at J from "; i.e. "ϵ = "\Dϵ . The boundary of Dϵ , denoted by Cϵ , is considered to move
with a velocity u such that it approaches the junction velocity, denoted by q, as ϵ → 0 uniformly in time. The
unit outward normal to ∂", as well as to Cϵ , is denoted by M. Note that M on Cϵ points into "ϵ .

Consider a smooth interface S (such as those inside ") having normal N and moving with normal velocity
V ; we suppress subscript ‘i’ here and in rest of this subsection. We take s as an arc-length parameter along
S starting at J and increasing towards A. The jump and the average of a piecewise continuous bulk field f
across S are defined as [[ f ]] = f + − f − and ⟨ f ⟩ = ( f + + f −)/2, where f + is the limiting value of f as it
approaches S from the side into which N points and f − otherwise. For two piecewise continuous bulk fields
f1 and f2, it can be easily shown that

[[ f1 f2]] = [[ f1]]⟨ f2⟩ + ⟨ f1⟩[[ f2]]. (3)
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The time derivative of an interfacial fields g, continuously differentiable over S and continuous up to J ,
following S is given by the normal time derivative [17]

g̊ = ġ + V∇g · N. (4)

It represents the rate of change of g noted by an observer sitting on the moving S; see e.g. [15,17]. This can
be used to define the intrinsic material velocity of the particles lying instantaneously on S as v = x̊(X, t) for
X ∈ S. Expanding it using (4), we obtain

v = v± + V F±N = ⟨v⟩ + V ⟨F⟩N, (5)

where the superscript ± indicates that either + or − limit of the field can be used to satisfy the equation. The
compatibility equation

V [[F]]N = −[[v]]. (6)

is an immediate consequence of (5)1. Let X A(t) be the position vector of the edge A. The edge velocity is
defined as

wA = dX A

dt
= VAN A +WAT A, (7)

where N A(t) = N(X A, t) and T A(t) = T (X A, t); VA and WA are normal and tangential components of the
edge velocity, respectively. The compatibility between the interface and the edge requires VA(t) = V (X A, t).
The material velocity of a particle lying instantaneously at A, given by dx(X A(t), t)/dt , has an intrinsic part

vint
A = x̊(X A, t) =

(
v± + V F±N

)
A = (⟨v⟩ + V ⟨F⟩N)A, (8)

where the notation (·)A denotes evaluation of the bracketed field at point A, and an extrinsic part

vext
A = dx(X A, t)

dt
− x̊(X A, t) = (W ⟨F⟩T )A. (9)

We note from (5) and (8)3 that vint
A = (v)A.

The interfacial stretch vector, defined as f = ∂x(X(s), t)/∂s, is related to the bulk deformation gradient
as

f = F±T = ⟨F⟩T , (10)

where the Hadamard compatibility relation, [[F]]T = 0, has been taken into account. The surface deformation
gradient tensor F = F±T ⊗ T , where T ⊗ T is the projection tensor on S, is therefore related to f as

F = f ⊗ T . (11)

Moreover, the definition of the stretch vector implies that we can write

f = λt, (12)

where t is the unit tangent to the interfacial curve in the current configuration and λ, hence, can be interpreted
as the measure of the local stretch of the interface. Combining above two equations, we have F = λt ⊗ T .

Let φ be the anticlockwise angle that the normal N makes with the positive e1-axis of a fixed Cartesian
coordinate system having a right-handed orthonormal basis {e1, e2}. As a result we can write N = cosφ e1 +
sin φ e2 and T = sin φ e1 − cosφ e2. The curvature of S is given by κ = ∂φ/∂s. The identities

∂N
∂s

= −κT and
∂T
∂s

= κN (13)

follow immediately. Additionally, we have

φ̊ = ∂V
∂s

; (14)

see e.g. Section XIV of [15]. Finally, taking the normal time derivative of (10) and using (14), it can be shown
that [32]

f̊ = ∂

∂s
(⟨v⟩ + V ⟨F⟩N)+ κV f = ∂v

∂s
+ κV f, (15)

where the second equality follows from (5)2.
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2.2 Integral theorems

For a piecewise smooth field f defined in ", allowed to be discontinuous across Si and singular at J , we
assume that the limit ∫

"
f dA = lim

ϵ→0

∫

"ϵ

f dA (16)

exists, where dA is an infinitesimal area element in ". We will use the following transport relation for f [32]:

d
dt

∫

"
f dA =

∫

"
ḟ dA −

N∑

i=1

∫

Si
Vi [[ f ]] dL − lim

ϵ→0

∮

Cϵ

f u · M dL , (17)

where dL is an infinitesimal line element along a curve in ". For a vector field a and a tensor field A, both
defined in ", sufficiently smooth within the bulk, discontinuous across Si , and singular at J , the following
divergence theorems hold [32]:

∫

"
Div adA =

∫

∂"
a · MdL −

N∑

i=1

∫

Si
[[a]] · N idL − lim

ϵ→0

∮

Cϵ

a · MdL , (18)

∫

"
Div AdA =

∫

∂"
AMdL −

N∑

i=1

∫

Si
[[A]]N idL − lim

ϵ→0

∮

Cϵ

AMdL . (19)

For an interfacial field g, continuously differentiable over a curve S whose one end point is on ∂" (labelled
as A) and the other is on the junction J , we have the following transport relation [15]:

d
dt

∫

S
g dL =

∫

S
(g̊ − gκV ) dL + (gW )A − (g q · T )J , (20)

where (·)J denotes evaluation of the bracketed field at J .

2.3 Elastic–plastic deformation

We now introduce the multiplicative decomposition of the total deformation into elastic and plastic deforma-
tions both in the bulk and at the interface; for a related discussion in three dimensions, see [17]. Towards this
end, we focus our attention on a neighbourhood R0 ⊂ " such that it intersects only one interface Si and is away
from the junction. Let C = R0 ∩ Si . We use Rt and c to denote the image of R0 and C in the current configura-
tion; see Fig. 2. It has been shown (in [17,18]) that it is possible to obtain a locally stress-free configuration by
cutting Bt into infinitesimally small parts. We denote such a configuration by Br , as obtained from Bt , and Rr
as its subset obtainable from Rt . If these sub-bodies cannot be made congruent in the absence of any distortion,
then the body is said to be dislocated (or inhomogeneous) with no globally continuous piecewise differentiable
map from Bt to the disjoint set of sub-bodies [17,18]. At the interface, the loss of congruency requires that
the tangent t to the interfacial curve in Bt gets mapped to two distinct tangents in the relaxed configuration
(see Fig. 2); such interfaces are called incoherent. In other words, for an incoherent interface, the surface in
the current configuration splits into two distinct surfaces (locally) in the relaxed configuration. The piecewise
smooth map from the local tangent space in Br to that in Bt is represented by H ∈ InvLin. Assuming the
unloading to be elastic, we interpret H as the elastic distortion. The absence of a globally continuous piecewise
differentiable map implies that H , unlike F, cannot be written as gradient of a differentiable map. The defect
content (or the inhomogeneity) in the bulk region, away from interfaces and junctions, is measured in terms
of the curl of H , while the incoherency of a singular interface is represented by the non-rank-one jump in H
across the interface. Whereas the former yields a continuous distribution of dislocations within the bulk of Bt ,
the latter gives a continuous distribution of dislocations at the interface [17].

LetG ∈ InvLin be the piecewise smoothmapof the local tangent space in B0 to that in Br . Themultiplicative
decomposition

F = HG (21)

is therefore admitted at all material points away from interfaces and junctions. The time evolution of G
essentially describes the evolution of the relaxed configuration with respect to a fixed reference configuration;
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Fig. 2 Elastic–plastic decomposition in R0 ⊂ "ϵ

for this reason, we identify it with plastic distortion. It is clear from (21) that incompatibility of H , both in the
bulk as well as at the interface, is equivalent to that of G [17]. Further, it is physically meaningful to assume
JH > 0; hence, JG > 0.

To derive the multiplicative decomposition at the interface, we start by introducing Tγ and T δ as two unit
tangent vectors in the intermediate configuration both of which map into the tangent t to c (or into tangent T
to C) at a fixed material point (see Fig. 2). The superscripts γ and δ are used to distinguish the two surfaces
in Rr obtained by relaxing c; for a coherent interface, the two surfaces are identical. We define (the subscript
‘i’ is again suppressed in this subsection)

Hγ = H+Tγ ⊗ Tγ , Hδ = H−T δ ⊗ T δ,

Gγ = G+T ⊗ T , Gδ = G−T ⊗ T .
(22)

Furthermore, it is clear from an application of the Nanson’s formula that both H+Tγ and H−T δ are parallel
to t [17]; we write H+Tγ = νγ t and H−T δ = νδ t , where νγ and νδ represent the two distinct stretch
values associated with the two surfaces in the relaxed configuration obtained from curve c at a fixed point.
Analogously, we can write G+T = µγ Tγ and G−T = µδT δ , where µγ and µδ are the local stretch values
associated with curve C with respect to the two surfaces in the relaxed configuration. As a result, we obtain
from (22)

Hα = να t ⊗ Tα and Gα = µαTα ⊗ T , (23)

where α stands for either γ or δ (no summation over repeated α here and elsewhere). Post-operating the+ and
the − limits of (21) with T ⊗ T , while making use of (22) and (23), we obtain the following multiplicative
decompositions of F, cf. [17]:

F = HγGγ = HδGδ. (24)

In particular, after making substitutions from (11) and (23) into these relations, we are led to the decomposition

λ = νγµγ = νδµδ. (25)

of the total stretch of the interfacial curve into an elastic and a plastic part.
The interfacial elastic strain is expressed in terms of the right Cauchy–Green tensor associated with Hγ

and Hδ , i.e.
Cα = (Hα)THα = (να)2Tα ⊗ Tα. (26)

On the other hand, the incoherency of the interface is characterised by the incoherency tensor M defined as
[9,17]

M = (Hγ )−1Hδ = Gγ (Gδ)−1, (27)
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where the second equality follows from (24)2. The inverse (Hγ )−1 and (Gδ)−1 are the unique Moore-Penrose
pseudo-inverse ofHγ andGδ , respectively, such that (Hγ )−1Hγ = Tγ ⊗Tγ , Hγ (Hγ )−1 = t⊗ t , (Gδ)−1Gδ =
T ⊗ T , and Gδ(Gδ)−1 = T δ ⊗ T δ . The incoherency tensor measures the relative distortion between the two
relaxed surfaces obtained from a single interface in the reference (or the current) configuration. Based on (26)
and (27)1, we note that

Cδ = MTCγM. (28)

We can use (23) to rewrite (27) as

M = mTγ ⊗ T δ, where m = µγ

µδ
= νδ

νγ
(29)

measures the relative local elastic (or plastic) stretch of the two relaxed surfaces. The relative rotation at the
interface (misorientation) ismeasured by the relative orientation of Tγ and T δ . For a coherent interface,m = 1,
and Tγ is identical with T δ; the incoherency tensor is then reduced to M = Tγ ⊗ Tγ = T δ ⊗ T δ . We also
note that M is closely related to the true surface dislocation density, the latter being given by (T δ ⊗ T δ − M)
[17], so that for a coherent interface the defect content vanishes identically.

We end this subsection by writing a compatibility condition to be satisfied at the junction. Consider N
incoherent interfaces meeting at a junction J . Then, in an infinitesimally small neighbourhood of J , we have
(see also [17])

MNMN−1 . . .M2M1 = T δ
1 ⊗ T δ

1, (30)

where Mi is the incoherency tensor associated with the i th interface. All the fields appearing in (30) are
evaluated in the limit of approaching the junction. The above relation is easily verifiable using (27) and noting
thatHγ

i = Hδ
i+1 (at J ), where subscript N+1 should be identifiedwith 1. The relation (30) imposes a restriction

on the dislocation densities associated with various interfaces intersecting at a junction point. A similar relation
in the simplified context of plane interfaces and small strains was given by Bilby [6] and independently by
Amelinckx [2] in a more specialised case of grain boundaries. The latter work used this condition to determine
certain restrictions on the nature of dislocation content of the intersecting grain boundaries.

3 Balance laws and dissipation

Based on the assumptions listed in Sect. 1, we now derive local balance laws for mass and momentum. We
also obtain various local dissipation inequalities starting from a mechanical version of the second law of
thermodynamics. Our framework is based on Gibbs thermodynamics where all the extensive interfacial fields
are understood as excess quantities. We will use the dissipation inequalities to derive flow rules for plastic
evolution and kinetic laws for interfacial and junction dynamics. Throughout this subsection, we will consider
an arbitrary part " of B0 as introduced in the previous section and shown in Fig. 1b. The region " has N
interfaces all intersecting at a junction point.

3.1 Mass and momentum balance

Assuming that the region " does not exchange mass with rest of the body and that there are no excess mass
densities at the interfaces and the junction, we can write the mass balance relation as

d
dt

∫

"
ρr dA = 0, (31)

where ρr is the mass density per unit volume of B0. Using the transport relation (17), while considering ρr to
remain non-singular at the junction, and localising the result, we are led to

ρ̇r = 0 in "i and (32)
Vi [[ρr ]] = 0 on Si , (33)

i.e. ρr remains constant within the bulk and is continuous across moving interfaces in ". Recall that the
subscript i in various terms denotes the i th interface curve in ".
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The region " is subjected to traction PM on the boundary ∂" where P is the first Piola–Kirchhoff stress
and M is the unit outward normal to ∂". Additionally, we allow for interfacial stresses such that each interface
Si is subjected to a traction pi at the edge Ai . The interfacial first Piola–Kirchhoff stress is pi ⊗T i . Neglecting
body forces and inertial effects both in the bulk and at the interface, the balance of linear momentum in "
yields

∫

∂"
PMdL +

N∑

i=1

pi |Ai = 0. (34)

This can be localised using the divergence theorem (19) to obtain (see also [32])

Div P = 0 in "i , (35)

[[P]]N i +
∂pi

∂si
= 0 on Si , and (36)

lim
ϵ→0

∮

Cϵ

PM dL +
N∑

i=1

pi |J = 0 at J. (37)

Equations (35) and (36) are familiar stress equilibrium relations in the bulk and across singular interfaces.
According to (37), which represents stress equilibrium at the junction, the limiting value of the net force acting
on Cϵ due to the singular bulk stress is finite and balances the force exerted by the interfacial stresses at the
junction.

The balance of angular momentum in " requires

∫

∂"
(x − x0) × PM dL +

N∑

i=1

(x − x0) × pi |Ai = 0, (38)

where x0 ∈ Bt is a fixed point. Applying the divergence theorem (19), and substituting equilibrium relations
(35)–(37) into the result, we can obtain

FPT = PFT in "i and t i × pi = 0 on Si , (39)

where recall that t i is the unit tangent vector to the i th interface in the current configuration.Hence, FPT ∈ Sym
and pi is parallel to t i at the interface.

3.2 Dissipation inequality

Under isothermal conditions, the mechanical version of the second law of thermodynamics requires the rate
of change of the total free energy of " to be less than or equal to the total power input, i.e.

d
dt

(∫

"
, dA +

N∑

i=1

∫

Si
-i dL

)

︸ ︷︷ ︸
rate of change of total free energy

≤
∫

∂"
PM · v dL +

N∑

i=1

(
pi · vint

i
)
Ai

︸ ︷︷ ︸
mechanical power input

+
N∑

i=1

(ci ·wi )Ai +
N∑

i=1

(pi · vext
i )Ai

︸ ︷︷ ︸
non-standard power

,

(40)
where, is the free energy per unit area of" and-i is the free energy of Si per unit length. The first two terms
on the right-hand side of the inequality in (40) represent the power input into the region through working by
traction on its outer boundary due to both bulk and interfacial stresses. It should be noted that the conjugate
velocity for interfacial traction pi is vint

i which, recall from (8), is the material velocity of the particles present
instantaneously at Si as experienced by an observer moving with Si in its normal direction. It is clear from
Fig. 3 that as an interface evolves within B0, its domain of intersection with" changes; there would be portions
of the interface which, previously present outside", are now inside it, and vice versa. In other words, the set of
points belonging to an interface and lying within" changes continuously as the interface moves. This warrants
incorporating additional (non-standard) power inputs included here as the last two terms in (40). The first term
is considered so as to ensure that there is no excess entropy production at the edges Ai , thereby restricting
the excess entropy generation to the interfaces and the junction. The second term represents a correction to
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Fig. 3 A part Q of B0 which has a non-trivial intersection with ", see Fig. 1b, showing the interface Si at two time instants t0
and t1

the mechanical power due to interfacial traction. This is required since the intrinsic velocity vint
i will move

the observer, sitting at a point on the interface presently at Ai , away from ∂", see Fig. 3. The extrinsic
velocity vext

i brings the observer back to the edge on ∂"; this is also illustrated in Fig. 3. The exact form of ci ,
however, depends on the constitutive nature of the interfacial free energy; this will be made clear in the ensuing
discussion. Similar considerations as those outlined above have been made recently by the present authors
[3–5] in the context of grain boundaries. Our treatment should be contrasted with the earlier works based on the
concept of configurational forces [9,15,32], which require postulation of additional (configurational) balance
laws besides the standard balance laws of continuummechanics. Moreover, our theory is a priori invariant with
respect to any change in parametrisation (of surfaces and junctions), whereas these works use this invariance
to derive several important relations in their framework (for an alternate viewpoint see [25]). While leading to
the same final results, our standpoint is less cumbersome both conceptually and notationally.

In rest of this section, we will use various integral theorems and balance laws to derive local dissipation
inequalities in the bulk, at the interfaces, and at the junction. We will make specific constitutive choices for the
free energies and make assumption on the nature of elasticity both in the bulk and at the interface. During our
calculation, we will also derive an expression for ci . We use divergence theorem (18) and transport relations
(17) and (20) to rewrite (40) as

5∑

l=1

Il ≤ 0, where (41)

I1 =
∫

"

(
,̇ − Div(PT v)

)
dA, (42)

I2 =
N∑

i=1

∫

Si

(
−Vi [[,]] − [[PT v]] · N i + -̊i − -iκi Vi−

∂pi

∂si
· vi − pi · (f̊i − Viκi fi )

)
dL , (43)

I3 = − lim
ϵ→0

∮

Cϵ

(
,u · M + PT v · M

)
dL , (44)

I4 = −
N∑

i=1

(-iT i · q + pi · vi )J , and (45)

I5 =
N∑

i=1

(Wi (-i − pi · fi ) − ci ·wi )Ai
. (46)

We have also used (8) and (15) in (43), and (9) in (46).

3.2.1 Constitutive assumptions for the free energies

Before localising (41) to eventually obtain local dissipation inequalities, we need to specify the constitutive
form of the free energies. The origin of both bulk and interfacial stresses is assumed to be elastic. It is then
appropriate to consider strain energy densities to depend on elastic distortion. At each point on the incoherent
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interface, we get two local surfaces in the relaxed configuration, as argued in the previous section. As a
result, there are two independent elastic distortion tensors at the interface mapping a single unit tangent t i
(corresponding to the i th surface) into two distinct unit tangents Tγ

i and T δ
i . The interfacial energies are also

explicitly dependent on the local orientation of the interface. Keeping all this in mind, we suppose the bulk
and interface free energy densities to have the form [17,18]

, = JGW (H) and -i = µ
γ
i w̄i

(
Hγ
i ,H

δ
i , N

γ
i , N

δ
i
)
, (47)

respectively, where W is the free energy per unit area of the intermediate configuration Br and w̄i is the
interfacial energy per unit length of the local surface in Br whose tangent is Tγ

i . Invariance of w̄i under
superimposed rigid body rotations requires w̄i (H

γ
i ,H

δ
i , N

γ
i , N

δ
i ) = w̃i (C

γ
i ,Mi , N

γ
i ), where we have also

used the fact that Nδ
i can be expressed in terms of Mi and Nγ

i ; for a proof of both these assertions see [17].
Furthermore, we use (26)2 and (29) to finally write -i as

-i = µ
γ
i wi

(
ν

γ
i ,mi , θ

γ
i , θi

)
, (48)

where θ
γ
i is such that Nγ

i = cos θ
γ
i e1 + sin θ

γ
i e2 and θi is the angle between Tγ

i and T δ
i . The representation

(48) allows for the free energy of a general one-dimensional incoherent interface Si to depend constitutively
on (i) the local elastic stretch ν

γ
i of the interface, (ii) the relative elastic (or plastic) stretch mi between the

two relaxed surfaces, (iii) the local orientation of the relaxed interface given by θ
γ
i , and (iv) the misorientation

angle θi measuring the orientational mismatch of the adjacent lattices. The dependence on θ
γ
i characterises the

anisotropic nature (interfacial orientation dependence) of the energy. For a coherent interface, the two relaxed
surfaces coincide, and hence, mi = 1 and θi = 0. The interfacial energy is then a function of the local stretch
and orientation. Incoherent interfacial energies without a dependency on ν

γ
i and mi are routinely considered

for anisotropic grain boundaries [5].
Considering the hypothesis of hyperelastic response during elastic unloading, we assume the bulk and

interfacial first Piola–Kirchhoff stresses to be given by [17,18]

P = JG(∂HW )G−T and pi ⊗ T i = µ
γ
i

(
∂Hγ

i
w̄i

) (
Gγ
i

)−T
, (49)

respectively. The latter expression can bemanipulated using (39)2 and the chain rule of differentiation to derive

pi = τi t i , where τi =
∂wi

∂ν
γ
i
. (50)

3.2.2 Local dissipation inequalities

We now come to the main aim of this section and derive the local dissipation inequalities in the bulk, at the
interfaces, and at the junctions. The integral (42), on using compatibility relation ∇v = Ḟ, equilibrium (35),
constitutive assumptions (47)1 and (49)1, and multiplicative decomposition (21), yields

I1 =
∫

"
E · G−1ĠdA, where (51)

E = ,1 − FT P (52)

is the bulk Eshelby tensor [18].
In order to simplify (43), we start by rewriting the first two terms from its integrand as

Vi [[,]] + [[PT v]] · N i = Vi [[E]]N i · N i − ∂pi

∂si
· vi , (53)

wherewe have used identity (3), definition ofvi from (5)2, compatibility relation (6), and equilibrium condition
(36). Next, we use the chain rule to obtain the normal time derivative of -i from (48) as

-̊i = -i
µ̊

γ
i

µ
γ
i
+ µ

γ
i

(
∂wi

∂ν
γ
i

ν̊
γ
i + ∂wi

∂mi
m̊i +

∂wi

∂θ
γ
i

θ̊
γ
i + ∂wi

∂θi
θ̊i

)

. (54)
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Additionally, we have from (12) and (50)1 that pi · fi = τiλi and pi · f̊i = τi λ̊i , where in the latter relation we
have also used t i · t̊ i = 0. Finally, recall the multiplicative decomposition (25) and the constitutive relation
(50)2 and use the preceding equations in the integrand of (43) to obtain

I2 =
N∑

i=1

∫

Si

(

−Vi fi + Ei
µ̊

γ
i

µ
γ
i
+ µ

γ
i

(
∂wi

∂mi
m̊i +

∂wi

∂θ
γ
i

θ̊
γ
i + ∂wi

∂θi
θ̊i

))

dL , (55)

where
fi = [[E]]N i · N i + Eiκi (56)

is the driving force for the normal velocity of the interface Si and

Ei = -i − λiτi (57)

is the interfacial Eshelby tensor [15,17,32] for the i th interface.
Adding and subtracting PM · Fu from the integrand in (44), we rewrite the integral I3 as

I3 = − lim
ϵ→0

∮

Cϵ

EM · u dL − lim
ϵ→0

∮

Cϵ

PM · (v + Fu)dL. (58)

On the other hand, by adding and subtracting
∑N

i=1(F
T
i pi ·q) from (45), and using the compatibility condition

Vi = q · N i (which ensures that the junction is non-splitting), we obtain

I4 = −
N∑

i=1

(EiT i · q + pi · (⟨v⟩i + ⟨F⟩iq))J , (59)

where we have also used relations (5)2 and (10)–(12). We assume enough smoothness of the deformation and
the velocity fields such that the limiting value of both the convected velocities (v + Fu) and (⟨v⟩i + ⟨F⟩iq),
as ϵ → 0 (uniformly in time), exists and is given by ⟨v⟩J + ⟨F⟩J q, where ⟨v⟩J = (1/N )

∑N
i=1⟨v⟩i and

⟨F⟩J = (1/N )
∑N

i=1⟨F⟩i are average values of the velocity and deformation field at the junction [32]. The
two expressions (58) and (59) can then be added to yield

I3 + I4 = −
(

lim
ϵ→0

∮

Cϵ

EMdL +
N∑

i=1

EiT i

)

· q, (60)

where we have used equilibrium relation (37) to eliminate the other two terms.
We now substitute (51), (55), and (60) into (41) to obtain the reduced dissipation inequality in " as

−
∫

"
E · G−1ĠdA +

N∑

i=1

∫

Si

(

Vi fi − Ei
µ̊

γ
i

µ
γ
i

− µ
γ
i

(
∂wi

∂mi
m̊i +

∂wi

∂θ
γ
i

θ̊
γ
i + ∂wi

∂θi
θ̊i

))

dL

+
(

lim
ϵ→0

∮

Cϵ

EM dL +
N∑

i=1

EiT i

)

· q +
N∑

i=1

(ci ·wi − Wi Ei )Ai ≥ 0. (61)

The first term on the left-hand side of the inequality is the total dissipation rate due to bulk plasticity. The other
terms represent excess entropy production within the domain. They include a group of terms with contribution
from N internal interfaces, another group with contribution from the junction J , and a third group of terms
representing the excess entropy contribution from N non-physical edges at which the interfaces Si intersect
with ∂". However, as mentioned earlier, we require our formulation to have excess entropy production only
at the interfaces and the junction. The edges are in any case arbitrary as they depend on the choice of arbitrary
" in B0. Consequently, in order to ensure that there is no contribution to the dissipation from the edges, we
propose

ci = EiT i , (62)

where we have used (7). The global inequality (61) can then be localised, by choosing " appropriately, to
obtain
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E · G−1Ġ ≤ 0 in "i , (63)

Vi fi − Ei
µ̊

γ
i

µ
γ
i

− µ
γ
i

(
∂wi

∂mi
m̊i +

∂wi

∂θ
γ
i

θ̊
γ
i + ∂wi

∂θi
θ̊i

)

≥ 0 on Si , and (64)

f J · q ≥ 0 at J, (65)

where

f J = lim
ϵ→0

∮

Cϵ

EM dL +
N∑

i=1

EiT i (66)

is the driving force for junction evolution; it depends on both the bulk Eshelby tensor evaluated in a close
neighbourhood of J and the limiting values of the interfacial Eshelby tensors related to the interfaces which
intersect at the junction. The well-known bulk dissipation inequality (63) is the starting point for deriving
flow rules for finite deformation plastic evolution in the bulk [18,19]; this is done in the following section.
The dissipation at the interface as governed by (64) has, on the other hand, contributions from several distinct
mechanisms. These include interface motion Vi , interfacial plasticity (governed by the evolution of plastic
stretch µ̊γ

i and orientation θ̊
γ
i ), and the evolution of interfacial incompatibility or defect content (characterised

by m̊i and θ̊i ). The inequality in (64) forms a basis for developing flow rules for interfacial plasticity and defect
evolution as well as kinetic laws for interfacial dynamics; this programme is pursued in the next section. When
the interface is coherent and there is no plasticity, then this inequality can be shown to reduce to a form derived
earlier in [15]. For an incoherent interface, but with vanishing plasticity, it agrees with the expression obtained
in [9]. For grain boundaries, where stretches are ignored and misorientation is assumed to be homogeneous, it
simplifies to a form derived recently by the authors [3,5]. The dissipation inequality at the junction (65) will
be used to formulate a kinetic relation for junction evolution. A similar inequality, although in the context of
coherent interfaces in elastic solids, was derived in [32].

3.2.3 Free surfaces and edges

In this subsection, we obtain balance relations and dissipation rates at the free surface of the body and at
the physical edges which are points where internal boundaries intersect the free surface. The boundary ∂B0 is
accordingly taken to be deformable and endowed with surface energy, strain fields, and stress fields. We denote
a typical physical edge as Ae (see Fig. 1a). The nature of this edge can be seen analogously to a junction J in
the interior of the body, except for the fact that two of the curves meeting at Ae (the surface boundaries) are
non-migrating material surfaces. Moreover, the edge is constrained to move along ∂B0. Its velocity, denoted
by qe, will therefore be of the form

qe = qeT ′, (67)
where T ′ denotes the tangent along ∂B0. Let us denote the free surface first Piola stress by p′ ⊗T ′. Let PoutM
be the applied traction on ∂B0 (away from edges), and pout|Ae the surface traction applied along the interface
at Ae. The linear momentum balance then requires

PM − ∂p′

∂s′ = PoutM (68)

for all points on ∂B0 (except the edges), where s′ is a local arc-length parameter (starting at Ae and increasing
in the direction of the tangent T ′) associated with B0, and

lim
ϵ→0

∮

Ce
ϵ

PMdL + [[p′]]Ae + p = pout at Ae, (69)

where Ce
ϵ is the boundary of a small circular disc of radius ϵ centred at Ae, and [[p′]]Ae = p′|s′=0+ −p′|s′=0− .

Recall that p ⊗ T is the first Piola stress associated with the interface (with tangent T ) intersecting B0 at Ae.
On the other hand, the balance of angular momentum requires p′ to be parallel to the tangential direction t ′ of
the external surface in the deformed configuration, i.e. t ′ × p′ = 0.

Let-′ be the energy density of the external boundary per unit length in the reference configuration such that
-′ = µ′w′(ν′, θ ′), where w′ is the energy of the boundary per unit length in the intermediate configuration;
here, ν′ andµ′ are elastic and plastic stretches, respectively, at the boundary such that the total boundary stretch
λ′ = ν′µ′, and θ ′ denotes the orientation of the surface. The local dissipation inequalities, derived in a manner
analogous to that of internal boundaries and junctions, are
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−
(
E ′ µ̇

′

µ′ + µ′ ∂w
′

∂θ ′

)
≥ 0 (70)

on the boundary ∂B0 away from the edges, and

feqe ≥ 0 at Ae, (71)

where

fe = T ′ ·
(

lim
ϵ→0

∮

Ce
ϵ

EM dL + ET + [[E ′]]T ′
)

(72)

is the driving force for junction dynamics (see also [32]). Here, E ′ = -′ − τ ′λ′ is the surface Eshelby tensor
with τ ′ = ∂w′/∂ν′.

4 Flow rules and kinetic relations

Starting with the local dissipation inequalities from the previous section, we will now derive flow rules, gov-
erning plastic evolution in the bulk, at the interfaces, and at the external boundary. We will also derive kinetic
relations, which govern interfacial, edge, and junction dynamics. We will assume the material response (both
elastic and plastic) to be isotropic. The rate-independent flow rules are derived with the help of maximum
dissipation postulate while assuming the yield loci (both in the bulk and at the interface) to depend on the
accumulated plastic strain and an appropriate measure of inhomogeneity. The latter is taken as the incompati-
bility tensor (which is derived from the Riemann curvature tensor) in the bulk and the relative stretch m at the
interface. The interfacial energy is taken to depend only on the scalar elastic stretch ν and the relative stretch
m. The free boundary energy is considered to be a function of the scalar elastic stretch alone. The kinetic
relations are obtained within the framework of linear irreversible thermodynamics. Our emphasis is to expose
the coupling between various flow rules and kinetic relations as well as to bring out the role of interfaces,
boundary, edges, and junctions in influencing overall plasticity of the solid. We will first present results in the
context of a finite deformation theory and then simplify the results for small deformations, where both elastic
and plastic strains will be assumed to be infinitesimal. We will conclude the discussion by relating our results
to those obtained in the recent literature.

4.1 Finite deformation theory

We divide this section into four parts: obtaining the required relations separately in the bulk, at the interface,
at the boundary, and at the junction/edge. A detailed treatment of the flow rules in the bulk, of the kind that
are presented here and in the next subsection, is presented elsewhere [18,19,23].

4.1.1 Bulk plasticity

The Eshelby tensor (52), combined with relations (47)1 and (49)1, can be used to define [18]

E′ = J−1
G G−T EGT = Ŵ (CH )1 − CH S(CH ), (73)

where CH = HT H , Ŵ (CH ) is the strain energy density (with respect to Br ), and S(CH ) = ∂CH Ŵ is the
second Piola–Kirchhoff stress (relative to Br ). Note that E′ is the Eshelby tensor pushed forward to the relaxed
configuration Br ; it is purely elastic in origin. Using (73), we can rewrite the dissipation inequality (63) as

E′ · ĠG−1 ≤ 0. (74)

For isotropic response, every eigenvector of CH is an eigenvector of S(CH ); hence, E′ ∈ Sym. As a result
plastic spin, defined by skw(ĠG−1), does not contribute to the dissipation rate. In fact, it can be shown to vanish
identically under the assumption of isotropy (seeCh. 97 in [20]); for an alternate viewpoint in gradient plasticity
see [11,27]. For anisotropic response, however, prescription of plastic spin leads to additional constitutive
restrictions and should not be ignored [33]. The inequality (74) therefore takes the form

E′ · DG ≤ 0, (75)

where DG = sym(ĠG−1) is the plastic stretch rate tensor.
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Weconsider rate-independent plastic deformation. Theyield locus is taken as a level set in Symparametrised
by a scalar variable (cf. [23]):

F (E′, EG) = 0, (76)

whereF is assumed to be differentiable with respect to its arguments. The parameter EG is a measure of the
accumulated plastic strain whose rate ĖG > 0 is defined as

ĖG = dG + c|ℓ2"̇|, (77)

where dG =
√
2
3
DG · DG is the effective plastic strain rate, c is a phenomenological material constant, ℓ is

a constant representing an internal length scale (associated with the inhomogeneity) of the material, and " is
the symmetric Einstein tensor whose components in the notation of tensor analysis are given by [36]

1pq = E pi jE qklRi jkl , (78)

where E pi j = E pi j/
√
det(Mmn), E pi j is the component of the alternate tensor, Ri jkl are the components of

the Riemann–Christoffel curvature tensor induced by the Riemann metric M = GTG. The Einstein tensor
completely characterises the measure of material inhomogeneity in an isotropic solid [28]. In the present 2D
setting, the Riemann curvature tensor reduces to one independent term given byGaussian curvature (associated
with the metric GTG) [36]. Equation (77) generalises the classical relation for accumulated plastic strain in
conventional plasticity,where it is simply equal to dG , to include the effect of inhomogeneity. Similar extensions
have been proposed in the recent literature on strain gradient plasticity, see e.g. [20].

We assume the plastic evolution to followmaximum dissipation hypothesis according to which, for a given
plastic rate DG at a fixed material point, the associated E′ value is the one which maximises the dissipation
−E′ · DG while restricting the stress states to the elastic range given by F (E′, EG) ≤ 0. The Kuhn–Tucker
necessary condition associated with this optimisation problem requires DG to be parallel to the outward normal
to the yield surface

DG = −ξ̇ ∂E′F , (79)

where ξ̇ ≥ 0 is the plastic multiplier. If, for example, we consider a von Mises-type yield criterion

F (E′, EG) = σe − K (EG), (80)

where σe =
(
3
2
E′ · E′

)1/2

is the effective Eshelby stress and K (EG) = K0 + HEG ; K0 and H are material

constants denoting the initial flow stress and hardening function, respectively. The flow rule (79) then implies
that ξ̇ = dG . Hence, the total plastic evolution DG is determined if dG is known. The governing equation for
dG is obtained from the consistency condition Ḟ = 0 as H ĖG = σ̇e. Recalling (77), we note that this relation
gives a highly nonlinear partial differential equation for dG thereby furnishing a non-local evolution of plastic
deformation in the bulk.

4.1.2 Interfacial flow rule and kinetic relations

For an isotropic material response, the free energy of an interface will be necessarily independent of orientation
and misorientation parameters; the representation (48) for the i th interface is henceforth considered in the
reduced form

-i = µ
γ
i wi (ν

γ
i ,mi ). (81)

The dissipation inequality (64) can then be rewritten as

Vi fi + Ēi µ̊
γ
i + βi m̊i ≥ 0, (82)

where
Ēi = − Ei

µ
γ
i
= −

(
wi − τiν

γ
i

)
and βi = −µ

γ
i

∂wi

∂mi
. (83)

To simplify matters at hand, we work with a sufficient condition for inequality (82) by decoupling it into two
parts:

Vi fi ≥ 0 and Ēi µ̊
γ
i + βi m̊i ≥ 0. (84)
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Based on (84)1, we assume a linear kinetic relation

Vi = Mi fi , (85)

where Mi ≥ 0 is the constant mobility of the interface. We use (84)2 to derive flow rules for plasticity at the
interface. We assume the evolutions of mi and µ

γ
i on a moving Si to be rate-independent. The interface Si is

at a state of yield if the yield function, denoted by Gi (ςe
i , ei ), satisfies

Gi (ς
e
i , ei ) = 0, (86)

where ςe
i and ei denote effective stress and accumulated plastic deformation at Si , defined as

ςe
i =

√
Ē2
i + β2

i , (87)

and

ei =
∫ t

0
e̊i dt, (88)

respectively. The effective plastic flow rate e̊i is taken as

e̊i = |µ̊γ
i | + |m̊i |. (89)

Note that the integrand in (88) implicitly depends on Vi owing to the definition of the normal time derivative.
When the interface deforms elastically, the yield function Gi (ςe

i , ei ) < 0 and the effective plastic flow rate e̊i
vanishes.

The postulation of maximum plastic dissipation at the interface, for dissipation given by (84)2, subjected
to Gi ≤ 0 leads to the Kuhn–Tucker necessary conditions

µ̊
γ
i = ζ̊i

∂Gi

∂ Ēi
and m̊i = ζ̊i

∂Gi
∂βi

, (90)

where ζ̊i ≥ 0 is the plastic multiplier for the moving interface which is strictly positive wherever the interface
is at a state of yield. If, for example, we use a von Mises type of yield function at the interface

Gi = ςe
i − ki (ei ), (91)

where ki is the flow stress within Si such that ki = (k0)i + hi ei , where (k0)i and hi are constants. Consistency
condition G̊i = 0 yields ς̊e

i = hi e̊i , which gives the required evolution law for effective plastic flow rate at the
interface when Si is yielding. The plastic multiplier can be obtained using (89) and (90) as

ζ̊i =
ς̊e
i ς

e
i

hi
(
|Ēi | + |βi |

) . (92)

The normal time derivatives include a dependence on the normal velocity Vi . This necessarily couples the
plasticity flow rules as prescribed above to the moving interface. These flow rules provide boundary conditions
for plastic deformation in the bulk. The evolution Eq. (90) themselves are partial differential equations (the
derivatives are hidden within the normal time derivative), and they need boundary conditions. These equations
are provided by the junction conditions.

4.1.3 Plastic flow at external boundary

Assuming the energy of the external boundary of the body to be isotropic (independent of crystalline orientation
θ ′), the dissipation inequality (70) reduces to

Ē ′µ̇′ ≥ 0, (93)
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where Ē ′ = −E ′/µ′. We consider rate-independent isotropic elastic–plastic response and follow the same
procedure of Sect. 4.1.2 to derive the necessary equations. The boundary will be in a state of yield if the yield
function G ′(ς ′e, e′) satisfies

G ′ (ς ′e, e′) = 0, (94)

where the effective surface stress ς ′e = |Ē ′|, effective plastic strain rate ė′ = |µ̇′|, and effective plastic strain
e′ =

∫ t
0 ė

′dt . During elastic deformation, the yield function satisfies Ġ ′ < 0 and the effective plastic flow rate
ė′ vanishes. Considering the postulation of maximum dissipation at the boundary subjected to G ′ ≤ 0, we
obtain the flow rule

µ̇′ = ζ̇ ′ ∂G
′

∂ Ē ′ , (95)

where ζ̇ ′ is the plastic multiplier for the boundary. Assuming a von Mises type of yield function given by
G ′ = ς ′e − k′(e), where the yield stress k′(e) = k′

0 + h′e′ (k′
0 is a constant flow stress and h′ is a constant

hardening function), and taking the consistence condition Ġ ′ = 0 into account, we get ς̇ ′ = h′ė′, which can
be used to obtain the effective plastic strain rate. In particular, the plastic multiplier is obtained as ζ̇ ′ = ė′.

4.1.4 Junction and edge kinetics

Based on the inequalities (65) and (71), we postulate linear kinetic laws for the junction and edge dynamics as

q = MJ f J and qe = Me fe, (96)

respectively, whereMJ ≥ 0 andMe ≥ 0 are the mobilities at the corresponding points. Note that f J depends
on the instantaneous junction angleswhich should be determined from the compatibility relation Vi = q ·N i for
i = 1, . . . , N when the junction mobility is finite, see [3,12] for details and also for the case whenMJ → ∞.

4.2 Small deformation theory

Wenow specialise the above flow rules and kinetic relations assuming small deformation and small strains (both
elastic and plastic). The order of smallness of all these variables is assumed to be same. The obtained results
give us the simplest setting in which meaningful initial-boundary value problems can be posed. Additionally,
they provide us with grounds of comparison with recent work in strain gradient plasticity.

4.2.1 Bulk plasticity

Under the assumption of small deformation and small strains, the multiplicative decomposition (21) readily
reduces down to an additive decomposition given by

ϵ = ϵH + ϵG, (97)

where ϵ, ϵH , and ϵG denote total, elastic, and plastic infinitesimal strain, respectively, such that their norms are
much less than unity (but of the same order). Therefore, we canwrite (to the leading-order term), F = 1+ω+ϵ,
H ≈ 1+ ω + ϵH , and G ≈ 1+ ϵG ; here, we have ignored the infinitesimal plastic rotation (due to isotropy,
see previous subsection), and hence, elastic rotation and total rotation are identical (given by ω ∈ Skw). We
additionally assume plastic incompressibility in the bulk, i.e. tr ϵG = 0 or equivalently tr ϵ̇G = 0.

The (isotropic) strain energy density W̃ and the second Piola–Kirchhoff stress, with respect to the inter-
mediate configuration, are reduced to

W̃ ≈ 1
2
c1 (tr ϵH )2 + c2ϵH · ϵH and (98)

SH = σ + o (|ϵH |) , where σ = c1 (trϵH ) 1+ 2 c2ϵH , (99)

where σ is the symmetric Cauchy stress, and c1 and c2 are Lamé constants. Note that the energy density is
(almost) same per unit area of the reference or the intermediate configuration. The first Piola–Kirchhoff stress
also reduces to σ to the leading order. As a result, we have from (52), E ≈ −σ . Substituting this in the
dissipation inequality (63) and retaining only the leading-order terms, we have
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σ d · ϵ̇G ≥ 0, (100)

where σ d is the deviatoric part of σ . The yield locus is accordingly taken as

F (σ d , EG) = 0, (101)

where EG =
∫ t
0 ĖGdt and the accumulated plastic strain rate is now given by

ĖG =
√
2/3|ϵ̇G | + ℓ2η, (102)

where the rate of Gaussian curvature, here represented by the scalar incompatibility rate η (rate of the non-
trivial component of the rate of curl curl ϵG which is known as the Kröner’s incompatibility tensor and can be
obtained by linearising (78)), has a simple form

η =
∣∣∣∣∣

(
∂2

∂x2
− ∂2

∂y2

)
ϵ̇11G − 2

∂2ϵ̇12G
∂x∂y

∣∣∣∣∣ , (103)

where ϵ̇abG denotes the abth component of the plastic strain ϵ̇G in the Cartesian coordinate system (both a and
b take value of either 1 or 2). Following the last subsection, we consider a yield function

F (σ d , EG) = σe − (K0 + HEG), (104)

where σe =
(
3
2
σ d · σ d

)1/2

is the effective stress. The associative flow rule then implies ϵ̇G = 3 ξ̇
2σe

σ d which

when combined with the consistency condition provides a partial differential equation to solve for the plastic
multiplier.

4.2.2 Interfacial flow rule and kinetic relations

The strains (total, elastic, and plastic) are infinitesimally small. As a result, we can write

λi ≈ 1+ 8i , µ
α
i ≈ 1+ ϵα

i , and να
i ≈ 1+ εα

i , (105)

such that |8i | << 1, |ϵα
i | << 1, and |εα

i | << 1 (α stands for either δ or γ ). The multiplicative decomposition
of stretches (25) is therefore reduced to an additive decomposition given by

8i = εα
i + ϵα

i . (106)

The relative stretch can also be approximated as mi ≈ 1+ :i , where :i can be written using (29) as

:i = εδ
i − ε

γ
i = ϵ

γ
i − ϵδ

i ; (107)

it represents the measure of incoherency at the i th interface when the strains are small and material response
is isotropic. On the other hand, neglecting residual stress at the interface, we retain only the quadratic terms in
the interfacial free energy:

w̃i
(
ε
γ
i , :i

)
≈ 1

2
ai

(
ε
γ
i

)2 + 1
2
bi:2

i , (108)

where ai > 0 is the modulus of elasticity of the interface and bi > 0 is another interfacial constant which we
call the modulus of incoherency. The interfacial first Piola–Kirchhoff stress is approximately given by τi t i ⊗ t i ,
where we calculate

τi ≈ aiε
γ
i (109)

using (50)2 and (108).
The leading-order terms in the linear momentum balance relation at the interface (36) yield

[[σ ]]ni · ni + τiκi = 0. (110)

In writing the bulk and the surface Eshelby tensors, we retain terms upto quadratic order since the linear term
will cancel out to give a trivial result. Under present assumptions, we have
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E ≈ W̃1 − (σ + 2ϵHσ + (ϵGσ − σϵG)) and (111)
Ei ≈ w̃i − τi (1+ 8i ). (112)

The dissipation inequality at the interface is quadratic to the leading order:

Vi f̂i + τi ϵ̊
γ
i + β̂i :̊i ≥ 0 on Si , (113)

where
f̂i = [[W̃1 − 2ϵHσ ]]ni · ni + (w̃i − τi8i ) κi and β̂i = −bi:i . (114)

Following Sect. 4.1.2, the interfacial dynamics is assumed to be governed by

Vi = Mi f̂i . (115)

The interfacial yield function is now taken as

Ĝi = ς̂i − ki
(
êi

)
, (116)

as before, where

ς̂i =
√

τ 2i + β̂2
i and ˚̂ei = |ϵ̊γ

i | + |:̊i |. (117)

The evolution of plastic strain and incoherency, based on the postulate of maximum plastic dissipation, can be
obtained as

ϵ̊
γ
i = ζ̊i

τi

ki
and :̊i = ζ̊i

β̂i

ki
. (118)

The plastic multiplier can be obtained from the consistency condition, ˚̂Gi = 0, as

ζ̊i =
˚̂ςi ς̂i

hi
(
|τi | + |β̂i |

) . (119)

4.2.3 Plastic flow at the external boundary

The dissipation inequality for the external boundary (93) simplifies to

τ ′ϵ̇′ ≥ 0, (120)

where ϵ′ is the infinitesimal plastic strain along the external boundary. We consider the yield function Ĝ ′ =
ς̂ ′ − k̂′(ê′) as before, where ς̂ ′ = |τ ′| is the effective stress, ˙̂e′ = |ϵ̇′| is the effective plastic strain rate, and
ê′ =

∫ t
0 |ϵ̇′|dt is the effective plastic strain. Using the postulation of maximum dissipation, the flow rule is

obtained as ϵ̇′ = ζ̇ ′sign(τ ′), where sign(τ ′) = +1 if τ ′ > 0 and= −1 if τ ′ < 0, and the consistency condition
˙̂G ′ = 0 yields ζ̇ ′ = ė′.

4.2.4 Comparison with the previous work

Our flow rules are comparable to those derived in [1,13,14] when we restrict ourselves to small deformation
theory and stationary interfaces. Even then, there are several points of departure between our treatments with
these recent studies. In order to incorporate the size effect, [1,14] consider the energy of the bulk to depend
on total strain, plastic strain, and gradient of the plastic strain. As a consequence, a higher-order stress called
the moment stress gets introduced in the theory and the local dissipation in the bulk is due to the evolution
of plastic strain and its gradient. On the other hand, [13] considers an equivalent plastic strain rate and its
gradient, which contributes to the dissipation in the bulk region through respective higher-order scalar stress
and its gradient. We incorporate the size effect by considering the flow stress to depend on an effective measure
of material inhomogeneity which has the dimension of inverse of the square of the length. An additional length
scale, denoting the size of the grain, will also appear naturally in our framework.

Secondly, [1,13,14] assume that the interfacial potential depends on the limiting value of the total bulk
plastic strain at the interface. As a consequence, the local dissipation within the interface occurs due to the
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evolution of plastic strain within it, whereas in our theory, the dissipative fluxes at the interface are due to the
evolution of plastic strain on one side of the interface and difference in plastic strain on the disjoint lines of
the interface in intermediate configuration. When the interface is stationary, i.e. V = 0, the dissipation within
the interface occurs due to plastic flow on one side of the interface in the intermediate configuration aided by
the evolution of incoherency.

Finally, we note that our model can be viewed as a part of a larger class of second-gradient-type theories,
where the interfaces are modelled from a unified point of view as boundary-layer-type solutions, see for
example recent works of dell’Isola and coworkers [10,24,30].
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