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A novel continuum theory of incoherent interfaces
with triple junctions is applied to study coupled
grain boundary (GB) motion in three-dimensional
polycrystalline materials. The kinetic relations for
grain dynamics, relative sliding and migration of
the boundary and junction evolution are developed.
In doing so, a vectorial form of the geometrical
coupling factor, which relates the tangential motion at
the GB to the migration, is also obtained. Diffusion
along the GBs and the junctions is allowed so as
to prevent nucleation of voids and overlapping of
material near the GBs. The coupled dynamics has
been studied in detail for two bicrystalline and
one tricrystalline arrangements. The first bicrystal
consists of two cubic grains separated by a planar
GB, whereas the second is composed of a spherical
grain embedded inside a larger grain. The tricrystal
has an arbitrary-shaped grain embedded inside a
much larger bicrystal made of two cubic grains. In all
these cases, analytical solutions are obtained wherever
possible while emphasizing the role of various kinetic
coefficients during the coupled motion.

1. Introduction
We develop a thermodynamically consistent continuum
framework to study three-dimensional coupled grain
boundary (GB) motion in the presence of triple
junctions. A GB is modelled as a sharp incoherent
interface connected to other GBs at junction curves.
The irreversible dynamics at a GB is governed by
its normal motion (GB migration) and a relative
tangential sliding of the adjacent grains. The latter
can arise owing to the intergranular viscous sliding,
possibly as a result of the twist component of the GB,
or/and as a result of coupling with GB migration [1].
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In polycrystalline materials with rigidly deforming grains, as will be assumed presently, the
sliding can be decomposed into a relative translation and a relative rotation between the adjacent
grains. On the other hand, the irreversible dynamics at a junction is governed by the motion of
the non-splitting junction curve. The presence of junctions can significantly influence the overall
dynamics of all the GBs and the grains in their neighbourhood, for instance by inducing drag or
altering diffusive flux [2]. The coupled motion, which requires sliding to be necessarily coupled
with GB migration, is the dominant mechanism for both grain coarsening and plastic deformation
in nanocrystalline (NC) materials with average grain size of the order of few tens of nanometres
(hence a large volume fraction of GBs and triple junctions) [3,4]. This is unlike coarse-grained
materials where GB migration and dislocation dynamics dominate grain coarsening and plastic
deformation, respectively. The coupled motion has recently been studied theoretically [1,2,5,6],
experimentally [7] and with molecular simulations [8]. Although some of these studies have
included the effect of junction dynamics [2,8], all of them are restricted to two-dimensional grains
and hence applicable only to polycrystals where each grain is columnar and identical in cross
section along the length direction; such a restriction requires the GB to have only tilt, and no
twist, character.

The main contributions of this paper include:

(1) A three-dimensional thermodynamic formalism including diffusion to deal with
incoherent interfaces with junctions (§3). Junctions have been previously studied in the
context of continuum thermodynamics but only with coherent interfaces and without
diffusion [9,10]. On the other hand, thermodynamics of incoherent interfaces has been
explored earlier without considering junctions [11]. All of these works were based on the
framework of configurational mechanics. Our treatment, while extending to junctions
with incoherent interfaces, takes an alternate viewpoint where we do not regard the
configurational forces to be fundamentally on the same footing as standard forces (with
their own balance laws, etc.). We introduce configurational forces in our formalism
as mechanisms of internal power generation so as to ensure that the excess entropy
production is restricted to interfaces and junctions. A two-dimensional version of this
formalism was recently presented by the authors [2].

(2) Deriving kinetic relations for coupled GB motion in three dimensions (§4). The
phenomenological kinetic equations are motivated from the dissipation inequalities
derived from the second law of thermodynamics in confirmation with other standard
balance laws of continuum physics. Our results extend earlier models of coupled GB
motion to a three-dimensional setting. The first kinetic relations for the coupled motion
were proposed by Cahn & Taylor [1,5] which were restricted to two-dimensions and
only bicrystalline arrangements (hence no junctions). They also ignored the possibility
of relative translation of grains while considering sliding at the GB only owing to the
relative rotation. More recently, Basak & Gupta [2] have extended the model to include
junctions and relative translation but still restricting themselves to two dimensions.

(3) Formulation of a vectorial geometrical coupling factor (appendix A). The coupling
between the tangential and the normal motion of the GB is purely geometric and depends
on the measure of incoherency at the boundary [1,12,13]. The incoherency is quantified by
the net Burgers vector (given by Frank–Bilby relation) or equivalently by the interfacial
dislocation density. The GBs in the present three-dimensional framework generally have
a mixed character with both tilt and twist components. The coupling factor for a high
angle planar symmetric tilt boundary, derived previously by Cahn et al. [12,13], therefore,
needs to be extended to include multiple sets of edge and screw dislocation arrays. The
coupling factor now derived is a vectorial quantity rather than a scalar as has been the
case in the earlier studies.

Our derivations are based on the following assumptions: (i) the individual grains experience
only rigid deformations (i.e. translations and rotations); the deformations are, however, allowed
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Figure 1. (a) Schematic of a polycrystal in three-dimension. (b) The region P containing three subregions P1, P2 and P3. The GBs
OO′A′A, OO′B′B and OO′C′C (with normals n1, n2 and n3, as shown) are denoted byΓ1,Γ2 andΓ3, respectively. The curve OO′

is the triple junction J.

to remain finite, (ii) the shape accommodation required for preventing void nucleation and
interpenetration of the material in proximity of the GBs, during relative tangential motion
between the grains, is accomplished by diffusion across as well as along the GBs and also along
the junction curves; (iii) the velocities associated with various GBs, grains and junctions remain
much smaller than the speed of sound in the material. The inertial effects are therefore ignored;
(iv) the grains are free of defects and all the lattice imperfections are concentrated at the GBs and
the junctions (this is reasonable for NC materials with their small grain size); and (v) no additional
stress fields are present at the interface and the junction. The GBs are considered to be orientable
surfaces (of arbitrary shapes) with five macroscopic degrees of freedom which include three
misorientation angles and two independent variables describing the orientation of the GB. The
junctions are arbitrary three-dimensional space curves with varying curvature, normal, binormal,
torsion, etc. The excess energy density of a GB is assumed to depend on the five parameters (and
additionally the curvature) mentioned above, whereas the excess energy density of a junction is
assumed to depend only on the unit tangent associated with the junction curve.

The paper is organized in the following manner. In §2, we briefly introduce various geometrical
preliminaries, including integral relations, required for our study. We derive the essential balance
laws and dissipation inequalities in §3. In §4, we apply our theory to derive the kinetic relations
for GB motion, grain dynamics and junction motion for two bicrystalline and one tricrystalline
arrangements. A generalized derivation of the vectorial geometrical coupling factor is presented
in appendix A. We conclude our study with a discussion on some open directions in §5.

2. Geometrical preliminaries
Let E be a three-dimensional Euclidean point space whose translational space (set of vectors)
is denoted by V . Because we are dealing with finite dimensional Euclidean spaces, we do
not distinguish them from their dual. The set of second-order tensors consist of all linear
transformations from V to itself. Consider a region P ∈ E , as shown in figure 1b, taken out from a
polycrystalline arrangement depicted in figure 1a. It contains three subgrains P1, P2 and P3, three
smooth GBs Γ1, Γ2 and Γ3, and a smooth junction curve J. The normal ni to Γi is chosen such that
it points inside Pi, where i = 1, 2, 3. We denote the position vector of a point in P by x and the time
by t. The grains are oriented differently with respect to a fixed coordinate.

Let A and B be second-order tensors. The derivative of a scalar-valued differentiable
function of tensors, say G(A), is a tensor ∂AG defined by G(A + B) = G(A) + ∂AG · B + o(|B|),
where o(|B|)/|B| → 0 as |B| → 0; the norm of a tensor is defined as |B|2 = B · B, where (·)
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represents the Euclidean inner product. Similar definitions can be made for vector and tensor-
valued differentiable functions (of scalars, vectors and tensors). ∇ indicates the gradient of a
differentiable field defined over P.

(a) Bulk fields
Let f be a piecewise-smooth bulk field which is discontinuous across Γi and singular at J. We
denote the jump of f across Γi as [[ f ]] = f + − f −, where f + is the limiting value of f at x ∈ Γi from
the grain into which ni points and f − is the limiting value from the other grain. If f1 and f2 are
two piecewise continuous functions across Γi, and the product f1f2 is distributive with respect to
the sum, then [[ f1f2]] = [[ f1]]〈 f2〉 + 〈 f1〉[[ f2]], where 〈 f 〉 = ( f + + f −)/2 is the average of f + and f −.
To deal with the singularity of the field at the junction, we carry out our analysis in a punctured
region Pε obtained by excluding a small tube Tε of radius ε from P in the neighbourhood of
the junction, cf. [9]. The outward normal to the boundary of the tube ∂Tε is denoted by m. The
boundary ∂Tε moves with a velocity u.

We assume that f satisfies the limit
∫

P
fdv = lim

ε→0

∫
Pε

fdv, (2.1)

where dv is the volume measure on P. Using the standard transport relations for the bulk
quantities, it can be shown that [9]

d
dt

∫
P

fdv =
∫

P
( ḟ + f divv)dv −

3∑
i=1

∫
Γi

[[ fUi]]da − lim
ε→0

∫
∂Tε

f (u − v) · mda, (2.2)

where the superposed middle dot denotes the material time derivative, div is the divergence
operator, v is the particle velocity, Vi is the interfacial normal velocity, Ui = Vi − v · ni is the
relative normal velocity of the interface and da is the area measure on a surface. Let a and A
denote a piecewise-smooth vector and tensor field, respectively, defined in P but allowed to be
singular at the junction. The divergence theorem requires [9]

∫
P

divadv =
∫
∂P

a · mda −
3∑

i=1

∫
Γi

[[a]] · nida − lim
ε→0

∫
∂Tε

a · mda (2.3)

and ∫
P

divAdv =
∫
∂P

Amda −
3∑

i=1

∫
Γi

[[A]]nida − lim
ε→0

∫
∂Tε

Amda. (2.4)

(b) Interfacial fields
Consider an orientable surface Γ (subscript i is presently dropped), with boundary a closed
piecewise-smooth curve ∂Γ , and let n and V be the associated unit normal field and normal
velocity field, respectively. The surface gradient of a scalar field g, vector field g and tensor field
G, all smoothly defined over Γ , are defined as

∇Sg = P(∇g), ∇Sg = (∇g)P and ∇SG = (∇G)P, (2.5)

respectively, where P = I − n ⊗ n is the projection tensor (I is the identity tensor and ⊗ denotes
the dyadic product); while calculating ∇g (etc.), one has to use a smooth extension of g in a small
neighbourhood of Γ . The surface divergence of these fields is defined by

divSg = tr(∇Sg) and k · divSG = divS(GTk), (2.6)

for all constant vectors k, where tr represents the trace operator and the superscript ‘T’ stands for
the transpose. The surface Laplacian of g is given by �Sg = divS(∇Sg). The curvature tensor field
L and the total curvature κ associated with Γ are defined as L = −∇Sn and κ = trL, respectively.
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Let t be the outward unit normal to the closed curve ∂Γ such that n · t = 0. When G and g
satisfy Gn = 0 and g · n = 0, respectively, the surface divergence theorem yields [14]

∫
∂Γ

Gtdl =
∫
Γ

divSGda and
∫
∂Γ

g · tdl =
∫
Γ

divSgda, (2.7)

where dl is the length measure of a curve.

The normal time derivative of g following Γ is given by
◦
g = ġ + V∇g · n, which represents the

rate of change of g as experienced by an observer sitting on the moving surface Γ [14]. The first
term indicates the local rate of change of g at a fixed material position, whereas the second term
represents the rate of change of g owing to influx of particles along n as the interface moves with
velocity V. The following identities can be readily verified [15]:

◦
n = −∇SV and

◦
L = −∇S ◦

n −L
◦
n ⊗n + VL2. (2.8)

On the other hand, the intrinsic time derivative of g following ∂Γ is given by
�
g = ġ + ∇g · w,

where w is the intrinsic velocity of ∂Γ , such that w = Vn + Wt, and W is the velocity of ∂Γ along

t [15]. Thus,
�
g is equal to the sum of the rate of change of g following Γ and a term representing

the change in g owing to the incoming particles from the neighbourhood along the tangential
direction t.

We will need the following transport theorem for Γ such that a part of ∂Γ intersects with ∂P
and the rest with J [9]:

d
dt

∫
Γ

gda =
∫
Γ

(
◦
g −gκV)da +

∫
Γ ∩∂P

gWdl +
∫

J
gqp · tdl, (2.9)

where qp is the intrinsic (independent of the parametrization) velocity of the junction.

(c) Junction fields
Let δ and ι denote the terminal points of the junction curve J, and let l be the unit tangent to
the curve such that it is directed towards ι. The normal and binormal vectors associated with
J are denoted by ν and b, respectively. The projection tensor Q = I − ν ⊗ ν − b ⊗ b = l ⊗ l maps
any vector on to the tangential direction of J. The intrinsic velocity field of the junction, which
can be decomposed as qp = qνν + qbb, is such that (I − Q)u → qp as ε → 0 [9]. The velocity of
terminal points is denoted as q̂ such that q̂ = qp + q̂ll at the respective endpoints. The intrinsic

time derivative of a scalar field defined on the junction curve, say χ , is given by
�
χ = χ̇ + ∇χ · qp.

The transport theorem associated with χ is given by [9]

d
dt

∫
J
χdl =

∫
J
(

�
χ −χκJqν )dl + (χ q̂l)

ι
δ , (2.10)

where κJ is the scalar curvature of the junction curve. The gradient of χ along the junction curve
is defined as ∇Jχ = Q∇χ . Similarly, for a vector field defined on J, we introduce ∇Jqp = (∇qp)Q.

We note the identity
�

l = (∇Jqp)l + qνκJl [9].
It is useful to decompose an integral over the tube surface around the junction as [9]

lim
ε→0

∫
∂Tε

ada =
∫

J

[
lim
ε→0

∮
Cε

adl
]

dl, (2.11)

where ∂Tε is the envelope of the circles Cε of radius ε.

3. Balance laws and dissipation
We now obtain the consequences of balance of mass and momentum, as well as obtain local
dissipation inequalities in the bulk, at the interface, and at the junction, while restricting to
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the assumptions enlisted in §1. In particular, we allow the individual grains to deform only
rigidly, although without restricting the magnitude of the deformation so as to accommodate
large intergranular slip and grain rotation.

(a) Balance of mass
The rate of change of total mass in P is balanced by the mass transport into the region via bulk
diffusion across ∂P, GB diffusion at the edge Γi ∩ ∂P, and diffusion at ι and δ. Neglecting excess
mass densities of the GBs and the junction, the mass balance can be written as

d
dt

∫
P

ρdv = −
∫
∂P

j · mda −
3∑

i=1

∫
Γi∩∂P

hi · tidl − (hJ)ιδ , (3.1)

where ρ is the mass density of the bulk grain, j is the bulk diffusional flux, hi is the tangential
diffusional flux on Γi, and hJ is the diffusional flux along the junction. Using transport theorem
(2.2) and divergence theorems (2.3) and (2.7)2, and localizing the result owing to the arbitrariness
of P, we can obtain the following local equations

ρ̇ + ρdivv + divj = 0 ∀ x ∈ Pi, (3.2)

[[ρUi]] = [[j]] · ni + divShi ∀ x ∈ Γi (3.3)

and lim
ε→0

∮
Cε

ρ(u − v) · mdl = ∇JhJ · l + lim
ε→0

∮
Cε

j · mdl −
3∑

i=1

(hi · ti)J ∀ x ∈ J, (3.4)

where we have used the limit limε→0
∑3

i=1
∫

∂Tε∩Γi
hi · tidl =∑3

i=1
∫

J(hi · ti)Jdl.
Here, and in rest of this paper, we have considered contact interactions to be concentrated

over edges and points. These are to be understood in terms of the physical concentration of the
relevant quantity over the respective domain. In contrast, if these interactions were to take place at
edges and points which represent geometrical singularities on the boundary of P, then we would
require a higher gradient theory to justify their existence [16].

(b) Balance of linear momentum
Neglecting inertia and body forces, and assuming absence of interfacial and junction stress fields,
the balance of linear momentum is given by

∫
∂P

σmda = 0, (3.5)

where σ is the symmetric Cauchy stress tensor. Using (2.4), the following local equations are
readily obtained [9]

divσ = 0 ∀ x ∈ Pi, (3.6)

[[σ ]]ni = 0 ∀ x ∈ Γi (3.7)

and lim
ε→0

∮
Cε

σmdl = 0 ∀ x ∈ J. (3.8)

According to (3.7), the traction field is continuous across the GBs, whereas (3.8) requires that the
net force acting at each circular region Cε is zero in the limit ε → 0, although the stress field can
still be singular at the junction (weak singularity).
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(c) Dissipation inequality
Let Ψ be the bulk free energy density, γi the interfacial free energy per unit area of Γi, and η the
free energy per unit length of J. For an isothermal environment, the mechanical version of the
second law requires the rate of change of the total free energy pertaining to P to be less than or
equal to the total power input into P [14,17], i.e.

d
dt

(∫
P

Ψ dv +
3∑

i=1

∫
Γi

γida +
∫

J
ηdl

)
≤

∫
∂P

σm · vda −
∫
∂P

μj · mda −
3∑

i=1

∫
∂P∩Γi

μhi · tidl − (μhJ)ιδ

+
3∑

i=1

∫
∂P∩Γi

(ci · wi + τ i · �
n i)dl + (ω · q̂)ιδ , (3.9)

where μ is the chemical potential. We assume that the chemical potential is continuous across
the interface and at the junction (i.e. local chemical equilibrium [17]). The first integral on the
right-hand side of (3.9) is the power input through the tractions acting on ∂P; the next three
terms are contribution to power input owing to mass flux at ∂P, ∂P ∩ Γi, and the endpoints of
J, respectively. The last two terms are non-standard, and the significance of their appearance in
the dissipation inequality needs to be discussed in detail. It is clear that as interfaces evolve, their
domain of intersection with P changes; there would be portions of the interface which, previously
present outside P, are now inside it, and vice versa. In other words, the set of points belonging
to an interface and lying within P changes continuously as the interface evolves. The change in
the configuration of interfaces and junction curve within P produces additional entropy at the
edges ∂P ∩ Γi and at the terminal points of J. However, in the spirit of Gibbs thermodynamics,
we require the excess entropy generation to be necessarily restricted to the GBs and the junction.
The non-standard terms are therefore included in the inequality to ensure that there is no excess
entropy production at the arbitrary edges and terminal points. These additional power input
terms are to be considered in (3.9) only when the edges and the terminal points lie on the surface
of an interior part of a body. The precise form of ci, τ i and ω will depend on the constitutive
prescriptions for free energies and stress, as well on the nature of allowable dissipative fluxes. At
this point, these are to be understood as agents of power input, in conjugation with the respective
intrinsic velocities, so as to ensure that the net entropy generation meets the above-mentioned
requirement. Such terms also appear in the framework of configurational mechanics [9,11,15],
where the existence of ci, τ i and ω is assumed a priori as fundamental forces which satisfy certain
balance relations. Our treatment (see also [2,6,14]) is motivated purely from the viewpoint of
quantifying excess entropy generation. We note that it may be possible to derive the balance laws
as well as the global dissipation inequality starting with a more general framework, where the
two-dimensional interface is obtained as a limit of a three-dimensional non-material domain,
as is done in [18,19]. In doing so, it might be possible to have a better understanding of the
non-standard power terms included in (3.9).

Before deriving the consequence of the global dissipation inequality, we briefly digress to
discuss the status of configurational balance laws within our framework. In a purely conservative
setting (e.g. nonlinear elasticity), these balance laws, which are independent of the standard
balance laws, are derived from the horizontal variation of the energy functional [20]. In non-
conservative setting such balances are usually postulated (rather than derived) as independent
relations [21,22]; an exception is the recent work by Mariano [23,24] where the balance of
configurational forces is derived from the invariance of the so-called relative power under
roto-translating changes in observers. In our work (see also [2,6]), the configurational balance
laws appear in the form of kinetic relations (see §4) which are motivated from the local
dissipation inequalities obtained from (3.9). Under equilibrium, they reduce down to the familiar
balance laws obtained using variational arguments; for instance, junction kinetic equation
reduces to Herring’s relation under equilibrium solution (see the end of this subsection). In the
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present formalism, non-trivial balances of configurational forces appear only at the interfaces
and junctions.

Using transport theorems (2.2), (2.9) and (2.10), divergence theorems (2.3) and (2.7), and the
decomposition (2.11), we can rewrite the inequality (3.9) as

6∑
a=1

Ia ≤ 0, (3.10)

where

I1 =
∫

P
(Ω̇ + Ωdivv + ρμ̇ − σ · ∇v + j · ∇μ)dv, (3.11)

I2 =
3∑

i=1

∫
P∩Γi

(
◦
γ
i

−γiκiVi − [[UiE]]ni · ni − 〈σni〉 · Pi[[v]] + hi · ∇Sμ)da, (3.12)

I3 =
3∑

i=1

∫
∂P∩Γi

(γiWi − ci · wi − τ i · �
ni)dl, (3.13)

I4 = −
∫

J

(
lim
ε→0

∮
Cε

(σv + Ψ (u − v) − μj) · mdl
)

dl, (3.14)

I5 =
∫

J

(
�
η −ηκJqν + ∇J(μhJ) · l +

3∑
i=1

(μhi · ti + γiq · ti)

)
dl (3.15)

and I6 = (ηq̂l − ω · q̂)ιδ . (3.16)

In obtaining (3.11), we have used (3.2) and (3.6), and introduced Ω = Ψ − ρμ (the grand canonical
potential). To derive (3.12), on the other hand, we have used (3.3) and (3.7); here, E = ΩI − σ is
the projection of the bulk Eshelby tensor on the current configuration.

To determine the precise form of ci, τ i and ω, and also to obtain the local dissipation
inequalities associated with the grains, GBs and junction, we will now prescribe the constitutive
nature of the GB energy and the junction energy. Towards this end, we assume the GB energy to
depend on the misorientation between the grains, the normal to the GB and curvature. The former
two dependencies are standard in material science literature (cf. ch. 12 in [25]). The curvature
dependence is primarily introduced to regularize the governing partial differential equations for
capillary-driven GB motion, which otherwise become backward parabolic and hence unstable in
certain ranges (GB spinodals) of the orientations. We follow Gurtin & Jabbour [15] in assuming
the following quadratic dependence of GB energy on curvature:

γ = γ̂ (Θ , n) + 1
2 ε1|L|2 + 1

2 ε2κ
2, (3.17)

where Θ is the misorientation tensor given by (R+)TR−; ε1 and ε2 are scalar constants such that
ε1 > 0 and ε2 + ε1/2 > 0. The rotation R+ is the orientation tensor of the grain into which n points,
and R− is the orientation tensor of the other grain. We introduce M .= ∂Lγ = ε1L + ε2κP. It is easy
to see that M is symmetric and satisfies MP = M. The junction energy density, on the other hand, is
assumed to be a function of the unit tangent along the junction curve, i.e. η = η̂(l) [9]. Substituting
these into (3.10), and performing a cumbersome but straightforward calculation, yields

∫
P

Dbdv +
3∑

i=1

∫
Γi

DΓi da +
∫

J
DJdl −

3∑
i=1

∫
∂P∩Γi

{Wi(γi − MiLiti · ti − ci · ti)

− Vi((divSMi + ∂ni γ̂ i) · ti + ci · ni) − �
ni ·(τ i + Miti)}dl

− (q̂l(η − ωl) + ((I − Q)∂lη̂ − ωp) · qp)ιδ ≥ 0, (3.18)
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where Db, DΓi and DJ are the entropy generation rates per unit volume of the bulk, per unit area
of Γi, and per unit length of J, respectively. The expressions for these rates are given in equations
(3.21)–(3.23). In deriving the above inequality, we have also assumed the junctions to be non-
splitting, i.e. Vi = qp · ni. The first term in the above inequality is the net entropy generation within
the grains. The next two terms are excess entropy generation at the GBs and at the junction,
respectively. The rest of terms in (3.18) are the entropy production rate at the edges Γi ∩ ∂P, and
the terminal points δ and ι. We however require that the excess entropy production must not have
any contribution from the edges of the GBs and the terminal points of J, all of which are a part of
∂P. This is reasonable, because the entropy generation in P should only be within the grains, at
the interfaces, and at the junction. Any additional source should vanish. Consequently,

ci · ti = γi − MiLiti · ti, ci · ni = −
(

divSMi + ∂ni γ̂ i

)
· ti, (3.19)

τ i = −Miti, and ω = ηl + (I − Q)∂lη̂. (3.20)

Substituting (3.19) and (3.20) back into (3.18), and localizing the result, we obtain the following
local dissipation inequalities

Db = σ · ∇v − (Ω̇ + Ωdivv) − ρμ̇ − j · ∇μ ≥ 0 ∀ x ∈ Pi, (3.21)

DΓi = [[UiE]]ni · ni + 〈σni〉 · Pi[[v]] − hi · ∇Sμ + fiVi − (∂Θ i γ̂ i) · Θ̇ i ≥ 0 ∀ x ∈ Γi (3.22)

and DJ = F J · qp − lim
ε→0

∮
Cε

Em · vdl − hJ(∇Jμ) · l −
3∑

i=1

τ i · �
ni ≥ 0 ∀ x ∈ J, (3.23)

where

fi = γiκi − divS(∂ni γ̂ i) − Mi · L2
i − divS(divSMi), (3.24)

F J = (I − Q)

(
lim
ε→0

∮
Cε

Emdl −
3∑

i=1

ci − f J

)
(3.25)

and f J = −ηκJν + ∇J((I − Q)∂lη̂)l. (3.26)

Equation (3.21) gives the entropy production rate per unit volume within the grain. For rigidly
deforming grains σ · ∇v = 0 and divv = 0. Additionally, if we assume that Ψ = Ψ̂ (ρ), then (3.21)
yields μ = ∂ρΨ̂ and j · ∇μ ≤ 0. Equation (3.22) contains the dissipation rate per unit area of the
GB, with contribution from boundary migration, relative translation of grains at the boundary,
GB diffusion and misorientation change. The inequality therein forms a basis for postulating
kinetic relations for coupled GB motion, as is done in §4. It can also be a starting point for
motivating kinetic relations for motion of incoherent phase boundaries with diffusion- and
curvature-dependent boundary energy [11,15], as well as for a variety of physical phenomena
involving coherent interfaces [17]. An analogous inequality, valid for a one-dimensional interface
in a two-dimensional grain, was derived recently by Basak & Gupta [6].

Equation (3.23) gives the net dissipation rate per unit length of the junction curve, with
contribution owing to motion of the curve, diffusion along it, and evolution of orientation of
the intersecting boundaries. A comment is in order regarding the contribution owing to the latter,
represented by the last term on the LHS of the inequality. It is evident that this term is linear in
scalar parameters (ε1 and ε2) which appear in the curvature-dependent part of the GB energy.
The scalar parameters are usually infinitesimally small, ensuring that curvature-dependent part
of the energy is significant only at the corners [15]. The curvatures of intersecting boundaries, as
they approach the junction, are finite and hence |τ i| are small. We can therefore ignore the last
term on the LHS of the inequality (3.23) within the present analysis. Second, in the context of GB
dynamics, we assume the density field to remain bounded at the junction curve and the velocity
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Figure 2. (a) Schematic of bicrystal-I. (b) Schematic of bicrystal-II. (c) Schematic of tricrystal.

in each grain to be resulting only a simple rigid body motion (hence no strains in the grain). With
these assumptions, and keeping in mind the weak singularity condition (3.8), we can show that
the closed integral terms in (3.23) vanish in the limiting sense. We can rewrite (3.23) and (3.25)
under all these considerations as

DJ = F J · qp − hJ(∇Jμ) · l ≥ 0 ∀ x ∈ J, where (3.27)

F J = −(I − Q)

( 3∑
i=1

ci + f J

)
. (3.28)

During thermodynamic equilibrium, with junction curve remaining stationary and diffusion
absent, F J = 0 which in the absence of junction energy yields the well-known Herring’s relation
[26], i.e.

∑3
i=1(γiti − ∂niγi) = 0. The above framework can be used to obtain the extension of

Herring’s relation in the presence of junction energy and various singular fields (see also [9]).
Finally, we note that junctions have been previously treated in the framework of continuum
thermodynamics but only for intersecting boundaries which are coherent [9,10]. The grain
boundaries, however, are in general incoherent and a treatment of coupled GB motion necessarily
requires allowance for relative slip at the boundary. The present framework allows for such
incoherency and for junctions which are formed at the intersection of such boundaries.

4. Kinetic relations
The governing equations for coupled GB dynamics with junctions can be derived starting from
inequalities (3.22) and (3.23) by first identifying various dissipative fluxes, and the associated
driving forces and then assuming linear kinetics. Towards this end, we can use Onsager’s relations
[27] in an unambiguous manner, because fluxes are clearly defined as time-rate of change of the
state variables. That this is not so in general, as in the case of heat conduction and viscous flow,
has been pointed out by Truesdell [28]. We illustrate the derivation of kinetic relations using three
crystalline arrangements as described in the following subsections.

(a) Bicrystal-I
The first bicrystalline arrangement is as shown in figure 2a such that the traction on the outer
boundaries perpendicular to e1 is τe2 and the traction on the outer boundaries perpendicular to e2
is τe1. We neglect all kinds of atomic diffusion. The GB S is considered to be of a mixed type, with
both tilt and twist components, where the misorientation is given by Θ = I + θ1(e1×) + θ3(e3×)
for small θ1 and θ3, where (e×) represents a skew tensor with components given by (e×)jk = εjlkel
(here εjlk is the permutation symbol); as discussed in appendix A, θ1 and θ3 determine the twist
and the tilt characteristic, respectively, of the GB. Whereas the deformation of grains in the wake
of a moving GB, under the external loading considered here, is simple shear for a tilt GB, it is
more complicated if the GB is of mixed type [7]. The array of edge dislocations is driven by the
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Peach–Koehler force to move the GB in normal direction while translating the grains parallel
to the GB. On the other hand, the simultaneous movement of two perpendicular sets of screw
dislocation arrays results into a relative rotation of the adjacent grains about the GB normal. The
GB motion, the relative tangential translation and the grain rotation are, in general, all coupled to
each other.

The state of stress throughout the bicrystal is taken as σ = τ (e2 ⊗ e1 + e1 ⊗ e2); this clearly
satisfies both the equilibrium equations and the traction boundary conditions. Based on the
experimental observations in [7,29], we assume the tilt angle to remain fixed while allowing the
twist angle to evolve owing to the relative rotation between the grains. The axis of rotation is
taken to coincide with e1. Without loss of generality, the grain G+ can be assumed to remain
stationary, i.e. v+ = 0, and G− moving with a velocity v− = θ̇1e1 × x + Ċe2, where Ċ is the
translational velocity of G− in the direction of e2 and x = x1e1 + x2e2 + x3e3 is the position vector.
Observing that [[vn]] = 0, the dissipation inequality (3.22) reduces to θ̇1fθ + Ċfc ≥ 0, ∀ x ∈ S, where
fθ = (τx3 − ∂γ /∂θ1) and fc = −τ . Following Onsager, we postulate the following pair of coupled
kinetic relations [6]:

θ̇1 = Sdfθ + BSdfc and Ċ =Bθ̇1 + Lfc, (4.1)

where Sd ≥ 0 is the sliding coefficient owing to the relative rotational motion (caused by
the intrinsic screw dislocation glide along S), L≥ 0 is the sliding coefficient for the relative
translational motion between the grains and B denotes a coupling between grain rotation and
translation. In response to grain translation, the edge dislocation array will cause simultaneous
GB migration [12], such that V = −Ċ/β2, where β2 = θ3 is the geometrical coupling factor as
calculated in the previous section. Note that the geometrical coupling exists only with respect
to the translational velocity, as the rotational part of v− amount to pure sliding. Accordingly, it is
the direction of Ċ which decides whether the GB will move upwards or downwards. We have a
coupled system of equations which should be solved to evaluate the position of the grains and
the GB, as well as the misorientation, at any given time instance during the dynamical process. It
should be noted that, in a more complicated situation when the driving forces are functions of x1
and x2, an initially planar GB will not necessarily remain planar (cf. [7]) and GB diffusion will be
required to prevent void-formation/interpenetration at the GB.

(b) Bicrystal-II
We consider a bicrystal with a spherical grain G− (of radius R) embedded within a much
larger grain G+, as shown in figure 2b, with misorientation between the grains given by Θ =
I + θ1(e1×) + θ2(e2×) + θ3(e3×); i.e. grain G− was obtained by rotating it from G+ by small angles
θ1, θ2 and θ3 about e1, e2 and e3, respectively, where the orthonormal basis vectors {e1, e2, e3}
form a coordinate frame with origin at the centre of the sphere. The GB S hence is of a mixed
type. Without loss of generality, we let the outer grain G+ to remain fixed and allow the inner
grain G− to rotate (without translating). We assume that the external stress is absent, the grains
are rigid and free of defects, the free energy of the grains is vanishing, and the volumetric
diffusion is absent. Let us consider an orthonormal spherical basis {eR, eξ , eφ} with origin at
the centre of the embedded grain (ξ is the polar angle and φ is the azimuthal angle). The
GB normal n points into G+, hence n = eR. The angular velocity of G− (axial vector of Θ̇) is
given by w = θ̇1e1 + θ̇2e2 + θ̇3e3. Neglecting rigid body translation, the velocity of the inner grain
can be written as v− = w × x, where x is the position vector. Recalling that v+ = 0 we obtain
[[vn]] = v+

n = 0 and V t = P(v+ − v−) = −v−, where V t represents the relative tangential velocity
of G− with respect to G+ at the GB.

The spherical GB rotates and shrinks without any shape change. This does not require
any shape accommodation mechanism such as GB diffusion. We will therefore consider h = 0.
Assuming isotropic GB energy and defining θ = θ1e1 + θ2e2 + θ3e3 (the axial vector of Θ − I) the
dissipation inequality, given by (3.22), reduces to

Vfn + w · f̃ t ≥ 0, where fn = γ κ and f̃ t = −∂θγ . (4.2)
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Consequently, we postulate the following linear kinetic relations (see also [6]):

V =Mfn + Mβ̃ · f̃ t and w = β̃V + S̃ f̃ t, (4.3)

where M> 0 is the GB mobility, β̃ is the coupling factor between rotational speed and normal GB
velocity, and S̃ is the symmetric positive semi-definite sliding coefficient. Both the viscous effect
and the twist characteristic of the GB are expected to contribute to the net sliding. To understand
the physical meaning of the coefficients β̃ and S̃ , we take a cross-product of (4.3)2 with x to obtain

V t = βV + Sf t, where (4.4)

β = x × β̃, Sf t = x × S̃ f̃ t and f t =
(

1
R

)
eR × f̃ t. (4.5)

Equation (4.5)1 relates β̃ to the geometrical coupling factor β introduced in appendix A, whereas
(4.5)2 relates S̃ to the sliding coefficient S ; the relation (4.5)3 is motivated from the two-
dimensional counterpart of the present discussion [6]. Next, we specialize these kinetic equations
for a spherical GB, under various additional assumptions, and present analytical solutions
wherever possible. When reduced to a two-dimensional setting, the derived relations will be
identical to those obtained previously for a circular GB [1,6].
GB migration: when both geometrical coupling and GB sliding are negligible, kinetic equations
(4.3)1 and (4.3)2 simplify to the well-known equations for curvature driven GB migration:
V =Mγ κ and w = 0. Using V = Ṙ and κ = −1/R (for a spherical GB), they can be solved to

obtain R(t) =
√

R2
0 − 2Mγ t and θ (t) = θ0, where R0 is the initial GB radius and θ0 is the initial

misorientation. Both M and γ have been treated as constants.
Coupled motion without GB sliding: at temperatures far below the melting point, GB viscous sliding
becomes negligible and geometrical coupling plays the dominant role in grain rotation [12]. The
kinetic relations (4.3)1 and (4.3)2 then take the form V =Mγ κ + Mβ̃ · f̃ t and w = β̃V, respectively.
For a spherical GB, with V = Ṙ and β = (Θ − I)eR (see appendix A for the latter expression), (4.5)1
and a cross-product of second kinetic relation with x = ReR furnishes w × eR = −(Ṙ/R)θ × eR

which on time integration gives R(t)θ(t) = R0θ0 for all ξ and φ. Note that we have used the same
geometrical coupling factor associated with a planar GB for analysing the kinetics of a curved GB
(see appendix A); this assumption is motivated from the two-dimensional atomistic studies where
the geometrical coupling factor was observed to be same for planar and curved GBs (cf. [8] and the
references therein). We use the isotropic energy of the form γ = γ0|θ |(Ac − ln |θ |) (see §12.7 in [25]),
where γ0 and Ac are constants depending on the materials. Restricting ourselves to a spherical GB
(for which V = Ṙ, κ = −1/R, and β̃ = −θ/R), we eventually obtain R(t) = (R3

0 − 3Mγ0R0|θ0|t)1/3

and θ (t) = R0(R3
0 − 3Mγ0R0|θ0|t)−1/3θ0, where M has been treated as a constant.

Coupled motion without geometrical coupling: at temperatures close to the melting point, viscous
sliding at the GB dominates over the geometrical coupling to govern grain rotation [12]. The
kinetic relations (4.3)1 and (4.3)2 then reduce down to V =Mγ κ , and θ̇ = S̃ f̃ t, respectively. If we
assume S̃ and S to be of the form S̃ = S̃P and S = SI, respectively, then (4.5)2 requires S̃ = S/R2.
Further manipulation yields the following implicit relation between R and θ :

R(θ) = R0 exp
(M

S {|θ |2 − |θ0|2 + 2e2(Ac−1)[E(1, u0) − E(1, u)]}
)

, (4.6)

where u = 2(Ac − 1 − ln |θ |), u0 = 2(Ac − 1 − ln |θ0|) and E(n, y) = ∫∞
y (e−u/y1−nun)du (the

exponential integral); M and S have been considered to be constants.
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Fully coupled motion: we finally consider the situation when both geometrical coupling and GB
sliding will contribute comparable to the evolution of grain rotation. Assuming S̃ to be invertible,
and eliminating f̃ t between (4.3)1 and (4.3)2, we derive

Ṙ = − R

R2 + Mθ · S̃−1θ
(Mγ + MS̃−1θ · w). (4.7)

An expression for w can be obtained by substituting (4.3)1 in (4.3)2

w = Mγ θ

R2 +
(

S̃ + M
R2 θ ⊗ θ

)
f̃ t. (4.8)

(c) Tricrystal
We consider a tricrystal, as shown in figure 2c, where grain G1 is embedded inside a larger
bicrystal made of two cubic grains G2 and G3. The tricrystal is subjected to external stress. The
configuration has three GBs Si, with unit normals denoted by ni (i = 1, 2, 3), and a closed junction
curve J. The normals are chosen such that both n1 and n2 point into G1, whereas n3 points into
G2. In deriving the kinetic laws, we assume both the volumetric diffusion and the diffusion along
the junction to be negligible. In addition, the magnitude of applied stresses are taken to be small
enough, so that elastic and plastic deformation of the grains can be neglected. Under the combined
effects of GB capillary force and the applied stress field the GBs will migrate, grain G1 will rotate
and translate (as a rigid body), grains G2 and G3 will translate rigidly relative to each other, and
the junction J will move in space, all coupled to each other.

In the absence of defects within the grain, the orientation field associated with grain Gi,
denoted by Ri, will be homogeneous throughout the grain. We define the misorientation tensor for
the respective GBs as Θ1 = RT

1 R2, Θ2 = RT
1 R3 and Θ3 = RT

2 R3. We assume grains G2 and G3 to be
non-rotating, thereby fixing their orientations once for all. As a result Θ̇1Θ

T
1 = Θ̇2Θ

T
2 = −Ṙ1RT

1 .
On the other hand, the velocities of rigidly deforming grains can be written as v1 = w × x + Ċ1,
v2 = Ċ2, v3 = 0, where w is the angular velocity of G1 (the axial vector of Ṙ1RT

1 ) and Ci is the
rigid translation of Gi (grain G3 has been assumed to remain fixed). We define the relative
translation velocity of adjacent grains at the respective GBs as Ċ1 = Ċ1 − Ċ2, Ċ2 = Ċ1, and Ċ3 = Ċ2.
Before we substitute these in the mass balance relations, we would additionally assume that the
translational velocity of the embedded grain to be much smaller than its rotational velocity. We
can justify this on the basis of the atomistic simulation results which do not show any significant
translation in the absence of external stress [8]. The small amplitude of external stress considered
here would therefore cause only small relative translation. Keeping this in mind, along with
negligible diffusional fluxes in the grain, we use (3.3) to derive divSha = −ρx × na · w for a = 1, 2,
and divSh3 = −ρĊ3 · n3. These relations can be integrated and then combined with (3.4) (where
j = 0, hJ = 0, and ρ, v are non-singular at the junction) to obtain ha = Aaw and h3 = A3Ċ3, where Ai
is a second-order tensor which depends on the geometry of Si (see [2] for a similar calculation for
a two-dimensional tricrystal). We also relate these fluxes to the chemical potential by assuming
the Fick’s law for superficial diffusion hi = −Di∇Sμ for i = 1, 2, 3 [15] where Di is the (symmetric
and tangential) diffusivity tensor along Si.

For the present case, the dissipation inequality in the bulk (3.21) is trivially satisfied. The
dissipation inequalities at the GBs, given by (3.22), are however non-trivial and will be used in
the following to derive the kinetic equations. Using Fick’s law, and neglecting the terms of the
order of |Ċa|2 and |ṘaĊa|, we can reduce the inequalities to the form (no summation for repeated
index i)

Vifi + w · G i + Ċi · Hi ≥ 0 on Si, (4.9)

where Hi = σni, Ga = x × (σna + ρμna) + AT
a D−1

a Aaw + 2Υ a and G3 = 0. Here, D−1
i is the Moore–

Penrose pseudo-inverse of Di which satisfies D−1
i Di = DiD

−1
i = Pi [14], and Υ a is the axial vector

associated with the skew part of (∂Θaγa)ΘT
a . Following Onsager, we use (4.9) to postulate linear
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kinetic relations associated with Sa (a = 1, 2). In writing them, we assume the relative translational
velocities Ċa to be decoupled from GB migration and the rotation rate of grain G1; a theory
without this assumption can easily be constructed along similar lines. The kinetic relations are
taken as

Va =Ma(fa + β̃a · Ga), w = β̃aVa + S̃aGa, Ċa = LaHa, (4.10)

where the coefficients Ma, β̃a and S̃a have the same physical interpretation as described in §4b,
and La is the translational coefficient of the grains. Substituting (4.10)1, (4.10)3 and (4.10)2 back
into the dissipation inequality (4.9), we derive the following restrictions: Ma > 0; S̃a and La are
symmetric positive semi-definite.

Furthermore, when sliding is active and S̃a is invertible, we can eliminate Ga from (4.10)1 with
the help of (4.10)2 to obtain

Va = Ma

1 + Maβ̃a · S̃a
−1

β̃a

(fa + β̃a · S̃a
−1

w). (4.11)

We can also derive (I − Z̃aAT
a D−1

a Aa)w =Mafaβ̃a + Z̃a(xa × σna + 2Υ a + ρμxa × na), where
Z̃a = S̃a + Maβ̃a ⊗ β̃a. For an invertible S̃a, we multiply both sides of this equation by Z̃−1

a and
integrate the result over S1 and S2 for a = 1 and a = 2, respectively. The two expressions can be
added to obtain the following expression for w:

w =
( 2∑

a=1

∫
Sa

(Z̃−1
a − AT

a D−1
a Aa)da

)−1 2∑
a=1

∫
Sa

(MafaZ̃−1
a β̃a + xa × σna + 2Υ a)da, (4.12)

where we have used
∑2

a=1
∫

Sa
ρμxa × nada = ρ

∫
G1

x × ∇μdv = 0 (recall that diffusional flux
vanishes in the grain). To summarize the results obtained so far, we have the governing equations
for the motion of S1 and S2 in (4.11), and the governing equation for rotation of G1 in (4.12).

The kinetic relations for S3 can be derived similarly. In doing so, however, we allow
translational velocity to be coupled with the normal motion. Starting with (4.9), and assuming
linear kinetics, we obtain

Ċ3 = β3V3 + L3H3 and V3 =M3(f3 + β3 · H3), (4.13)

where M3 > 0, β3, and L3 (positive semi-definite) represent mobility, geometrical coupling factor
and sliding coefficient, respectively, for S3. Replacing V3 from (4.13)2 in (4.13)1 and integrating
the final expression over S3 (because the translational velocities are homogeneous), we write

Ċ3 =
∫
S3

(M3f3β3 + Z3H3)da, (4.14)

where the outer grains have been assumed to be much larger than the embedded grain, and hence,
the contribution coming from the integration over the periphery of G1 has been neglected.

On the other hand, the governing equation for average translation velocity of the embedded
grain can be obtained by first integrating (4.10)3 for a = 1 and 2, respectively, and then adding
them to obtain

Ċ1 = 1
area(S1 ∪ S2)

(
area(S1)Ċ3 +

2∑
a=1

∫
Sa

LaHada

)
, (4.15)

where Ċ3 is given by (4.14). In (4.13)2 we have the governing equation for the normal motion of
S3 and in (4.15) for the translation of the embedded grain.

Finally, we derive the kinetic relations which govern junction dynamics. For negligible
diffusion along the junction curve, the dissipation inequality (3.27) simplifies to F J · qp ≥ 0.
Assuming linear kinetics we postulate that

qp = MJF J, (4.16)

where MJ is the positive semi-definite junction mobility tensor. An analogous treatment in a
two-dimensional setting can be seen in [30] (see also [2]). The junction force F J given by (3.28)
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is a function of the unknown local orientations of the adjacent GBs which, for a non-splitting
junction, can be calculated using the compatibility conditions Vi = qp · ni (see [2,30] for a detailed
calculation in two-dimension).

To conclude, the complete set of kinetic equations governing the coupled GB motion in the
tricrystalline arrangement includes (4.11) for the motion of S1 and S2, (4.13)2 for the motion of
S3, (4.12) for the rotation of the embedded grain G1 (the outer grains are non-rotating) (4.15) and
(4.14) for the translation of grains G1 and G2, respectively (whereas grain G3 is stationary), and
(4.16) (in association with the compatibility condition) for the motion of the junction curve.

5. Concluding remarks
We have presented a thermodynamically consistent three-dimensional study of coupled GB
motion in the presence of junctions, hitherto restricted to two-dimensional crystalline materials.
Towards this end, we introduced a novel continuum mechanics-based theory of irreversible
dynamics of incoherent interfaces with junctions, which allows for diffusion in the bulk, on the
interface, and along the junction curve. The various local dissipation inequalities derived therein
were used to motivate kinetic relations for the coupled GB motion in two bicrystals and one
tricrystal. These relations were solved analytically whenever it was possible to do so, but were
otherwise left in a form amenable to numerical computations. In any case, the results clearly
demonstrated the effect of coupling on the grain dynamics. Consider for instance the shrinking
of an isolated grain, embedded within a larger grain, under the action of capillary. Without
coupling, the embedded grain can disappear only by shrinking to a vanishing size. However with
coupling, the grain can disappear by aligning its orientation with the outer grain even before it has
shrunk significantly [6]. The proposed kinetic relations also emphasize the coupling of junction
dynamics with both grain and GB motion. Depending on the junction mobility, grain dynamics
can experience a substantial drag compared with the case with no junctions [2].

This work can form a basis for research in several future directions. The theory of incoherent
interfaces, which includes junctions and diffusion, is in fact applicable to a more general situation
where the grains are allowed to deform plastically. The resulting framework would be useful
for phenomena which involves coupling of plastically deforming bulk with moving incoherent
interfaces and junctions [31]. Second, the kinetic relations derived for the tricrystal can be used
to study the coupled motion in polycrystalline materials containing large number of grains
and junctions. Of course, this will demand significant computational effort and hence efficient
numerical algorithms. A related direction of work would be to develop numerical techniques
(such as level set methods) for solving equations of coupled motion of an embedded grain with
anisotropic constitutive properties. Third, the computation of the vectorial coupling factor, which
has been restricted here to small angle GBs, should be extended to large angle GBs. Finally,
three-dimensional atomistic simulations will be required to clarify the nature of various kinetic
coefficients (including the coupling factor), in particular, regarding their dependence on three
misorientation angles and two orientation angles of the GB.
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Appendix A. Geometrical coupling factor
During the migration of a tilt or a mixed GB, the adjacent grains undergo a tangential motion
giving rise to a coupled dynamics (ch. 14 in [25], and [7,12,29]). The deformation of the grain
in the wake of a moving GB, during coupled motion, is essentially controlled by the intrinsic
edge dislocation content at the GB. Screw dislocations, if present, just glide along the GB plane
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and contribute only to grain sliding without affecting the coupling process [7]. For a moving
planar symmetric tilt GB, whose wake experiences a simple shear deformation, Cahn et al.
[12] introduced geometrical coupling factor as the ratio of the relative tangential velocity (in the
absence of viscous sliding) to the GB velocity. For a large misorientation range of a symmetric
tilt boundary, containing single array of edge dislocations, the coupling factor (denoted by β)
was calculated to be β = 2 tan(θ/2), where θ is the misorientation angle. This was later verified
both in experiments and atomistic simulations [13,29]. In general, however, most of the GBs are
mixed, containing multiple sets of edge and screw dislocation arrays. If the above definition of the
geometrical coupling factor is generalized to an arbitrary GB, the result will be a vector given by

β = P[[v]]
V

. (A 1)

We will now use this definition to derive an expression for the coupling factor for several special
cases, all with planar GBs such as shown in figure 2a.
Symmetric tilt GB: let F be the total deformation gradient of the grains with respect to a fixed
reference configuration. Compatibility at the boundary requires [[F]] = a ⊗ nr and [[v]] = −Vra,
where a is an arbitrary vector, whereas nr and Vr, respectively, are the normal vector and the
normal velocity of the GB in the reference configuration. Without loss of generality, we can
assume that F+ = I and v+ = 0. Consequently, nr = n and Vr = V [14]. On the other hand, the
multiplicative decomposition of F, under the present assumption of elastically rigid grains, takes
the form F = RFp [14], where R is the lattice rotation tensor and Fp is the plastic deformation
gradient. If we assume the plastic deformation to be isochoric (detFp = 1), and that Fp+ = I,
then the above considerations lead to F− = I + β ⊗ n, where β = −Pa is a tangential vector (the
superscript ‘minus sign’ will be suppressed hereafter). The total Burgers vector B of all the GB
dislocations cut by a unit vector p lying on the GB plane is given by the Frank–Bilby equation
B = (I − RT)p = (I − Fp)p [14]. Assuming all the edge dislocations at the GB to glide in a single slip
direction, we can write the resulting plastic distortion rate as Ḟp(Fp)−1 = ζ̇s ⊗ m (cf. ch. 106 in [32]),
where ζ̇ , s and m stand for slip rate, unit slip vector and unit normal to the slip plane, respectively
(s and m are mutually perpendicular). With initial values of ζ and Fp as 0 and I, respectively,
time integration of the evolution equation yields Fp = exp(ζ (t)s ⊗ m)(Fp|t=0) = I + ζs ⊗ m. If the
orientation of grain G− is related to that of G+ by an anticlockwise rotation of angle θ3 about
e3-axis, then we can write R = cos θ3(e1 ⊗ e1 + e2 ⊗ e2) + sin θ3(e2 ⊗ e1 − e1 ⊗ e2) + e3 ⊗ e3. Using
this in the Frank–Bilby equation for p = e2, and recalling that B = |B|s, we obtain |B| = 2 sin(θ3/2)
and s = − cos(θ3/2)e1 + sin(θ3/2)e2 (and hence m = − sin(θ3/2)e1 − cos(θ3/2)e2). Finally, with the
help of expressions derived above for total and plastic deformation gradients, we can obtain
ζ = −|B|/(m · e2) and consequently, β = 2 tan(θ3/2)e2. This expression for the coupling factor was
derived earlier by Cahn et al. [12]. For small misorientation angle, the coupling factor takes a
simple form β = θ3e2 (ch. 14 in [25]).
General tilt boundary with small misorientation: restricting ourselves to small misorientation, we
consider a tilt GB such that R = I + θ2(e2×) + θ3(e3×), where (e×) represents a skew tensor with
components given by (e×)jk = εjlkel (here εjlk is the permutation symbol). In other words, grain
G− is obtained by rotating the reference grain G+ anticlockwise about e2 and e3 by small angles
θ2 and θ3, respectively. The dislocation density tensor at the GB, defined as α = (I − Fp)(n×) =
(I − RT)(n×) [14,33], takes the form α = θ2e1 ⊗ e2 + θ3e1 ⊗ e3. This represents two arrays of edge
dislocations having line direction along e2 and e3, and slip direction e1, with densities θ2 and
θ3, respectively. To calculate the geometrical coupling factor, we exploit linearity in extending
the result for a symmetric tilt boundary to the present situation to obtain β = θ3e2 − θ2e3. The
coupling factor, therefore, has contributions from both arrays of edge dislocations.
Twist GB with small misorientation: we now consider a twist GB with small misorientation such that
the grain G− is rotated by an anticlockwise angle θ1, about e1-axis, with respect to grain G+. For
small angle, we can write R = I + θ1(e1×). As a result α = −θ1(e2 ⊗ e2 + e3 ⊗ e3), which represents
two arrays of screw dislocations (both with density θ1) with line directions parallel to e2 and e3.
With this in mind, we assume the plastic deformation gradient as Fp = I + ζ (s1 ⊗ m1 + s2 ⊗ m2),
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where we have considered two mutually orthogonal slip systems with equal slip magnitude, such
that |s1| = |s2| = |m1| = |m2| = 1 and s1 · s2 = s1 · m1 = s2 · m2 = m1 · m2 = 0. On the other hand,
the total deformation gradient is of the form considered above, i.e. F = I + β ⊗ e1. With the
assumption of small deformation and small misorientation, the multiplicative decomposition of
the deformation gradient becomes an additive decomposition so as to yield β ⊗ e1 = θ1(e1×) +
ζ (s1 ⊗ m1 + s2 ⊗ m2). Projecting this onto e1, e2 and e3, we obtain β = ζ (s1(m1 · e1) + s2(m2 · e1)),
and s1 · e1 = s2 · e1 = 0, m1 = s2 and m2 = s1. These results immediately furnish β = 0. We
have therefore shown that the geometrical coupling factor for a twist boundary (with small
misorientation) is zero, hence confirming the qualitative arguments provided in [1,7,12].
A cubic grain embedded in a large grain: as an application of the results obtained above, we now
consider an example where a cubic grain (whose edges are aligned with directions e1, e2 and e3)
is embedded inside another grain such that the (infinitesimal) misorientation between them is
given by R = I + θ1(e1×) + θ2(e2×) + θ3(e3×). The surface dislocation density tensor for the GB
with normal e1 can be calculated as α = −θ1(e2 ⊗ e2 + e3 ⊗ e3) + θ2e1 ⊗ e2 + θ3e1 ⊗ e3; the GB is
of a mixed type consisting of two mutually perpendicular sets of edge dislocations (with densities
θ2 and θ3) and two mutually perpendicular sets of screw dislocations (both with densities θ1). The
dislocation content at other boundaries can be obtained in a similar manner. In evaluating the
geometrical coupling factor associated with the boundary with normal e1, we exploit linearity
in our arguments (owing to small misorientation) to combine the results obtained above for tilt
and twist boundaries to write βe1

= θ3e2 − θ2e3. We can similarly calculate the coupling factors
for the GBs with normal e2 and e3 as βe2

= −θ3e1 + θ1e3, and βe3
= θ2e1 − θ1e2, respectively. It is

easily verifiable that β−e1
= −βe1

, etc., where β−e1
represents the coupling factor associated with

the face with normal −e1.
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