
Acoustics of bifacial Indian musical drums with composite membranes

Anurag GUPTA(1), Vishal SHARMA(1), Shakti S. GUPTA(1)

(1)Department of Mechanical Engineering, IIT Kanpur, UP 208016, India, ag@iitk.ac.in

Abstract
We are interested in a certain class of bifacial Indian drums which consist of composite circular membranes
stretched over an enclosed air cavity on both sides of an axisymmetric wooden shell. There is a large variety
of such drums in Indian music which differ from each other in shapes and sizes of the shell and in the nature
of the composite membranes. These drums produce sounds with a definite pitch. Whereas the effect of the
composite nature of the membrane is well studied in the context of monofacial Indian drum tabla, the acoustical
implications of the coupling between two composite membranes through an air cavity remains largely unex-
plored. The purpose of this work is to present some initial results from our study of this acoustical problem
using a finite element method based numerical methodology. We use the developed framework, first to verify
some existing results on Japanese wa-daiko, followed by an acoustical study of dholak, an Indian drum with
composite membrane on one side, and finally to note the effect of curvature of the shell on modal frequencies.
Keywords: Bifacial drums, Indian drums, Composite membranes

1 INTRODUCTION
The importance of incorporating an enclosed air cavity below the vibrating membrane has been unambiguously
demonstrated for monofacial drums such as kettledrum and tabla [1, 2]. The air cavity should arguably play
a greater role in the acoustics of bifacial drums where the two membranes are coupled to each other via the
enclosed air cavity and the surrounding shell. The most significant examples of such bifacial drums are the
snare drums [3], the taiko family of percussion instruments from Japan [4], and the drums such as pakhawaj,
mrdangam, dholak, dhol, iddakka, etc. from India [5, 6, 7]. The Indian drums usually have composite mem-
branes (as in tabla) and distinguish themselves in generating sound with a definite pitch. In the following,
we will begin by posing a general boundary-value-problem under some simplifying assumptions, followed by a
variational principle which will form the basis of a finite element procedure. The developed framework will be
verified by recovering some results on Japanese wa-daiko as presented by Suzuki and Hwang [4]. We will then
proceed towards an acoustical study of dholak where membrane on one side of the barrel is composite and the
two drum heads are unequal in size. We will also discuss the effect of curvature of the barrel shape on modal
frequencies.

2 PROBLEM FORMULATION
The vibro-acoustic problem of bifacial Indian musical drums can be described by a system of coupled partial
differential equations. These include equations which govern the displacement of the membranes and an acous-
tic wave equation which governs the internal pressure in the cavity. These equations are supplemented with
appropriate set of initial and boundary conditions. In order to simplify the present discussion, we assume the
membranes to be two-dimensional elastic continuum which do not resist or transmit bending moment and shear
force. The restoring forces arise from the pre-stretching in the plane of the membrane. We neglect the acoustic
and structural damping and assume the side walls of the cavity to be perfectly rigid. Moreover, we consider
bifacial musical drums with axisymmetric cavity. The cavity is closed by stretched circular composite or ho-
mogeneous membranes on both the ends. The cavity is closed in such a manner that the air inside the cavity
is confined and the motion of the membranes changes the volume of the air in the cavity. This changes the
pressure of the air confined in the cavity. The pressure of the confined air generates a force on the membranes.
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Figure 1. Schematic diagram of the problem domain.

In the following, we will consider a general model, of bifacial drums with composite membranes, as shown in
Figure 1. The cavity domain Λ is bounded by surface C of a rigid shell with composite membranes on the
two sides. The left side of the cavity has a composite membrane Σ1 (radius b1) with a centrally loaded patch
(i.e. a patch of added material) Σ1i (radius a1) and the right side has a composite membrane Σ2 (radius b2)
with an eccentrically loaded patch Σ2i (radius a2 and eccentricity d). The composite membrane with a centric
loaded patch has a fixed edge S1 whereas the composite membrane with an eccentrically loaded patch has a
fixed edge S2. The left side composite membrane is subjected to uniform tension T1 per unit length such that
its transverse motion ū1(x,y, t) is governed by

σ1(r)
∂ 2ū1

∂ t2 −T1∆ū1 = p̄, (1)

where σ1(r) is the density per unit area which is piecewise continuous with a constant value σ1a for radius
0≤ r ≤ a1 and σ1b for radius a1 < r ≤ b1; the operator ∆ represents the Laplacian. The acoustic pressure field
p̄(x,y,z, t) is also an unknown variable. At radius r = a1, both the transverse motion (for compatibility) and the
normal force (for equilibrium) should be continuous. At r = b1, ū1 = 0. The right side composite membrane is
subjected to a uniform tension T2 per unit length such that its transverse motion ū2(x,y, t) is governed by

σ2(r)
∂ 2ū2

∂ t2 −T2∆ū2 = p̄, (2)

where σ2(r) is the density per unit area which is piecewise continuous with a constant value σ2a for the loaded
patch and σ2b for the remaining part. At the boundary of the loaded patch, both the transverse motion and the
normal force should be continuous. At r = b2, ū2 = 0. The acoustic air cavity domain Λ is assumed to be filled
with an inviscid fluid (air) with pressure field p̄(x,y,z, t), which is governed by the acoustic wave equation

∂ 2 p̄
∂ t2 − c2

p∆p̄ = 0, (3)

where cp is the speed of sound in the medium (air). The boundary condition at the rigid wall surface C is
given by ∂ p̄/∂n = 0; at the left side membrane by ∂ p̄/∂n1 =−ρa ¨̄u1, ρa is the density of air (1.21 kg/m3); and
at the right side membrane by ∂ p̄/∂n2 =−ρa ¨̄u2.
Substituting the modal solutions

ū1 = u1(x,y)e−iωt , ū2 = u2(x,y)e−iωt , and p̄ = p(x,y,z)e−iωt (4)
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into Equations (1), (2), and (3), where ω is the modal frequency, we can simplify them as

ω
2
σ1(r)u1 +T1∆u1 + p = 0 (5)

for the composite membrane Σ1, such that u1 = 0 at edge S1,

ω
2
σ2(r)u2 +T2∆u2 + p = 0 (6)

for the composite membrane Σ2, such that u2 = 0 at edge S2, and

ω
2 p+ c2

p∆p = 0 (7)

for the internal pressure field in the cavity Λ, such that ∂ p/∂n = 0 on C, ∂ p/∂n1 = ω2ρau1 on Σ1 and
∂ p/∂n2 = ω2ρau2 on Σ2.
The preceding boundary-value-problem can be recast in terms of a variational principle. The solution of the
problem, given in terms of smooth functions u1(x,y), u2(x,y), and p(x,y,z), extremizes the variational functional
I(u1,u2, p) = I1 + I2 + I3, where

I1 =
∫

Σ1

1
2

(
T1∇u1 ·∇u1

)
dA−ω

2
∫

Σ1

1
2

(
σ1u2

1

)
dA−

∫
Σ1

(
pu1

)
dA, (8)

I2 =
∫

Σ2

1
2

(
T2∇u2 ·∇u2

)
dA−ω

2
∫

Σ2

1
2

(
σ2u2

2

)
dA−

∫
Σ2

(
pu2

)
dA, and (9)

I3 =
∫

Λ

1
2ω2ρa

(
∇p ·∇p

)
dV −

∫
Λ

1
2ρac2

p

(
p2
)

dV, (10)

subjected to δu1 = 0 on S1 and δu2 = 0 on S2, the three variations δu1, δu2, and δ p otherwise allowed to vary
independently but smoothly over their respective domains; the operator ∇ represents the gradient. This vari-
ational principle forms the basis for our finite element procedure for determination of modal frequencies and
modeshapes. We choose four-nod quadrilateral elements for discretizing the membranes and the rigid boundary
C and eight-nod hexahedral elements for discretizing the acoustic domain, ensuring that the membrane ele-
ments match well with acoustics domain elements at the nodes. The basis functions used for the former are
{1,x,y,xy}, whereas the basis functions used for the latter are {1,x,y,z,xy,xz,yz,xyz}. The integration over do-
mains is evaluated using the standard Gauss quadrature rule for polynomials. The efficacy of our code is tested
by using it to verify the existing results for kettledrum and tabla as reported in earlier literature [1, 8, 2], in par-
ticular considering non-cylindrical kettle shapes in the former case, see [9] for further details. Besides verifying
our framework for monofacial drums, we use it to revisit Japanese bifacial drums, which have homogeneous
membranes, as discussed next.

3 WA-DAIKO
We consider the bifacial drum wa-daiko whose geometry is shown in Figure 2(a). It is rotationally symmetric
with respect to its central axis. The total length L of the barrel is 0.5 m. The radius R1 of both the membranes
is 0.2 m. The maximum radius of the barrel R2 is 0.24 m. The curvature of the drum can be obtained by
the three-point circle which passes through the maximum radius point and the two edge points. The other
parameters, taken from Suzuki and Hwang [4], are volume density (2000 kg/m3) and thickness (2 mm) of the
membrane. With membrane tensions T1 = T2 = 14 kN/m, the first two modal frequencies, using our formalism,
are 110.42 and 120.01 Hz. These are close to those obtained by Suzuki and Hwang [4] (as 110.5 and 120.0 Hz).
The membranes move in phase at 110.42 Hz and in the opposite directions at 120.01 Hz. The corresponding
mode shapes are shown in Figure 2(b). Furthermore, keeping tension T1 = 14 kN/m in membrane 1, the modal
frequencies for different values of tension in membrane 2 are evaluated and collected in Table 1; these are in
agreement with Suzuki and Hwang [4]. Any further increase in tension T2 beyond 20 kN/m does not affect the
value of f1. At such high tension values, the displacement of membrane 2 becomes very small. The membrane
then behaves like a rigid body and stops interacting with membrane 1.
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Figure 2. (a) Geometry of wa-daiko; (b) Mode shapes.

Table 1. Modal frequencies for the first two modes of wa-daiko for different tension values.

T2(kN/m) 14 15 16 17 18 20
f1(Hz) 110.42 111.99 112.94 113.51 113.87 114.23
f2(Hz) 120.01 122.2 124.91 127.88 130.97 137.17

4 DHOLAK
Dholak is a barrel-shaped bifacial drum made of a single piece of wood; it is one of the most widely used
drums in north India. The two membrane heads of dholak are different in size, where the smaller head is
covered with a homogeneous membrane while the larger head is covered with a composite membrane. The
latter has a patch, much like that in tabla, made of a mixture of sand, tar, and clay. However, unlike, tabla,
the patch is on the inner side of the membrane and hence not visible on the drum surface. The length of
dholak is around 41 cm. The outer diameter of the larger and the smaller drum heads are about 23 and
18 cms, respectively. The thickness of the hollow barrel is around 2 cm. A cross-sectional view of a typical
dholak is shown in Figure 3(a). The diameter of dholak at the waist, at mid-length, is around 27.5 cm. The
waist forms the base of the two truncated conical shapes which end at the drum heads. The membranes can
be tuned separately to different tension values. In the simulations, we have used different tensions in both the
membranes. The tensions in the larger and the smaller membranes are taken as T1 = 3.5 kN/m and T2 = 3 kN/m,
respectively. The radius of the axisymmetric patch on the larger membrane is taken as 3.8 cm. The density of
the homogeneous membrane (and the outer part of the composite membrane) is taken to be 0.18 kg/m2. The
ratio of the central patch density to outer part density is denoted by λ 2. We have fixed all the parameters
except the value of λ , which we will vary to obtain different results. In Figure 3(b), we compare frequency
ratios of several modes for various values of λ ; the values are tabulated in Table 2. The mode shapes for the
first twelve modes, corresponding to λ = 1.93, are given in Table 3 along with the frequency ratios fn/ f4.
The frequencies f1 and f2 correspond to in phase and out of phase membrane motion, respectively, with larger
membrane having a larger deflection. The frequencies f3 and f6 correspond to in phase and out of phase mem-
brane motion, respectively, with smaller membrane having a larger deflection. All of these modes show a strong
coupling between the membrane heads. The frequencies f4 = f5 correspond to a mode with one nodal diame-
ter on the larger membrane and negligible activity in the other membrane and the air cavity. The frequencies
f7 = f8 correspond to the case when both the membranes have one nodal diameter. The two membranes inter-
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Figure 3. (a) A sectional view of dholak (all dimensions in mm); (b) Frequency ratios with an increasing value
of λ . The missing modes (on the x-axis) are degenerate with respect the preceding mode number.

act strongly even in this case. The frequencies f9 = f10 represent a pair of degenerate modes with two nodal
diameters on the larger membrane and negligible vibrations in the other membrane as well in the air cavity.
The frequencies f11 = f12 correspond to the case when there is one nodal diameter in the smaller membrane
in addition to small vibrations both in the other membrane and the cavity. Clearly, there are modes in which
membranes interact with each other and those in which they do not, the former mostly corresponding to the
ones having no nodal diameters on the membranes. If the two drum sizes are equal then there is an increased
degeneracy in the spectrum. A change in the value of λ will effect only those modes in which the larger
membrane participates. The frequency ratios over a range of λ are presented in Table 2 (graphically in In Fig-
ure 3(b)). For λ = 1.93, we obtain many ratios close to being multiples of 0.25, which is indicative of sound
with a definite pitch.

Table 2. Frequency ratios with respect to f4 for dholak with an increasing value of λ .

n fn/ f4 fn/ f4 fn/ f4 fn/ f4 fn/ f4
(λ = 1.93) (λ = 2.00) (λ = 2.12) (λ = 2.23) (λ = 2.45)

1 0.50 0.50 0.50 0.50 0.51
2 0.70 0.71 0.72 0.74 0.77
3 1.00 1.01 1.04 1.07 1.14

4 and 5 1.00 1.00 1.00 1.00 1.00
6 1.31 1.33 1.37 1.40 1.46

7 and 8 1.50 1.52 1.54 1.61 1.69
9 and 10 1.53 1.54 1.56 1.55 1.55
11 and 12 1.55 1.58 1.63 1.68 1.79

13 1.56 1.57 1.60 1.63 1.68
14 and 15 1.68 1.70 1.74 1.78 1.87

16 1.95 1.98 2.01 2.05 2.11
17 and 18 1.96 1.99 2.05 2.10 2.22
19 and 20 2.06 2.08 2.10 2.11 2.12
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Table 3. Mode shapes and frequency ratios fn/ f4 for dholak (λ = 1.93, T1 =3.5 kN/m and T2 =3 kN/m).

n fn/ f4 Membrane Acoustic cavity

1 0.50

2 0.70

3 1.00

4 and 5 1.00

6 1.31

7 and 8 1.50

9 and 10 1.53

11 and 12 1.55
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(a) (b) (c)

Figure 4. Section of a bifacial drum with varying barrel curvature: (a) truncated conical, (b) concave, and (c)
convex shape.
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Figure 5. fn/ f1 ratios for bifacial drums of three different barrel shapes with equal tension (T1 = T2 = 4 kN/m).
(a) Both the membranes are homogeneous; (b) Smaller membrane is homogeneous while the larger one is
composite. In both the cases, the missing modes (on the x-axis) are degenerate with respect the preceding
mode number.

5 EFFECT OF CURVATURE OF THE BARREL
In this section we will discuss the effect of curvature of the axisymmetric shell which encloses the air cavity.
We consider a drum geometry with membrane heads of unequal sizes (as is the case with most of the Indian
drums) and a barrel with either conical, concave, or convex shape. Figure 4 shows a section of the three
geometries considered in the following. With reference to the figure, R2 = 73.25 mm, R1 = 99 mm, L =
450 mm, R4 = R3 - 6.125 mm, and R5 = R3 + 6.125 mm, where R3 is the radius of the truncated cone
at its mid point. The tensions in the larger and the smaller membranes are T1 and T2, respectively. We will
consider two cases, one where both the membranes are homogeneous and the other where only one membrane
is composite.
First, let the two membranes be homogeneous with a density of 0.2451 kg/m2 and tensions T1 = T2 = 4 kN/m.
The modal frequencies for several modes are compared for the three cases in Figure 5(a). Most of the modes
have modeshapes qualitatively similar to those described for dholak, however there are some variations, for
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instance modes 7 and 8 which here have isolated deformation of the smaller membrane with one nodal diameter;
for more details see [9]. Of course, only those frequencies which correspond to the modes where air cavity
participates actively are affected by the change in shape of the barrel. The trends are captured in Figure 5(a).
Second, we consider the case where the smaller membrane is homogeneous with a density of 0.2451 kg/m2 but
the other membrane is a composite membrane having a centric loaded patch of density twice as that of the outer
portion. The outer density of the composite membrane is same as that of smaller membrane. The tension values
in both the membranes are identical, T1 = T2 = 4 kN/m. The modal frequencies for the three drum shapes are
compared in Figure 5(b). The composite nature of the membrane lowers the frequencies corresponding to the
modes in which the larger membrane participates actively. The degeneracy in the spectrum shifts by a mode,
for several modes, when compared to the preceding scenario of homogeneous membranes. Overall, we note that
the concave shaped bifacial drums have higher frequency ratios while the convex shaped ones have the lower
frequency ratios with respect to the truncated cone shaped drums.

6 CONCLUSIONS
A variational formulation was proposed, and used for a finite element implementation, to study the acoustics
of bifacial drums with axisymmetrically curved barrels and composite drumheads. Such drums are found com-
monly in different cultures across India. The developed method is applied to study a specific Indian drum,
dholak, which has a convex shaped barrel and one composite membrane. Modal frequencies were investigated
for a range of parametric values and the most optimum solution was identified in the considered range. Fur-
ther experimental and simulation work, required to discuss a more complete picture of the emergent acoustical
phenomena in such bifacial drums, will be discussed in a future study.
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