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Summary

This chapter provides the basic infrastructure necessary for a rigorous study
of continuum mechanics. The topics include tensor algebra and analysis, ge-
ometry and motion of continuous bodies, and singular surfaces. The concepts
of tensor algebra and analysis form the language of continuum mechanics and
it therefore becomes essential to have a good familiarity with them. A contin-
uous body can demonstrate highly complicated deformations, thus requiring
precise notions to characterize their geometry and motion. Singular surfaces
are surfaces across which variables such as velocity and deformation suffer
jump discontinuities. Understanding their kinematical behavior is a starting
point in the study of many important phenomena including the propagation
of shock waves, phase fronts, and grain boundaries.

1. Preliminaries

The following notation is adopted in which V is the translation (vector) space
of a real three-dimensional Euclidean point space E :
Lin: the linear space of linear transformations (tensors) from V to V .
InvLin: the group of invertible tensors.
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Sym = {A ∈ Lin : A = AT}, where superscript T denotes the transpose:
linear space of symmetric tensors; also, the linear operation of symmetriza-
tion on Lin.
Sym+ = {A ∈ Sym : u · Au > 0} for u ̸= 0,u ∈ V : the positive-definite
tensors.
Skw = {A ∈ Lin : AT = −A}: the linear space of skew tensors; also, the
linear operation of skew-symmetrization on Lin.
Orth = {A ∈ InvLin : AT = A−1}, where A−1 is the inverse of A: the
group of orthogonal tensors.
Orth+ = {A ∈ Orth : JA = 1}: the group of rotations.
Here and in the following chapter on balance laws, both indicial notation
as well as bold notation are used to represent vector and tensor fields. The
components in the indicial notation are written with respect to the Cartesian
coordinate system. Indices denoted with roman alphabets vary from one
to three but those denoted with Greek alphabets vary from one to two.
Einstein’s summation convention is assumed unless an exception is explicitly
stated. Let eijk be the three dimensional permutation symbol, i.e. eijk = 1 or
eijk = −1 when (i, j, k) is an even or odd permutation of (1, 2, 3), respectively,
and eijk = 0 otherwise.
The determinant and cofactor of A are denoted by JA and A∗, respectively,
where A∗ = JAA

−T if A ∈ InvLin. It follows easily that (AB)∗ = A∗B∗.
Further, Lin is equipped with the Euclidean inner product and norm defined
by A ·B = tr(ABT ) and |A|2 = A ·A, respectively, where tr(·) is the trace
operator. We make frequent use of relations like A · BC = ACT ·B =
CT ·ATB and AB ·CD = ABDT ·C, etc., which follow easily from trA =
trAT and tr(AB) = tr(BA). It is well known that Lin = Sym ⊕ Skw, the
direct sum of Sym and Skw. The tensor product a⊗ b of vectors {a,b} ∈ V
is defined by (a⊗ b)v = (b · v)a for all v in V , where b · v is the standard
inner product of vectors.

2. Body, configurations, and motion

The geometrical structure of a physical body is independent of a frame of
reference, and therefore the body (in continuum mechanics) is usually taken
to be a three dimensional differential manifold. We denote such a manifold
by B and call its elements material points. At every material point X ∈ B
we have an associated tangent space TX which is a three dimensional vector
space representing a neighborhood of X. On the other hand, the body is
observed and tested in a (three dimensional) Euclidean frame of reference E ,
which requires us to endow the body B with a class C of bijective mappings,
χ : B → Eχ (the subscript χ is used to indicate the mapping employed). We
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call these mappings the configurations of the body B. The spatial position
χ(X) ∈ Eχ denotes the place which a material point X ∈ B occupies in Eχ.
The translation space of Eχ is a three dimensional inner product space, and
is denoted by Vχ.
We introduce a fixed reference configuration, relative to which the notions of
displacement and strain can be defined. Let κ ∈ C be a reference configura-
tion. The configuration κ need not be a configuration occupied by B at any
time and therefore κ can be arbitrary as long as it belongs to C.
The motion of a body B is defined as a one-parameter family of configura-
tions, χt : B×R → Eχ. Such a motion assigns a place x ∈ Eχ to the material
point X ∈ B at time t. We write this as

x = χt(X) ≡ χ(X, t). (1)

The reference configuration κ assigns a place X ∈ Eκ to X, so we can express
x as a function of X,

x = χ(κ−1(X), t) ≡ χκ(X, t), (2)

where χκ : Eκ×R → Eχ denotes a mapping from the reference configuration
to the configuration of the body at time t.
The displacement u : B× R → V (V can be identified with either Vχ or Vκ)
of a material point X with respect to the reference configuration κ at time
t is defined as

u(X, t) = χ(X, t)− κ(X). (3)

The particle velocity v : B × R → Vχ and the particle acceleration a :
B× R → Vχ are defined as

v(X, t) =
∂

∂t
χ(X, t) (4)

and

a(X, t) =
∂2

∂t2
χ(X, t), (5)

respectively. Displacement, particle velocity and particle acceleration can all
be alternatively expressed as functions on κ(B) by using the inverse κ−1 :
Eκ → B. Such functions exist in a one-to-one relation with the functions
expressed in the equations above. We write

û(X, t) ≡ u(κ−1(X), t)

v̂(X, t) ≡ v(κ−1(X), t) (6)

â(X, t) ≡ a(κ−1(X), t).
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We can similarly write these functions as

ũ(x, t) ≡ u(χ−1
t (x), t)

ṽ(x, t) ≡ v(χ−1
t (x), t) (7)

ã(x, t) ≡ a(χ−1
t (x), t).

We define the material time derivative as the derivative of a function with
respect to time for a fixed material point. For an arbitrary scalar function
f : B× R → R, we denote its material time derivative as ḟ . Thus,

ḟ =
∂

∂t
f(X, t) |X , (8)

where the notation |X denotes the evaluation of the derivative at a fixed X.
If f is instead given in terms of x, i.e. if f = f̃(χ(X, t), t), we write

ḟ =
∂

∂t
f̃(x, t) |x +(grad f̃) · v, (9)

where ∂
∂t
f̃(x, t) |x is the spatial time derivative (at a fixed x) and grad f̃ is

the spatial gradient (gradient is defined below). Therefore, if the particle
velocity is a function of spatial position x, then the particle acceleration is
ã = ∂

∂t
ṽ(x, t) |x +Lv, where L = grad ṽ is the spatial velocity gradient.

Derivatives By fields we mean scalar, vector and tensor valued functions
defined on position (x or X) and time (t). In the following we are mainly
concerned with the derivatives with respect to the position and therefore
dependence of fields on time is suppressed.
A scalar-valued field ϕ(X) : Eκ → R is differentiable at X0 ∈ U(X0), where
U(X0) ⊂ Eκ is an open neighborhood of X0, if there exists a unique c ∈ Vκ
such that

ϕ(X) = ϕ(X0) + c(X0) · (X−X0) + o(|X−X0|), (10)

where o(ϵ)
ϵ

→ 0 as ϵ → 0. We call c(X0) = ∇ϕ|X0 (or ∇ϕ(X0)) the gradient
of ϕ at X0. Consider a curve X(u) in Eκ parameterized by u ∈ R. Let
ψ(u) = ϕ(X(u)) and X1 = X(u1), X0 = X(u0) for {u1, u0} ∈ R. Then from
(10),

ψ(u1)− ψ(u0) = ∇ϕ(X0) · (X1 −X0) + o(|X1 −X0|). (11)

Moreover X1 − X0 = X′(u0)(u1 − u0) + o(|u1 − u0|), where X′(u0) is the
derivative of X with respect to u at u = u0. Therefore, |X1 −X0| = O(|u1 −
u0|) and consequently we can rewrite (11)

ψ(u1)− ψ(u0)

u1 − u0
= ∇ϕ(X0) ·X′(u0) +

o(|u1 − u0|)
u1 − u0

. (12)
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For u1 → u0 we obtain the chain rule, ψ′(u0) = ∇ϕ(X(u0)) · X′(u0), which
can also be expressed as dϕ

du
= ∇ϕ(X) · dX

du
or

dϕ(X) = ∇ϕ(X) · dX. (13)

A vector-valued field v(X) : Eκ → V is differentiable at X0 ∈ U(X0) if there
exists a unique tensor l : Vκ → V such that

v(X) = v(X0) + l(X0)(X−X0) + r, (14)

where |r| = o(|X−X0|). We call l(X0) = ∇v|X0 (or ∇v(X0)) the gradient of
v at X0. The chain rule in this case can be obtained following the procedure
preceding Eq. (13):

dv(X) = (∇v)dX. (15)

The divergence of a vector field is a scalar defined by

Div v = tr(∇v). (16)

The curl of a vector field is a vector defined by

(Curlv) · c = Div(v × c) (17)

for any fixed c ∈ V .
Differentiability of a tensor-valued function is defined in a similar manner.
In particular, for a tensor A(X) : Eκ → Lin, we write

dA(X) = (∇A)dX. (18)

The divergence of A is the vector defined by

(DivA) · c = Div(ATc) (19)

for any fixed c ∈ V . The curl of A is the tensor defined by

(CurlA)c = Curl(ATc) (20)

for any fixed c ∈ V .
Finally, if the fields are expressed as functions of x rather than X, the various
definitions above remain valid. We instead denote the gradient, divergence
and curl operators by grad, div, and curl, respectively.
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3. Deformation Gradient

If the mapping χκ(X, t) is differentiable with respect to X, then we define
the deformation gradient by

F = ∇χκ. (21)

Since χκ(X, t) is invertible for each X ∈ Eκ, the deformation gradient F
belongs to a family of invertible linear maps from the translation space of Eκ
to the translation space of Eχ, i.e. F ∈ InvLin. This follows from the inverse
function theorem (Rudin, W. Principles of Mathematical Analysis, 3rd Ed.,
McGraw-Hill (1976), page 221). For {X,Y} ∈ Eκ Eq. (14) becomes

χκ(Y, t) = χκ(X, t) + F(X, t)(Y −X) + r (22)

and the chain rule (15) takes the form (for fixed t)

dx = FdX, (23)

where the differentials dX and dx belong to the translation spaces Vκ at X
and Vχ at x, respectively.
We now obtain relationships for transforming infinitesimal area and volume
elements. Let dX1 ∈ Vκ and dX2 ∈ Vκ be two linearly independent infinites-
imal line elements at X. An infinitesimal area element can be constructed
using these line elements, with area given by daκ = |dX1 × dX2| and the as-
sociated direction given by the unit normal nκ such that nκdaκ = dX1×dX2.
In the configuration χt the line elements dX1 and dX2 are transformed into
line elements dx1 ∈ Vχ and dx2 ∈ Vχ, respectively at x = χκ(X, t). We
obtain, using relation (23), dx1 = FdX1 and dx2 = FdX2. The area element
constructed using these line elements has area da = |dx1 × dx2| with unit
normal n given by nda = dx1 × dx2. Therefore,

nda = FdX1 × FdX2

= F∗(dX1 × dX2)

= F∗nκdaκ. (24)

As F ∈ InvLin, we have
F∗ = JFF

−T . (25)

Consider a third line element dX3 ∈ Vκ atX such that the set {dX1, dX2, dX3}
is linearly independent and positively oriented. The infinitesimal volume el-
ement associated with the reference configuration is then given by dvκ =
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dX1 · dX2 × dX3. In configuration χt the volume element at x = χκ(X, t) is
dv = dx1 · dx2 × dx3 with dx3 = FdX3. Therefore,

dv = FdX1 · FdX2 × FdX3

= FdX1 · F∗(dX2 × dX3)

= JFdvκ (26)

and accordingly, if κ is a configuration that could be attained in the course of
the motion of B, we require JF > 0 to ensure that a volume in κ corresponds
to a volume in χ.

Material curves Consider a curve C ⊂ Eκ and parameterize it with a
real number s ∈ R such that C : R → Eκ. We call C a material curve. Its
placement in the configuration χ is denoted by c and we use s to parameterize
it such that c : R → Eχ. Using the definition of the deformation gradient
and assuming the mappings C and c to be differentiable, we write

x′(s) = FX′(s). (27)

If s is the arc-length on C, then the vector X′(s) defines a unit tangent vector
(denoted M) to the curve C at arc-length station s. Let x′(s) = µm with
|m| = 1 and µ = |x′(s)|. Substituting these in (27), we obtain

µm = FM. (28)

Since F ∈ InvLin, FM ̸= 0 and therefore µ > 0. We call µ(s, t) the local
stretch of C. It follows from (28) that

µ2 = |µm|2 = FM · FM = M ·CM, (29)

where C = FTF : Vκ → Vκ is the Right Cauchy Green tensor. The tensor C
is symmetric and positive definite, i.e. C ∈ Sym+. Indeed, CT = (FTF)T =
FTF = C and for arbitrary a ∈ Vκ, a · Ca = Fa · Fa = |Fa|2 > 0, as
JF ̸= 0. Similarly, if we rewrite (28) as µ−1M = F−1m, we can arrive at
the (symmetric and positive definite) Left Cauchy Green tensor B = FFT :
Vχ → Vχ such that µ−2 = m·B−1m. We can use C to calculate the deformed
length of a material curve and the deformed angle between two material
curves. Given an infinitesimal element of the material curve dX = Mds, its
deformed length is |dx| =

√
FM · FMds = µds and therefore the deformed

length of a material curve with reference arc-length s1 − s0 is

lc(t) =

∫ s1

s0

µ(s, t)ds. (30)
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Consider two material curves intersecting at X with associated unit tan-
gent vectors M1 and M2, respectively. Let µ1 and µ2 be the local stretches
corresponding to the two curves and let θ be the angle between the tangent
vectors of the deformed curve at x. We then write, µ1µ2 cos θ = FM1·FM2 =
M1 ·CM2 and, on using (29), obtain

cos θ =
M1 ·CM2√

(M1 ·CM1)(M2 ·CM2)
. (31)

Finally, we introduce two definitions of extensional strain: The first, denoted
eC and defined by eC = 1

2
(C−1), yields 1

2
(µ2−1) = M ·eCM, where 1 ∈ Lin

is the identity transformation. Therefore, eC : Vκ → Vκ characterizes the
relative local stretch with respect to the reference configuration. It is known
as the relative Lagrange strain or the Green-St.Venant strain. Alternatively,
to characterize local stretch relative to the current configuration, we define
eB = 1

2
(1 − B−1), and obtain 1

2
(1 − µ−2) = 1

2
m · (1 − B−1)m. The tensor

eB : Vχ → Vχ is called the relative Eulerian strain or the Almansi-Hamel
strain tensor. The two strain tensors are related by eC = FTeBF.
Using Eqs. (3) and (21), we can obtain the deformation gradient from the
displacement field, F = 1 + ∇u. For small deformations |∇u| ≪ 1 and
consequently µ ≈ 1 and eC ≈ 1

2
(∇u+∇uT ) (≈ denotes the small deformation

approximation). The two strain measures are asymptotically coincident in
this approximation.

Principal stretches We would now like to identify the material curves
along which the local stretch assumes extreme values and obtain these ex-
tremals from C. Define f(M) = M · CM at fixed C. We therefore have
f(M) > 0 (from (29)), for M ∈ S = {v ∈ Vκ : |v| = 1}. Since f(M) is a
continuous function, defined on a compact set, a theorem in analysis (Rudin,
W. ibid., page 89) yields the existence of M1 ∈ S and M2 ∈ S such that
f(M1) = min

M∈S
f(M) ≡ λ21 and f(M2) = max

M∈S
f(M) ≡ λ22, respectively. Our

aim is to compute λ21 and λ22 for a given C. These are extremal values of
f(M) and thus render f(M) stationary, i.e. df(M) = 0, or CM ·dM = 0 for
M ∈ {M1,M2}. Furthermore, the identity M ·M = 1 implies M · dM = 0
and therefore dM ⊥ M at each M ∈ S. Since S is a two dimensional man-
ifold with dM belonging to its tangent space, the vector M represents the
unit vector normal to S at M ∈ S. As a result of these arguments, for some
µ1, µ2 ∈ R we can write, CM1 = µ1M1 and CM2 = µ2M2. Evidently, µ1

and µ2 are equal to λ21 and λ22, respectively (µ1 = M1 ·CM1 = f(M1) = λ21,
etc.), the largest and smallest eigenvalues of C, respectively, and thus

CM1 = λ21M1, and CM2 = λ22M2. (32)
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In general, for λ ∈ R and M ∈ S, we can solve the eigenvalue problem
CM = λ2M to obtain three real values for λ2. If {EA} is an orthonormal
basis for Vκ and if we set CAB = EA ·CEB, then we can conclude that the
eigenvalues bound the diagonal entries of the matrix {CAB}; i.e.

λ21 ≤ min{C11, C22, C33} ≤ max{C11, C22, C33} ≤ λ22. (33)

Two theorems for symmetric tensors According to the spectral theo-
rem, for every A ∈ Sym, there exists an orthonormal basis {ui} ∈ V(i =
1, 2, 3) and numbers λi ∈ R such that

A =
3∑
i=1

λiui ⊗ ui. (34)

The numbers λi are the principal values associated with the tensor A and
can be obtained as the roots of the characteristic equation det(A− λ1) = 0
with λ ∈ R. We now prove this assertion. Let λ and u be a principal value
(eigenvalue) and the corresponding principal vector (eigenvector) associated
with A. Allow them to be complex, i.e. λ = a + ib and u = a + ib for
some {a, b} ∈ R and {a,b} ∈ R3 with i =

√
−1. Therefore Au = λu. We

also have Aū = λ̄ū, where an over-bar represents the complex conjugate.
Since A is symmetric, we can write u · Aū = ū · Au or 0 = (λ − λ̄)u · ū.
This implies λ = λ̄, as u · ū > 0. We now have to prove the existence
of orthonormal {ui} such that (34) holds. For eigenvalues λ1, λ2 and their
corresponding eigenvectors u1, u2, we haveAu1 = λ1u1 andAu2 = λ2u2. As
A is symmetric, u1 ·Au2 = u2 ·Au1 and thus 0 = (λ1−λ2)u1 ·u2. If λ1 ̸= λ2,
then u1 and u2 are mutually orthogonal. Therefore if {λi} are distinct, {ui}
necessarily forms an orthonormal set. If λ1 ̸= λ2 = λ3, then u1 · u2 = 0.
Define u3 = u1 ×u2, so that {ui} is orthonormal. The vector u3 is the third

principal vector of A. Indeed Au3 =
3∑
i=1

(ui · Au3)ui =
3∑
i=1

(u3 · Aui)ui =

(u3 ·Au3)u3 where in the first equality, the vector Au3 is expressed in terms
of the basis vectors {ui}. In the second equality, the symmetry of A is used
and in the third equality, the relations Auα = λαuα (α = 1, 2) and the
orthonormality of {ui} are employed. Finally, if λ1 = λ2 = λ3 = λ, we can
pick any orthonormal basis in V and in this case A = λ1.
According to the square root theorem, for every A ∈ Sym+, there exists a
unique tensor G ∈ Sym+ such that A = G2. By the spectral theorem we
have a representation (34) for A with λi > 0 (due to the positive definiteness

of A). Define G =
3∑
i=1

√
λiui ⊗ ui. Then, G2 = GG =

3∑
i=1

√
λi(Gui) ⊗ ui =
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3∑
i=1

λiui⊗ui = A and it is obvious that G is symmetric and positive definite.

To prove uniqueness we assume that there exists a symmetric and positive
definite tensor Ĝ such that G2 = A = Ĝ2 and show that G = Ĝ. Let u
be an eigenvector of A with eigenvalue λ > 0. Then (G2 − λ1)u = 0 or
(G+

√
λ1)v = 0, where v = (G−

√
λ1)u. This requires v = 0 as otherwise

−
√
λ becomes an eigenvalue of G, contradicting the positive definiteness of

G. Therefore Gu =
√
λu and similarly Ĝu =

√
λu. Thus Gui = Ĝui and

since an arbitrary vector f can be expressed as a linear combination of {ui},
we obtain Gf = Ĝf . This implies G = Ĝ.

Polar decomposition theorem Every F ∈ InvLin can be uniquely de-
composed in terms of tensors {U,V} ∈ Sym+ and R ∈ Orth such that

F = RU = VR. (35)

The first of these equalities can be proved by using the right Cauchy Green
tensorC = FTF. By the square root theorem there exists a unique symmetric
positive definite tensor U such that U2 = C. Define R = FU−1. It follows,
that RTR = 1. If detF > 0 then detR = 1 (since detF = detU =

√
detC),

and therefore R is a proper orthogonal tensor. The relation F = VR can be
proved similarly via the left Cauchy Green tensor B = FFT . Relation (35)
allows us to decompose a deformation into a stretch and a pure rotation. Let
unit vectors M ∈ Vκ and m ∈ Vχ and the scalar µ be such that µm = FM
(from Eq. (28)). Using the decomposition F = RU and defining M̄ = UM
we find that µ = |M̄| and m = RM̄

|M̄| . Thus, F stretches (and rotates) M

to M̄, and then rotates M̄ to the direction of m. If µ is a principal value
of U with M as the corresponding principal vector, then UM = µM. As
a result, M̄ = µM, and therefore in such a case, F stretches M to µM,
and then rotates it to µm, with m = RM. Consider three material curves
intersecting at X ∈ Eκ with mutually orthogonal tangent vectors {Mi}. If
{Mi} coincide with the principal vectors of U at X, then the curves will
undergo (locally) a pure stretch, followed by a rigid rotation, with tangent
vectors to the deformed curves remaining mutually orthogonal at x = χ(X).
If on the other hand {Mi} are not the principal vectors of U, then UMi is no
longer parallel to Mi and consequently U changes the angle between {Mi}.
The tangent vectors to the deformed curves, therefore, are not orthogonal
at x. The decomposition can be understood in the opposite order (rotation
followed by a stretch) if we consider the VR decomposition instead of the
RU decomposition of F.
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Principal invariants The characteristic equation for A ∈ Lin is

0 = det(A− λ1) = −λ3 + λ2I1(A)− λI2(A) + I3(A), (36)

where

I1(A) = trA

I2(A) = trA∗ =
1

2
[(trA)2 − trA2] (37)

I3(A) = detA

are the principal invariants of A. A physically meaningful interpretation
of these invariants follows by identifying A with U ∈ Sym+ which appears
in the polar decomposition (35) of the deformation gradient. In terms of
the eigenvalues of U (denoted by λi > 0), we obtain from (37), I1(U) =
λ1 + λ2 + λ3, I2(U) = λ1λ2 + λ1λ3 + λ2λ3 and I3(U) = λ1λ2λ3. Therefore,
if the edges of a unit cube are aligned with the eigenvectors of U, then
I1(U) is the sum of the lengths of three mutually orthogonal edges after
deformation, I2(U) is the sum of the areas of three mutually orthogonal
sides after deformation, and I3(U) is the deformed volume.
According to the Cayley-Hamilton theorem, A satisfies its own characteristic
equation, i.e.

−A3 + I1(A)A2 − I2(A)A+ I3(A)1 = 0. (38)

We now prove this theorem. Let D = ((A − λ1)∗)T , where λ ∈ R is such
that det(A − λ1) ̸= 0 but otherwise arbitrary. Since A − λ1 is invertible,
we have D = det(A − λ1)(A − λ1)−1 or D(A − λ1) = det(A − λ1)1. The
right hand side of this relation is cubic in λ and the term A − λ1 is linear
in λ. Therefore D has to be quadratic in λ (by a theorem on factorization
of polynomials). Let D = D0 +D1λ+D2λ

2 for some D0, D1 and D2. Then
(D0 +D1λ +D2λ

2)(A − λ1) = det(A − λ1)1 = (−λ3 + λ2I1 − λI2 + I3)1.
Matching coefficients of various powers of λ between the first and the last
term and eliminating D0, D1 and D2 from these, we get the required relation
(38). The coefficients of all the powers of λ have to vanish since otherwise
we would obtain a polynomial (of order 3) in λ, which could then be solved
to obtain roots for λ, contradicting the premise that λ ∈ R is arbitrary.

Velocity gradient We can use the chain rule for differentiation to write
the gradient of the velocity field with respect to X as

∇v̂(X, t) = LF, (39)
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where L = grad ṽ : Vχ → Vχ is the spatial velocity gradient. Under sufficient
continuity of the motion we have ∇v̂ = Ḟ and therefore L = ḞF−1. We
can decompose L into D ∈ Sym (rate of deformation tensor) and W ∈ Skw
(vorticity tensor). The material time derivative of the right and the left
Cauchy-Green tensor can be obtained as

Ċ = 2FTDF, Ḃ = LB+BLT . (40)

Indeed, Ċ = ḞTF + FT Ḟ = FTLTF + FTLF and Ḃ = ḞFT + FḞT =
LFFT + FFTLT .
For a fixed material curve with unit tangent vector M recall relation (28),
i.e. µm = FM. As a result

µ̇

µ
= m ·Dm, (41)

where we have used Ṁ = 0, m · ṁ = 0 (which follows from m ·m = 1) and
m · Wm = 0 (since m · Wm = WTm · m = −Wm · m). We also obtain
µṁ = µLm − µ̇m, which on using (41) and the decomposition of L into
symmetric and skew parts, reduces to

ṁ = Dm− (m ·Dm)m+Wm. (42)

If m should coincide with a principal vector of D with principal value γ,
then Dm = γm. The relations (41) and (42) in this case give γ = µ̇

µ
= (lnµ)̇

and ṁ = Wm, respectively. Therefore, when the unit tangent m to the
deformed material curve instantaneously aligns with a principal vector of D,
the corresponding principal value of D is the rate of the natural logarithm
of the stretch associated with the material curve. Moreover, the vorticity
tensor W then characterizes the spin of the material element instantaneously
aligned with a principal vector.
Associated with W ∈ Skw there exists a vector w ∈ Vχ (the axial vector of
W) such that, Wa = w × a for all a ∈ Vχ. This fact can be proved by first
obtaining the canonical form for a skew tensor. The characteristic equation
for W has three roots and therefore at least one of them is real (complex
roots occur in a pair). Let this real eigenvalue be λ and let f ∈ Vχ be the
corresponding eigenvector. Then Wf = λf . But this implies λ = Wf · f = 0
and so Wf = 0. Choose {g,h} ∈ Vχ such that {f ,g,h} forms a right handed
orthonormal basis for Vχ. The canonical form for W is then given by

W = ω(h⊗ g − g ⊗ h), (43)

where ω = h·Wg. The canonical form (43) can been proved by remembering
that WT = −W, Wf = 0 and a ·Wa = 0 for all a ∈ Vχ. Then W = W1 =
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W(f ⊗ f + g ⊗ g + h ⊗ h) = Wg ⊗ g + Wh ⊗ h. Note that Wg = ωh,
since Wg · f = −g ·Wf = 0 and Wg · g = 0. Similarly Wh = −ωg. This
completes the proof.
Let w = ωf . Then on using (43) for arbitrary a, we obtainWa = ω((g·a)h−
(h·a)g) = ω((g ·a)(f×g)−(h·a)(h×f)) = ωf×((f ·a)f+(g ·a)g+(h·a)h) =
w × a.
If W is the skew part of the spatial velocity gradient, then the axial vector
w is given in terms of the velocity field v as

w =
1

2
curl ṽ. (44)

The vector w is also called the vorticity vector. This relation can be proved
by considering two constant but otherwise arbitrary vectors g and h. Then
2Wg · h = ((grad ṽ) − (grad ṽ)T )g · h = div((ṽ · h)g − (ṽ · g)h) = div(ṽ ×
(g × h)) = curl ṽ · g × h = (curl ṽ × g) · h. Using the arbitrariness of h and
the relation Wg = w × g we obtain Eq. (44).
Finally, we interpret the off-diagonal terms of D on an orthogonal basis.
Consider two intersecting material curves with tangent vectors M1 and M2

at the point of intersection. In the current configuration, they map to m1

and m2 with local stretches µ1 and µ2, respectively. Let cos θ = m1 · m2.
Then, (sin θ)θ̇ = (m1 ·Dm1+m2 ·Dm2)(m1 ·m2)−2m1 ·Dm2, where relation
(42) has been used. If sin θ = 1 (i.e. m1 ·m2 = 0), we have θ̇ = −2m1 ·Dm2.
Therefore the off-diagonal terms ofD on an orthogonal basis are proportional
to the rate of change of the angle between tangents to the deformed material
curves instantaneously aligned with the orthogonal elements of the basis.

Homogeneous deformation We call a deformation homogeneous if the
associated deformation gradient F(X, t) is independent of X. The motion
then takes the simple form

x = χκ(X, t) = F(t)X+ c(t) (45)

with c ∈ Vχ. Thus, for Y ∈ Eκ,

y = χκ(Y, t) = F(t)Y + c(t) (46)

and therefore,
χκ(Y, t) = χκ(X, t) + F(t)(Y −X). (47)

Comparing this to Eq. (22) we note that every deformation is approximated
by a homogeneous deformation in any sufficiently small neighborhood of a
material point. Homogeneous deformation is characterized by several prop-
erties:

13



(i) Material planes deform into planes and parallel planes map to parallel
planes. A material plane is represented by X · N = D, where X ∈ Vκ
represents a vector extending from the origin to points on the plane, N is
the constant normal of the plane, and D is the (constant) perpendicular
distance from the origin to the plane. As a result we obtain, using (45),
D = F−1(x − c) · N or x · F−TN = d, where d = D + c · F−TN is the
perpendicular distance from the origin (in Eχ) to the deformed plane. The
vector F−TN is parallel to the deformed normal (see Eq. (24)).
(ii) Straight material lines deform into straight lines and parallel lines map
to parallel lines. The equation of a straight material line is given by X =
SM+X0 for some S ∈ R+, X0 ∈ Vκ (arc-length), where M is the constant
(unit) tangent to the line. Using (45) we can obtain x = FX+ c = sm+x0,
where m = FM

|FM| , s = S|FM| and x0 = FX0 + c. This too, is the equation
of a straight line.
(iii) A spherical material surface is mapped to an ellipsoidal surface. Let
p0 = Y−X and p = y− x. Thus for a homogeneous deformation, we have,
according to (47), p = Fp0. A spherical material surface can be represented
by p0 · p0 = 1 (with X as the center and Y −X as the radius vector). This
can be rewritten as, F−1p · F−1p = 1 or p ·B−1p = 1. In spectral form, let

B =
3∑
i=1

λ2ivi⊗vi. Then the relation p ·B−1p = 1 represents an ellipsoid with

axes vi ∈ Vχ and semi-axis lengths λi ∈ R.

4. Rotation tensors and rigid body motion

Rotations A tensor Q : V → V is orthogonal if for arbitrary {a,b} ∈ V
we have Qa ·Qb = a · b. As a result, QTQ = 1 = QQT and | detQ| = 1.
If detQ = 1 then Q is called proper orthogonal or a rotation. Note that
QT (Q − 1) = −(Q − 1)T and therefore if Q is a rotation, det(Q − 1) = 0.
Thus, there exists a nonzero f ∈ V such that Qf = f . The vector f is called
the axis of Q and is unaffected by the action of Q. We can take f to be a unit
vector without any loss of generality. Let {f ,g,h} ∈ V be a right handed
orthonormal basis for V . Then Qg · f = Qg · Qf = g · QTQf = g · f = 0
and similarly Qh · f = 0. In addition, Qg · Qh = g · h = 0. Furthermore,
f · Qg × Qh = Qf · Qg × Qh = f · g × h (since Qf ·Qg×Qh

f ·g×h
≡ detQ = 1).

Therefore {f ,Qg,Qh} forms a right handed orthonormal basis in V. As
shown above, Qg is orthogonal to f , and consequently we can write Qg =
ag+bh for some {a, b} ∈ R. But |Qg| =

√
Qg ·Qg =

√
g · g = 1. Therefore,

there exists θ ∈ R such that a = cos θ and b = sin θ. We then obtain
Qh = f×Qg = − sin θg+cos θh. We writeQ = Q1 = Q(f⊗f+g⊗g+h⊗h),
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or

Q = f ⊗ f +Qg ⊗ g +Qh⊗ h

= f ⊗ f + cos θ(g ⊗ g + h⊗ h) + sin θ(h⊗ g − g ⊗ h). (48)

This expression is known as the Rodrigues’ representation formula. Several
interesting facts regarding rotations are now stated:
(i) Every rotation Q (Q ̸= 1) has a unique axis. Let v ∈ V be such that
Qv = v. Using (48) we obtain (v · g cos θ − v · h sin θ)g + (v · g sin θ + v ·
h cos θ)h = (v · g)g + (v · h)h, which in turn results into a system of two
simultaneous equations,(

cos θ − 1 − sin θ
sin θ cos θ − 1

)(
v · g
v · h

)
=

(
0
0

)
. (49)

Assume {v · g,v ·h} ≠ {0, 0}. This requires 0 = (cos θ− 1)2 +sin2 θ = 2(1−
cos θ) or cos θ = 1. In such a case (48) reduces toQ = f⊗f+g⊗g+h⊗h = 1.
Thus for Q ̸= 1 we require {v · g,v · h} = {0, 0} and thus v = (v · f)f , i.e.
v is parallel to f .
(ii) There exists W ∈ Skw such that its axial vector coincides with the axis
of Q and moreover

Q = 1+ sin θW + (1− cos θ)W2. (50)

To see this, let W = h ⊗ g − g ⊗ h. Then according to (43), W is skew
with ω = Wg · h = 1 and axial vector w = ωf = f , which is also the axis
of Q. Consider W2 = Wh ⊗ g − Wg ⊗ h = −(g ⊗ g + h ⊗ h) and thus
f ⊗ f = 1+W2. On substituting these relations in (48) we get the required
formula (50).
(iii) Every rotation Q is expressible as Q = exp(θW), with W ∈ Skw as
defined in (ii) above and θ ∈ R. The exponential of a tensor is defined by

the power series expW =
∞∑
n=0

1
n!
Wn. Using this definition we can expand

exp(θW),

exp(θW) =
∞∑
n=0

θn

n!
Wn = 1+

∞∑
m=1

θ2m

2m!
W2m +

∞∑
m=0

θ2m+1

(2m+ 1)!
W2m+1. (51)

Note that W2m = (−1)m+1W2 and W2m+1 = (−1)mW (m = 1, 2, 3, ..).
Both of these claims can be proved using induction. The relation (51) then
takes the form

exp(θW) = 1+
( ∞∑
m=0

(−1)mθ2m+1

(2m+ 1)!

)
W +

( ∞∑
m=1

(−1)m+1θ2m

2m!

)
W2. (52)
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Recalling that sin θ =
∞∑
m=0

(−1)m

(2m+1)!
θ2m+1 and (1 − cos θ) =

∞∑
m=1

(−1)m+1

2m!
θ2m,

and substituting these in (52) we obtain an expression for exp(θW) which
coincides with the right hand side of (50).
(iv) For a fixed W ∈ Skw, the rotation Q(θ) = exp(θW) uniquely solves
the following initial value problem:

Q′(θ) = WQ(θ), Q(0) = 1. (53)

Using definition (51) for exp(θW), we can obtain Q′(θ) =
∞∑
n=1

θn−1

(n−1)!
Wn =

W
∞∑
n=0

θn

(n)!
Wn and therefore Q′(θ) = WQ. It is easy to see that Q(0) = 1.

Thus, the rotation Q satisfies (53). The uniqueness of the solution for (53)
results from the theory of ordinary differential equations (Coddington, E. A.
& Levinson, N. Theory of Ordinary Differential Equations, Krieger (1984)).

Rigid body motion The motion of a body B is rigid if the distance be-
tween any pair of material points remains invariant. For arbitrary {X,Y} ∈
Eκ we then have

|χκ(Y, t)− χκ(X, t)| = |Y −X|. (54)

We now show that the rigid body motion is homogeneous and the associated
deformation gradient is a proper orthogonal tensor. Fix X and then differ-
entiate both sides of (54) with respect to Y. We obtain FT (Y, t)(χκ(Y, t)−
χκ(X, t)) = Y − X. Now fix Y and differentiate this relation with re-
spect to X. We obtain FT (Y, t)F(X, t) = 1 for all {X,Y} ∈ Eκ. Set
X = Y to obtain FT (X, t)F(X, t) = 1. Since detF > 0, it follows that
detF = 1. We have thus proved that F is proper orthogonal. Furthermore,
F(X, t) = F−T (Y, t) = F(Y, t), where the second equality is a consequence
of the orthogonality of F. Since X and Y are arbitrary, we conclude that F
is homogeneous. Denote F(X, t) = Q(t), where Q ∈ Orth+. Equation (45)
then takes the form

x = Q(t)X+ c(t), (55)

where x = χκ(X, t). The spatial velocity gradient in this case is given by
L(t) = Q̇QT , which is skew. Therefore the rate of deformation tensor, which
is the symmetric part of L, vanishes i.e. D = 0 and the vorticity tensor is
W(t) = Q̇QT . The relation grad ṽ = W(t) can then be integrated to get

ṽ(x, t) = W(t)x+ d(t) (56)

for some d ∈ Vχ. This follows directly from (55).
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We have shown that the vanishing of the rate of deformation tensor, i.e.
D = 0, is a necessary condition for rigid motion. The proof for sufficiency
is now given. An equivalent condition for rigid body motion is obtained by
taking the material time derivative of (54), yielding

(v̂(Y, t)− v̂(X, t)) · (χκ(Y, t)− χκ(X, t)) = 0. (57)

We will obtain (57) by assuming L to be skew and thus prove our assertion.
Let y = χκ(Y, t) and x = χκ(X, t) be two points in some open neighborhood
of Eχ. The equation of a straight line L ⊂ Eχ connecting x and y is given by
z(u) = x+ u(y − x), where 0 ≤ u ≤ 1. Then,

v̂(Y, t)− v̂(X, t) =

∫
κ◦χ−1(L)

(∇v̂)dZ =

∫
κ◦χ−1(L)

LFdZ =

∫
L

L(z)dz (58)

or

v̂(Y, t)− v̂(X, t) =

∫ 1

0

L(z(u))z′(u)du =

∫ 1

0

L(z(u))(y − x)du (59)

and therefore

(v̂(Y, t)− v̂(X, t)) · (χκ(Y, t)− χκ(X, t)) =

∫ 1

0

(y − x) · L(y− x)du, (60)

which vanishes because L is skew. This completes the proof.

5. Singular surfaces

By a singular surface, we refer to a surface in the body across which jump
discontinuities are allowed for various fields (and their derivatives) which
otherwise are continuous in the body. The jump of a field (say Ψ) across a
singular surface is denoted by

JΨK = Ψ+ −Ψ−, (61)

where Ψ+ and Ψ− are the limit values of Ψ as it approaches the singular
surface from either side. The ‘+’ side is taken to be the one into which the
normal to the surface points. Let Φ be another piecewise continuous field.
The following relation, which can be verified by direct substitution using
(61), will find much use in our later developments

JΦΨK = JΦK⟨Ψ⟩+ ⟨Φ⟩JΨK, (62)

where

⟨Ψ⟩ = Ψ+ +Ψ−

2
. (63)
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A two dimensional surface which evolves in time is given by

St = {X ∈ κ(B) : ϕ(X, t) = 0}, (64)

where ϕ : κ(B) × R → R is a continuously differentiable function. The ref-
erential normal to the surface and the referential normal velocity are defined
by

N(X, t) =
∇ϕ
|∇ϕ|

and

U(X, t) = − ϕ̇

|∇ϕ|
, (65)

respectively. The second of these definitions is motivated towards the end of
this section. An immediate consequence of these definitions is

Ṅ = −(1−N⊗N)∇U − U(∇N)N. (66)

Indeed, we have from (65)1

Ṅ =
∇ϕ̇
|∇ϕ|

− ∇ϕ
|∇ϕ|2

(
∇ϕ
|∇ϕ|

· ∇ϕ̇
)

=
∇ϕ̇
|∇ϕ|

(1−N⊗N) and (67)

∇N =
∇2ϕ

|∇ϕ|
− ∇ϕ

|∇ϕ|2
⊗

(
∇2ϕ

∇ϕ
|∇ϕ|

)
=

∇2ϕ

|∇ϕ|
−N⊗ (∇2ϕ)N

|∇ϕ|
. (68)

On the other hand, (65)2 yields

∇U = − ∇ϕ̇
|∇ϕ|

+
ϕ̇

|∇ϕ|2

(
∇2ϕ

∇ϕ
|∇ϕ|

)
= − ∇ϕ̇

|∇ϕ|
− U

(∇2ϕ)N

|∇ϕ|
, (69)

where ∇2ϕ = ∇(∇ϕ) ∈ Sym. Combining these relations we obtain (66).
The tensor 1 −N ⊗N is the orthogonal projection onto Vκ and is denoted
by P. It is easy to check that PT = P and PP = P.

Derivatives We now define surface derivatives for scalar, vector and tensor
valued functions which are defined on the surface St. Let f denote a scalar,
vector or tensor valued function on St. The function f is differentiable at X ∈
St if f has an extension f to a neighborhood N of X, which is differentiable
at X in the classical sense and is equal to f for X ∈ St. The surface gradient
of f at X ∈ St is then defined by

∇Sf(X) = ∇f(X)P(X). (70)
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Let v : St → V and A : St → Lin be respectively, vector and tensor valued
functions on the surface St. We define the surface divergence as a scalar field
DivS v and a vector field DivS A by

DivS v = tr(∇Sv)

c ·DivS A = DivS(ATc) (71)

for any fixed c ∈ V . Moreover, we call v tangential if Pv = v and A superficial
if AP = A. We define the curvature tensor L by (the normal N and its
extension to a neighborhood of St are both denoted by the same symbol)

L = −∇SN, (72)

or L = −∇N(1−N⊗N). Therefore

tr L = −DivN+ (∇N)N ·N = −DivN, (73)

where we have used (∇N)TN = 0, which follows from N · N = 1. Since
∇SNP = ∇NPP = ∇NP = ∇SN, the curvature tensor is superficial. Fur-
thermore, using (68) we have

L = −∇N(1−N⊗N)

= −
(
∇2ϕ

|∇ϕ|
−N⊗ (∇2ϕ)N

|∇ϕ|

)
(1−N⊗N)

=
−1

|∇ϕ|
{∇2ϕ−N⊗ (∇2ϕ)N− (∇2ϕ)N⊗N+

(
(∇2ϕ)N ·N

)
N⊗N}

and consequently we infer that L = LT and LN = 0. Therefore, N is a
principal direction of L with the corresponding principal value being zero.
Since L is symmetric, the spectral theorem implies that it has three real
eigenvalues with mutually orthogonal eigenvectors. We have already obtained
zero as an eigenvalue (with N as the eigenvector). Let the other eigenvalues
be κ1 and κ2, whose corresponding eigenvectors lie in the plane normal to N.
The mean and the Gaussian curvature associated with the surface are then
defined as

H =
1

2
(κ1 + κ2), and K = κ1κ2, (74)

respectively.
A function φ : (t−ε, t+ε) → Eκ, ε > 0, is said to be a normal curve through
X ∈ St at time t if for each τ ∈ (t− ε, t+ ε),

φ′(τ) = U(φ(τ), τ)N(φ(τ), τ). (75)
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The function φ(τ) is therefore the position parameterized by τ . We define
the normal time derivative of a function on St by

v̊(X, t) =
dv(φ(τ), τ)

dτ

∣∣∣
τ=t
. (76)

The relation (66) can therefore be written as N̊ = −∇SU .

Remark: We will assume that an extension of a surface field to a neighbor-
hood of the surface exists, and will abuse the notation to use the same symbol
for the field and its extension.

Compatibility conditions Central to the discussion on the kinematics of
singular surfaces are the compatibility conditions which relate the deforma-
tion gradient and the velocity field across the singular surface. Consider a
closed material curve C ⊂ Eκ such that it intersects the singular surface St
at two points, say p1 and p2. Let AC be the area bounded by C and let
Γ = AC ∩St be the line of intersection of this area with the singular surface.
We parameterize Γ by arc-length u such that the curve Γ extends from p2 to
p1.
In general we can write

b =

∮
C

FdX, (77)

where a non-zero b ∈ Eχ arises when F is incompatible (we assume for now
that F is not expressible as a gradient). In dislocation theory b is referred to
as the Burgers vector associated with the closed curve C. The integration in
the above relation is well defined since we assume F to be singular only over
a set of zero Lebesgue measure (a finite number of points on a continuous line
constitute such a set). According to Stokes’ theorem with a singular surface,

b =

∮
C

FdX =

∫
AC

(CurlF)TNAdA−
∫
Γ

JFKdX, (78)

where NA is the unit normal associated with the area AC . A proof of this
theorem is given in the following chapter on balance laws. We discuss two
consequences of the above relation:
(i) Let b = 0. Then, CurlF = 0 in κ(B)\St. We can show this by choosing
a C such that Γ = ∅. The arbitrariness of AC (and thus of NA) and the
localization theorem for surface integrals (see the following chapter) then
imply CurlF = 0 for all X ∈ κ(B) \ St. Equation (78) now reduces to

0 =

∫
Γ

JFKdX. (79)
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Use the parametrization of Γ to write dX = sdu, where s ∈ TSt(X) is a unit
vector in the tangent plane TSt(X) to St at X. The curve C can be arbitrarily
chosen and therefore Γ is arbitrary. Use the arbitrariness of Γ to localize
(79), and obtain JFKs = 0 (80)

for all s ∈ TSt(X). Thus, there exists a vector k ∈ Vχ such that

JFK = k⊗N (81)

on St, which is Hadamard’s compatibility condition for the deformation gra-
dient.
(ii) Let CurlF = 0 in κ(B) \ St. Therefore there exists a vector field χκ

such that F = ∇χκ away from St. Note that χκ might still suffer a jump
across St. Let C

+ ∪ C− = C, where C+ and C− are two disjoint parts of C
which lie on the ‘+’ and ‘−’ side of St, respectively. The ‘+’ side is the one
into which the normal N points. Therefore,∮

C

FdX =

∫
C+

FdX+

∫
C−

FdX

= χ+
2 − χ+

1 + χ−
1 − χ−

2

= JχκK2 − JχκK1 = −
∫
Γ

JχκK′(u)du, (82)

where χ+
2 = χ+

κ (p2) etc. The negative sign in the last term above arises due
to the orientation of Γ, which extends from p2 to p1. On the other hand we
have in this case, from (78),∮

C

FdX = −
∫
Γ

JFKdX. (83)

Since JχκK′(u) = ∇JχκKs = ∇SJχκKs (as Ps = s), we obtain, on comparing
Eqs. (82) and (83) and using the arbitrariness of Γ

JFKs = ∇SJχκKs (84)

for all s ∈ TSt(X). Thus, there exists a vector k ∈ Eχ such that

JFK = k⊗N+∇SJχκK (85)

on St, which is the modified compatibility condition for the deformation
gradient in the case when χκ suffers a jump on the singular surface. If JχκK =
constant then Eq. (85) reduces to Hadamard’s compatibility condition (81).

21



To obtain the compatibility condition for the velocity field, we apply the
definition of the normal time derivative (cf. (75), (76)) on fields χ+

κ and χ−
κ .

We obtain

(χ+
κ )̊ =

dχκ(φ(τ), τ)

dτ

∣∣∣
τ=t+

= UF+N+ v+ (86)

and

(χ−
κ )̊ =

dχκ(φ(τ), τ)

dτ

∣∣∣
τ=t−

= UF−N+ v−, (87)

where τ ∈ (t, t + ε) in (86) and τ ∈ (t − ε, t) in (87). Subtracting these
relations we get the compatibility condition for the velocity field,

JvK + UJFKN = JχκK̊. (88)

For JχκK = const. (including the case when χκ is continuous, i.e. JχκK = 0)
this condition reduces to

JvK + UJFKN = 0 (89)

or equivalently
UJFK = −JvK ⊗N. (90)

Surface deformation gradient For a continuous motion across the sur-
face St, we have Jχκ(X, t)K = 0 for X ∈ St, and in this case we can define
the surface deformation gradient F and the surface normal velocity v by

F = ∇Sχκ, v = χ̊κ. (91)

It is then easy to check that

F = F±P, v = v̂± + UF±N, (92)

where on the right hand side above, ± indicates that either + or − can be
used, a fact which can be verified using the compatibility conditions (81) and
(89).
The tensor F as defined above satisfies det F = 0 and F∗ ̸= 0. That det F = 0
can be verified using (92)1 and detP = 0. The cofactor F∗ of F is defined by
F∗(a× b) = Fa× Fb for arbitrary vectors {a,b} ∈ Vκ. Let {t1, t2} ∈ TSt(X)

be two unit vectors in the tangent plane to St at X ∈ St, such that {t1, t2,N}
form an orthonormal basis at X. Then,

F∗N = F∗(t1 × t2) = Ft1 × Ft2

= F±t1 × F±t2

= (F±)∗N, (93)
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where in the second equality, relation (92)1 has been used. Furthermore, it is
straightforward to check that F∗tα = 0 (α = 1, 2), since FN = 0. Therefore
F∗ remains non-zero as long as (F±)∗N does not vanish. Note that |F∗N| is
equal to the ratio of the infinitesimal areas (on the singular surface) in the
current and the reference configuration. This follows immediately from Eqs.
(24) and (93).

Surface parametrization Consider X ∈ Eκ in a neighborhood of St. We
can then find a point X̂ ∈ St such that

X = X̂+ ζN, (94)

where ζ(t) ∈ R is a scalar. We parameterize the surface St by using a local
coordinate system (ξ1, ξ2), where {ξ1, ξ2} ∈ R. In terms of the new variables,
X = X(ξ1, ξ2, ζ), X̂ = X̂(ξ1, ξ2, t) and N = N̂(ξ1, ξ2, t). Let X̂,α = ξα for α =
1, 2. We assume that the parametrization is such that the triad {ξ1, ξ2,N}
forms an orthonormal basis at X̂. In a sufficiently small neighborhood of
X = X(ξ1, ξ2, ζ) it is possible to invert this to obtain ξ ≡ (ξ1, ξ2, ζ) = ξ(X).
Use (94) to obtain the differential of X,

dX = (ξα + ζN,α)dξα +Ndζ. (95)

If we identify with ξ1 and ξ2, the principal directions of L (recall that N is
the third principal direction, cf. (72) and the paragraph preceding (74)), we
haveN,α = −καξα (no summation implied over α), where κα are the principal
curvatures associated with the surface. Therefore, if A is the gradient of the
map taking ξ to X then dX = Adξ and it follows from (95) that

A = ξ11(1− κ1ζ)ξ1 ⊗ ξ1 + ξ22(1− κ2ζ)ξ2 ⊗ ξ2 +N⊗N, (96)

where ξαα = ξα · ξα (no summation). Let ξ = ξ11ξ22. Thus

jA ≡ detA = ξ(1− 2ζH + ζ2K), (97)

where H and K are defined in (74).
Taking the differential of the function ϕ, dϕ = ∇ϕ·dX+ϕ̇dt, and substituting
in it the expression for dX from (95) for a point near the surface, we obtain

dϕ = ∇ϕ · ((ξα + ζN,α)dξα +Ndζ) + ϕ̇dt. (98)

On the surface, we have ζ = 0 and dϕ = 0. Consequently we obtain

0 = ∇ϕ · ξαdξα +∇ϕ ·Ndζ + ϕ̇dt

= ∇ϕ · ξαdξα +∇ϕ ·Nζ̇dt+ ϕ̇dt (99)

on St, and noting the independence of dξα and dt, we recover relations (65)
along with the identification of ζ̇ with U .
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Singular surface in the current configuration The image of the sin-
gular surface St in the current configuration is give by

st = χκ(St, t) = {x ∈ χ(B) : ψ(x, t) = 0}, where

ψ(χκ(X, t), t) = ϕ(X, t). (100)

The scalar function ψ : χ(B)×R → R is assumed to be continuously differ-
entiable with respect to its arguments. The normal to the surface st and the
spatial normal velocity are defined by (cf. (65))

n =
gradψ

| gradψ|
, and

u = − 1

| gradψ|
∂ψ

∂t
, (101)

respectively, where ∂ψ
∂t

is the spatial time derivative of ψ at a fixed x. Differ-
entiate (100)2 to obtain

∇ϕ = (F±)T gradψ, and

ϕ̇ = gradψ · v± +
∂ψ

∂t
. (102)

The following relations can then be obtained on combining (65), (101), and
(102):

n =
(F±)−TN

|(F±)−TN|
, and

u = n · v± +
U

|(F±)−TN|
. (103)
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