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Abstract

In a recent paper [7] we interpreted configurational forces as necessary and sufficient dissipative

mechanisms such that the corresponding Euler-Lagrange equations are satisfied. We now extend

this argument for a dynamic elastic medium, and show that the energy flux obtained from the

dynamic J integral ensures that the equations of motion hold throughout the body.
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We show that, under certain smoothness assumptions, the energy flux during an infinitesimal

perturbation of the inhomogeneity position is given by the dynamic J integral if and only if linear

momentum balance is preserved during the perturbation. To the best of our knowledge, such an

interpretation is nowhere found in the literature, cf. [9, 5, 8].

Consider the following functional (for Ω ⊂ R3 and [t1, t2] ⊂ R),

Π(ui) =

∫ t2

t1

∫
Ω
{W (xi, ui,j) + T (u̇i)} dV dt, (1)

where T (u̇i) =
1
2ρu̇iu̇i (ρ is the constant density) is the specific kinetic energy, and W is the strain

energy density. The external forces are assumed to be absent. All the fields are assumed to be

continuously differentiable over their respective domains. The functional (1) represents the total

mechanical energy stored in an arbitrary part Ω of the body during the time interval [t1, t2]; the

integrand (W+T ) is the total energy density. All variables are expressed in terms of their Cartesian
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components. The position and the displacement field are denoted by xi and ui(xi) respectively.

The subscript index varies from one to three if it is a Roman letter (i, j, k, etc.), or from one to

four if it is Greek (α, β, γ, etc.). The derivative of ui with respect to xj (at a fixed time) is written

as ui,j and with respect to time (at a fixed xj) as u̇i. We consider smooth transformations from xi

to the new independent variables yi = ŷi(xi, ϵ) = xi + ϕi +O(ϵ2) such that ŷi(xi, 0) = xi. Here ϵ is

the transformation parameter, and ϕi is linear in ϵ but otherwise an arbitrary analytic function of

xi. With these transformations we restrict our attention only to the inner variations in the spatial

configuration. The change in the functional Π under the assumed transformation is [10, 6]

δxΠ =

∫ t2

t1

∫
Ω
Bα,αdV dt+

∫ t2

t1

∫
Ω
(σik,k + ρüi)ui,jϕjdV dt, (2)

where σij =
∂W
∂ui,j

are the components of the stress tensor. The components Bα are given by

Bj = {(W + T )δij − uk,iσkj}ϕi (3)

and

B4 = −ρuk,j u̇kϕj (4)

such that B4,4 = Ḃ4. Define (cf. Equation (80) in [3])

Hij = (W + T ) δij − uk,iσkj (5)

and use it to rewrite (2) as

δxΠ =

∫ t2

t1

∫
∂Ω

HijϕinjdAdt+

∫ t2

t1

∫
Ω

{
ρuk,j ükϕj − ρu̇k,j u̇kϕj +Ψiui,jϕj

}
dV dt, (6)

where Ψi = σij,j − ρüi. Define

F =

∫ t2

t1

∫
∂Ω

HijϕinjdAdt+

∫ t2

t1

∫
Ω

{
ρuk,j ükϕj − ρu̇k,j u̇kϕj

}
dV dt, (7)

which, after minor manipulation, can be written as

F =

∫ t2

t1

∫
∂Ω

EijϕinjdAdt+

∫ t2

t1

∫
Ω

{
Tϕi,i + ρuk,j ükϕj

}
dV dt, (8)

where Eij = Wδij − uk,iσkj is Eshelby’s energy momentum tensor (cf. Equation (13) in [3]).

Consequently, Equation (6) is expressed as

δxΠ = F +

∫ t2

t1

∫
Ω
Ψiui,jϕjdV dt. (9)
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We now state our central proposition. Assume the displacement gradient tensor to be invertible.

Then

(P): δxΠ = F if and only if Ψi = 0.

Indeed, if Ψi = 0 then, (9) implies δxΠ = F . On the other hand if δxΠ = F then, owing to the

arbitrariness of domains [tt, t2] and Ω, and of the vector ϕi, we have ui,jΨi = 0. Hence Ψi = 0

(since ui,j is invertible). Note that the displacement gradient tensor becomes null when ui = 0 (i.e.,

in the un-deformed configuration) and therefore not invertible.

We exploit this proposition to provide a novel interpretation of the dynamic J integral in the

following remark.

Remark 1. (Interpretation for the dynamic J integral) Consider the transformation with ϕi inde-

pendent of xi, i.e., let ϕi = ϵai, where ai are constant. This represents a translation with respect

to xi. Define Jd
i such that F = ϵJd

i ai, where F was introduced in (7). We obtain

Jd
i =

∫ t2

t1

∫
∂Ω

HijnjdAdt+

∫ t2

t1

∫
Ω

{
ρuk,iük − ρu̇k,iu̇k

}
dV dt. (10)

This expression is identified as the dynamic J integral [3, 9]. We now interpret proposition (P)

for the case at hand. The energy released (or the change in total energy), with respect to an

infinitesimal translation ϵai, is given by the dynamic J integral Jd
i if and only if Ψi = 0 (i.e., if the

equations of motion, σij,j − ρüi = 0, are satisfied). Only those material points which represent an

inhomogeneity contribute towards the energy released. We thus associate the (non-trivial) change in

the energy with the motion of inhomogeneities [7]. Therefore, the energy flux, given by Jd
i , ensures

that the equations of motion are satisfied even after a small perturbation of the inhomogeneity

position.

Remark 2. (Comparison with the Lagrangian formulation) The relations Ψi = 0 are obtained as

the Euler-Lagrange equations of the functional

ΠL(ui) =

∫ t2

t1

∫
Ω
{W (xi, ui,j)− T (u̇i)} dV dt. (11)

There is no difference between this functional and (1) in the case of vanishing kinetic energy.

Otherwise the functional Π should be employed to calculate the energy release rate as the variation

δxΠ has a physical meaning of the energy released due to the variation of spatial coordinates. There

is no such interpretation for δxΠ
L. In any case, one can obtain

δxΠ
L = FL +

∫ t2

t1

∫
Ω
Ψiui,jϕjdV dt, (12)
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where

FL =

∫ t2

t1

∫
∂Ω

EijϕjnidAdt+

∫ t2

t1

∫
Ω

{
− Tϕi,i + ρuk,j ükϕj

}
dV dt. (13)

A proposition similar to (P) follows. Note that F ̸= FL in general, and therefore using a Lagrangian

framework to calculate energy release rates would lead to erroneous results. However, if ϕi is

independent of xi then F = FL, as can be checked easily. In certain texts (e.g., §5.6 in [5]), the

dynamic energy release rates are motivated from the conservation laws obtained via the application

of Noether’s theorem to a functional of the type (11) [3, 4, 8]. This leads to the correct expression

for the dynamic J integral, but only because ϕi is independent of xi. For a related discussion see

§7.8 in [9].

Remark 3. The equivalence established in the proposition (P) holds only when the displacement

field is smooth over the whole domain. That this is not true otherwise can be demonstrated by

following the arguments from Ball [1, 2]. For example, if the displacement field is singular on a set

of measure zero, then the weak form of Ψi = 0 does not hold true, but the weak form of δxΠ = F

holds (cf. Example 3 in [2]).
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