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ABSTRACT 

The vibro-acoustical nature of mizhāvu, a large pitcher-shaped monofacial 

membranophone with an indefinite pitch, is studied. A coupled structure-acoustics, 

Finite Element Method (FEM) based, methodology is developed and used for 

conducting the modal analysis of the drum consisting of a clamped membrane backed 

by an acoustic air cavity. The results of the FEM simulation are interpreted keeping 

in mind the recorded sound of the drum and the strokes that are used for playing the 

drum. The distinctive acoustical signature of mizhāvu is identified through a 

coupling of axisymmetric membrane modes with longitudinal pressure modes 

resulting in a rather rich spectrum of overtones. The effect of varying parametric 

values on the frequency spectrum of the drum is discussed and the acoustics of 

mizhāvu is compared with two large drums, the Indian nagāḍā and the western 

timpani. 

 



1. INTRODUCTION 

Mizhāvua is a big-bellied pitcher-shaped monofacial membranophone.[1,2] It has 

a short narrow cylindrical neck over which a parchment is stretched and tied tightly 

using a rope. The pitcher is made of thin copper sheet which thickens towards the 

neck. The parchment is developed out of the outer calf skin and is noticeably thicker 

than the ones used in tablā, for instance. A tiny hole, also called the ear of the drum, 

is drilled through one side of the vessel at around halfway height from the bottom, 

purposefully so as to improve the resonance.[1] A full mizhāvu, as well as a closeup of 

the neck region, is shown in Fig. 1. The drum is placed in front of the player within 

a cage (piñjara) of wooden slats such that its bottom remains away from the ground.  

Mizhāvu is played with hands and yields a loud metallic tone often described as 

thunderous. Unlike some other Indian drums, such as tablā, pakhāwaja, mradangam, 

and idakkā,[3-6] mizhāvu sound has no definite pitch.  

Traditionally, mizhāvu has been used exclusively in the ritualistic Sanskrit 

theatre forms of Kerala such as kuṭiyaṭṭam, cākyar kuttu, and nāṅgyār kuttu.[7,8] 

Kuṭiyaṭṭam is the most prominent survivor of the ancient Indian theatrical culture 

with several links to nātyaśastra. The theatre is performed within a highly 

formalized rectangular structure called kuṭṭambalam which has a square-shaped  

 
a Mizhāvu is phonetically written as [mɪɻaːʋ]. The retroflex approximant [ɻ] is a trademark of 
Malayalam language. The virama at the end cancels the inherent vowel after the consonant ‘v’ as per 
the schwa deletion rule.  



stage in addition to an auditorium. The stage is connected to the dressing room 

(nepathya), located behind it, with two narrow doors (one for entrance and the other 

for exit). Two mizhāvus are placed between these two doors in the backside of the 

stage, see Fig. 2. Besides mizhāvu, idakkā (hour-glass shaped drum), kuzhittāla 

(cymbal), śankha (conch), and two wind instruments (kompa and kuchal) are also 

present on stage (altogether constituting a paṅcavādya ensemble). 

Mizhāvu is played with an open palm using two basic strokes: thā, by hitting 

the middle of the membrane, and thom (or thu),b by hitting near the edge of the 

membrane.[1] These strokes are played with varying intensities to produce a structure 

of rhythmic beats or tālas. There are seven tālas: chempaṭa, tripuṭa, jhampa, 

dhruva, aṭanta, eka, and lakṣmī; these are used according to the situation, character, 

 
b The phonemic representation of thā and thom strokes are /t̪aː/ and /t̪oːm/, respectively. 

Figure 1: Mizhāvu (notice the hole) with a closeup of the neck portion. 



etc. (for instance, lakṣmī tāla is used to enact the jatāyu dance piece from 

Rāmāyana).  

The purpose of this article is to study and characterize the vibro-acoustical 

nature of mizhāvu. In Section 2, we report a brief analysis of the recording of 

mizhāvu sound. The recordings were conducted by one of the authors (SP) on the 

sidelines of the kuṭiyaṭṭam festival at the Natanakairali Institute in Irinjalakuda, 

Kerala, in early January 2020. These field studies provide us with the motivation for 

pursuing the simulation work in the following sections. In Section 3, we present an 

idealized mathematical model, and the associated variational formulation, for the 

finite element implementation of the structure-acoustic coupled problem. The results 

of the developed numerical methodology are presented and discussed in Section 4. 

The results are first justified in the light of frequency spectrums collected from the 

sound recordings and then studied under a variation in the parametric values of 

Figure 2: Mizhāvu in performance during the kuṭiyaṭṭam festival at the 
Natanakairali institute in Irinjalakuda, Kerala in the first week of 
January 2020.  



mouth diameter and membrane tension values. Subsequently, a simplified analytical 

model of the drum is discussed in order to understand the coupling between an 

axisymmetric membrane mode with the longitudinal acoustical modes. Towards the 

end, we briefly discuss the acoustics of nagāḍā and timpani and contrast them to 

that of mizhāvu. This is to emphasize the distinctiveness of mizhāvu in comparison 

to other big-bellied drums which also have a much larger mouth diameter than that 

of mizhāvu. Finally, we present some results which justify our assumption of ignoring 

the neck of the drum. The article is concluded in Section 5. 

 

2. THE AUDIO RECORDINGS 

The recordings were done using a mizhāvu which was 76 cm high, had a 

mouth with inner and outer diameter of 14 cm and 16 cm, respectively. The rim of 

the neck, which provided the boundary for the vibrating membrane, was therefore 1 

cm thick. The membrane was clamped at the outer edge of the rim. The maximum 

diameter of the pitcher was 52 cm. The hole on the side had a diameter of 9 mm and 

was located 48 cm above the bottom of the drum. The drum overall had an 

axisymmetric shape (modulo the hole on the side). The audio recordings were 

conducted using the Audio-Technica AT2020 USB cardioid condenser microphone. 

Several recordings were made (different drummers playing with different intensity) 

for each of the following cases: (i) basic strokes thā and thom with hole open, (ii) 

basic strokes thā and thom with hole closed, (iii) lakṣmī tāla on one drum, and (iv)  



 

 

 

 

 

 

freestyle playing using two mizhāvus. The recorded data is processed to generate 

spectrograms and frequency spectrum plots. The modal frequencies are identified 

from the dominant peaks appearing in the latter. Out of the several recordings for 

each of the case, mentioned above, we present results for one representative sample 

after noting little variation among all the available candidates. The dominant modal 

frequencies are summarized in Table 1. The spectrograms corresponding to thā and 

thom strokes, with hole open, are given in Fig. 3. The associated frequency spectrum 

plots are given in Fig. 4. The spectrum plots for the remaining four cases are 

collected in Figs. 5 and 6. The spectrograms for thā and thom strokes showed no 

perceptible difference when the hole was closed.  

thā (with hole) 293.9, 354.7, 571.3, 741, 834.7, 936.1, 957.6, 1116, 1173 
thom (with hole) 305.6, 355.2, 572.3, 738.6, 935.7, 959.3, 1115, 1173 
thā (hole closed) 296.2, 355, 571.6, 741.3, 844.4, 935.7, 959.2, 1116, 1173 
thom (hole closed) 306.3, 361.3, 571.8, 936.7, 959.4, 1116 
lakṣmī tāla 306.5, 358.5, 571.6, 743.8, 862.7, 938.5, 960.6, 1118, 1175 
two mizhāvus 305.5, 359.7, 575.2, 617.8, 746.7, 853.1, 940, 961.6, 1118, 1175 
Table 1: Dominant natural frequencies (in Hz) for various playing styles. 

Figure 3: Spectrograms for thā and thom strokes with hole open. 



 

Figure 4: Frequency spectrum plots for thā and thom strokes with hole open. 

Figure 5: Frequency spectrum plots for thā and thom strokes with hole closed. 

Figure 6: Frequency spectrum plots for lakṣmī tāla and a pair of mizhāvus. 



Several observations are in order concerning these plots. First, recall that with 

the thā and thom strokes, the membrane is struck at the centre and close to the 

edge, respectively (both with an open palm). Therefore, we expect the spectrum of 

thā stroke to be dominated by the membrane modes with antinodes at the centre; all 

the 0m modes satisfy this. Here, and elsewhere, the mode shapes of circular 

membranes are denoted through the convention nm, where n indicates the number of 

nodal diameters and m the number of nodal circles.[9] The spectrum for the thom 

stroke will also include the other modes (the nm modes). This is evident from the 

spectrograms in Fig. 3, although the modes which sustain are identical in both the 

cases. Given that the strikes are made with an open palm (i.e., a finite area over the 

small membrane), it is expected that the vibration modes are dominated by modes 

with 01 and 02 membrane modes (assuming that the higher membrane modes will be 

more damped). Even then, certain modes can dominate overall due to the resonance 

of specific membrane modes with the air cavity modes. Second, the hole in the drum 

shell appears to be inconsequential as far as spectrograms and frequency spectrums 

are concerned. Its acoustical importance therefore remains inconclusive. Finally, 

there is a consistent pattern in peaks which can be noticed from all the spectrum 

plots. There are clear peaks close to 300 Hz, 600 Hz, 750 Hz, 900 Hz, and 1200 Hz, 

indicating semblance of a definite pitch with a fundamental of 150 Hz (the 

fundamental is discernible in the spectrograms). The peaks at 300 Hz, 900 Hz, and 

1200 Hz always appear in pair. The difference in the frequencies of the pair are 



around 50 Hz, 20 Hz, and 50 Hz, respectively. The presence of these nearby peaks 

indicate a beat-like phenomena in mizhāvu sound. The splitting of frequencies can be 

a consequence of asymmetric tuning of the membrane, or due to asymmetry in the 

membrane density distribution, or asymmetry in the construction of the instrument; 

we do not explore any of these possibilities in this work. To summarize, the presence 

of air cavity in mizhāvu yields several dominant natural frequencies in close 

harmonic relationships in addition to appearance of beats due to pairs of nearby 

frequency values. 

 

3. THE VIBRO-ACOUSTIC MODEL 

The vibro-acoustic problem of monofacial drums can be described in terms of 

a system of coupled partial differential equations. These include the membrane 

vibration equation and the acoustic wave equation, the latter governing the internal 

pressure field of the cavity. The differential equations are supplemented with an 

appropriate set of initial and boundary conditions. We neglect both acoustic and 

structural damping and assume the walls of the cavity to be perfectly rigid. We also 

neglect the acoustic environment external to the drum. The cavity of the drum is 

closed in such a manner that the air inside the cavity is confined and the motion of 

the membrane changes the volume of the air in the cavity. This changes the pressure 

of the air confined in the cavity. The pressure of the confined air in turn generates a 

force on the membrane. 



 

 

 

 

 

 

 

 

We consider an idealized model of mizhāvu, whose geometry is illustrated in 

Fig. 7. We assume the neck height (and width) of mizhāvu to be vanishingly small 

and the hole to be absent. The validity of the former assumption is discussed in 

Section 4.5 whereas the latter is justified in the preceding section on the basis of 

audio recordings. The membrane is clamped at the edge of the open face of the 

curved shell. The latter is assumed to be elastically rigid. In general, due to thickness  

of the neck region, the membrane will wrap and unwrap over the finite rim, 

somewhat analogous to the behaviour of a vibrating string over the bridge in several 

Indian string instruments such as tānpurā and sitār.[10] The feature of a finite rim is 

also present in a large variety of Indian drums (e.g., tablā, pakhāwaja, and idakkā) 

and it will be important to study its role in the vibro-acoustical behavior of these 

drums. However, in our idealized model, the rim is assumed to be sharp without any 

finite width. The density of the membrane is assumed to be uniform.  

Figure 7: An idealized model of mizhāvu shell used for FEM simulations; d represents diameter of the 
mouth, D the maximum diameter of the shell, L the height of the drum, and l the position (from top) of 
the maximum diameter. 



In formal terms, the cavity domain Λ is bounded by a rigid axisymmetric shell 

surface C and a circular membrane Σ of diameter 𝑑. The membrane, with a fixed 

edge S, is subjected to uniform tension 𝑇 per unit length such that its transverse 

motion 𝑢((𝑥, 𝑦, 𝑡) is governed by the differential equation  

𝜎 !!"#
!$!

− 𝑇Δ𝑢( = 𝑝̅,	 	 	 	 	 	 (1)	

where 𝜎 is the uniform density (per unit area) of the membrane and the operator Δ 

represents the two-dimensional Laplacian. The acoustic pressure field 𝑝̅(𝑥, 𝑦, 𝑧, 𝑡) is 

also an unknown variable. At radius 𝑟 = 𝑑/2, 𝑢( = 0. The acoustic air cavity domain 

Λ is assumed to be filled with an inviscid fluid (air) whose pressure field is governed 

by the acoustic wave equation 

!!%̅
!$!

− 𝑐%'Δ<𝑝̅ = 0,	 	 	 	 	 	 (2)	

where 𝑐% is the speed of sound in the medium (air) and Δ< is the three-dimensional 

Laplacian. The boundary conditions at the rigid wall surface C and at the membrane 

are given by 𝜕𝑝̅ 𝜕𝒏⁄ 	= 0 and 𝜕𝑝̅ 𝜕𝑧⁄ 	= 	−𝜌(𝑢(̈, respectively, where 𝜌( is the density of 

air and 𝒏 is the outward normal to the surface. The modal solutions  

𝑢( = 𝑢(𝑥, 𝑦)𝑒)*+$	𝑎𝑛𝑑	𝑝̅ = 𝑝(𝑥, 𝑦, 𝑧)𝑒)*+$ ,	 	 	 	 (3)	

where 𝜔 is the frequency, when substituted into Eqs. (1) and (2), respectively, yield  

𝜔'𝜎𝑢 + 𝑇Δ𝑢 + 	𝑝 = 	0	 	 		 	 	 (4)	

for the membrane Σ, such that 𝑢 = 0 at edge S, and 

𝜔'𝑝 + 𝑐%'Δ<𝑝 = 0	 	 	 	 	 (5)	



for the internal pressure field in the cavity Λ, such that  𝜕𝑝 𝜕𝒏⁄ 	= 0 on C and 

𝜕𝑝 𝜕𝑧⁄ 	= 	𝜔'𝜌(𝑢 on Σ.  

The preceding boundary-value-problem can be recast in terms of a variational 

principle. The solution of the problem, given in terms of smooth functions 𝑢(𝑥, 𝑦) 

and  𝑝(𝑥, 𝑦, 𝑧), extremizes the variational functional 𝐼(𝑢, 𝑝) 	= 	 𝐼, + 𝐼', where 

𝐼, 	= 	 ∫
,
'
𝑇(∇𝑢 ∙ ∇𝑢)	𝑑𝐴- 	− 𝜔' ∫ ,

'
𝜎𝑢'	𝑑𝐴- 	− ∫ 𝑝𝑢	𝑑𝐴- 	and	 																 	 	(6) 

𝐼' 	= 	
,

'+!."
∫ ∇<𝑝	 ∙ ∇<𝑝	𝑑𝑉/ 	− ,

'."0#!
∫ 𝑝'	𝑑𝑉/ 							 	 	 	 	 	 (7) 

subjected to 𝛿𝑢 = 0 on S; the operators ∇ and ∇< represent the two-dimensional and 

the three-dimensional gradient; and ∙ denotes the dot product. This variational 

principle forms the basis for our finite element procedure (implemented using 

Matlab) for the determination of modal frequencies and modal shapes. We choose 

four-node quadrilateral finite elements for discretizing the membrane and the rigid 

boundary C and eight-node hexahedral finite elements for discretizing the acoustic 

domain while ensuring that the membrane elements match well with acoustics 

domain elements at the nodes. The basis functions used for the former are 

{1, 𝑥, 𝑦, 𝑥𝑦} whereas the basis functions used for the latter are 

{1, 𝑥, 𝑦, 𝑧, 𝑥𝑦, 𝑥𝑧, 𝑦𝑧, 𝑥𝑦𝑧}. The integration over domains is evaluated using the 

standard Gauss quadrature rule for polynomials. The efficacy of our code is tested by 

using it to verify the existing results for timpani and tablā as reported in the earlier 



literature.[4,11,12] The details, including those related to convergence and mesh 

refinement, are available elsewhere.[13]   

 

4. RESULTS AND DISCUSSION 

The idealized shape of mizhāvu for simulation purposes is considered as given 

in Fig. 7. The curve generating the axisymmetric shape of the drum is drawn using a 

three-point spline interpolation. This is done in two parts, one from the mouth to the 

maximum diameter and the other from the maximum diameter to the bottom. The 

curves are chosen so as to mimic the shape of the actual drum. We fix the height of 

the drum as 𝐿=76 cm, the maximum diameter of the shell as 𝐷=52 cm, and the 

distance of the maximum diameter circle from top as 𝑙=28 cm, all in accordance with 

the mizhāvu used for the audio recordings. The diameter 𝑑 of the mouth however 

will be allowed to vary (between 14 cm and 16 cm). Besides 𝑑, we will also allow the 

membrane tension 𝑇 to take different values. The material parameters 𝜎=0.5445 

kg/m2 (areal density of the membrane), 𝜌(=1.21 kg/m3 (volume density of air), and 

𝑐%=344 m/s (speed of sound in air) will be fixed throughout. The areal density of the 

mizhāvu membrane is calculated from the samples collected during the field work. It 

should be noted that the density value is almost twice as much as that of tablā and 

timpani membranes.  

 



 

Table 2: Mode shapes and natural frequencies of an ideal membrane (without air cavity) with T=3500 N/m, 
d=16 cm;  the membrane displacements shown are in m. 

 
 

4.1. The eigen-spectrum and mode shapes of the drum 

In order to understand the frequency spectrum, as obtained from the audio 

recordings, we begin by fixing 𝑑=16 cm and 𝑇=3500 N/m. The effect of varying 𝑑 

and 𝑇 values on the frequency spectrum will be discussed in Section 4.2. To set the 

background, we look at the natural frequencies and mode shapes of the two building 

blocks of our drum taken separately, i.e., an ideal membrane clamped at its edge, on 

one hand, and an air cavity in the shape of the drum but with a face not covered by 

the membrane, on the other. In the latter case, the air cavity is assumed to be 

surrounded by an acoustically hard boundary (i.e., 𝜕𝑝 𝜕𝒏⁄ 	= 0 everywhere on the 

boundary). The pertinent results are collected in Tables 2 and 3, respectively. We 

     365.32 Hz 582.12 Hz 780.4 Hz 838.96 Hz 970.04 Hz 

Table 3: Mode shapes and natural frequencies of the air cavity without a membrane closing the facing with d=16 
cm; the pressure values shown are in Pa. 

     285.22 Hz 429.27 Hz 515.05 Hz 578.35 Hz 691.82 Hz 

     712.47 Hz 757.52 Hz 832.61 Hz 861.68 Hz 920.12 Hz 



recall from Section 2 that the strokes of mizhāvu playing will predominantly activate 

the 01 and 02 membrane modes (the axisymmetric modes) and consequently the 

longitudinal pressure modes (again axisymmetric) in the air cavity. With the 

considered parameters, these modes appear, respectively, at 365.32 Hz and 838.96 Hz 

for an isolated membrane, and at 285.22 Hz, 515.05 Hz, 712.47 Hz, 861.68 Hz, and 

920.12 Hz for an isolated air cavity. The frequency values are close to the peaks 

observed in the spectrums from audio recordings.  

A more complete picture is obtained when the frequency spectrum of the full 

drum (membrane and cavity coupled) is obtained. The results are given in Table 4. 

The relevant frequencies are those corresponding to the axisymmetric membrane 

modes. These are 279.46 Hz, 350,6 Hz, 520.42 Hz, 716 Hz, corresponding to the 01 

membrane mode, and 829.39 Hz, 865.09 Hz, 926.23 Hz, corresponding to the 02 

membrane mode. The acoustic mode shapes which accompany these frequencies are 

all longitudinal and axisymmetric, see Table 4. These frequency values are in 

reasonable agreement with the frequency spectrum obtained from the audio 

recordings of the thā stroke where the first seven frequency peaks were observed at 

293.9 Hz, 354.7 Hz, 571.3 Hz, 741 Hz, 834.7 Hz, 936.1 Hz, 957.6 Hz, see Table 1, first 

row. While comparing these values we should remember that we have ignored the 

effect of the acoustic environment external to the drum and have neglected the 

finiteness of the rim, among other idealizations in terms of geometry and material 

properties. 
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691.78 

  
 

 

937.39 

  
 

716.23 

  
 

 

967.88 

  
 

758.21 

  
 

 

997.69 

  
 

Table 4: Mode shapes and natural frequencies (in Hz) of an idealized mizhāvu with T=3500 N/m and d=16 cm. The membrane and air 
cavity modes shapes are shown separately for clarity. The membrane displacements are in m and pressure in Pa. 



The acoustical nature of mizhāvu is distinct from that of both tablā and 

timpani. The tablā acoustics is dominated by the vibrations of the non-uniform 

membrane (which yields a definite pitch) with the air cavity playing a leading role in 

dampening out the unwanted modes. In timpani acoustics, the acoustic cavity exerts 

a sufficient pressure load on the membrane so as to bring slight (but important) 

changes in the membrane frequency values. The mizhāvu acoustics is dominated by 

the longitudinal (axisymmetric) pressure modes multitude of which are coupled with 

the axisymmetric membrane modes. In fact, in all but a few cases, the pressure 

modes generate the vibration pattern in the membrane (as if it is a forced vibration 

of the membrane due to acoustic pressure).  Unlike both tablā and timpani, several 

distinct modes appear each with 01 and 02 membrane modes (see also Section 4.4). 

Consequently, even the sound generated by exciting only the first one or two 

axisymmetric membrane modes (by striking the drum membrane at the center, as in 

the thā stroke) yields rich overtones with a somewhat distinctive pitch.    

4.2. Effect of varying membrane diameter and tension 

We now investigate how the spectrum changes when we change the mouth 

diameter and tension in the membrane, while keeping other parameters fixed (as 

mentioned above). The natural frequency values, appended with the corresponding 

membrane mode shape identifiers, are collected in Table 5. The acoustic modes are 

not mentioned for the sake of brevity and because they are of the kind plotted in 

Table 4. The membrane modes can be identified with the numbers written in the nm 



format in a smaller font next to the frequency values. For instance, 27701 indicates 

that the frequency 277 Hz (rounded off to the nearest integer) is associated with a 

mode shape having 01 membrane mode (in addition to some pressure mode). 

Wherever the mode shape was unclear, it is indicated with a U next to the frequency 

value. Some columns are shorter than others because the membrane mode shapes are 

no longer discernible. We first note the trend in the frequency spectrum change as 

we modify the diameter of the mouth from 𝑑=14 cm to 15 cm and then 16 cm, all 

for a fixed tension value. The frequencies are, in general, seen to decrease with 

increasing 𝑑, sometime staying more or less constant but sometimes changing 

drastically. Frequently, particularly for higher frequencies, the order of mode shapes 

is modified and, in some cases, new membrane modes replace existing ones. These 

observations remain invariant for all the seven membrane tension values between 

2000 N/m and 5000 N/m considered in Table 5. We also note the change in the 

spectrum for a fixed diameter but varying tension in the membrane. The frequency 

values generally increase with an increasing tension, but there are multiple instances 

when they remain invariant. The latter will clearly occur whenever the mode is 

dominated by the acoustic cavity and the membrane vibration has little overall 

influence. The axisymmetric modal frequencies, agreeable with mizhāvu, are obtained 

at higher tension values for lower mouth diameters and vice versa.  

 



 

T=
 2

00
0 

N
/m

 
T=

 2
50

0 
N

/m
 

T=
 3

00
0 

N
/m

 
T=

 3
50

0 
N

/m
 

T=
 4

00
0 

N
/m

 
T=

 4
50

0 
N

/m
 

T=
 5

00
0 

N
/m

 
d=

14
 

d=
15

 
d=

16
 

d=
14

 
d=

15
 

d=
16

 
d=

14
 

d=
15

 
d=

16
 

d=
14

 
d=

15
 

d=
16

 
d=

14
 

d=
15

 
d=

16
 

d=
14

 
d=

15
 

d=
16

 
d=

14
 

d=
15

 
d=

16
 

27
70

1 
26

90
1 

25
10

1 
28

10
1 

27
70

1 
26

90
1 

28
20

1 
27

80
1 

27
60

1 
28

20
1 

27
90

1 
27

90
1 

28
30

1 
28

00
1 

28
10

1 
28

30
1

) 
28

00
1 

28
10

1 
28

30
1 

28
10

1 
28

20
1 

32
30

1 
30

70
1 

29
80

1 
35

60
1 

33
50

1 
31

00
1 

38
70

1 
36

20
1 

32
90

1 
41

50
1 

38
90

1 
35

00
1 

41
91

1 
41

30
1 

37
10

1 
41

91
1 

41
71

1 
39

10
1 

41
91

1 
41

71
1 

41
00

1 
41

91
1 

41
81

1 
42

31
1 

41
91

1 
41

81
1 

42
91

1 
41

91
1 

41
71

1 
42

91
1 

41
91

1 
41

71
1 

42
91

1 
44

10
1 

41
71

1 
42

91
1 

46
40

1 
43

60
1 

42
91

1 
48

20
1 

45
60

1 
42

91
1 

51
51

1 
48

01
1 

43
31

1 
51

90
1 

51
60

1 
47

81
1 

51
90

1 
51

70
1 

51
90

1 
52

10
1 

51
70

1 
52

00
1 

52
30

1 
51

90
1 

52
10

1 
52

60
1 

52
00

1 
52

20
1 

53
20

1 
52

30
1 

52
30

1 
51

80
1 

51
60

1 
51

80
1 

55
91

1 
53

51
1 

51
90

1 
56

01
1 

55
51

1 
52

21
1 

56
01

1 
55

51
1 

56
11

1 
56

01
1 

55
61

1 
57

61
1 

56
01

1 
55

61
1 

57
71

1 
56

01
1 

55
61

1 
57

71
1 

56
11

1 
55

71
1 

57
91

1 
57

81
1 

55
81

1 
57

91
1 

63
01

1 
58

81
1 

57
61

1 
67

72
1 

63
41

1 
58

11
1 

67
72

1 
67

52
1 

60
51

1 
67

72
1 

67
52

1 
64

01
1 

67
72

1 
67

52
1 

67
31

1 
67

72
1 

65
32

1 
58

12
1 

67
82

1 
67

62
1 

65
02

1 
67

72
1 

67
52

1 
69

12
1 

68
01

1 
67

51
1 

69
12

1

1 
72

00
1 

67
71

1 
69

12
1 

72
00

1 
71

90
1 

69
12

1 
72

10
1 

71
90

1 
69

12
1 

69
92

1 
67

62
1 

62
60

2 
71

80
1 

71
50

2 
69

20
2 

68
01

1 
71

7U
 

71
12

1 
71

90
1 

71
70

1 
71

60
1 

72
41

1 
71

80
1 

71
70

1 
73

91
1 

73
81

1 
71

80
1 

74
01

1 
73

21
1 

71
80

1 
71

40
2 

69
40

2 
69

22
1 

74
11

1 
72

92
1 

72
80

2 
74

11
1 

73
51

1 
75

81
1 

74
21

1 
73

51
1 

75
81

1 
74

41
1 

73
61

1 
75

81
1 

77
41

1 
80

12
1 

75
81

1 
80

62
1 

76
01

1 
75

91
1 

74
11

1 
72

80
2 

72
0U

 
78

22
1 

73
51

1 
75

71
1 

80
62

1 
79

82
1 

77
30

2 
80

62
1 

80
12

1 
76

82
1 

80
62

1 
80

12
1 

82
02

1 
80

62
1 

84
50

1 
83

22
1 

81
41

1 
80

12
1 

83
22

1 
76

00
2 

73
51

1 
73

23
1 

80
62

1 
78

80
2 

81
83

1 
84

80
2 

80
22

1 
83

22
1 

84
80

1 
84

50
1 

82
90

2 
84

90
1 

84
50

1 
83

32
1 

84
90

1 
90

80
1 

86
20

1 
84

90
1 

84
50

1 
86

20
1 

80
62

1 
80

12
1 

75
71

2 
83

90
2 

80
12

1 
83

22
1 

85
62

1 
84

3U
 

86
3U

 
90

90
2 

86
22

1 
83

22
1 

91
10

1 
90

70
2 

86
00

2 
91

10
1 

91
73

1 
87

12
1 

91
20

1 
90

90
1 

91
72

1 
84

90
2 

82
23

1 
80

81
2 

85
20

2 
 

84
60

2 
86

3U
 

90
30

2 
86

20
2 

89
63

1 
91

93
1 

90
20

2 
86

50
2 

91
93

1 
91

73
1 

88
60

2 
91

93
1 

91
91

1 
91

50
2 

91
93

1 
91

73
1 

92
0U

 
88

03
1 

84
5U

 
83

22
1 

91
5U

 
91

1U
 

90
01

2 
91

9U
 

91
40

2 
92

5U
 

92
53

1 
91

73
1 

92
60

2 
92

51
1 

91
91

1 
92

90
2 

92
51

1 
96

02
1 

93
51

1 
92

61
1 

92
01

1 
93

51
1 

91
30

2 
90

31
2 

  
91

93
1 

91
73

1 
  

92
51

1 
91

7U
 

93
41

2 
96

82
1 

91
91

1 
93

51
1 

96
82

1 
92

22
1 

93
51

1 
96

82
1 

97
82

1 
93

73
1 

96
82

1 
96

12
1 

93
73

1 
92

03
1 

91
0U

 
  

92
51

1 
91

91
2 

  
93

50
2 

91
91

1 
93

73
1 

10
00

02
 

94
00

2 
93

73
1 

98
92

1 
96

12
1 

93
73

1 
  

99
50

2  
95

10
2 

10
02

02
 

99
50

2 
99

50
2 

92
41

2 
91

73
1 

  
96

82
1 

96
12

1 
  

96
82

1 
96

12
1 

98
91

2 
10

03
02
 

96
12

1 
96

73
1 

10
02

02
 

99
50

2 
99

72
1 

  
 

  
 

 
  

  
 

  
  

  
  

10
02

02
 

99
5U

 
10

30
01
 

10
42

31
 

99
50

2 
10

30
01
 

  
99

80
2 

10
30

01
 

  
  

  
  

  
  

    

T
ab

le
 5

: N
at

ur
al

 fr
eq

ue
nc

ie
s 

(in
 H

z,
 r

ou
nd

ed
 t

o 
cl

os
es

t 
in

te
ge

rs
) 

fo
r 

va
rio

us
 m

ou
th

 d
ia

m
et

er
s 

(d
 in

 c
m

) 
an

d 
te

ns
io

n 
va

lu
es

. E
ac

h 
fr

eq
ue

nc
y 

va
lu

e 
is
 a

pp
en

de
d 

(in
 a

 s
m

al
le

r 
fo

nt
) 

w
ith

 t
he

 
as

so
ci

at
ed

 m
em

br
an

e 
m

od
e 

de
sig

na
tio

n.
 F

or
 in

st
an

ce
, 2

77
01

 in
di

ca
te

s 
th

at
 t

he
 fr

eq
ue

nc
y 

27
7 

H
z 

is
 a

ss
oc

ia
te

d 
w

ith
 a

 m
od

e 
sh

ap
e 

ha
vi

ng
 0

1 
m

em
br

an
e 

m
od

e 
(in

 a
dd

it
io

n 
to

 s
om

e 
pr

es
su

re
 

m
od

e)
. T

he
 n

ot
at

io
n 

U
 a

pp
ea

ri
ng

 n
ex

t 
to

 s
om

e 
va

lu
es

 in
di

ca
te

 t
ha

t 
th

e 
co

rr
es

po
nd

in
g 

m
od

e 
sh

ap
e 

w
as

 u
nc

le
ar

. 



 

 

 

 

4.3. A simple analytical model 

To see how one (axisymmetric) membrane mode can couple with several 

longitudinal acoustic cavity modes, we consider a simple model of the membrane 

acoustic interaction. We assume the membrane to vibrate only in its 01 mode and 

allow only one-dimensional longitudinal pressure variations in the cavity. As a result, 

we have a simple harmonic oscillator (mass 𝑚 and stiffness 𝑘) coupled with a one-

dimensional acoustic tube filled with air (piston-like arrangement), see Fig. 8. The 

length of the air column is taken as 𝐻, and we retain the values of the density of air 

𝜌( and the speed of sound in air 𝑐% as before. The value of 𝑘 is obtain from the 

natural frequency of the 01 mode of an ideal (no cavity) circular membrane clamped 

at its edge. The mass 𝑚 is taken to be the mass of the membrane. The area of cross-

section of the tube, 𝐴, is taken to be the area of the membrane (i.e., 𝜋𝑑'/4). The 

displacement of mass 𝑚 is denoted as 𝑤(𝑡) and the pressure field in the tube as 

𝑞(𝑧, 𝑡).   

The governing equations include 𝑚𝑤̈ + 𝑘𝑤 = 𝑞(0, 𝑡)𝐴 for the motion of mass 

𝑚, 𝜕'𝑞/𝜕𝑡' =	𝑐%'𝜕'𝑞/𝜕𝑧' for the cavity acoustics, and the boundary conditions 

Figure 8: A simple model to illustrate coupling of one membrane mode with axisymmetric cavity modes. 
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𝜕𝑞/𝜕𝑧	 = 	−𝜌(𝑤̈ at 𝑧 = 0 and 𝜕𝑞/𝜕𝑧 = 0	at 𝑧 = 𝐻. As usual, the solutions are 

assumed to be of the form 𝑤(𝑡) = 	𝑤1𝑒)*+$	and 𝑞(𝑧, 𝑡) = 𝑓(𝑧)𝑒)*+$. The simplified 

equations are solved by 𝑓(𝑧) = 	𝐵, sinb𝜔𝑧/𝑐%c	 +	𝐵' cosb𝜔𝑧/𝑐%c, where the constant 

coefficients 𝐵, and 𝐵' are such that 𝐵,/𝐵' =	 tanb𝜔𝐻/𝑐%c	 = 	𝐴𝜌(𝑐%𝜔/(𝑘 − 𝑚𝜔'). 

The second equality in the last expression can be used to calculate the natural 

frequencies and the first for determining the corresponding mode shapes.  

To obtain quantitative results, we fix 𝑑=0.16 m, hence 𝐴=0.02 m2, 𝐻=0.76 m, 

and 𝑇=3500 N/m. We take 𝑚 = 𝜎𝐴 and 𝑘 = 𝑚𝜔1', where 𝜔1 = 2.405i𝑇/𝜎/(𝑑/2). 

The natural frequencies, of values less than 1000 Hz, are calculated as 251.5 Hz, 

659.4 Hz, 893.3 Hz. These correspond to longitudinal pressure modes in the tube 

with one, three, and four nodes, respectively. Although it is not wise to draw a direct 

comparison with the numerical results of Section 4.1 (where we had considered a 

drum of same diameter, same height, and same tension), the present calculations  

lead to values which are comparable with a subset of those obtained for mizhāvu. 

The simplified model otherwise is limited in its scope and should be used with care.  

4.4. Nagāḍā and timpani 

It is relevant to compare mizhāvu acoustics with some other big-bellied drums 

such as the Indian nagāḍā and the western timpani. Both have a membrane 

stretched over the mouth of a kettle, see Table 6 for a representative shape and 

dimensions. The former is typically twice as big as the latter. Both of these however  



 

 nagāḍā  
(d=1.4 m, h=0.75 m) 

timpani  
(d=0.656 m, h=0.414 m) 

𝑇=3000 N/m 𝑇=3500 N/m 𝑇=3500 N/m 
𝜎=0.2650 𝜎=0.5445 𝜎=0.2650 𝜎=0.5445 𝜎=0.2650 𝜎=0.5445 

5511 4711 6011 5111 15811 12711 
8701 6901 9201 7401 18401 14001 
8821 7121 9421 7721 23721 18121 
11831 9331 12731 10031 27202 20702 
12802 10112 13202 10602 30931 23131 
12912 10302 13812 10912 33012 25112 
14741 11441 15841 12341 37841 27941 
16422 12622 17722 13622   

Table 6: Nagāḍā and timpani. The natural frequency (in Hz, rounded to closest integer) spectrum for various 
tension (𝑇) and membrane density (𝜎, in kg/m2) values. The associated membrane modes are indicated in a 
smaller font. For instance, 5501 indicates that the frequency 55 Hz corresponds to a mode shape with 01 
membrane mode (in addition to some pressure mode). 

have a significantly larger mouth diameters when compared to mizhāvu. The 

acoustics of timpani has been well studied.[9,11,12] In Table 6, we report natural 

frequency values for these drums for two typical tension values. The density value 

𝜎=0.5445 kg/m2 corresponds to that of mizhāvu and 𝜎=0.2650 kg/m2 to that of 

timpani membrane. The low frequency values of nagāḍā renders the drum useful to 

be heard over large distances, as has been historically the purpose of such drums. In 

any case, we note that unlike mizhāvu, there are no repeated membrane modes in 

either of these drums. Therefore, if one is to activate only the axisymmetric 

membrane modes (by striking at the center of the drum), then only one frequency 

will be heard corresponding to each membrane mode. In this way, mizhāvu 

distinguishes itself from some other big-bellied drums. Consequently, we can 

conjecture that the uniqueness of mizhāvu sound is due to its large pot-like belly  

 



covered with a membrane over a small mouth. The authors were not able to locate 

any pitcher-type drums of this sort in other musical cultures. 

4.5. The relevance of neck height 

In our idealization of mizhāvu, in Section 3, we had ignored height of the neck 

altogether. We now justify our assumption by reporting natural frequency values for 

a mizhāvu, with and without neck, for two tension values, see Table 7. The shape of 

the neck is illustrated therewith. The height of the neck is taken as 5 cm. It is clear 

that inclusion of the neck has a limited, possibly negligible, influence on the 

frequency values. The neck, however, is essential for tying the membrane around the 

mouth using ropes, see Figure 1. 

 𝑇=3000 N/m 𝑇=3500 N/m 
With Neck Without Neck With Neck Without Neck 

28001 27601 28601 27901 
32601 32901 34501 35001 
41411 42911 41411 42911 
51911 51901 53701 52001 
53601 52211 55711 56111 
56211 57911 56511 58111 
66921 69121 66921 69121 
70921 71121 71901 71601 
711U 713U 75511 75811 
75511 75811 76621 76821 
77402 77302 80021 82902 
80021 83221 82002 83221 
84002 86302 84302 86502 
89431 89631 90402 92602 
900U 925U 90931 93511 
90931 93312   

Table 7: Effect of mizhāvu neck. The natural frequency (in Hz, rounded to closest integer) spectrum for two 
tension (𝑇) values with, and without, the neck. The associated membrane modes are indicated in a smaller font 
(U represents an unclear mode shape). For instance, 28001 indicates that the frequency 280 Hz corresponds to a 
mode shape with 01 membrane mode (in addition to some pressure mode). The mouth diameter is d=16 cm. 



5. CONCLUSION 

We have discussed the vibro-acoustical character of mizhāvu, which is a big-

bellied, but small mouthed, drum used extensively as a primary accompaniment in 

the Sanskrit theatre forms of Kerala. The drum is played with a limited number of 

distinct strokes, particularly those which excite the axisymmetric membrane modes 

01 and 02. Each of these membrane modes appear with a large number of 

longitudinal pressure acoustic modes. Hence, even by striking the membrane at the 

center one can hear an overtone rich sound which has a near harmonic character. 

Such a drum is indeed unique and has no equal among other known drums in the 

world culture. We have argued our viewpoint by providing a brief comparison with 

two kettledrums but further comparisons should be taken up with respect to big-

bellied monofacial drums from Africa and Japan. On the other hand, the simulation 

methodology is being presently extended to include external acoustic environment so 

that more realistic results can be obtained. Such a framework will also help us 

understand the reception of mizhāvu sound by the performers and the audience 

present in the formalized theatre environment within which it is usually performed. 
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