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Grain rotation and grain boundary (GB) sliding are two important mechanisms for grain
coarsening and plastic deformation in nanocrystalline materials. They are in general cou-
pled with GB migration and the resulting dynamics, driven by capillary and external
stress, is significantly affected by the presence of junctions. Our aim is to develop and
apply a novel continuum theory of incoherent interfaces with junctions to derive the
kinetic relations for the coupled motion in a tricrystalline arrangement. The considered
tricrystal consists of a columnar grain embedded at the center of a non-planar GB of a
much larger bicrystal made of two rectangular grains. We examine the shape evolution
of the embedded grain numerically using a finite difference scheme while emphasizing
the role of coupled motion as well as junction mobility and external stress. The shape
accommodation at the GB, necessary to maintain coherency, is achieved by allowing
for GB diffusion along the boundary.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Grain boundaries (GBs) and junctions play an important
role in various deformation processes within nanocrys-
talline (NC) materials which have an average grain size of
few tens of nanometers and hence contain a large volume
fraction of boundaries and junctions. The microstructural
evolution in NC materials, especially during grain coarsen-
ing and plastic deformation, is dominated by grain rotation
and relative grain translation coupled with GB migration
(Meyers et al., 2006; Wang et al., 2014; Koch et al., 2007;
Harris et al., 1998). The resulting motion is called coupled
GB motion (Cahn and Taylor, 2004; Taylor and Cahn, 2007).
The presence of triple junctions, which can occupy up to 3%
volume fraction in NC materials when the average grain
size is around 10 nm (Chapter 5 of Koch et al. (2007)),
induces drag on GB migration and affects the coupled
motion in a significant way (Czubayko et al., 1998; Wu
and Voorhees, 2012). For an illustration of the coupled
motion consider an isolated tricrystal arrangement, as
shown in Fig. 1(a), where a grain is embedded at the center
of the planar GB of a large bicrystal. In the absence of exter-
nal stress, the embedded grain spontaneously rotates due
to GB capillarity, thus changing its orientation, while
shrinking to a size shown in Fig. 1(b). The embedded grain
can disappear either by shrinking to a vanishing volume or
by reorienting itself to one of the neighboring grains. Grain
rotation can be accomplished through either a pure viscous
sliding, or a tangential motion geometrically coupled with
GB migration, or a combination of both (Cahn and Taylor,
2004; Taylor and Cahn, 2007). If the tricrystal is subjected
to external stress, the grains can accomplish relative trans-
lational motion as well (Trautt and Mishin, 2014); the cen-
ter of rotation of the embedded grain then need not remain
fixed in space.

Our aim is to develop a thermodynamically consistent
framework to study the coupled GB motion in the presence
l. Mech.

http://dx.doi.org/10.1016/j.mechmat.2015.01.012
mailto:ag@iitk.ac.in
http://dx.doi.org/10.1016/j.mechmat.2015.01.012
http://www.sciencedirect.com/science/journal/01676636
http://www.elsevier.com/locate/mechmat
http://dx.doi.org/10.1016/j.mechmat.2015.01.012


2 A. Basak, A. Gupta / Mechanics of Materials xxx (2015) xxx–xxx
of triple junctions as driven by GB capillarity and external
stress. More precisely, the main results of the present con-
tribution are:

(i) Developing a novel continuum framework, restrict-
ed to two dimensions, to study the dynamics of inco-
herent interfaces with junctions. An irreversible
thermodynamical theory of incoherent interfaces,
excluding junctions, has been previously developed
by Cermelli and Gurtin (1994). On the other hand,
junctions have been studied only with respect to
coherent interfaces (Simha and Bhattacharya,
1998). Furthermore, these previous studies were
based on the configurational mechanics framework
which requires a priori postulation of configurational
forces and their balances. In the present formulation
the configurational forces appear as mechanisms of
internal power generation so as to ensure that the
excess entropy production remains restricted to only
interfaces and junctions.

(ii) Extending the existing theory of coupled GB motion
to include triple junctions and relative tangential
translation. The earlier work on coupled motion
was restricted to bicrystals with a grain embedded
within a larger grain such that the center of rotation
of the embedded grain remains fixed (Cahn and
Taylor, 2004; Taylor and Cahn, 2007; Basak and
Gupta, 2014). The possibility of including junctions
and relative translation of the grains was ignored
in these models. These extensions were nevertheless
mentioned by Taylor and Cahn (2007) in their list of
open problems related to coupled GB motion.

(iii) Performing numerical simulations for shape evolu-
tion of grains and GBs during coupled motion.
Towards this end, we consider a tricrystalline
arrangement (as shown in Fig. 3) and solve the cou-
pled kinetic relations for GB motion, rotational and
translational movements of the grains, and junction
dynamics. The dynamical equations are solved using
a finite difference scheme adapted from a recent
work on triple junctions of purely migrating GBs
(Fischer et al., 2012). Our results are qualitatively
in agreement with a recent paper (Trautt and
Fig. 1. A schematic to depict the coupling between GB motion and rotation of gra
configuration which evolves to (b) at a later time. The outer grains G2 and G3, bei
(2014)).
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Mishin, 2014) concerned with molecular dynamics
(MD) simulations of the coupled motion in a
tricrystal.

We assume that the grains are rigid, free of defects, and
do not posses any stored energy. The defect content as well
as the energy density are confined to grain boundaries.
Isothermal condition is maintained throughout. The
assumption of grain rigidity is justified since we consider
the magnitude of the external stress to be much lower than
the yield stress. Also, in the present scenario the GBs do not
exert any far-field stress and GB capillary exerts very low
pressure on the neighboring grains. The shape accommo-
dation process, required to avoid nucleation of void or
interpenetration of the grains at the GBs during relative
rotation of the embedded grain, is controlled by allowing
for diffusion along the GBs. Bulk diffusion in the grains,
as well as across the GBs, is taken to be negligible com-
pared to GB diffusion (Koch et al., 2007). Furthermore,
since both GBs and grains move at much smaller velocities
than the velocity of sound in that material, the inertial
effects are ignored. The above assumptions provide the
simplest setting to pursue a rigorous study of coupled GB
dynamics.

The paper has been organized as follows. After develop-
ing the pertinent thermodynamic formalism in Section 2,
the kinetic relations for the tricrystalline configuration
are derived in Section 3. The numerical results are present-
ed in Section 4. Finally, Section 5 concludes our
communication.
2. Thermodynamic formalism

The dissipation inequalities at GBs and junctions are
now derived within the framework of Gibbs thermody-
namics, where various thermodynamic quantities (such
as energy, entropy, etc.) defined over interfaces and junc-
tions are understood as excess quantities of the system.
We begin by fixing the notation before deriving the conse-
quences of the second law of thermodynamics in terms of
various dissipation inequalities.
in G1 under GB capillary force in a tricrystal. Diagram (a) shows the initial
ng much larger than G1, are taken to be stationary (after Trautt and Mishin
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http://dx.doi.org/10.1016/j.mechmat.2015.01.012


Fig. 2. (a) Schematic of a polycrystal with a region P. (b) The region P containing three subgrains Piði ¼ 1;2;3Þ, three GBs Ci , and a junction J. Normal vectors
for the outer boundary of @P and Ci are denoted by m and ni , respectively. Point Ai denote the edge of Ci lying on @P. The broken circle C� is the boundary of
the circular disc D� which is excluded to obtain the punctured domain P� ¼ P nD� .
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Consider a 2D region P as shown in Fig. 2(b) contain-
ing three domains P1; P2 and P3, and a junction J. P can
be thought of as a subdomain in a polycrystalline mate-
rial, as depicted in Fig. 2(a). The boundary separating Pi

and Pi�1 ði ¼ 1;2;3Þ has been represented by Ci (P0 is
identified with P3). The normal ni to Ci is chosen such
that it points into Pi. The outer boundary of P and the
associated outward normal are denoted by @P and m,
respectively. We parameterize each of the GBs Ci by an
arc-length parameter si which initiates at J and increases
towards the edge Ai. The tangent ti to Ci is aligned in the
direction of increasing si. The stress field at the junction
is usually singular (cf. Simha and Bhattacharya (1998)
and Part H of Gurtin (2000)) and therefore all the analy-
sis is restricted to a punctured domain P� which is
obtained by excluding a small circular disc D� of radius
� centered at the junction, i.e. P� ¼ P nD�. We denote
the periphery of the circular hole in P� by C� whose nor-
mal m is directed inside P�. The velocity of the curve C�
approaches the velocity of the junction, denoted by q, in
the limit �! 0.

Let f be a field defined in P such that it is continuous
everywhere except across Ci. The jump in f across Ci is
denoted by sf t ¼ fþ � f�, where fþ is the limiting value
of f as it approaches Ci from the side into which ni points
and f� otherwise. The normal time derivative of a field g
defined on Ci is given by (Gupta and Steigmann, 2012)

�g ¼ _g þ Virg � ni ð1Þ

(no summation for the repeated index ‘i’ is considered
here and thereafter), where the superposed dot stands
for the material time derivative, Vi is the normal velocity
of Ci, and r is the gradient operator. It represents the
time rate of change of g with respect to an observer sit-
ting on Ci and moving with the interface in its normal
direction.

2.1. Dissipation inequality

We now derive the dissipation inequalities for the
grains, GBs, and junction using the balance relations for
mass and linear momentum given in Appendix A. In confir-
mation with the second law of thermodynamics for
isothermal processes, the rate of change of free energy of
Please cite this article in press as: Basak, A., Gupta, A. Simultaneous grain
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the GBs is less than or equal to the total power supplied
to P:

X3

i¼1

d
dt

Z
Ci

cidl6
Z
@P

rm �v dl�
X3

i¼1

ðlhiÞAi
þ
X3

i¼1

ðci �wiÞAi
; ð2Þ

where ci is the energy density of GB Ci, r is the symmetric
Cauchy stress in the grains, l is the chemical potential of
the atoms, hi is the diffusion flux along Ci, and dl is an infi-
nitesimal length along the boundaries. As noted before, we
have ignored bulk free energy as well as volumetric diffu-
sion in the grains. The vector wi stands for the velocity of
edge Ai and ci is the force conjugate associated with it.
The nature of the latter is elaborated below. The first term
on R.H.S. of the inequality is the power input into P due to
external stress field on its boundary. The second term rep-
resents the power input due to additional mass flow. The
third term, which is non-standard, represents the power
input into P required to ensure that there is no excess
entropy generation at the edges Ai, thereby restricting
the excess entropy production only at the GBs and the
junction. The edges are allowed to carry excess entropy
only when they are present on the external surface of the
solid, in which case the considered term will not be
required. This additional power input will therefore be pre-
sent only for edges in the interior of region P. Its form (and
hence of ci) will of course depend on the constitutive nat-
ure of the prescribed excess quantities over GBs and the
junction. It can be alternatively interpreted as the power
expended by the configurational force ci at the respective
edge. This viewpoint has been adopted in earlier studies
(cf. Cermelli and Gurtin (1994), Simha and Bhattacharya
(1998), Fried and Gurtin (2004)) within the framework of
configuration mechanics. Our treatment (see also Gupta
and Steigmann (2012), Basak and Gupta (2014)) is differ-
ent from these in that we do not introduce a priori any bal-
ance law associated with configurational forces, nor do we
postulate configurational forces as independent funda-
mental entities alongside the standard forces. It should
be noted that the final results are identical, irrespective
of the chosen standpoint. We will now exploit the above
restriction on the nature of entropy production, combined
with certain constitutive restrictions on GB energy, to
determine ci. This will then be used to obtain local dissipa-
tion inequalities at various GBs and the junction.
boundary motion, grain rotation, and sliding in a tricrystal. Mech.
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Applying the transport theorem for an internal bound-
ary (cf. Equation (A8) of Simha and Bhattacharya (1998))
in (2) we obtainZ

P
r � ðrvÞdaþ

X3

i¼1

Z
Ci

srni � vtþ f iV i ��ci �
@

@si
ðlhiÞ

� �
dl

þ
X3

i¼1

ðci �wi � ciWiÞAi
þ lim

�!0

I
C�

rm � vdl

þ
X3

i¼1

ðciti � q� lhiÞJ P 0; ð3Þ

where f i ¼ ciji (ji is the curvature of Ci), and Wi is the tan-
gential component of the edge velocity wi at Ai. We consid-
er isotropic GB energy such that ci ¼ ciðhiÞ, where hi is the
misorientation angle at the boundary Ci. Using (66)–(71) in
(3), then yieldsZ

P
r �rvda

þ
X3

i¼1

Z
Ci

sUiEtni �niþhrnii �svttþ f iVi�
@ci

@hi

_hi�hi
@l
@si

� �
dl

þ
X3

i¼1

ðciti �qÞJþ lim
�!0

I
C�

rm �vdl�l lim
�!0

I
C�

qðu�vÞ �mdl

þ
X3

i¼1

ðci �wi�ciWiÞAi
P 0; ð4Þ

where E ¼ �ðqlI þ rÞ is the Eshelby tensor in the grains
with vanishing bulk energy density (I represents the iden-
tity tensor), svtt is the tangential part of svt, and we have

used h�i ¼ _hi recalling that the orientation of various grains
remain uniform (since they are defect free). We have also
imposed local chemical equilibrium at various boundaries,
i.e. slt ¼ 0 across Ci (Fried and Gurtin, 2004). The three
summations in (4) represent the entropy production rate
associated with the GBs Ci, the junction J, and the edges
Ai lying on the boundary of the part, respectively. We
require the excess entropy production to have no contribu-
tion from the edges, hence expecting it to be of the formP3

i¼1

R
Ci

gidlþ gJ P 0, where gi is the entropy generation

rate per unit length of Ci and gJ is the entropy generation
rate at the junction. As a consequence, we derive

ci ¼ citi; ð5Þ

cf. Eqs. (17.4) and (17.21) in Fried and Gurtin (2004). The
following local dissipation inequalities are then imminent

r � rv P 0 in Pi; ð6Þ

sUiEtni �niþhrnii � svtt þ f iV i�
@ci

@hi

_hi�hi
@l
@si

P 0 on Ci and

ð7Þ

F � qþ lim
�!0

I
C�

Em � ðq� vÞdl P 0 at J; ð8Þ

where

F ¼
X3

i¼1

citi ð9Þ
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is a part of the driving force for junction motion, cf. Simha
and Bhattacharya (1998). The L.H.S. of these inequalities
represent the dissipation rate in the grains (per unit area),
at the boundaries (per unit length), and at the junction,
respectively. Relation (6) requires the power expenditure
in the grains due to stress to be non-negative. When the
grains are rigid, as is the case in this paper, the power
expenditure in the bulk is identically zero and hence (6)
is trivially satisfied. Inequality (7) can be used to distin-
guish the fluxes (generalized velocities) and the associated
driving forces which cause dissipation at a GB. Therefore
the average traction drives the relative tangential jump
in the velocity between two grains, the mean curvature
drives the normal velocity of the GB, and the torque like
term @ci=@hi drives the evolution of the misorientation.
The gradient of the chemical potential acts as a driving
force for mass diffusion along the GB. At the junction,
according to (8), we see that both GB energies of the inter-
secting boundaries and the singular Eshelby tensor in its
neighborhood contribute to the net dissipative force.
3. Kinetics in a tricrystal

Based on the dissipation inequalities (7) and (8) we now
derive kinetic relations for a 2D tricrystal subjected to
shear stress as shown in Fig. 3. The tricrystal configuration
consists of three grains G1; G2, and G3, four GBs
Ci; i ¼ 1; . . . ;4, and two junctions J1 and J2. The orientation
of the respective grains, denoted by w1; w2 and w3 (mea-
sured anticlockwise w.r.t. the e1-axis), are considered to
be homogeneous (since they are all rigid and defect free).
The tricrystal lies in a plane (spanned by e1 and e2) ortho-
gonal to e3, where fe1; e2; e3g forms a right-handed
orthonormal basis. The origin of the coordinate system is
taken to coincide with the center of rotation of G1. Since
we assume that the tricrystal is initially symmetric about
e2-axis, and also that the external loading is symmetric
about the same axis, the instantaneous rotational velocity
of two points in G1 located in the neighborhood of J1 and
J2 will always be equal and opposite until G1 disappears.
As a consequence, the mid-point of the line joining J1 and
J2 will throughout represent the center of rotation, where
the rotation axis is parallel to e3. Thus fe1; e2; e3g repre-
sents a basis for the translating coordinate with the origin
held fixed with the instantaneous center of rotation. The
misorientation angles along C1; C2, and C3;4 are defined
as h1 ¼ w1 � w2, h2 ¼ w1 � w3, and h3 ¼ w2 � w3, respective-
ly. The arc-length parameter for Ci is denoted by si

(i ¼ 1; . . . ;4Þ with an increasing direction as shown in
Fig. 3. The normal ni and the tangent ti for a GB Ci is also
shown in the same figure, where the latter is aligned in
the direction of increasing si. The state of stress in each
of the grains is considered to be given by

r ¼ s e1 � e2 þ e2 � e1ð Þ; ð10Þ

which obviously satisfies the equilibrium Eqs. (69) and
(70) and the relevant traction boundary conditions. Let
Rið/i; tÞ be the radial distance of the GB Ci from the center
of rotation O measured at an angle /i w.r.t. e1-axis (see
Fig. 3), where 0 6 /1 6 p and p 6 /2 � 2p. Denote the
boundary motion, grain rotation, and sliding in a tricrystal. Mech.
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Fig. 3. A schematic of the tricrystal.
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position vectors for the junctions J1 and J2 by z1 and z2,
respectively and the position vectors of the edges Q 1 and
Q 2 by z3 and z4, respectively.

We allow the embedded grain G1 to both rotate and
translate with respect to the neighboring grains. The outer
grains G2 and G3 are however restricted to undergo only
relative translational motion. This is consistent with the
observations made through MD simulations in Trautt and
Mishin (2014). Without loss of generality we assume that
G3 remains stationary. Hence, _h1 ¼ _h2 ¼ _w1 and _h3 ¼ 0.
Based on these assumptions, the velocity of the three
grains take the form

v1 ¼ _w1e3 � xþ _C1; v2 ¼ _C2; v3 ¼ 0; ð11Þ

where C1 and C2 are the rigid translations of G1 and G2,
respectively. Define vectors C1 ¼ C1 � C2; C2 ¼ C1 and
C3;4 ¼ C2, as representing the relative translation between
the adjacent grains across C1; C2, and C3;4, respectively.
The normal and the tangent vector for Ca (from now on
suffix a will stand for either 1 or 2, and suffix b for either
3 or 4) can be written as

na ¼ �
ðRa cos /a � R0a sin /aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
a þ R02a

q e1

� ðRa sin /a þ R0a cos /aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

a þ R02a

q e2; and ð12Þ

ta ¼ ðna � e2Þe1 � ðna � e1Þe2; ð13Þ

respectively (no summation for the repeated index a),
where R0a ¼ @Ra=@/a. Using na ¼ e3 � ta the normal compo-
nent of the velocity v1, when evaluated on C1 and C2,
yields

v1 � n1 ¼ _w1x � t1 þ _C1 � n1 and

v1 � n2 ¼ _w1x � t2 þ _C1 � n2; ð14Þ

respectively.

3.1. Consequence of mass balance

Earlier MD simulations (Trautt and Mishin, 2014) have
confirmed that in the absence of external stress, the
embedded grains spontaneously rotates about a fixed cen-
Please cite this article in press as: Basak, A., Gupta, A. Simultaneous grain
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ter of rotation and shrinks without any translational
motion under GB capillary force. Based on this, and consid-
ering that the stress amplitude s is much smaller than the
yield stress, we assume the translational velocities to be
much smaller than the rotational velocity. As a result we
ignore the effect of translational velocity on GB diffusion,
and using (11) and (14) in (67) we rewrite the mass bal-
ance at the GBs as

@ha

@sa
¼ �q _w1xa � ta on Ca and

@hb

@sb
¼ �q _C2 � nb on Cb: ð15Þ

Expanding (68) we obtain the following conditions for the
diffusion currents at the junctions:

h1 � h2 � h4 ¼ 0 at J1 and h1 � h2 þ h3 ¼ 0 at J2: ð16Þ

Substituting (12) and (13) into (15), while recalling that

nb ¼ ð�1Þb�1e3 � tb, and integrating the result yields

ha ¼
q _w1

2
R2

a þ ka and

hb ¼ ð�1Þbq _C2 � e3 � xb þ kb;

ð17Þ

where ka and kb are the integration constants, and
xb ¼ xðsbÞ. Since the tricrystal has been assumed not to
exchange mass with the surrounding, hb must satisfy
h3ðz3Þ ¼ 0 and h4ðz4Þ ¼ 0. With these boundary conditions,
(17)2 simplifies to

hb ¼ ð�1Þbq _C2 � e3 � ðxb � zbÞ: ð18Þ

The GBs C3 and C4 are always symmetrically equivalent
about e2-axis, hence the validity of (18) for both these
curves demands that _C2 must be parallel to e1, i.e.
_C2 ¼ _C2e1, which implies that the upper grain will always
move in a horizontal direction with respect to the lower
grains. Consequently, (18) reduces down to

hb ¼ ð�1Þb�1q _C2yb; ð19Þ

where yb ¼ ðxb � zbÞ � e2. Using (17)1 and (19) in (16) and
neglecting the contribution coming from the translational
boundary motion, grain rotation, and sliding in a tricrystal. Mech.
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velocity in comparison to the rotational speed as far as the
diffusion fluxes along C1 and C2 are concerned, we con-
clude that

k1 � k2 ¼ 0 at J1 and J2: ð20Þ

Eqs. (20) and (17)1 in association with the conservation
condition

R
C1

h1dlþ
R
C2

h2dl ¼ 0 along the closed boundary

of G1 yield

ha ¼
q _w1

2
ðR2 � R2Þ; ð21Þ

where R2 ¼
R
C1

R2
1dlþ

R
C2

R2
2dl

� �
=ðjC1j þ jC2jÞ and jCij is the

length of Ci. The conservation condition can be readily
proved using the Fick’s law

hi ¼ �Di
@l
@si

; ð22Þ

where Di P 0 is the diffusivity along the GB Ci. Moreover,
applying (22) in (19) and then integrating the equation we
obtain the chemical potential along Cb as

lb ¼ ð�1Þb q _C2

Db
Ib; ð23Þ

where Ib ¼
R sb

sbðzbÞ
ybdl. The chemical potential at the free

surfaces (assumed to be flat) has been considered to be
zero as there are no normal components of traction on
those faces (cf. Herring (1950) and Chapter 68 in Gurtin
et al. (2010)).

3.2. Grain and GB kinetics

We begin by deriving the kinetic laws relevant to Ca

and G1 before moving on to the kinetics of other GBs and
junctions. Ignoring the terms of the order of _Ca

_w1 and _C2
a ,

while using (70), (11), (14), and (22) in (7), we rewrite
the dissipation inequality on Ca as

f aVa þ gama þ ra
_Ca P 0; ð24Þ

where _Ca ¼ ð _C1 � _C2Þ � e1, Da ¼ Da=q2, and

ga ¼
1

xa � na

@ca

@ha
� qlaxa � ta �

_w1

4Da
ðR2

a � R2
aÞ

2
� Ta

 !
ð25Þ

is the driving force for the rotational motion of G1 with

Ta ¼ sððna � e1Þðxa � e1Þ � ðna � e2Þðxa � e2ÞÞ;

ma ¼ � _w1xa � na is related to the rotational velocity of G1;
and ra ¼ hrnai � e1 ¼ sna � e2 is the driving force for the
translational motion between the adjacent grains. While
deriving (24) we have neglected a term proportional to
la

_Ca, which is estimated to be of the order of _w1
_Ca þ _C2

a

considering (22) and (21). The term ra
_Ca in (25) is derived

from what originally was of the form hrnai � _Ca. Indeed, the
tricrystal will always maintain the symmetry (about e2-ax-
is) as dictated by its initial geometry and the loading con-
dition. Moreover, since the relative velocities _Ca are
uniform over the respective GBs, we can justifiably assume
that it is only the average values of their conjugate forces,
Please cite this article in press as: Basak, A., Gupta, A. Simultaneous grain
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i.e.
R
Ca

sðn2e1 þ n1e2Þdl=jCaj, which are ultimately going to
contribute to the net dissipation.

Assuming linear kinetics, and recalling the Onsager’s
reciprocity theorem, we consider the following set of phe-
nomenological kinetic equations for the fluxes on Ca (Cahn
and Taylor, 2004; Basak and Gupta, 2014):

Va ¼ Maf a þMabaga; ð26Þ

ma ¼ baVa þ Saga; and ð27Þ

_Ca ¼ Lara; ð28Þ
where Ma > 0; ba; Sa P 0, and La P 0 are the mobility,
geometric coupling factor, viscous sliding coefficient, and
translational coefficient associated with Ca. The restric-
tions on Ma; Sa, and La can be easily verified by using
(26)–(28) in the inequality (24). For the same reason as dis-
cussed above (see the paragraph following (14)), we have
assumed that the translational velocity of the embedded
grain is decoupled from rotational evolution and migra-
tion. Multiplying both sides of (26) by Sa and then replac-
ing ga from it using (27) we get

Va ¼
Ma

Sa þMab
2
a

ðSaf a þ bamaÞ; ð29Þ

which is the governing equation for the normal velocity of
Ca. To calculate _w1 we begin by combining (26) with (27),
after replacing ga from (25), to obtain

_w1
ðxa � naÞ2

Sa þMab
2
a

� 1
4Da
ðR2

a � R2
aÞ

2
 !

¼ � Maba

Sa þMab
2
a

ðxa � naÞf a �
@ca

@ha
þ Ta þ laxa � ta: ð30Þ

These two equations (for a ¼ 1;2) are then integrated over
C1 and C2, respectively, and summed up to yield the ordi-
nary differential equation

_w1 ¼
�
P2

a¼1

R
Ca

Maba

SaþMab2
a

f axa � na þ @ca
@ha
� Ta

� �
dl

P2
a¼1

R
Ca

ðxa �naÞ2

SaþMab2
a
� 1

2Da
ðR2

a � R2
aÞ

2
� �

dl
; ð31Þ

where we have used the identity (obtained using
ta ¼ dxa=dsa, (22) and (21))

X2

a¼1

Z
Ca

laxa � tadl ¼
X2

a¼1

_w1

4Da
ðR2

a � R2
aÞ

2
dl:

We now have the kinetic relations governing the normal
velocities of C1 and C2 in (29), and the rotational speed
of the inner grain G1 in (31). In the following we will derive
kinetics for the normal velocity of boundaries C3 and C4,
the translational velocity of the grains G1 and G2, and the
velocities for J1 and J2.

The dissipation inequality (7) for GBs C3 and C4, across
which there is no misorientation evolution, can be reduced
to

f bVb þ rbð _C2Þb P 0; ð32Þ

where

rb ¼ ð�1Þb ð
_C2Þb
Db

Ibnb � e1 þ snb � e2 þ
q2

Db
ð _C2Þby2

b : ð33Þ
boundary motion, grain rotation, and sliding in a tricrystal. Mech.
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As done previously we postulate linear kinetics from (32):

ð _C2Þb ¼ bbVb þ Lbrb and ð34Þ

Vb ¼ Mbf b þMbbbrb: ð35Þ

To derive an expression for the average translational velo-
city of G2 we substitute Vb from (35) into (34), then inte-
grate it over C3 and C4, respectively for b ¼ 3; 4, and
finally add them up to obtain

_C2 ¼

P4
b¼3

R
Cb

Mbbb

LbþMbb2
b

f b þ snb � e2

� �
dl

P4
b¼3

R
Cb

1
LbþMbb2

b
� ð�1Þb Ib

Db
nb � e1 � 1

Db
y2

b

� �
dl
; ð36Þ

where Mb; bb; Sb, and Lb have the same meaning as
described above. Eliminating rb between (35) and (34)
we obtain the governing kinetic law for the normal velocity
of Cb as

Vb ¼
MbLb

Lb þMbb
2
b

f b þ
Mbbb

Lb þMbb
2
b

_C2; ð37Þ

where we have replaced ð _C2Þb by the average translational
rate of G2 given by (36). Next we integrate (28) for a ¼ 1
and 2, respectively, and combine them to obtain the aver-
age of the translational velocity of G1

_C1 ¼
1

jC1j þ jC2j
_C2jC1j þ

X2

a¼1

Z
Ca

Laradl

 !
: ð38Þ

We now have all the required kinetic relations related to
GB motion and grain dynamics.

3.3. Junction kinetics

We will next derive the kinetic relations for the two
junctions. Using (11) and the weak singularity in the stress
field (see (71) and the discussion in Appendix A), in addi-
tion to assuming q to be nonsingular, one can easily show
that the closed integral in (8) would vanish in the limit
�! 0, simplifying it to

Fd � qd P 0 at Jd; for d ¼ 1; 2: ð39Þ

Linear kinetic relations can then be motivated from (39) as
(Fischer et al., 2012)

qd ¼ mdFd at Jd; ð40Þ

where md P 0 is the mobility coefficient associated with
junction Jd,

F1 ¼ c1t1 � c2t2 � c4t4; and ð41Þ

F2 ¼ �c1t1 þ c2t2 � c3t3: ð42Þ

We assume the junctions to be non-splitting. Compatibility
at the junctions would then require (Fischer et al., 2012)

Vi ¼ q1 � ni at J1 for i ¼ 1; 2; 4; ð43Þ

Vi ¼ q2 � ni at J2 for i ¼ 1;2;3: ð44Þ

These compatibility equations will be used to determine
the junction angles, as described below.
Please cite this article in press as: Basak, A., Gupta, A. Simultaneous grain
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It follows from the geometry of the tricrystal that

ni � tj ¼ sinðaj � aiÞ and ti � tj ¼ cosðai � ajÞ for i; j

¼ 1;2;3;4 ð45Þ

at the junctions, where ai is the angle made by the tangent
(in the limiting sense) to Ci with e1-axis at the correspond-
ing junction (see Fig. 3). Substituting Fd from (41) and (42),
using (40), in (43) and (44), and then employing (45) in the
resulting relations we obtain the following sets of com-
patibility relations:

� c2 sinða2 � a1Þ � c4 sinða4 � a1Þ ¼
V1

m1
;

c1 sinða1 � a2Þ � c4 sinða4 � a2Þ ¼
V2

m1
;

c1 sinða1 � a4Þ � c2 sinða2 � a4Þ ¼
V4

m1
at J1; and

ð46Þ

c2 sinða2 � a1Þ � c3 sinða3 � a1Þ ¼
V1

m2
;

� c1 sinða1 � a2Þ � c3 sinða3 � a2Þ ¼
V2

m2
;

� c1 sinða1 � a3Þ þ c2 sinða2 � a3Þ ¼
V3

m2
at J2;

ð47Þ

when md > 0 in finite. The nonlinear algebraic equations
given by (46) and (47) have to be solved in order to obtain
fa1;a2;a4g and fa1;a2;a3g at J1 and J2, respectively. Using
(41) and (42) in (40) the junction velocities are calculated
as

q1 ¼ m1ðc1 cos a1 � c2 cos a2 � c4 cos a4Þe1

þm1ðc1 sin a1 � c2 sin a2 � c4 sin a4Þe2 and
q2 ¼ m2ð�c1 cos a1 þ c2 cos a2 � c3 cos a3Þe1

þm2ð�c1 sin a1 þ c2 sin a2 � c3 sina3Þe2:

ð48Þ

When the junction mobility is infinite, i.e. md !1, (46)
and (47) give two independent equations

c1

sinða2 � a4Þ
¼ �c2

sinða4 � a1Þ
¼ �c4

sinða1 � a2Þ
at J1 and ð49Þ

c1

sinða2 � a3Þ
¼ �c2

sinða3 � a1Þ
¼ c3

sinða1 � a2Þ
at J2; ð50Þ

known as the Young–Dupré equations (Fischer et al.,
2012). In order to solve the junction angles uniquely, we
use the following equations which are obtained by
eliminating m1 and m2 from the respective sets of equa-
tions from (46) and (47):

c1V1 � c2V2 � c4V4 ¼ 0 at J1 and
c1V1 � c2V2 þ c3V3 ¼ 0 at J2: ð51Þ

To calculate the velocity of J1 when m1 !1, we write
q1 ¼ q1ðcos ne1 þ sin ne2Þ where n is the angle made by q1

with e1-axis. Using this expression in (43) twice (i.e. for
two different values of i) we get

q1 ¼ cscðaj � aiÞ ðVi cos aj � Vj cos aiÞe1
�

þ Vi sin aj � Vj sinaiÞe2
� �

for any i; j ¼ 1;2;4; i – j:

ð52Þ
boundary motion, grain rotation, and sliding in a tricrystal. Mech.
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The expression for the velocity of J2 is same as (52), except
that the indices are now restricted to i; j ¼ 1;2;3.

To summarize, the migration kinetics of GBs C1 and C2

is governed by (29), while those of C3 and C4 by (37); all of
these are non-linear parabolic partial differential equa-
tions. Relations (31), (36), and (38) govern the homoge-
neously evolving orientation for G1, the uniform
horizontal translation for G2, and the uniform horizontal
translation for G1, respectively, while keeping grain G3

fixed. The junction dynamics at J1 and J2 follow (48) when
the junction mobility is finite. The unknown junction
angles a1; a2, and a3 at J1 and J2 are then obtained by solv-
ing the set of Eqs. (46) and (47). The junction motion is
governed by (52) when the mobility coefficient takes an
infinite value; the three unknown junction angles are then
determined by solving (49)–(51).

Remark 1. We consider a special case of the arrangement
shown in Fig. 3 where the embedded grain is absent. We
get a bicrystal with two rectangular grains which are
separated by a non-planar smooth GB (denote it by C).
Without loss of generality we assume the lower grain to be
stationary, so that the kinetic equations for GB migration

and sliding rate _C of the upper grain can be obtained from
(37) and (36) as

V ¼ ML

LþMb2 f þ Mb

LþMb2
_C and ð53Þ

_C ¼

R
C

Mb
LþMb2 f þ sn � e2

� �
dlR

C
1

LþMb2 þ I
D

n � e1 � y2

D

� �
dl
; ð54Þ

respectively, where all the symbols have the same mean-
ing as before.

When GB C is planar, f ¼ 0; n ¼ e2; y ¼ 0, and I ¼ 0. As
a result, (53) and (54) simplify to

V ¼ Mbs and _C ¼ ðLþMb2Þs; ð55Þ

respectively. These are in agreement with the earlier work
on low angle tilt GBs (Read and Shockley, 1950; Molodov
et al., 2007) (where it is additionally assumed that L ¼ 0).
On the other hand, when the GB is curved, but assumed
to migrate without coupling and sliding, then the well
known kinetic relations, V ¼ Mf and _C ¼ 0, are readily
obtained.

As another scenario, consider GB migration to be absent
so that only GB diffusion accommodated tangential motion
of the grain is present. The non-steady-state sliding velo-
city, obtained from (54), is then governed by

_C ¼
R
C
sn � e2dlR

C
1
L þ I

D
n � e1 � y2

D

� �
dl
: ð56Þ

Similar relations are used to model viscous GB sliding to
understand creep (Raj and Ashby, 1971).

Remark 2. As another special case, we consider the
arrangement shown in Fig. 3 without the non-planar GBs
C3 and C4. We then have a bicrystal where a non-circular
cylindrical grain is embedded inside another grain. Let us
Please cite this article in press as: Basak, A., Gupta, A. Simultaneous grain
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denote the closed GB curve by C and assume that it is
smooth. Considering the outer grain of the bicrystal to be
stationary, the kinetic equation for GB motion, grain
rotation, and the translational rate of the embedded grain
can be obtained from (29), (31), and (38) as
V ¼ M

SþMb2 ðSf þ bmÞ; ð57Þ

_h ¼
�
R
C

Mb
SþMb2 f x � nþ @c

@h � T
� �

dl

R
C

ðx�nÞ2

SþMb2 � 1
2D
ðR2 � R2Þ

2
� �

dl
; and ð58Þ

_C ¼ 1
jCj

Z
C

Lrdl; ð59Þ

respectively. In the absence of translational velocity of the

embedded grain, i.e. _C ¼ 0, the system of equations (57)
and (58) coincide with the results derived in Basak and
Gupta (2014), Taylor and Cahn (2007). The above equa-
tions provide an extension to the previous work so as to
not restrict the center of rotation of the embedded grain
to be fixed.

4. Results and discussions

We introduce non-dimensional position and time vari-
ables as ~x ¼ x=R0 and ~t ¼ t=t0, respectively, where we
choose t0 to be is the time taken for an isolated circular
GB of radius R0, with energy c0 and mobility M0, to vanish

under curvature driven migration; hence t0 ¼ R2
0=2c0M0.

These dimensionless variables can be substituted in (29),
(37), (31), (38), (36), and (46)–(52), to obtain a system of
non-dimensionalized kinetic equations for the tricrystal.
This naturally introduces three dimensionless parameters
r1 ¼ S0=M0; r2 ¼ M0R2

0=
�D, and r3 ¼ L0=M0 associated with

GB kinetics, and one non-dimensional parameter
Kd ¼ 2R0md=M0 with junction kinetics (Basak and Gupta,
2014; Czubayko et al., 1998). We restrict our simulations
to constant mobility, sliding coefficients, and translation
coefficient, assumed to be same for all the GBs, and also
constant junction mobility coefficient, considered same
for both the junctions. Hence, say K1 ¼ K2 ¼ K. On the
other hand, we consider an isotropic GB energy and a cou-
pling factor as described by the solid curves in Figs. 2(a)
and 4(b), respectively, in Basak and Gupta (2014). The val-
ues of the dimensionless parameters are taken as 0:01 6

r1 6 1; r2 ¼ 103ðRð0Þ=Rð~tÞÞ3=2
, and 1 6 K 61 (Basak and

Gupta, 2014; Czubayko et al., 1998). The time-dependent
term in r2 ensures that with decreasing grain size GB diffu-
sivity increases (Chen and Schuh, 2007). Because of lack of
proper data related to the translational coefficient L0, we
consider r3 ¼ 1 (unless stated otherwise) in order to
observe tangible grain translations. All the parameters
have been taken for face-centered cubic crystals.

The non-dimensionalized kinetic equations are solved
numerically to investigate the shape and orientation evo-
lution of the embedded grain. Our simulation methodology
is based on the finite difference scheme proposed by
boundary motion, grain rotation, and sliding in a tricrystal. Mech.
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Fischer et al. (2012). The scheme is now described briefly
for the tricrystal. The GB Ci (recall that the subscript i
refers to one of the GBs in the tricrystal arrangement)
has been discretized with Ni number of grid points (dis-
cretization goes in the direction of increasing si) with the
position vector (non-dimensionalized) denoted by
~x j

i ¼ x j
i e1 þ y j

i e2, where the superscript j ¼ 0; . . . ;Ni denotes
the index of the grid point on Ci. The position of the grid
points of Ca and Cb are updated at time instance ~tnþ1 using
the following explicit time integration scheme (superposed
tilde represents dimensionless variables):

~x j
að~tnþ1Þ ¼ ~x j

að~tnÞ þ D~t~V j
að~tnÞn j

að~tnÞ þ D~t _C1ð~tnÞe1;

for j ¼ 1; . . . ;Na � 1; and ð60Þ

~x j
bð~tnþ1Þ ¼ ~x j

bð~tnÞ þ D~t~V j
bð~tnÞn j

bð~tnÞ;
for j ¼ 1; . . . ;Nb � 1; ð61Þ

where D~t is the time step, ~V j
a and ~V j

b are the normal veloci-
ties of Ca and Cb given by the non-dimensionalized ver-
sions of (29) for a ¼ 1; 2 and (37) for b ¼ 3; 4. Details of

the discretization for ~j j
i ; n j

i etc. can be seen from Fischer
et al. (2012). The Rectangle rule for integration has been
used in (31), (38), and (36) to compute the non-dimension-
al rotation rate and the translation rate of grains G1 and G2,

respectively. The end point velocities ~V0
i and ~VNi

i , which are
used to evaluate the junction angles, are computed follow-
ing Fischer et al. (2012). The position vector ~xd of Jd is
updated using

~xdð~tnþ1Þ ¼ ~xdð~tnÞ þ D~tð~qdð~tnÞ þ _C1e1Þ; ð62Þ

where ~qd is given by the non-dimensional version of (48)
when the junction mobility is finite and by (52) when
the mobility is infinite.

We now present the simulation results for the tricrystal
arrangement. At first, we ignore the external stress and
study GB capillary driven dynamics. Next we incorporate
the effect of applied shear stress and compare the results
with those obtained without it. We also consider a bicrys-
tal with an embedded grain having asymmetric cross-sec-
tion and demonstrate the effect of external shear stress on
coupled GB dynamics. The numerical scheme for such
closed GB can be obtained from the one described above
in a straightforward manner. For the tricrystal we choose
the initial discretization of Ca as Na ¼ 100 and Cb as
Nb ¼ 50 grid points. The embedded grain G1 is initially tak-
en to be circular with radius ~Rað0Þ ¼ 0:4. The initial orien-
tation of the grains are taken as w1 ¼ 14�; w2 ¼ 0�, and
w3 ¼ 60�. The initial misorientations are therefore
h1 ¼ 14�; h2 ¼ 44�, and h3 ¼ 30�. During the coupled
motion, only w1 (and hence h1 and h2) is allowed to chan-
ged while others are kept constant. As a sign convention,
if any of the misorientation angles turns out to be negative,
we add 90� to them to obtain an equivalent angle in the
range 0 6 hi < 90�, recalling that the considered crystals
posses a fourfold symmetry (Trautt and Mishin, 2014).
We discretize the GB in the bicrystal initially with
N ¼ 100 grid points and consider the initial misorientation
to be 8�. All the computations are done in a domain of size
Please cite this article in press as: Basak, A., Gupta, A. Simultaneous grain
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½�1;1� � ½�1;1�, with time step D~t as 10�5 and 10�4 for the
case of GB migration and coupled GB motion, respectively.
All the GBs are assumed to be ½001� tilt boundaries. To
avoid mesh points coming very close to each other or mov-
ing far away after time integration, we re-mesh the GBs
after every iteration so as to maintain accuracy and sta-
bility in all the numerical calculations.

4.1. GB capillary driven motion

We begin by ignoring the applied stress and restrict our
attention to the dynamics being driven solely by GB capil-
lary. The translational velocities of the grains are also
neglected. We present the results only for the tricrystal
since bicrystals with an embedded grain have been exten-
sively studied within the present context (Cahn and Taylor,
2004; Taylor and Cahn, 2007; Basak and Gupta, 2014).
Note that if C3 and C4 are initially planar then they will
always remain stationary, i.e. V3 ¼ 0 and V4 ¼ 0, fixing
the junction angles a3 and a4 for all times. The junction
angles a1 and a2 and the junction velocities in such a situa-
tion (where at least one GB at the junction remains station-
ary) cannot be directly calculated using (46)–(52). The
pertinent equations can however be easily derived, see
e.g. Section 3.3 of Fischer et al. (2012).

4.1.1. GB migration
With b! 0 and S! 0 the kinetic relations (29), (37),

and (31) are reduced to ~Vi ¼ ~Mi~ci ~ji=2 and _w1 ¼ 0, respec-
tively. Fig. 4 shows the evolution of the embedded grain
under these assumptions with both finite and infinite junc-
tion mobility. The junction angles start evolving soon after
the evolution starts and the embedded grain attains a lens
shape. A finite junction mobility drags the GB motion and
retards the shrinking rate of the embedded grain. The drag
effect increases as K decreases and the curved GBs become
increasingly flatter before shrinking (see also Fig. 6). How-
ever, the junction velocities become comparable with
those of the GBs when K	 1, which reduces the drag on
the GBs. The area evolution then becomes nearly linear
and the deviation from linearity increases as K decreases.
The effect of finite junction mobility has been widely
noticed to have a significant influence on GB dynamics
(Czubayko et al., 1998). The drag effects at the junctions
are due to frequent dislocation reactions and changes in
point defect density in their vicinity (Chapter 3 in Koch
et al. (2007)).

4.1.2. Coupled GB motion
Depending on the operating conditions, some of the

kinetic parameters may be more active than the others.
For example, at temperatures near the melting point, vis-
cous GB sliding dominates over geometric coupling,
whereas at relatively lower temperatures, sliding is much
less active than geometric coupling (Cahn et al., 2006).
We demonstrate the effect of kinetic coefficients on the
shape evolution by considering several cases below.

4.1.2.1. Fully coupled. When both sliding and geometric
coupling are active, the grain shrinkage becomes much
boundary motion, grain rotation, and sliding in a tricrystal. Mech.
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Fig. 4. Shape evolution under GB migration when r1 ¼ 0:01, and w1 ¼ 14�; w2 ¼ 0� , and w3 ¼ 60� . Rows (i) to (iii) correspond to K!1;K ¼ 20, and K ¼ 1,
respectively.
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slower than with GB migration alone, as shown in Figs. 5
and 6. However, the combined effect of the GB energy
and the kinetic coefficients is such that the lower GB
shrinks faster than the upper one. The dihedral angles
between C1 and C2 are greater in this case than those asso-
ciated with GB migration at the same time instance (see
Figs. 4 and 5). The grain G1 will disappear after it has
shrunk to a vanishing volume leaving a bicrystal in place
of the tricrystal. The embedded grain can also disappear,
much before it shrinks to a vanishing size, whenever either
h1 or h2 becomes zero; this is in fact the observed situation
in Fig. 5 and all other considered simulations except when
the motion is uncoupled. We also note that the finite junc-
tion mobility not only drags the GB motion, but also slows
down the grain rotation, as can be seen in Fig. 6(b).

4.1.2.2. No geometric coupling. In the absence of b, the non-
dimensional equation for normal velocity reduces down to
~Va ¼ ~Ma~ca ~ja=2, which is same as the evolution equation
for GB migration, except that ~ca is now evolving with time
(due to evolving misorientation). Fig. 6(a) shows that the
area evolution is now slightly slower than in the case of
GB migration. Orientation w1 evolves very slowly for most
Fig. 5. Shape evolution under fully coupled GB motion when r1 ¼ 0:01, and init
K ¼ 20, and K ¼ 1, respectively.
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of the time except towards the end. The shape evolution of
the curved GBs is nearly identical to the ones shown in
Fig. 4 for respective junction mobilities. When K!1
and K ¼ 20, the grain shrinks before w1 could vanish. How-
ever, when K ¼ 1; w1 vanishes before the area leaving a
bicrystal with a depression on the planar GB, which also
eventually vanishes.
4.1.2.3. No sliding. For S! 0 (29) implies that the GB shape,
given by Rað/a; tÞ, remains self-similar for all times as long
as b is isotropic (Taylor and Cahn, 2007; Basak and Gupta,
2014). For example, if G1 is initially a circle, then it should
remain so for all times during the evolution. Obviously
with such a restriction, compatibility equations (46) and
(47) or (49)–(51) will have solutions only for very special
initial geometries of C1 and C2.
4.1.2.4. Role of sliding. Higher r1 signifies a relative increase
of viscous sliding over GB mobility, which is usually seen at
elevated temperatures (Cahn et al., 2006). The rate of
change of area and orientation w1 significantly increases
when r1 increases as shown in Fig. 7(a) and (b).
ial w1 ¼ 14� , w2 ¼ 0� and w3 ¼ 60� . Rows (i) to (iii) correspond to K!1,

boundary motion, grain rotation, and sliding in a tricrystal. Mech.
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Fig. 6. (a) Area and (b) orientation evolution of the embedded grain under normal and coupled GB motion when r1 ¼ 0:01. Abbreviations: N – normal GB
motion, C – coupled GB motion in absence of b1 and b2, and FC – fully coupled GB motion.

Fig. 7. A comparative study of (a) area and (b) orientation evolution of the embedded grain under coupled GB motion for varying r1 when K!1.
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4.1.2.5. Symmetrically equivalent curved GBs. Let us take ori-
entation w3 to be 28� while keeping initial values of w1 and
w2 same as above. The initial misorientations are therefore
h1 ¼ 14�; h2 ¼ 76�, and h3 ¼ 62�. The curved GBs are now
symmetrically equivalent with b1 ¼ �b2. Since the embed-
ded grain is initially symmetric about e1-axis, the first term
in the numerator of (31) disappears. However, for the GB
energy considered here, the second term in the numerator
will always lead to a non-zero rotation of G1. On the other
hand, if the energy is symmetric about h ¼ 45� (as is the
case with the energy given in Fig. 6 of Shih and Li
(1975)), the rotation of G1 will vanish and the grain will
shrink purely by migration of C1 and C2. This phenomenon
of rotation getting locked has been observed in the MD
(Trautt and Mishin, 2014) and phase field simulations
(Wu and Voorhees, 2012) when C1 and C2 are symmetri-
cally equivalent.

4.2. Effect of stress on GB dynamics

Finally, we investigate the effect of shear stress s on the
coupled GB dynamics in the tricrystal shown in Fig. 3. We
assume that the dynamics is fully coupled. We consider
~s ¼ 0:1, which implies that s is approximately equal to
10 MPa when c0 ¼ 1 N=m2 and R0 ¼ 10 nm. The stress val-
ue is much lower than the yield stress which is of the order
of few GPa in NC materials (Meyers et al., 2006). All the
other kinetic and geometric data have been kept same as
Please cite this article in press as: Basak, A., Gupta, A. Simultaneous grain
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considered above in Section 4.1. Fig. 8 shows the evolution
of GB, grain, and junction dynamics in the tricrystal. The
overall evolution is now slower as compared to what was
observed during purely GB capillary driven dynamics in
Section 4.1. The center of rotation of the embedded grain
can also be seen to translate from the initial position. With
increasing junction mobility the magnitude of translation
increases. Fig. 9(a) and(b) show that decreasing junction
mobility marginally increases the rate of grain rotation
and grain shrinkage, which is in fact opposite to what
has been observed when the dynamics is driven only by
GB capillary. This can be attributed to the additional effects
coming from the stress related term in (31) and the non-
trivial curvature generated in C3 and C4 due to large junc-
tion drag when md is small. All the cases considered in
Fig. 8 show that vanishing of the misorientation at C1,
due to the rotation of the embedded grain, leaves behind
a depression on the GB separating the rectangular grains.
The depression ultimately disappears so as to eliminate
the curvature.

We end our study by noting the effect of applied shear
stress s on the shape evolution of a bicrystal arrangement
as described in Remark 2 at the end of previous section. We
considered the geometry of C as shown at ~t ¼ 0 in Fig. 10.
The magnitude of the stress ~s ¼ 0:1, considered previously
for the tricrystal arrangement, does not make any sig-
nificant difference to the GB dynamics when compared to
that observed in the absence of stress. As a result we
boundary motion, grain rotation, and sliding in a tricrystal. Mech.
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Fig. 8. Shape evolution and dynamics of the embedded grain under fully coupled motion due to the combined effect of GB capillary force and shear stress of
magnitude ~s ¼ 0:1 for (i) K ¼ 100, (ii) K ¼ 20, and (iii) K ¼ 1.

Fig. 9. A comparative study of (a) area and (b) orientation evolution of the embedded grain under fully coupled motion (data same as in Fig. 8).

Fig. 10. Shape evolution and dynamics of the embedded grain in a
bicrystal (i) when the external stress is absent, and (ii) when the shear
stress is ~s ¼ 30. We take r3 ¼ 50. All the other parameters are same as in
Section 4.1.
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assume a higher stress ~s ¼ 30 (i.e. s ¼ 3 GPa). Fig. 10
shows comparison of the shape evolution of the embedded
grain when applied stress is absent and when the bicrystal
is subjected to shear stress. Clearly the center of rotation of
the embedded grain in the latter case is translating, where-
as in the former it is fixed.
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5. Conclusions

We have extended the analytical study of coupled GB
motion, hitherto restricted to bicrystals with a columnar
grain having a fixed center of rotation embedded in a larger
grain, by introducing triple junctions and relative transla-
tional sliding in the analysis. The present formulation is
applied to a tricrystal (and a bicrystal) without restricting
the center of rotation of the embedded grain to be fixed.
In deriving the necessary kinetic relations we have provid-
ed a novel thermodynamic framework within which such
and more complicated incoherent interfaces can be stud-
ied. Our thermodynamic formalism is closely related to
earlier work on incoherent interfaces, most notably
(Cermelli and Gurtin, 1994; Gupta and Steigmann, 2012).
The present work can be extended in several directions:
(i) to analyze the coupled motion in three dimensions,
(ii) to include grain deformation in terms of elastic/plastic
behavior of the grains, (iii) to include bulk diffusion. While
we have considered a simpler case in two-dimensions
ignoring these effects, we are still confronted with a for-
midable boundary value problem which can be solved sat-
isfactorily only under some further assumptions. For
instance when considering anisotropic GB energies a more
boundary motion, grain rotation, and sliding in a tricrystal. Mech.
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sophisticated numerical technique (such as the level set
method) is needed (Basak and Gupta, 2014). However,
including junction dynamics within a level set framework
remains unsolved except for some very specific cases,
restricted to constant interfacial energy and kinetic coef-
ficients along with infinite junction mobility. This led us
to consider only isotropic energies so that the resultant
problem with junctions is solvable through a simpler
numerical scheme. We should also point out that the lin-
ear kinetic relations developed in this work are capable of
capturing the physical phenomenon only close to the
equilibrium. Our aim is to present a rigorous framework
for dealing problems of great utility in polycrystalline
materials and to demonstrate the efficacy of the proposed
set of governing equations using simple bicrystal and
tricrystal arrangements, motivated by recent MD simula-
tion studies. Although the tricrystal system is much sim-
pler than the real polycrystal which would consist of
numerous grains (generally polyhedral) and triple junc-
tions, we expect the essential features of the model, like
drag induced by junctions on GB motion and grain rota-
tion, to remain valid. In any case, extending the present
formulation to a real polycrystal with many grains is only
a problem of greater computational effort and should be
straightforward.
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Appendix A. Balance laws

In this appendix we derive the mass balance and linear
momentum balance relations for grains, GBs, and junc-
tions, all of which are used in deriving the local dissipation
inequalities in Section 2. We assume that the bulk field f
defined in Section 2 satisfies the following limit (see
Appendix A of Simha and Bhattacharya (1998)):Z

P
f da ¼ lim

�!0

Z
P�

f da; ð63Þ

where da is an infinitesimal area element from the region
P. Using the standard transport relations for the bulk
quantities we can show (cf. Appendix A of Simha and
Bhattacharya (1998) and Chapter 32 in Gurtin et al.
(2010))

d
dt

Z
P

f da ¼
Z

P
ð _f þ fr � vÞda�

X3

i¼1

Z
Ci

sfUitdl

� lim
�!0

Z
C�

f ðu� vÞ �mdl; ð64Þ

where the overdot denotes the material time derivative of
f ; r is the gradient operator, v is the particle velocity, Vi is
the normal velocity of Ci, Ui ¼ Vi � v � ni is the relative nor-
mal velocity of the GB, m is the outward normal to the disc
D�, and dl is an infinitesimal line element. The term r � v
denotes the divergence of the velocity field.
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A.1. Mass balance

The rate of change of total mass in P in the absence of
any external source of mass generation/accretion, with a
vanishing mass flux across the boundary @P, should be bal-
anced by the mass flux through the edges Ai, i.e.

d
dt

Z
P
qda ¼ �

X3

i¼1

ðhiÞAi
; ð65Þ

where q is the mass density of the bulk and hi is the diffu-
sional flux along Ci in the direction of increasing arc-length
parameter si. Using (64) and the divergence theorem (cf.
(32.27)2 in Gurtin et al. (2010)) the following local mass
balance relations are imminent:

_qþ qr � v ¼ 0 in Pi; ð66Þ

sqUit ¼
@hi

@si
on Ci; and ð67Þ

X3

i¼1

hi � lim
�!0

I
C�

qðu� vÞ �mdl ¼ 0 at J: ð68Þ
A.2. Linear momentum balance

Neglecting inertia and body forces, the balance of linear
momentum requires

R
@Prmdl ¼ 0, where r is the symmet-

ric Cauchy stress tensor. Applying Equation (A5) of Simha
and Bhattacharya (1998) this global balance law can be
reduced to the following local equations:

r � r ¼ 0 in Pi; ð69Þ

srtni ¼ 0 on Ci; and ð70Þ

lim
�!0

I
C�

rmdl ¼ 0 at J: ð71Þ

According to (70) the traction is continuous across Ci.
On the other hand, (71) implies that even with a singular
stress at the junction, the net force on the periphery of
C� (�! 0) is finite. This is known as the standard weak sin-
gularity condition which requires r 
 ��f, where f < 1 (see
Chapter 34 in Gurtin (2000) for further discussion).
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