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a b s t r a c t 

A thermodynamically consistent theory of strain-gradient plasticity in isotropic solids with mobile inco- 

herent interfaces is developed. The gradients of plastic strain are introduced in the yield functions, both 

of the bulk and the interface, through suitable measures of material inhomogeneity; consequently, two 

internal length scales appear in the formalism. The rate-independent associative plastic flow rules, as 

proposed in the framework, are coupled with the kinetic law for interface motion. The theory is used 

to study plastic evolution in a three-dimensional, semi-infinite, thin slab of isotropic solid with a pla- 

nar incoherent interface. The average stress-strain curves are plotted for varying length scales, mobilities, 

and average strain-rates. The effect of slab thickness and the two internal length scales on the hardening 

behavior of the slab is investigated. For all the considered cases, the stress-strain curves have two dis- 

tinct kinks, indicating yielding of the bulk and at the interface. Moreover, once the interface yields, and 

is driven to move, the curves demonstrate both softening and rate-dependent response. The softening 

behavior is found to be sensitive to interface mobility and average strain-rates. These observations are 

consistent with several experimental results in the literature. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Resistance to plastic flow in the presence of interfaces and ex-

ernal boundaries leads to inhomogeneous strain distribution, such

s that accommodated by the geometrically necessary dislocations

 Nye, 1953; Ashby, 1970 ). The large gradients in plastic strain near

he interfaces and boundaries strongly influence the effective hard-

ning of the solid ( Aifantis et al., 2006; Fleck and Willis, 2009 ). The

ole of surfaces is in particular significant in solids with micron

nd sub-micron characteristic length scales ( Sutton and Balluffi,

003 ). Strain-gradient plasticity theories ( Fleck and Willis, 2009;

leck and Hutchinson, 1997; Gao et al., 1999; Huang et al., 20 0 0;

urtin and Anand, 2005 ) have been successfully used to study

lastic deformation in solids with interfaces such as those con-

aining an elastic-plastic boundary ( Gudmundson, 2004; Fredriks-

on and Gudmundson, 20 07; 20 05; Polizzotto, 20 09 ), grain bound-

ries ( Voyiadjis et al., 2014; Al-Rub, 2008; Aifantis et al., 2006;

ifantis and Willis, 2005; Wulfinghoff et al., 2013; Kochmann and

e, 2008; Zhang et al., 2014b ), internal surfaces in composites

 Fredriksson et al., 2009 ), phase boundaries ( Mazzoni-Leduc et al.,

008; Pardoen and Massart, 2012 ), and interfaces between lami-
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ates ( Wulfinghoff et al., 2015 ). Dislocation dynamics based theo-

ies have also been used to study the effects of interfaces on plas-

ic flow ( Shu and Fleck, 1999; Puri et al., 2011; Balint et al., 2008;

hang et al., 2014b ). All these investigations are however restricted

o stationary interfaces. On the other hand, various experiments

 Gorkaya et al., 2011; Morris et al., 2007; Chen and Gottstein, 1988;

ourdet and Montheillet, 2002; Rupert et al., 2009; Winning et al.,

001 ) in polycrystalline materials have suggested that interfaces

emain mobile during plastic deformation, accommodating a part

f the accumulated strain near the boundaries and thereby relax-

ng the stresses in the body. Moreover, grain boundary propagation

esults in grain coarsening (increase in average grain size) in poly-

rystalline materials, and in this process the solids have been ob-

erved to undergo strain softening ( Morris et al., 2007; Chen and

ottstein, 1988; Gourdet and Montheillet, 2002 ). It is therefore im-

ortant to formulate a plasticity model where plastic evolution,

oth in the bulk and at the interfaces, is coupled with interfacial

inetics. This is precisely the purpose of the present paper. In par-

icular, we elaborate the nature of our theory through a detailed

xample of a plastically deforming thin slab containing a mobile

nterface. 

The starting point of our work is a thermodynamical frame-

ork, recently proposed by the authors ( Basak and Gupta, 2015a;

015b; 2016 ), using which we derive a physically motivated three-
coherent interface on the strain-gradient plasticity of a thin slab, 
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dimensional (3D) small deformation strain-gradient plasticity the-

ory for isotropic solids. We allow for an energetic incoherent pla-

nar interface, whose incoherency is related to the presence of de-

fects/inhomogeneities, to propagate within the quasi-statically de-

forming solid. There are two novel features of our plasticity the-

ory. First, we assume the yield function in the bulk to depend on

the incompatibility tensor ( Krishnan and Steigmann, 2014; Basak

and Gupta, 2016 ), given in terms of second order gradient of plas-

tic strain, and the yield function on the interface to depend on an

analogous incompatibility measure. Such dependence, with which

we introduce two internal length scales, and which is the sim-

plest that one could use to characterize inhomogeneity in isotropic

solids ( Noll, 1967 ), is the only source of non-locality, and hence

size dependence, in our formalism. Second, we propose plastic-

ity flow rules which are coupled with interfacial kinetic laws, so

that we can model the effects of interface propagation on the

overall plastic behavior of the solid. The rate-independent plastic-

ity flow rules are assumed to be associative. The rate-dependency

in the model is introduced through a linear kinetic law of in-

terface motion. We should remark here that our strain-gradient

plasticity framework, even without considering interfacial effects,

is distinct from those which necessarily incorporate higher order

stresses ( Fleck and Willis, 2009; Gao et al., 1999; Huang et al.,

20 0 0; Gurtin and Anand, 20 05; Gudmundson, 20 04 ) or those

which have a first order strain-gradient dependency in the yield

function ( Acharya and Bassani, 1996; Bassani, 2001 ). Moreover, in-

troduction of strain gradients in our theory is through the incom-

patibility tensor, which is a natural measure of material inhomo-

geneity distribution in isotropic solids ( Noll, 1967 ). This renders

our model physically motivated from the viewpoint of inhomoge-

neous plastic deformations at small scales. 

We apply our theory to study the plastic behavior of a semi-

infinite thin slab, under tensile loading, having a planar incoherent

interface (see Fig. 2 ). The incoherency of the interface is essentially

characterized by a non-trivial jump in plastic strain across the in-

terface. In fact, for the thin slab problem, the driving force for in-

terface propagation comes out to be proportional to this jump. As

a result, interface is driven to motion within the slab only if it is

incoherent. We consider two cases to illustrate our theory. First, we

assume the interface to be located in the middle of the slab. The

symmetry of the problem prevents incoherency and consequently

any motion of the interface. The achieved simplicity however al-

lows us to obtain an analytical solution, which is used to under-

stand the nature of the two internal length scales as well as inves-

tigate the size effects on the overall plasticity of the slab. In the

second case, we assume the interface to be located asymmetrically

in the slab such that the amplitude of plastic strain in the thinner

side is almost an order smaller than the other side. The interface

becomes incoherent immediately after yielding and subsequently

propagates into the thinner region. In both the cases, yielding in

the bulk precedes that at the interface. This is reasonable since

inhomogeneities (such as dislocations) pile up near the interface

during bulk plastic flow, and start to rearrange abruptly at cer-

tain critical stress, leading to strain burst and eventual yielding at

the interface ( Morris et al., 2007; Chen and Gottstein, 1988 ). Once

yielded, the interface encourages stress relaxation in the slab by al-

lowing defects to transmit from one bulk region into the other. For

instance, the dislocations, which get dissociated from the interface,

get impinged into the adjacent bulk, and a fraction of the bulk dis-

locations get accumulated at the boundaries to modify their struc-

tural and mechanical behavior (cf. Chapter 12 of Sutton and Bal-

luffi (2003) ). Furthermore, if driven to move, the interface helps

in further relaxation of stress by accommodating the cumulative

strain in its neighborhood. Interestingly, when the interface prop-

agates with a finite speed, the effective plastic behavior of the

slab exhibits both strain softening and strain-rate dependency. The
Please cite this article as: A . Basak, A . Gupta, Influence of a mobile in
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oftening is more prominent for highly mobile interfaces. On the

ther hand, increase in the average strain-rate raises the maxi-

um stress attained by the slab, thereby delaying the softening

esponse. These findings are in confirmation with the available ex-

erimental observations ( Morris et al., 2007; Chen and Gottstein,

988; Legros et al., 2008 ). 

The earliest formulation to include strain gradients within a

lasticity theory was proposed by Aifantis (1984 ; 1987 ) in an at-

empt to develop a microstructurally informed macroscopic the-

ry of plastic flow. Departing from the classical theories, he modi-

ed the flow stress to include a linear dependence on Laplacian of

he effective plastic strain. This led to introduction of an internal

ength scale in the theory and eventually to an effective predic-

ion of size dependent material response. The strain-gradient effect

as alternatively introduced by Fleck et al. (1994) and Fleck and

utchinson (1997) using the framework of couple stress theory. In

 significant development, Fleck and Hutchinson (2001) used prin-

iple of virtual power to derive a broad class of strain-gradient

lasticity models, where the notion of effective plastic strain was

lso generalized so as to introduce multiple internal length scales

ithin the same framework. The theory was however found to be

nconsistent with the laws of thermodynamics ( Gurtin and Anand,

0 09; Gudmundson, 20 04 ). A thermodynamically consistent strain-

radient theory was developed, again using the principle of virtual

ower but incorporating a strain-gradient dependent defect energy,

y Gurtin and Anand (2009) . Our strain-gradient plasticity model is

undamentally different to these in that we include a dependence

n second gradient of strain (through the incompatibility tensor)

onstitutively in the yield criteria. We do not consider contribu-

ions from defect energy, neither do we use the principle of virtual

ower. 

The strain-gradient plasticity models for bulk deformation were

xtended to include interface energy in the works of Aifantis and

illis (20 04; 20 05; 20 06) . It is in these works that we find the

rst discussions of interfacial versus bulk yielding ( Aifantis and

illis, 2005 ), ‘knee’ like feature in stress-strain relations ( Aifantis

nd Willis, 2004 ), and the associated phenomena of strain burst

aptured through nanoindentation experiments ( Aifantis et al.,

0 06; Aifantis and Willis, 20 05 ). A detailed comparison be-

ween gradient plasticity models with experimental data illus-

rating a ‘knee’ is also available in their more recent works

 Zhang et al., 2014a; Zhang and Aifantis, 2015 ). There have been

everal other proposals and applications of strain-gradient plas-

icity theories which include interfacial effects ( Basak and Gupta,

016; Al-Rub, 2008; Fleck and Willis, 2009; Fredriksson and

udmundson, 20 07; 20 05; Polizzotto, 20 09; Gudmundson, 20 04;

upta and Steigmann, 2012; Pardoen and Massart, 2012; Voyiadjis

t al., 2014; Wulfinghoff et al., 2015; 2013 ). Our interfacial plastic-

ty model is distinct from these in the way strain gradients have

een incorporated in the interface yield criteria. Our dependence

s motivated from the incompatibility of plastic strain at the inter-

ace. Furthermore, ours is the first strain-gradient plastic model, to

he best of our knowledge, which includes mobile interfaces such

s those present during phase/grain boundary propagation. In this

ay, we are able to study the effect of dynamic interfaces on the

verall strain-gradient plasticity of the solid. 

We have organized the paper as follows. A general theory of

mall deformation plastic flow in isotropic solids with a propagat-

ng planar incoherent interface has been developed in Section 2 . It

ncludes formulating the necessary kinematics, deriving local dissi-

ation inequalities, and consequently proposing plastic flow rules

nd interfacial kinetics. In Section 3 , the general theory is sim-

lified towards posing an initial-boundary value problem for in-

estigating the plastic deformation of a semi-infinite thin slab, as

hown in Fig. 2 . The problem is solved, and the results are dis-

ussed in detail, in Section 4 first for a stationary interface within
coherent interface on the strain-gradient plasticity of a thin slab, 
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Fig. 1. A 3D region P ⊂ G with a planar interface � ⊂ C . Here, n is the fixed unit 

normal to the interface and m is the outward unit normal to the boundary ∂P . 

Fig. 2. A semi-infinite slab G with a planar incoherent interface C . The thickness of 

the slab is L, �( t ) is the applied stress, and ξ ( t ) is the instantaneous position of the 

interface at time t . 
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he slab and then for a propagating interface. Finally, we conclude

ur work in Section 5 . 

. General theory 

In this section we introduce a 3D isothermal framework for

eveloping a thermodynamically consistent small deformation

lastic-plastic theory for single-phase isotropic solids with mobile

ncoherent interfaces. We restrict ourselves to planar interfaces

ith well defined normals. After introducing necessary kinemat-

cs we postulate a global dissipation inequality which, under spe-

ific constitutive assumptions on the nature of bulk and interface

nergy, yields local dissipation inequalities for the bulk and the in-

erfacial region. These local relations are then used to derive both

he plasticity flow rules (for bulk and interface) and the interfacial

inetic law. 

The solid body under consideration occupies a subset G of the

D Euclidean point space. It contains a singular interface C with

 constant unit normal n . Let P ⊂ G be an arbitrary region in the

ody such that � = P ∩ C is nonempty (see Fig. 1 ). The outward

nit normal to the boundary ∂P of P is denoted by m . The gradi-

nt of a differentiable bulk vector field f , with respect to the po-
Please cite this article as: A . Basak, A . Gupta, Influence of a mobile in
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ition in G , is a tensor field denoted as ∇f , whereas its divergence

s given by div f . The material time derivative of f is indicated by a

uperposed dot. We have denoted time as t . The surface gradient

nd the surface divergence of a differentiable interfacial field g are

enoted by ∇ 

S g and div S g , respectively ( Cermelli and Gurtin, 1994;

upta and Steigmann, 2012 ). For a piecewise continuous bulk field

 , the jump and average across C are defined as � f � = f + − f − and

 f 〉 = ( f + + f −) / 2 , respectively, where f + is the limiting value of f

t the interface as we approach the interface from the bulk region

nto which the normal n points ( f − is defined likewise). It can be

asily verified that 

 f 1 f 2 � = � f 1 � 〈 f 2 〉 + 〈 f 1 〉 � f 2 � , (1)

here f 1 and f 2 are two piecewise continuous bulk fields. 

Additional notation is fixed as follows. The Euclidean inner

roduct of two second order tensors A and B is written as A · B ;

he related norm is denoted as | A |. The trace, transpose, and in-

erse of A are denoted by tr A , A 

T , and A 

−1 
, respectively. The sym-

etric and skew parts of A are represented by sym( A ) and skw( A ),

espectively. The derivative of a scalar-valued differentiable func-

ion of A , say f ( A ), denoted by ∂ A f , is defined by f ( A + B ) = f ( A ) +
 A f · B + o(| B | ) , where o (| B |)/| B | → 0 as | B | → 0. The derivatives of

ector and tensor-valued differentiable functions are defined simi-

arly. The second order identity tensor is given by I . 

.1. Kinematics 

Let u be a continuous displacement field defined over G . The

isplacement gradient tensor, β = ∇ u , is however allowed to be

iscontinuous across C . The infinitesimal strain tensor field and the

pin tensor field, well defined away from C , are ε = sym ( β) and

 = skw ( β) , respectively. The following decomposition of β into

n elastic part βe and a plastic part βp is assumed ( Kröner, 1981 ):

= β
e + β

p 
. (2) 

he above considerations are justified if we assume β, βe , and βp 

o be small (of the same order). Consequently, the total strain and

otal spin are also decomposed into elastic and plastic parts as 

= εe + εp and ω = ω 

e + ω 

p , (3) 

here the notation is self explanatory. It is immediate that εe =
ym ( β

e 
) , εp = sym ( β

p 
) , ω 

e = skw ( β
e 
) , and ω 

p = skw ( β
p 
) . 

The continuity of u requires � u � = 0 , which implies � β� P =
 , where P = I − n � n is the projection tensor ( � denotes the

yadic product). The interfacial distortion tensor field can then

e unambiguously defined as G = β+ P = β−P = 〈 β〉 P ( Gupta and

teigmann, 2012 ). The interfacial strain field, defined as E =
ym ( G ) , is related to the bulk strain field as E = P 〈 ε〉 P . Analogous

o the decomposition (2) in the bulk, the interfacial distortion is

dditively decomposed into elastic and plastic parts as 

 = G 

e 
γ + G 

p 
γ = G 

e 
δ + G 

p 

δ
, (4) 

here G 

e 
γ = β

e 
+ P , G 

e 
δ = β

e 
−P , G 

p 
γ = β

p 
+ P , and G 

p 

δ
= β

p 
−P ; see Gupta

nd Steigmann (2012) and Basak and Gupta (2016) for the corre-

ponding multiplicative decomposition when the deformations are

nite. Here, the subscripts δ and γ have been used to differentiate

he two disjoint surfaces obtained from the incoherent interface in

he intermediate configuration ( Gupta and Steigmann, 2012; Basak

nd Gupta, 2016 ). The decomposition of the interfacial strain ten-

or follows subsequently as 

 = E 

e 
γ + E 

p 
γ = E 

e 
δ + E 

p 

δ
, (5) 

here E 

e 
γ = P εe + P , E 

e 
δ = P εe −P , E 

p 
γ = P εp 

+ P , and E 

p 

δ
= P εp 

−P are re-

pective interfacial elastic and plastic strain fields. The incoherency
coherent interface on the strain-gradient plasticity of a thin slab, 
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tensor, which measures the relative elastic (or plastic) distortion

between γ and δ sides of the interface, is given by 

M = G 

e 
δ − G 

e 
γ = G 

p 
γ − G 

p 

δ
, (6)

cf. Gupta and Steigmann (2012) and Cermelli and Gurtin (1994) for

definition of the incoherency tensor in the finite deformation

framework. For a coherent interface, G 

e 
δ = G 

e 
γ and G 

p 
γ = G 

p 

δ
, the in-

coherency tensor vanishes identically. 

Let g be a smooth field defined over the interface C . The nor-

mal time derivative of g following C is given by Gurtin and Jabbour

(2002) 

g̊ = 

˙ g + V ∇g · n , (7)

where V is the normal velocity field of the interface. It quantifies

the rate of change of g as observed by an observer sitting on the

moving interface. The parametrization independent intrinsic veloc-

ity of the edge ∂� of � is given by Gurtin and Jabbour (2002) 

q = V n + W t , (8)

where W is the component of the edge velocity along a direction

(quantified with unit vector t ) which is both tangential to the in-

terface and normal to the curve ∂�. 

2.2. Dissipation inequality 

Recall region P as introduced in the beginning of Section 2 and

shown in Fig. 1 . Assuming that P does not exchange mass with its

surrounding, and neglecting excess mass density at the interface,

we have the following local mass balance laws: ˙ ρ = 0 in G \ C and

 � ρ� = 0 over C , where ρ is the mass density of the bulk ( Gupta

and Steigmann, 2012 ). These imply that density is time indepen-

dent and continuous across the singular interface, allowing the in-

terface to be mobile. The linear momentum balance for the re-

gion P , while neglecting interfacial stresses, body forces, and in-

ertia, yields ( Gupta and Steigmann, 2012 ) 

div σ = 0 in G \ C and � σ� n = 0 over C, (9)

where σ is the symmetric bulk Cauchy stress tensor. 

According to a mechanical version of the second law of thermo-

dynamics, the rate of change of the total free energy of P is always

less than or equal to the net power input into P . Neglecting kinetic

energies of the bulk and interface, we postulate the dissipation in-

equality as ( Basak and Gupta, 2015a; 2015b; 2016 ) 

d 

dt 

(∫ 
P 

	 dv + 

∫ 
�


 da 

)
≤

∫ 
∂P 

σm · v da + 

∫ 
∂�

c · q dl. (10)

Here 	 is the free energy in the bulk per unit volume, 
 is the

free energy of the interface per unit area, v is the material velocity

field, dv is an infinitesimal volume element, da is an infinitesimal

area element, and dl is an infinitesimal length element. The first

term on the right hand side of the inequality denotes the mechan-

ical power input to P through the working of traction on the outer

surface ∂P . The second term is a non-standard power input to P

considered to ensure that the entropy production is restricted only

to within the bulk and interface, i.e., there is no entropy generation

at the arbitrary edge of the interface ∂� ( Basak and Gupta, 2015a;

2015b; 2016 ). The exact form of c will depend on the constitutive

form of the energies. Using the standard transport relations and

divergence theorems, inequality (10) can be rewritten as ∫ 
P 

(
div ( σv ) − ˙ 	

)
dv + 

∫ 
�

(
V � 	� + � σv � · n − 
̊

)
da 

+ 

∫ 
∂�

( c · q − 
W ) dl ≥ 0 . (11)

The last term on the left hand side of the inequality should vanish

identically, since otherwise it will represent an unphysical contri-

bution to the entropy. Considering energies of the form 	 = 

ˆ 	( εe )
Please cite this article as: A . Basak, A . Gupta, Influence of a mobile in
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nd 
 = 

ˆ 
( M ) , we thereby require c · n = 0 and c · t = 
. Addi-

ionally, we assume plastic incompressiblity (i.e., tr εp = 0 ). The

lobal dissipation inequality (11) can then be shown to be equiva-

ent to the constitutive relation σ = ∂ εe ˆ 	 and the local dissipation

nequalities 

d · ˙ εp ≥ 0 in G \ C and (12)

 f n − B · M̊ ≥ 0 over C, (13)

here σd = σ − ( tr σ) I / 3 is the deviatoric part of σ , B = ∂ M 

ˆ 
, and

f n = � ̂  	I − β
T 
σ� n · n (14)

s the driving force for interface propagation ( Basak and Gupta,

016; Gupta and Steigmann, 2012 ). According to (12) , dissipation

n the bulk is only due to plastic evolution, whereas dissipation at

he interface is an outcome of both the kinetics of interfacial mo-

ion as well as the evolution of the incoherency tensor. 

To be more specific, we use quadratic energy densities which,

fter considerations of isotropic material symmetry, have a general

orm 

ˆ ( εe ) = 

λ

2 

( tr εe ) 2 + μ εe · εe and (15)

ˆ ( M ) = 
0 + 

b 0 
2 

( tr M s ) 
2 + b 1 (| M s | 2 + | M a | 2 ) , (16)

here λ and μ are the Lamé constants in the bulk, b 0 and b 1 
re the moduli of incoherency for the interface, M s = sym ( M ) ,

 a = skw ( M ) , and 
0 is the constant interfacial tension. From

hese expressions we can obtain 

= λ( tr εe ) I + 2 μεe and (17)

 = b 0 ( tr M s ) P + 2 b 1 ( M s + M a ) . (18)

inally, if M a = 0 then, noting that M s = E 

p 
γ − E 

p 

δ
, we can rewrite

13) as 

 f n − B · E̊ 

p 

γ + B · E̊ 

p 

δ ≥ 0 over C. (19)

.3. Plastic flow rules and interfacial kinetics 

Based on dissipation inequalities (12) and (19) we now derive

he plastic flow rules, both in the bulk and at the interface, and

nterfacial kinetic equations. The plastic evolution will be assumed

o be rate-independent and associative. We will depart from clas-

ical plasticity by assuming the yield functions to depend on mea-

ures of material inhomogeneity, represented in terms of suitable

radients of plastic strain. Such dependence is the only source of

train-gradient effects in our theory. 

.3.1. Bulk plasticity 

In order to incorporate non-locality in our plasticity model,

e assume the yield function to depend on a suitable mea-

ure of material inhomogeneity, besides its usual dependence on

tress and effective plastic strain. It is well established ( Noll, 1967;

asak and Gupta, 2016; Krishnan and Steigmann, 2014 ) that, under

sotropic material symmetry, material inhomogeneity is unambigu-

usly represented by the material curvature tensor (whose vanish-

ng provides necessary conditions for strain compatibility). When

he strains are small, as is presently the case, the material cur-

ature reduces to Kröner’s incompatibility tensor η = curl curl εp 

 Kröner, 1981 ). With this in mind, we consider the yield locus in

he deviatoric stress space (parametrized by effective plastic strain

nd incompatibility tensor) to be given by F = 0 , where 

 = 

˜ F ( σd , E p , η) . (20)
coherent interface on the strain-gradient plasticity of a thin slab, 
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A  
n the above equation, E p = 

∫ t 
0 

˙ E p dτ is the effective plastic strain

ith 

˙ E p = 

√ (
2 ̇ εp · ˙ εp 

)
/ 3 . Under the assumption of isotropic re-

ponse, ˜ F can depend on σd and η only through their principal

nvariants. We will in fact consider yield functions which are func-

ions of only the second invariant of σd (the first invariant of σd is

rivially zero) and the first invariant of η (denoted by η), i.e., 

 = 

ˆ F (σe , E 
p , η) , (21)

here σe = 

√ (
3 σd · σd 

)
/ 2 . The principle of maximum dissipation,

n conjunction with (12) , yields the associative flow rule 

˙ 
p = 

˙ β ∂ σd ˆ F , (22) 

here ˙ β ≥ 0 is the plastic multiplier. The consistency condition

˙ ˙ ˆ F = 0 will result into a second order partial differential equation

PDE) for the plastic strain-rates whenever ˙ β > 0 . The boundary

onditions required for solving the PDE are provided by the flow

ules at the interface and the microscopic conditions on the plas-

ic strain-rate and/or their spatial derivative at the external bound-

ries of the solid, as discussed next. 

.3.2. Interfacial kinetics and interfacial flow rules 

To derive the plastic flow rules and the kinetic relation we start

ith conditions 

 f n ≥ 0 and B γ · E̊ 

p 

γ + B δ · E̊ 

p 

δ ≥ 0 over C, (23)

hich are sufficient for dissipation inequality (19) . Here we have

ntroduced B γ = −B and B δ = B . The interface C is assumed to be

omophase, requiring dissipation inequality (23) 2 to be symmetric

ith respect to suffixes γ and δ. This is indeed true as can be ver-

fied using (18) in the inequality. Although we have decoupled the

issipation inequalities pertaining to interface kinetics and inter-

ace plasticity, the two phenomena remain coupled to each other

ue to the nature of normal time derivatives. 

Motivated by dissipation inequality (23) 1 we postulate a linear

inetic relation of the form 

 = M f n , (24) 

here M ≥ 0 is the constant interface mobility and f n is given by

14) . 

Analogous to our considerations in the bulk, we assume the

ield function at the interface to depend on generalized stresses

 γ and B δ , parameterized by the effective interfacial plastic strain

 

p , and an appropriate measure of material inhomogeneity κ. The

ield locus is given by G = 0 , where 

 = 

˜ G ( B γ , B δ, e 
p , κ) . (25)

ere e p = 

∫ t 
0 e̊ 

p dτ with e̊ p = 

√ 

| ̊E 

p 

γ | 2 + | ̊E 

p 

δ | 2 ( Basak and Gupta,

016 ). For κ, under small strain assumption, we look for a rep-

esentation of the incompatibility tensor on the interface. Toward

his end, we consider a closed curve C 1 in P such that it encloses

n area A 1 and intersects � at two points. Let C 2 be the line of

ntersection of A 1 with �. The Stokes’ theorem for a piecewise

mooth field curl εp then yields ( Gupta and Steigmann, 2012 ) 
 

C 1 

curl εp d x = 

∫ 
A 1 

( curl curl εp ) T N da −
∫ 

C 2 

� curl εp � d x , (26)

here N is the unit normal to A 1 . Define κ such that � curl εp � d x =
κT t 1 dl, where t 1 is the unit tangent along C 2 . Hence 

T = � curl εp � ( t 1 � t 2 − t 2 � t 1 ) , (27)

here t 2 is a unit vector on the tangential plane of the interface

uch that { t 1 , t 2 , n } form a positively oriented orthonormal ba-

is. It is immediately clear that vanishing of incompatibility tensor,

.e., curl curl εp = 0 , is not sufficient to ensure path independence
Please cite this article as: A . Basak, A . Gupta, Influence of a mobile in
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f the closed integral in (26) , which is otherwise required for im-

osing continuity of the displacement field (cf. pages 84–100 from

oley and Weiner, 1997 ). The additional condition is provided by

he last integral in (26) , which essentially requires vanishing of κ
ver the interface; hence κ can be regarded as an interfacial in-

ompatibility measure. It can be easily checked that κ, as defined

n (27) , is independent of the choice of basis vectors t 1 and t 2 
 Gupta and Steigmann, 2012 ). 

For our purposes in the following sections, we restrict ourselves

o yield functions of the form 

 = 

ˆ G (τe , e 
p , κ) , (28)

here τe = 

√ | B γ | 2 + | B δ| 2 is the effective stress, and κ is the first

rincipal invariant of κ. The postulation of maximum dissipation,

n conjunction with (23) , yields the associative flow rules 

˚
 

p 

γ = ζ̊ ∂ B γ ˆ G and E̊ 

p 

δ = ζ̊ ∂ B δ ˆ G , (29)

here ζ̊ ≥ 0 is the plastic multiplier for the interface. The consis-

ency condition ζ̊ ˚̂
 G = 0 , combined with flow rules (29) and kinetic

elation (24) , can be solved to evaluate plastic strain-rates at the

nterface. These serve as the boundary conditions for the PDE ob-

ained from the consistency condition in the bulk. 

. Slab with a propagating interface 

The body G is now taken to be a semi-infinite thin slab with

 moving planar interface C having fixed orientation n = e 2 , see

ig. 2 . The interface divides the slab into two parts G 1 and G 2 .

he components of the position vector x are denoted by x, y , and

 with respect to Cartesian basis vectors e 1 , e 2 , and e 3 , respec-

ively. The slab is subjected to uniform uniaxial tensile force �( t )

t the free boundary. The instantaneous position of the interface

s denoted by y = ξ (t) . In the following we simplify the plasticity

odel, proposed in Section 2.3 , under additional kinematical and

onstitutive assumptions and collect the governing equations for

he initial-boundary value plasticity problem. The solution to the

emi-infinite thin slab problem, as discussed in the following sec-

ions, can be related to several problems of practical interest, such

s a bicrystal subjected to external loading ( Al-Rub, 2008 ) or a thin

lm on a substrate under external loading ( Fredriksson and Gud-

undson, 2007; 2005 ). 

We consider a displacement field such that only ε22 is non-

rivial while all other components of the total strain remain identi-

ally zero. We assume all the fields, including strains and stresses,

o be independent of coordinates x and z . We also assume the

hear components of elastic and plastic strains to be zero. Ad-

itionally, elastic and plastic spin tensor fields are both assumed

o vanish, yielding M a = 0 . Moreover, the symmetry of the prob-

em allows us to assume εe 
11 

= εe 
33 

and εp 
11 

= εp 
33 

. We denote ε22 

nd εp 
22 

as ε and εp , respectively. The plastic incompressibility can

hen be used to obtain εp 
11 

= εp 
33 

= −εp / 2 . This result, when com-

ined with strain decomposition (3) 1 , yields εe 
11 

= εe 
33 

= εp / 2 and
e 
22 

= ε − εp . The non-trivial components of the bulk stress can be

btained from (17) as 

11 = σ33 = λε + με p and σ22 = (λ + 2 μ) ε − 2 με p . (30)

n the other hand, equilibrium Eq. (9) 1 can be used to write

22 = �(t) . The components of the deviatoric stresses can then be

xpressed as 

d 
11 = σ d 

33 = −σ d 
22 / 2 and σ d 

22 = A � − B ε p , (31)

here 

 = 

4 μ

3(λ + 2 μ) 
and B = 

2 μ(3 λ + 2 μ) 

3(λ + 2 μ) 
. (32)
coherent interface on the strain-gradient plasticity of a thin slab, 
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To obtain equations of bulk plasticity, we begin by noting the

simplified expressions for effective stress σe = 3 | σ d 
22 

| / 2 = 3 |A � −
B εp | / 2 , equivalent plastic strain-rate ˙ E p = | ̇ εp | , and first invariant

of incompatibility tensor η = −∂ 2 εp / ∂y 2 . Moreover, we assume the

yield function (21) to be a linear function of all its arguments, i.e.,

F = σe − ( K + HE p + c η) , (33)

where K is the constant flow stress, H is the plastic modulus, and

c is a phenomenological constant with a unit of force. This form

reduces to a yield function in classical plasticity theory if the co-

efficient c , associated with the non-local term, vanishes identically.

The flow rule (22) now reduces to 

˙ ε p = 

˙ β sign (A � − Bε p ) , (34)

where sign( x ) is equal to −1 if x < 0, 0 if x = 0 , and 1 if x > 0.

When 

˙ E p > 0 , the consistency condition 

˙ E p ˙ F = 0 yields 

3 

2 

sign (A � − B ε p )(A 

˙ � − B ̇ ε p ) − H| ̇ ε p | + c 
∂ 2 ˙ ε p 

∂y 2 
= 0 , (35)

which is a PDE for ˙ εp . This is to be supplemented with the bound-

ary conditions at the interface and the external boundaries y = 0 , L,

as derived in the following. 

The kinetics of the interface is governed by (24) where the driv-

ing force f n , given by (14) , is now of the form 

f n = 

μ(3 λ + 2 μ) 

2(λ + 2 μ) 
� ( ε p ) 2 � − 2 μ�

λ + 2 μ
� ε p � . (36)

To derive plasticity equations at the interface we begin by assum-

ing the yield function (28) to be linear in terms of its arguments,

i.e., 

G = τe − ( k 0 + h 0 e 
p + c 0 κ) , (37)

where k 0 is the yield strength, h 0 is the plastic modulus, and c 0 
is a material constant whose physical interpretation would be dis-

cussed later. Note that k 0 is similar to interfacial tension 
0 in that

it resists the plastic flow near the interface ( Aifantis et al., 2006 ).

Furthermore, with E 

e 
γ = ( εp 

+ / 2) P , E 

e 
δ = ( εp 

−/ 2) P , E 

p 
γ = −( εp 

+ / 2) P ,

E 

p 

δ
= −( εp 

−/ 2) P , and M = −
(
( εp 

+ − εp 
−) / 2 

)
P , we can write B =

−(b 0 + b 1 )(ε
p 
+ − εp 

−) P and consequently obtain 

τe = 2 | (b 0 + b 1 )(ε
p 
+ − ε p 

−) | (38)

and 

e̊ p = 

1 √ 

2 

√ 

( ̊ε p 
+ ) 2 + ( ̊ε p 

−) 2 . (39)

Also, κ = −� ∂ εp / ∂y � (considering t 1 = e 3 and t 2 = e 1 in (27) ).

When B is non-vanishing, i.e., εp 
+ � = εp 

−, flow rules (29) are reduced

to 

ε̊ p 
+ = ζ̊ T and ε̊ p 

− = −ζ̊ T , (40)

where T = −sign ((b 0 + b 1 )(ε
p 
+ − εp 

−)) . On substituting these into

(39) we get ζ̊ = e̊ p , and from consistency condition ζ̊ G̊ = 0 (for

ζ̊ > 0 ) we obtain 

ζ̊ = 

c 0 
h eff 

� 

˚∂ ε p / ∂y 

� 

, (41)

where h eff = h 0 + 4(b 0 + b 1 ) is an effective measure of plastic

modulus of the interface. These relations, upon using the definition

of normal time derivative, can be used to solve for plastic strain-

rates at the interface, which provides us with boundary conditions

at the interface y = ξ required for solving (35) . 

In the above framework nontrivial kinetic and flow relations are

obtained only when the interface is incoherent, i.e., when εp 
+ � = εp 

−.

This can be seen by identical vanishing of both the driving force

(and hence V ) and strain-rates in (36) and (40) . If the interface is
Please cite this article as: A . Basak, A . Gupta, Influence of a mobile in
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oherent then we would still like to obtain an expression for plas-

ic strain-rate at an otherwise stationary interface. We do so by us-

ng the consistency condition 

˙ G = 0 (when | ̇ εp 
+ | = | ̇ εp 

−| > 0 ) which,

ith the help of (37) and (39) , reduces to 

 ̇ ε p 
+ | = | ̇ ε p 

−| = 

c 0 
h 0 

� ∂ ˙ ε p / ∂y � . (42)

he above relations provide boundary conditions at y = ξ for solv-

ng (35) when the plastic strain is continuous at the interface. 

The interfacial conditions derived above should be supple-

ented with boundary conditions at the external surface. Follow-

ng standard practice ( Anand et al., 2005 ), we assume the external

urfaces at y = 0 , L to be non-dissipative and properly coated so

hat they behave as microscopically hard boundaries, i.e., 

˙ p = 0 at y = 0 , L. (43)

urthermore, we assume that there is no residual plastic strain (at

he initial time) in the bulk, interface, and external boundaries, 

p (y, 0) = 0 for 0 ≤ y ≤ L. (44)

o summarize, the complete initial-boundary value problem for εp 

ncludes simultaneously solving (34) and (35) with the initial con-

ition (44) and the boundary conditions (43) . To these we should

dd conditions (40) - (41) , when εp 
+ � = εp 

−, or (42) , when εp 
+ = εp 

−. 

. Results and discussion 

The initial-boundary value problem, formulated in the previous

ection, is now solved to study the effect of an interface on the

train-gradient plasticity of a semi-infinite micro-slab. We consider

wo cases with initial position of the interface at L /2 and L /4, re-

pectively. In the former, due to symmetry, the interface remains

tationary during the deformation of the slab. In the latter case,

owever, the interface propagates with a finite speed so as to fur-

her reduce the thickness of the thinner region. In all our exam-

les, in order to highlight the role of the interface on the overall

lasticity of the slab, we calculate both the distribution of plastic

train field and the average stress-strain behavior in the slab. 

For all our calculations we assume modulus of elasticity of bulk

 = 100 GPa, Poisson’s ratio of bulk ν = 0 . 3 , K = 100 MPa, H =
0 GPa, k 0 = 0 . 08 N/m, h 0 = 10 N/m, b 0 + b 1 = −1 N/m ( Aifantis

t al., 2006; Al-Rub, 2008 ). The Lamé constants λ and μ are ob-

ained using the standard relations λ = Eν/ 
(
(1 − 2 ν)(1 + ν) 

)
and

= E/ (2(1 + ν)) . We define the average of a bulk field, say f ( y ),

s f̄ = (1 /L ) 
∫ L 

0 f (y ) dy . 

.1. Interface at y = L/2 

We assume the mean total strain ε̄ to remain non-negative.

oreover, in accordance with experimental observations ( Aifantis

t al., 2006 ), we will assume interface yielding to be always pre-

eded by yielding in the bulk. Before the bulk starts to deform

lastically, there exists a constant strain field in G given by ε =
/ (λ + 2 μ) , as calculated from (30) 3 with εp = 0 . The applied

orce �, at which yielding initiates, can be obtained by putting

 = 0 in (33) as �a = 2 K / 3 A . The subscript a has been used to

ndicate the value of the variable at initial yielding of the bulk. In

erms of strain, ε̄a = εa = �a / (λ + 2 μ) . When � > �a , or equiva-

ently ε̄ > ε̄a , the plastic strain field evolves in the bulk (away from

he interface). Assuming ˙ εp > 0 , the PDE governing the evolution

f plastic strain can then be obtained from (34) and (35) as 

∂ 2 ˙ ε p 

∂y 2 
− 1 

� 2 
˙ ε p = − A 

˙ �

� 2 (B + 

2 
3 

H) 
, (45)
coherent interface on the strain-gradient plasticity of a thin slab, 
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Fig. 3. Non-dimensional plastic strain-rate �1 , before interface has yielded, for var- 

ious m when the interface is located at y = L/ 2 . 
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2 m 0 �

L − m

+ 2 m
here � 2 = c/ ( 3 B/ 2 + H ) is an internal length scale associated

ith the inhomogeneity within the bulk (we assume c > 0). It is

lear that incorporating a non-trivial � in the theory is tantamount

o bringing second-order effects in the plastic evolution. The length

cale � can also be seen as controlling the effective hardening of

he solid due to inhomogeneous plastic deformation. It was inter-

reted as the length of dislocation pileup near the boundaries by

ifantis et al. (2006) . As � → 0, (45) leads to the classical plas-

icity solution of constant plastic strain in the entire slab. We will

iscuss more about � in our subsequent discussion. Equations like

45) were first proposed by Aifantis (1984) ; 1987 ) in an attempt to

ntroduce non-locality in plasticity theory. It should be emphasized

hat the appearance of the second-gradient term here is due to in-

roduction of incompatibility in the yield function, as compared to

eing derived from a micro force balance ( Gurtin and Anand, 2005;

009 ). Eq. (45) can be solved, using boundary conditions (43) and

˙ 
p 
+ = ˙ εp 

− = 0 (at y = L/ 2 ), to obtain plastic strain-rate field prior to

nterface yielding as 

˙ p (y ) = 

A 

˙ �

B + 

2 
3 

H 

�1 (y ) , (46)

here 

1 (y ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 − sinh (my/L ) + sinh (m/ 2 − my/L ) 

sinh (m/ 2) 
if 0 ≤ y ≤ L/ 2 , 

1 − sinh (my/L − m/ 2) + sinh (m − my/L ) 

sinh (m/ 2) 
if L/ 2 ≤ y ≤ L, 

(47) 

is the non-dimensional plastic strain-rate and m = L/� . Fig. 3 plots

1 for various m . For fixed L and increasing m , and hence decreas-

ng � , there are thinner boundary layers as well as increasing mag-

itudes of non-dimensional plastic strain-rates (bounded by 1). As

he internal length scale � approaches the thickness of the slab L ,

he amplitude of plastic strain-rate decreases making it difficult for

he slab to deform plastically. In such a case the inhomogeneities

such as dislocation pileups) occupy a larger fraction of the slab.

�2 (y ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 − h 0 [ sinh (my/L ) + sinh (m/ 2 − m

h 0 sinh (m/ 2) + 

if 0 ≤ y ≤ L/ 2 and 

1 − h 0 [ sinh (m − my/L ) + sinh (my/

h 0 sinh (m/ 2) 
if L/ 2 ≤ y ≤ L 
Please cite this article as: A . Basak, A . Gupta, Influence of a mobile in
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hese conclusions are qualitatively in agreement with recently re-

orted results of gradient plasticity predictions and 3D discrete

islocation dynamics simulations ( Zhang and Aifantis, 2015; Zhang

t al., 2014b ). We can now establish an average stress-strain re-

ation, prior to interface yielding, by first calculating the rate of

verage total strain using (30) 3 , 

˙ ¯ = 

˙ �

λ + 2 μ
+ 

2 μ

L (λ + 2 μ) 

∫ L 

0 

˙ ε p dy, (48) 

hen substituting plastic strain-rate from (46) into (48) , and finally

ntegrating the resulting expression with respect to time, as 

= �a + 

(B + 

2 
3 

H)(λ + 2 μ) 

B + 

2 
3 

H + 2 μA ̄�1 

( ̄ε − ε̄a ) , (49) 

here �̄1 = 1 − 4 tanh (m/ 4) /m . 

At the onset of interface yielding, since εp 
+ and εp 

− remain zero,

elations (36) –(39) imply that both τ e and e p vanish identically.

he interface of course remains stationary due to vanishing of the

riving force. In order to calculate � at which interface yields, we

ubstitute (37) in G = 0 , and evaluate plastic strains by integrating

46) with respect to time, to obtain 

b = �a + 

k 0 
2 � 0 m 0 A tanh (m/ 4) 

, (50) 

here we have introduced a new length scale � 2 
0 

= c 0 / (B + 

2 
3 H)

nd a non-dimensional parameter m 0 = � 0 /� . We use subscript b to

ndicate the value of the variable at the onset of interfacial yield.

 0 characterizes the thickness of a region in the neighborhood of

he interface where the interactions between bulk and interfacial

lasticity remain concentrated. In particular, a smaller � 0 will re-

trict the interfacial plastic flow to a narrower region in addition

o increasing the value of �b , for fixed � . The parameter m 0 , on

he other hand, represents the fraction of boundary layer thickness

t the interface as a result of interfacial yielding. We can obtain

he average total strain at the onset of interface yielding, by using

= �b in (49) , as 

¯b = ε̄a + 

B + 

2 
3 

H + 2 μA ̄�1 

(λ + 2 μ)(B + 

2 
3 

H) 
(�b − �a ) . (51) 

So far we have investigated the plastic response of the slab

efore interface C has yielded. When � is increased beyond �b 

here is a sudden transmission of plastic flow across the interface

 Aifantis et al., 2006; Hosson et al., 2006; Morris et al., 2007 ). Fol-

owed by such strain burst, the plastic strains at the interface εp 
+ 

nd εp 
− evolve. Since the interface is located at L /2, the symmetries

n both geometry of the slab and external loading ensure that the

esponse remains symmetric about the interface and, in particular,

lastic strain field εp remains continuous across the interface. The

nterface therefore remains coherent at all times. The driving force

n (36) also vanishes keeping the interface stationary. As a result

e now solve (45) , with boundary conditions provided by (42) and

43) , to obtain 

˙ p (y ) = 

A 

˙ �

B + 

2 
3 

H 

�2 (y ) , (52)

here 

 + 2 m 0 � 0 (B + 

2 
3 

H) cosh (m/ 2 − my/L ) 

 0 (B + 

2 
3 

H) cosh (m/ 2) 

/ 2)] + 2 m 0 � 0 (B + 

2 
3 

H) cosh (my/L − m/ 2) 

 0 � 0 (B + 

2 
3 

H) cosh (m/ 2) 

(53) 
coherent interface on the strain-gradient plasticity of a thin slab, 
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Fig. 4. (a) Non-dimensional plastic strain-rate �2 , post interface yield, and (b) the average effective stress-strain response for various L . We take � = 500 nm and � 0 = 10 nm. 

Fig. 5. (a) Non-dimensional plastic strain-rate �2 , post interface yield, and (b) the average effective stress-strain response for various � . We take L = 2 μm and � 0 = 10 nm. 

Fig. 6. (a) Non-dimensional plastic strain-rate �2 , post interface yield, and (b) the average effective stress-strain response for various � 0 . We take � = 500 nm and L = 2 . 5 μm . 
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is the non-dimensional plastic strain-rate post interface yielding.

Recalling that there are three distinct length scales, L , � , and � 0 
in our theory, we plot �2 with variations in each of these, while

keeping others fixed, in Figs. 4 (a), 5 (a), and 6 (a). According to

Fig. 4 (a), for fixed boundary layer width (i.e., � ) and fixed effective

interface thickness (i.e., � 0 ), the thinner slabs are less amenable to

plastic deformation and inhomogeneities (such as dislocation pile-

ups), represented by plastic strain gradients, cover larger fraction

of the slab. For thicker slabs the strain gradients are concentrated

in small neighborhoods around internal and external boundaries.

In Fig. 5 (a) we observe that, for fixed L and � 0 , an increase in �

reduces the amplitude of the plastic strain while spreading inho-

mogeneity distribution over a larger fraction of the slab. Our pre-
Please cite this article as: A . Basak, A . Gupta, Influence of a mobile in
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ictions are in close qualitative agreement with similar behavior

eported in recently obtained gradient plasticity results and dis-

rete dislocation dynamics simulations ( Zhang and Aifantis, 2015;

hang et al., 2014b ) (see also Aifantis and Willis, 2005; Aifantis

t al., 2006; Polizzotto, 2009 ). It should be however noted that the

nterfacial length scale � 0 is absent from the gradient plasticity the-

ry used in the cited papers. The following discussion with respect

o variations in � 0 , therefore, has no direct analogy for compari-

on with that work. According to Fig. 6 (a), where we have fixed L

nd � , with an increasing � 0 the interfacial plastic flow occurs in a

ore diffused manner resulting in a smoother distribution of plas-

ic strain over the slab. On the other hand, if � 0 decreases below 10

m, interface yielding becomes increasingly difficult, possibly due
coherent interface on the strain-gradient plasticity of a thin slab, 
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ε  
o vanishing of space for intergranular dislocation transfer. The in-

erface will then behave as a microscopically hard boundary be-

ween the two bulk regions. We also note that, although our inter-

retation for � 0 is analogous to that given earlier in the works of

redriksson and Gudmundson (2007) , Fredriksson and Gudmund-

on (2005) , Gudmundson (2004) and Al-Rub (2008) , the origins of

uch a length scale in our theory is fundamentally different from

heirs. 

The average stress-strain relationship, post interface yield, can

e obtained by substituting (52) into (48) and then integrating

ith respect to time. Collectively, recalling previous results, we can

rite the stress-strain relations for the slab with a stationary inter-

ace at L /2 as 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(λ + 2 μ) ̄ε if ε̄ ≤ ε̄a , 

�a + 

(B + 

2 
3 

H)(λ + 2 μ) 

B + 

2 
3 

H + 2 μA ̄�1 

( ̄ε − ε̄a ) if ε̄a ≤ ε̄ ≤ ε̄b , 

�b + 

(B + 

2 
3 

H)(λ + 2 μ) 

B + 

2 
3 

H + 2 μA ̄�2 

( ̄ε − ε̄b ) if ε̄ ≥ ε̄b , 

(54) 

here 

¯
2 = 1 −

(
4 

m 

)
h 0 ( cosh (m/ 2) − 1) + m 0 � 0 (B + 

2 
3 

H) sinh (m/ 2) 

h 0 sinh (m/ 2) + 2 m 0 � 0 (B + 

2 
3 

H) cosh (m/ 2) 
. 

(55) 

he average stress-strain plots are shown in Figs. 4 (b), 5 (b), and

 (b) for various choice of parameters. In fact, we have given

lots for the average effective stress, defined as (σe ) av = 3 |A � −
 ε̄p | / 2 . In Fig. 4 (b) the first kinks appear at around ε̄ = 0 . 13% , in-

icating yielding of the bulk. The second kink, which appears at

ifferent strain values for different slab width (keeping � and � 0 
xed), represents a strain burst and subsequent yielding at the in-

erface. The kinks produce a ‘knee’ like feature in the stress-strain

iagrams. With decreasing slab thickness the effective hardening

f the slab is clearly shown to be enhanced, as has been observed

n various indentation tests ( Aifantis et al., 2006; Hosson et al.,

006 ). The two kinks in Fig. 5 (b) again indicate yielding of the

ulk and the interface, respectively. With an increasing width of

oundary layers (and therefore of pileups), while keeping L and

 0 fixed, there is a significant increase in the hardening as well

n the magnitude of critical average strain required for the inter-

ace to yield. Our predictions for stress-strain curves for varying

 and � are generally in agreement with the existing literature

 Aifantis and Willis, 2005; Aifantis et al., 2006; Aifantis and Willis,

0 04; Polizzotto, 20 09 ). These works however use a gradient the-

ry which does not include � 0 and therefore have no comparable

esults to our following discussion on the variation of stress-strain

urves with respect to � 0 (see also Fredriksson and Gudmundson,

0 07; 20 05; Gudmundson, 20 04; Al-Rub, 20 08 ). In Fig. 6 (b) we

lot the stress-strain relationship with varying � 0 , keeping L and

 fixed. The slope of the stress-strain curve remains identical for

ll the cases until the interface yields. Moreover, for large values

f � 0 , the bulk and interface yield points are found to be almost

oinciding with each other. This is expected since, with increase in

 0 , the interface would become weaker and yield sooner, as can be

erified from (50) and (51) . We also note that the effective hard-

ning of the slab increases with decreasing � 0 . Finally, we remark

hat the typical values of � and � 0 , that we have used in the above

esults, are inspired from Aifantis et al. (2006) , where they were

otivated experimentally, and from Fredriksson and Gudmundson

2005) , where they were motivated from the strength behavior of

hin films, respectively. 
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.2. Interface initially at y = L/4 

We now consider the interface C to be initially located at y =
/ 4 such that region G 2 is three times thicker than G 1 . Since we

ave already studied the role of various length scales on the plas-

icity of the slab, we will fix L = 2 μm, � = 500 nm, and � 0 =
0 nm. Contrary to the case when C was initially at L /2, the inter-

ace will now become incoherent soon after it yields and acquire a

nite speed of propagation. As a result, our interest here is to study

he effect of mobility of the interface on the average plastic be-

avior of the slab. We will also study the effect of varying average

train-rate while keeping mobility fixed. As was the case in the last

ection, we will assume interface to yield after bulk has yielded.

owever, we will assume the thinner portion of the slab, i.e., G 1 ,

o remain elastic throughout, even after the interface has yielded

nd started to propagate, i.e., εp = 0 in 0 ≤ y < ξ and εp 
− = 0 . This

s justified since, after using (43) and (45) to solve for plastic strain

ost bulk yielding, we note that the amplitude of plastic strain in

 1 remains almost an order of magnitude smaller than that in G 2 .

oreover it is easy to estimate, from (24) and (36) , that the inter-

ace will move in a direction so as to further reduce the size of G 1 

llowing us to retain the assumption of vanishing plastic strain in

 1 when the interface has yielded and is propagating with a finite

peed. 

The stress and the average strain at which G 2 yields can be

valuated, using (30) 3 and (33) , as �c = 2 K/ 3 A and ε̄c = �c / (λ +
 μ) , where we have used the subscript c to denote quantities at

he initial yielding of G 2 . The region G 2 deforms plastically for � ≥
c . However, until C + yields, the interface behaves as a microscop-

cally hard boundary, i.e., εp 
+ = 0 . This in conjunction with (43) can

e used to solve the PDE (45) to obtain the plastic strain-rate in

 2 , before interface yields, as 

˙ p (y ) = 

A 

˙ �

B + 

2 
3 

H 

�3 (y ) for L/ 4 ≤ y ≤ L, (56)

here 

3 (y ) = 1 − sinh (my/L − m/ 4) + sinh (m − my/L ) 

sinh (3 m/ 4) 
. (57) 

ubstituting (56) into (48) , and then integrating with respect to

ime, we can establish the average stress-strain relationship in the

lab prior to interface yielding as 

= �c + 

(λ + 2 μ)(B + 

2 
3 

H) 

B + 

2 
3 

H + 2 μA ̄�3 

( ̄ε − ε̄c ) , (58) 

here �̄3 = (3 / 4) − (2 tanh (3 m/ 8) /m ) . The applied force � at

hich interface C + yields can be obtained, using (37) in G = 0 , as

d = �c + 

k 0 coth (3 m/ 8) 

� 0 m 0 A 

. (59) 

he subscript d is used to indicate the value of quantities at the

nitial yielding of C + . The critical force in (59) can be substituted

n (58) to calculate the average strain ε̄d at which C + yields, 

¯d = ε̄c + 

B + 

2 
3 

H + 2 μA ̄�3 

(λ + 2 μ)(B + 

2 
3 

H) 
(�d − �c ) . (60) 

Once the average strain ε̄ exceeds ε̄d , plastic strain εp 
+ starts to

volve. The strain εp 
− however remains zero. This introduces inco-

erency at the interface. The driving force in (36) also acquires a

on-trivial value forcing the interface to move with a finite speed

s governed by the kinetic law in (24) . The PDE (45) is now solved

nder these considerations. Let y = ξ (t) be the instantaneous po-

ition of the interface. Using boundary condition (43) , the plastic

train-rate in G 2 can be obtained as 

˙ p (y ) = 

A 

˙ �

B + 

2 H 

�4 (y ) + ˙ ε p 
+ �5 (y ) in ξ (t) ≤ y ≤ L, (61)
3 
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where 

�4 (y ) = 1 − sinh (my/L − mξ/L ) + sinh (m − my/L ) 

sinh (m − mξ/L ) 
and 

�5 (y ) = 

sinh (m − my/L ) 

sinh (m − mξ/L ) 
. (62)

In (61) ˙ εp 
+ is to be determined using the governing equations for

interfacial plasticity, given by (40) and (41) , in addition to the

kinetic law (24) . It is not possible to solve the problem analyt-

ically any further. Towards this end, we will discretize the time

derivatives using a forward finite difference scheme. For instance,

˙ εp 
+ is discretized as �εp 

+ / �t, where �εp 
+ = (εp 

+ ) n +1 − (εp 
+ ) n , �t =

 n +1 − t n , and the suffix n = 0 , 1 , 2 , . . . denotes the index of time

instant. The time t 0 denotes the instance when C + initially yields.

Differentiating (61) with respect to y and discretizing in time, fol-

lowed by evaluating it at the interface, we obtain (
∂ε p 

∂y 

∣∣∣∣
+ 

)
n +1 

= 

(
∂ε p 

∂y 

∣∣∣∣
+ 

)
n 

+ 

m A Z ��

L (B + 

2 
3 

H) 

− m 

L 
�ε p 

+ coth (m − mξn /L ) and (63)

(
∂ 2 ε p 

∂y 2 

∣∣∣∣
+ 

)
n +1 

= 

(
∂ 2 ε p 

∂y 2 

∣∣∣∣
+ 

)
n 

− m 

2 A ��

L 2 (B + 

2 
3 

H) 
+ 

m 

2 �ε p 
+ 

L 2 
, (64)

where Z = tanh (m/ 2 − mξn / 2 L ) . The interfacial plastic strain at

(n + 1) th time step, (εp 
+ ) n +1 , can be evaluated from (40) 1 , after us-

ing (7) and (41) , as 

(ε p 
+ ) n +1 = (ε p 

+ ) n + 

A ��

(B + 

2 
3 

H) 

Q 2 

Q 1 

+ 

Q 3 

Q 1 

, (65)

where 

Q 1 = 1 − mV n �t 

L 
coth (m − mξn /L ) 

− c 0 m T n 

Lh eff 

(
mV n �t 

L 
− coth (m − mξn /L ) 

)
, (66)

Q 2 = 

c 0 m T n 

Lh eff 

(Z − mV n �t/L ) − V n mZ�t 

L 
, (67)

Q 3 = 

c 0 T n V n �t 

h eff 

(
∂ 2 ε p 

∂y 2 

∣∣∣∣
+ 

)
n 

− V n �t 

(
∂ε p 

∂y 

∣∣∣∣
+ 

)
n 

, (68)

T n = −sign ((b 0 + b 1 )(ε
p 
+ − εp 

−) n ) , and V n is the interface velocity at

n th time step. In deriving (65) we have also used (63) and (64) . In

order to obtain a discrete version of the average stress-strain rela-

tionship we first write the plastic strain in the bulk, using (65) in

the time discretized form of (61) , as 

ε p 
n +1 

= ε p 
n + 

A (�n +1 − �n ) 

B + 

2 
3 

H 

(
�4 + 

Q 2 �5 

Q 1 

)

+ 

Q 3 �5 

Q 1 

in ξ (t) ≤ y ≤ L. (69)

Next, we recall (30) 3 to write the rate of average strain in the form

˙ ε̄ = 

˙ �

λ + 2 μ
+ 

2 μ

L (λ + 2 μ) 

∫ L 

ξ
˙ ε p dy − 2 μV 

L (λ + 2 μ) 
ε p 

+ , (70)

where we have used the Leibniz integral rule and V = 

˙ ξ . Finally,

discretizing (70) in time employing the explicit scheme, and using
Please cite this article as: A . Basak, A . Gupta, Influence of a mobile in
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69) , we get the average stress-strain relation: 

n +1 = �n + 

(λ + 2 μ)(B + 

2 
3 

H) 

B + 

2 
3 

H + 2 μA Q 4 

×
(

ε̄n +1 − ε̄n − 2 μ

λ + 2 μ

(
Q 5 − V n (ε

p 
+ ) n 

�t 

L 

))
, (71)

hich holds after interface has yielded, i.e., when ε̄ > ε̄d . The aver-

ge stress-strain relation before interface yield, but after bulk has

ielded, is given by (58) . Here 

 4 = 1 − ξ

L 
+ 

Z 

m 

(
Q 2 

Q 1 

− 2 

)
and Q 5 = 

Q 3 Z 

Q 1 m 

. (72)

e can substitute (71) in (69) and (65) to derive the time dis-

retized expressions for plastic strain in the slab and the plastic

train at C + , respectively. In particular, for average plastic strain in

he slab we obtain 

¯ p 
n +1 

= ε̄ p 
n + 

A (�n +1 − �n ) 

B + 

2 
3 

H 

Q 4 + Q 5 −
V n (ε

p 
+ ) n �t 

L 
if ε̄ ≥ ε̄b . 

(73)

e will use this expression to compute the average effective stress

n the slab. On the other hand, the updated position of the inter-

ace is calculated using ξn +1 = ξn + �tV n . 

In rest of this section we will investigate the nature of our so-

utions by plotting the evolution of interface position and inter-

acial plastic strain with time in addition to plotting the average

ffective stress-strain response in the slab. We will study the vari-

tions in these plots for various values of interface mobility and

he average strain-rate. An increase in mobility can be physically

nterpreted as increase in the temperature of the system ( Winning

t al., 2001 ). For all our calculations we assume (εp 
+ ) 0 = 10 −6 . Ac-

ording to Fig. 7 (a), as expected, interface propagates faster with

ncreasing mobility. There is no interface movement until it has

ielded. It is also clear from the plots that the interfacial speed

s sensitive to even small variations in the mobility; in fact, above

ertain values of mobility, it can move at very high speeds. We

ave not reported data after a point when interface is close to the

xternal boundary. At this point the interface might start to in-

eract with the boundary and can have a different response than

hat has been formulated in our work. With increasing mobil-

ty, the plastic strain accumulated at the interface also increases,

s has been shown in Fig. 7 (b). Therefore, one can relate speed of

he interface motion with plastic strain accumulation at the inter-

ace. A higher value of the latter also signifies higher incoherency

t the interface, which is equivalent to, e.g., high density of inter-

ace dislocations. The effect of mobility on the average stress-strain

esponse of the slab is shown in 7 (c). The stress-strain responses

re identical prior to interface yielding, but differ significantly af-

erwards. The average stress-strain response is increasingly non-

inear, with a well defined maxima, for higher values of interfa-

ial mobility. The interface propagation relaxes the stress in the

lab, more so for higher mobilities. This is evident in the soften-

ng response soon after interface yielding. In other words, a fast

oving interface would relax the stress more rapidly than a slower

ne. Such softening in polycrystalline materials, with average grain

ize of microns, sub-microns, and nano scales, has been reported

idely in the experimental literature ( Chen and Gottstein, 1988;

orris et al., 2007; Legros et al., 2008 ). 

To obtain a different perspective from our formulation, we now

onsider the slab deformation to be instead controlled by prescrib-

ng displacements on the free boundary. In such a process, we fix

he value of the average strain-rate ˙ ε̄ and calculate the load ac-

ordingly. We again plot interface position, plastic strain accumu-

ation, and stress-strain response of the slab for various values of

he average strain-rate. The mobility value is kept constant. It is
coherent interface on the strain-gradient plasticity of a thin slab, 
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Fig. 7. Plots for (a) position of the interface with time, (b) plastic strain at the interface with time, and (c) average effective stress-strain response of the slab for varying 

interfacial mobility. We have used L = 2 μm, � = 500 nm, � 0 = 10 nm, �ε̄ = 2 × 10 −9 , and �t = 10 −7 s. 
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vident from Fig. 8 (a) and (b) that, as we consider higher values

f average strain-rate, the plastic strain accumulation at the inter-

ace increases and the interface moves at a faster speed. The mo-

ion of the interface relaxes the stress in the slab and introduces

train softening in the solid. According to Fig. 8 (c), with increasing

train-rate, stress relaxation gets delayed and the maximum stress

s attained at higher average strains. A qualitatively similar strain-

ate softening effect in polycrystalline materials has been reported

n an earlier experimental study ( Chen and Gottstein, 1988 ). We

ote that both interfacial speed and plastic accumulation are raised

or increasing average strain-rate as well as increasing mobility. On

he other hand, a more softening behavior is predicted for larger

obility but smaller average strain-rate. This is reasonable since

arger mobility leads to greater plastic strain accumulation, but at

he same time also to a faster transmission of plastic strain to the

eighboring grain. 

It is clearly seen from the results of last two subsections that,

nder the action of external load, the interface will remain station-

ry at all times only if it is situated in the middle of the slab, at

 = L/ 2 . Otherwise, it will continue to move until it escapes the

lab while travelling through the thinner region. This makes the

enter position unstable, in a sense that a slightest perturbation

rom the center would lead the interface to move away towards

he free surface. Such behavior is a consequence of the inherent

ymmetry of our material model (across the interface) and loading

onditions, including isotropic plastic behavior and isotropic inter-

acial energy. Any deviations from the symmetry and isotropy, for

nstance by considering orientation dependent interfacial energies

nd heterophase interfaces, would resolve this anomalous conclu-

ion from our theory. 
Please cite this article as: A . Basak, A . Gupta, Influence of a mobile in
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. Conclusions 

We have developed a thermodynamically consistent framework

f strain-gradient plasticity in isotropic solids with mobile inter-

aces. The strain gradients have been introduced in the yield func-

ions as suitable measures of material inhomogeneity both in the

ulk and at the interface. We have not considered any higher or-

er stress fields in our theory (such as those used by Fleck and

utchinson), neither have we employed any form of microforce

alance laws (in contrast to the work by Gurtin and Anand). As-

ociative plasticity flow rules have been proposed such that they

emain coupled to interface kinetics. This provides us with an ap-

ropriate setting to pursue an analytical investigation on the na-

ure of the overall plastic deformation in a semi-infinite thin slab,

nder tensile loading, with a propagating planar interface. In par-

icular, we have studied the effect of varying length scales, two

f which were internal, on the plastic strain distribution and the

verage effective stress-strain response of the slab. The two inter-

al length scales were found to characterize the width of boundary

ayers and interface layer where most of the plastic inhomogene-

ty was accommodated. We also observed, for instance, that de-

reasing the slab thickness, or increasing the internal length scale

ssociated with the bulk, or decreasing the internal length scale

ssociated with the interface, results in an increase of the effective

ardening of the slab. Moreover, allowing the interface to yield in-

ependently of the bulk, we noticed stress relaxation in the slab

hrough transmission of bulk plastic strain across the interface. On

he other hand, once the interface became mobile, it led to strain

oftening in the solid, which became prominent with increasing

obility, and a rate-dependent stress-strain response, even when
coherent interface on the strain-gradient plasticity of a thin slab, 
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Fig. 8. Plots for (a) position of the interface with time, (b) plastic strain at the interface with time, and (c) average effective stress-strain response of the slab with varying 

average strain-rate. We have used L = 2 μm, � = 500 nm, � 0 = 10 nm, M = 10 −12 m 

3 /Ns, and �t = 10 −7 s. 
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the underlying plasticity was assumed to be rate-independent. The

theory developed in the present work can be readily adapted to

understand the role of mobile phase-transformation fronts on the

overall plasticity of a multi-phase solid. On the other hand, the ef-

fect of junctions can be incorporated so to realistically model the

microstructure of polycrystalline materials. The relevant theory in

two-dimensions has already been presented elsewhere ( Basak and

Gupta, 2016 ). 

References 

Acharya, A. , Bassani, J.L. , 1996. On non-local flow theories that preserve the classi-
cal structure of incremental boundary value problems. In: Pineau, A., Zaoui, A.

(Eds.), IUTAM Symposium on Micromechanics of Plasticity and Damage of Mul-

tiphase Materials. Kluwer Academic Publishers, Dordrecht, pp. 3–9 . 
Aifantis, E.C. , 1984. On the microstructural origin of certain inelastic models. J. Eng.

Mater. Technol. 106, 326–330 . 
Aifantis, E.C. , 1987. The physics of plastic deformation. Int. J. Plast. 3, 211–247 . 

Aifantis, K.E. , Soer, W.A. , Hosson, J.T.M.D. , Willis, J.R. , 2006. Interfaces within strain
gradient plasticity: theory and experiments. Acta Mater. 54, 5077–5085 . 

Aifantis, K.E. , Willis, J.R. , 2004. Interfacial jump conditions in strain-gradient plas-

ticity and relations of Hall-Petch type. In: Kounadis, A., Providakis, C., Exadakty-
los, G. (Eds.), Proceedings of the Seventh National Congress on Mechanics, vol.

II, Chania, Greece, pp. 372–377 . 
Aifantis, K.E. , Willis, J.R. , 2005. The role of interfaces in enhancing the yield strength

of composites and polycrystals. J. Mech. Phys. Solids 53, 1047–1070 . 
Aifantis, K.E. , Willis, J.R. , 2006. Scale effects induced by strain-gradient plasticity

and interfacial resistance in periodic and randomly heterogeneous media. Mech.
Mater. 38, 702–716 . 

Al-Rub, R.K.A. , 2008. Interfacial gradient plasticity governs scale-dependent yield

strength and strain hardening rates in micro/nano structured metals. Int. J. Plast.
24, 1277–1306 . 

Anand, L. , Gurtin, M.E. , Lele, S.P. , Gething, C. , 2005. A one-dimensional theory of
strain-gradient plasticity: formulation, analysis, numerical results. J. Mech. Phys.

Solids 53, 1789–1826 . 
Please cite this article as: A . Basak, A . Gupta, Influence of a mobile in

International Journal of Solids and Structures (2016), http://dx.doi.org/1
shby, M.F. , 1970. The deformation of plastically non-homogeneous materials. Phi-

los. Mag. 21, 399–424 . 
alint, D.S. , Deshpande, V.S. , Needleman, A. , der Giessen, E.V. , 2008. Discrete dislo-

cation plasticity analysis of the grain size dependence of the flow strength of
polycrystals. Int. J. Plast. 24, 2149–2172 . 

asak, A . , Gupta, A . , 2015a. Simultaneous grain boundary motion, grain rotation, and
sliding in a tricrystal. Mech. Mater. 90, 229–242 . 

Basak, A. , Gupta, A. , 2015b. A three-dimensional study of coupled grain boundary
motion with junctions. Proc. R. Soc. London A 471, 20150127 . 

asak, A. , Gupta, A. , 2016. Plasticity in multi-phase solids with incoherent interfaces

and junctions. Continuum Mech. Thermodyn. 28, 423–442 . 
assani, J.L. , 2001. Incompatibility and a simple gradient theory of plasticity. J. Mech.

Phys. Solids 49, 1983–1996 . 
Boley, B.A. , Weiner, J.H. , 1997. Theory of Thermal Stresses. Dover, New York . 

ermelli, P. , Gurtin, M.E. , 1994. The dynamics of solid-solid phase transitions 2. In-
coherent interfaces. Arch. Ration. Mech. Anal. 127, 41–99 . 

Chen, S. , Gottstein, G. , 1988. Strain softening, grain boundary migration and dy-

namic recrystallization of Ni during high temperature low cycle fatigue. Acta
Metall. 36, 3093–3101 . 

leck, N.A. , Hutchinson, J.W. , 1997. Strain gradient plasticity. Adv. Appl. Mech. 33,
295–362 . 

leck, N.A. , Hutchinson, J.W. , 2001. A reformulation of strain gradient plasticity. J.
Mech. Phys. Solids 49, 2245–2271 . 

Fleck, N.A. , Muller, G.M. , Ashby, M.F. , Hutchinson, J.W. , 1994. Strain gradient plastic-

ity: theory and experiment. Acta Metall. Mater. 42, 475–487 . 
Fleck, N.A. , Willis, J.R. , 2009. A mathematical basis for strain-gradient plasticity the-

ory-Part I: scalar plastic multiplier. J. Mech. Phys. Solids 57, 161–177 . 
Fredriksson, P. , Gudmundson, P. , 2005. Size-dependent yield strength of thin films.

Int. J. Plast. 21, 1834–1854 . 
redriksson, P. , Gudmundson, P. , 2007. Modelling of the interface between a thin

film and a substrate within a strain gradient plasticity framework. J. Mech. Phys.

Solids 55, 939–955 . 
redriksson, P. , Gudmundson, P. , Mikkelsen, L.P. , 2009. Finite element implementa-

tion and numerical issues of strain gradient plasticity with application to metal
matrix composites. Int. J. Solids Struct. 46, 3977–3987 . 

ao, H. , Huang, Y. , Nix, W.D. , Hutchinson, J.W. , 1999. Mechanism-based strain gra-
dient plasticity – I. Theory. J. Mech. Phys. Solids 47, 1239–1263 . 
coherent interface on the strain-gradient plasticity of a thin slab, 

0.1016/j.ijsolstr.2016.12.004 

http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0010
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0010
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0012
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0012
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0012
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0015
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0015
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0018
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0018
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0018
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0019
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0019
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0019
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0023
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0023
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0023
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0024
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0024
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0024
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0026
http://dx.doi.org/10.1016/j.ijsolstr.2016.12.004


A. Basak, A. Gupta / International Journal of Solids and Structures 0 0 0 (2016) 1–13 13 

ARTICLE IN PRESS 

JID: SAS [m5G; December 22, 2016;14:13 ] 

G  

 

G  

 

G  

G  

G  

 

G  

 

G  

 

 

H  

 

H  

M  

K  

K  

K  

 

L  

 

M  

 

N  

N  

P  

P  

P  

R  

S  

S  

V  

W  

W  

W  

Z  

Z  

Z  

 

 

orkaya, T. , Molodov, K.D. , Molodov, D.A. , Gottstein, G. , 2011. Concurrent grain
boundary motion and grain rotation under an applied stress. Acta Mater. 59,

5674–5680 . 
ourdet, S. , Montheillet, F. , 2002. Effects of dynamic grain boundary migration dur-

ing the hot compression of high stacking fault energy metals. Acta Mater. 50,
2801–2812 . 

udmundson, P. , 2004. A unified treatment of strain gradient plasticity. J. Mech.
Phys. Solids 52, 1379–1406 . 

upta, A. , Steigmann, D.J. , 2012. Plastic flow in solids with interfaces. Math. Meth-

ods Appl. Sci. 35, 1799–1824 . 
urtin, M.E. , Anand, L. , 2005. A theory of strain-gradient plasticity for isotropic,

plastically irrotational materials. part I: small deformations. J. Mech. Phys. Solids
53, 1624–1649 . 

urtin, M.E. , Anand, L. , 2009. Thermodynamics applied to gradient theories in-
volving the accumulated plastic strain: the theories of Aifantis and Fleck and

Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 . 

urtin, M.E. , Jabbour, M.E. , 2002. Interface evolution in three dimensions with cur-
vature-dependent energy and surface diffusion: interface-controlled evolution,

phase transitions, epitaxial growth of elastic films. Arch. Ration. Mech. Anal.
163, 171–208 . 

osson, J.T.M.D. , Soer, W.A. , Minor, A.M. , Shan, Z. , Stach, E.A. , Asif, S.A.S. , War-
ren, O.L. , 2006. In situ TEM nanoindentation and dislocation-grain boundary in-

teractions: a tribute to David Brandon. J. Mater. Sci. 41, 7704–7719 . 

uang, Y. , Gao, H. , Nix, W.D. , Hutchinson, J.W. , 20 0 0. Mechanism-based strain gra-
dient plasticity – II. Analysis. J. Mech. Phys. Solids 48, 99–128 . 

orris Jr., J.W. , Jin, M. , Minor, A.M. , 2007. In situ studies of the transmission of strain
across grain boundaries. Mater. Sci. Eng. A 462, 412–417 . 

ochmann, D.M. , Le, K.C. , 2008. Dislocation pile-ups in bicrystals within continuum
dislocation theory. Int. J. Plast. 24, 2125–2147 . 

rishnan, J. , Steigmann, D.J. , 2014. A polyconvex formulation of isotropic elastoplas-

ticity theory. IMA J. Appl. Math. 79, 722–738 . 
röner, E. , et al. , 1981. Continuum theory of defects. In: Balian, R., et al. (Eds.), Les

Houches, Session XXXV, 1980 –Physique des Défauts. North-Holland Publishing
Company, pp. 215–315 . 

egros, M. , Gianola, D.S. , Hemker, K.J. , 2008. In situ TEM observations of fast
grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater.

56, 3380–3393 . 
Please cite this article as: A . Basak, A . Gupta, Influence of a mobile in

International Journal of Solids and Structures (2016), http://dx.doi.org/1
azzoni-Leduc, L. , Pardoen, T. , Massart, T.J. , 2008. Strain gradient plasticity analysis
of transformation induced plasticity in multiphase steels. Int. J. Solids Struct. 45,

5397–5418 . 
oll, W. , 1967. Materially uniform simple bodies with inhomogeneities. Arch. Ration.

Mech. Anal. 27, 1–32 . 
ye, J.F. , 1953. Some geometrical relations in dislocated crystals. Acta Metall. 1,

153–162 . 
ardoen, T. , Massart, T.J. , 2012. Interface controlled plastic flow modelled by strain

gradient plasticity theory. C.R. Mec. 340, 247–260 . 

olizzotto, C. , 2009. Interfacial energy effects within the framework of strain gradi-
ent plasticity. Int. J. Solids Struct. 46, 1685–1694 . 

uri, S. , Das, A. , Acharya, A. , 2011. Mechanical response of multicrystalline thin films
in mesoscale field dislocation mechanics. J. Mech. Phys. Solids 59, 2400–2417 . 

upert, T.J. , Gianola, D.S. , Gan, Y. , Hemker, K.J. , 2009. Experimental observations of
stress-driven grain boundary migration. Science 326, 1686–1690 . 

hu, J.Y. , Fleck, N.A. , 1999. Strain gradient crystal plasticity: size dependent defor-

mation of bicrystals. J. Mech. Phys. Solids 47, 186–213 . 
utton, A.P. , Balluffi, R.W. , 2003. Interfaces in Crystalline Materials. Clarendon Press,

Oxford . 
oyiadjis, G.Z. , Faghihi, D. , Zhang, Y. , 2014. A theory for grain boundaries with

strain-gradient plasticity. Int. J. Solids Struct. 51, 1872–1889 . 
inning, M. , Gottstein, G. , Shvindlerman, L.S. , 2001. Stress induced grain boundary

motion. Acta Mater. 49, 211–219 . 

ulfinghoff, S. , Bayerschen, E. , Böhlke, T. , 2013. A gradient plasticity grain boundary
yield theory. Int. J. Plast. 51, 33–46 . 

ulfinghoff, S. , Forest, S. , Böhlke, T. , 2015. Strain gradient plasticity modeling of the
cyclic behavior of laminate microstructures. J. Mech. Phys. Solids 79, 1–20 . 

hang, X. , Aifantis, K.E. , 2015. Examining the evolution of the internal length as a
function of plastic strain. Mater. Sci. Eng., A 631, 27–32 . 

hang, X. , Aifantis, K.E. , Ngan, A.H.W. , 2014a. Interpreting the stress-strain response

of Al micropillars through gradient plasticity. Mater. Sci. Eng. A 591, 38–45 . 
hang, X. , Aifantis, K.E. , Senger, J. , Weygand, D. , Zaiser, M. , 2014b. Internal length

scale and grain boundary yield strength in gradient models of polycrystal plas-
ticity: how do they relate to the dislocation microstructure? J. Mater. Res. 29,

2116–2128 . 
coherent interface on the strain-gradient plasticity of a thin slab, 

0.1016/j.ijsolstr.2016.12.004 

http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0037
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0037
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0037
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0038
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0038
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0038
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0039
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0039
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0039
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0041
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0041
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0041
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0041
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0045
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0045
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0046
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0046
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0046
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0046
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0047
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0047
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0047
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0047
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0047
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0048
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0048
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0048
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0049
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0049
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0049
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0050
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0050
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0050
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0050
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0051
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0051
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0051
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0051
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0052
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0052
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0052
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0052
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0054
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0054
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0054
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0055
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0055
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0055
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0055
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0056
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0056
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0056
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0056
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0056
http://refhub.elsevier.com/S0020-7683(16)30371-7/sbref0056
http://dx.doi.org/10.1016/j.ijsolstr.2016.12.004

	Influence of a mobile incoherent interface on the strain-gradient plasticity of a thin slab
	1 Introduction
	2 General theory
	2.1 Kinematics
	2.2 Dissipation inequality
	2.3 Plastic flow rules and interfacial kinetics
	2.3.1 Bulk plasticity
	2.3.2 Interfacial kinetics and interfacial flow rules


	3 Slab with a propagating interface
	4 Results and discussion
	4.1 Interface at y  L/2
	4.2 Interface initially at y  L/4

	5 Conclusions
	 References


