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Configurational balance laws for
incompatibility in stress space
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1,* AND ANURAG GUPTA
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Conservation laws have been recently obtained by requiring that a positive definite
functional of the stress gradient (the Euler–Lagrange equations of which are the
Beltrami–Michell compatibility conditions) be invariant under certain transformations.
Here these laws are extended to include body forces, thermal stresses and Kröner’s
incompatibility tensor as source terms in the configurational balance laws, which allows
for the incompatibility in the volume to be measured from surface data. An example
is presented.

Keywords: Noether’s theorem; configurational balance laws; incompatibility;
thermal stresses; Beltrami–Michell conditions
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1. Introduction

In a recent paper, Li et al. (2005) obtained a class of conservation laws as a
consequence of symmetries of a positive definite functional of the stress gradient
in a variational principle of linear and isotropic elasticity. Such a variational
principle appeared in a stress-based formulation of three-dimensional elasticity
proposed by Pobedrja (1980). The equations of compatibility in terms of stresses
(Beltrami–Michell) are obtained as the Euler–Lagrange equations of this
variational principle. Here, we consider the case when the right-hand side of
compatibility equation (1.2) is non-zero due to the incompatibility tensor
(Kröner 1958, 1981) and/or the gradient of body forces, and we modify the
conservation laws to include them as source terms. These balance laws are
identities, in the sense that they are satisfied identically if the equations of force
equilibrium and compatibility are assumed to hold pointwise inside the domain
under consideration. They prove to be of considerable importance if written in an
integral form since the information regarding the volume content of the
incompatibility and/or the body force gradient can be obtained from the value
of the field variables (and their derivatives) on the surface. Possible applications
would include, for example, the incompatibility arising from a continuous
distribution of dislocations or thermal stress fields, which is a topic of current
interest (e.g. Bako & Groma 2005; Fujimo et al. 2005). In the rest of this section,
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we briefly discuss the stress formulation of the traction boundary value problem
of three-dimensional linear isotropic elasticity in the absence of body forces and
incompatibility.

The well-known Beltrami–Michell boundary value problem with vanishing
body forces is given in terms of the symmetric Cauchy stress sij(xk) by Gurtin
(1972) (in Cartesian coordinates with indices ranging from 1 to 3),

sij; j Z 0; cxk2U; ð1:1Þ

sij;kk Cbskk;ij Z 0; c xk2U; ð1:2Þ

sijnj Z pi; c xk2vU; ð1:3Þ

where the Einstein’s summation rule is used for repeated indices. The constant b
is given in terms of the Poisson’s ratio n as bZ1/(1Cn). The traction force on the
boundary vU of the domain U3E

3 with an outward normal ni is denoted by pi.
Pobedrja (1980) presented an alternative formulation which renders the

traction problem to be a well-posed boundary value problem of three-
dimensional elasticity (see also Pobedrja & Holmatov 1982); the differential
operator in the boundary value problem is self-adjoint and satisfies the Fredholm
property (Kucher et al. 2004). For our purposes, we will only deal with the case
of static, isotropic and linear elasticity and we make a special choice of the free
parameters of Pobedrja so that the Poisson’s ratio appears as the only
independent material parameter (Li et al. 2005). For a compatible strain field
with vanishing body forces, Pobedrja’s boundary value problem can be stated as

sij;kk Cbskk;ij Cbsmn;mndij Ca½sik;kj Csjk;ki�Z 0; c xk2U; ð1:4Þ

sijnj Z pi; c xk2vU; ð1:5Þ

sij;j Z 0; c xk2vU; ð1:6Þ

where the constant a is given by aZ(1Kn)/n(1Cn). Note that equilibrium is
imposed only on the boundary. The term sij,j can be calculated on vU by
obtaining its value at points in U which approaches vU. Pobedrja (1980) has
shown that it is sufficient to satisfy the equilibrium condition over the boundary
to ensure that equilibrium is satisfied in the domain. Kucher et al. (2004) have
obtained the necessary and sufficient conditions for this formulation to be
equivalent to the stress solution of the classical Navier’s formulation in linear
elasticity almost everywhere except on the boundary. Pobedrja & Radzhabov
(1989) obtained a Green’s function for Pobedrja’s boundary value problem which
has been extended to the case of anisotropy in Pobedrja (1994).
2. The Beltrami–Michell equations from a variational principle and
associated conservation laws

The appendix contains a brief outline of Noether’s theorem generalized to be
applied to a positive definite tensor-valued functional. As a consequence of
Noether’s theorem (Noether 1918), linearly independent combinations of the
Proc. R. Soc. A (2007)
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Lagrange expressions (defined as the left-hand side of Euler–Lagrange equations)
become divergences (equation (A 13)). The resulting equations (A 13) are here
applied to Pobedrja’s functional (as defined in equation (2.3)) and thereupon
conservation laws are obtained as a consequence of various symmetries of this
functional by Noether’s theorem.

We will restrict attention to the functional which has an associated
Lagrangian dependent only on the stress gradient, so that for a Lagrangian of
the form LU(sij,k) with xi and sij being the independent and the dependent
variables, respectively, equation (A 13) reduces to

d

dxk
LU4ka C

vLU

vsij;k
ðxijaKsij;[4[aÞ

� �
Z

d

dxk

vLU

vsij;k

� �
ðxijaK sij;[4[aÞ: ð2:1Þ

Here, the Lagrange expressions (denoted by Jij) involve only the second term in
equation (A 10)

Jij :Z
d

dxk

vLU

vsij;k

� �
: ð2:2Þ

In the above, 4ij and xijk represent the infinitesimal generators corresponding to xi
and sij, respectively (equations (A 5) and (A 6) in appendix A).

The variational principle for Pobedrja’s stress formalism involves the following
integral (Pobedrja 1980),

Pðsij ; sij;kÞZ
ð
U

LUðsij;kÞdUK

ð
vU
cijsijdS

C

ð
vU

1

2
ðsij;jsik;k CsijnjsiknkÞK pisijnj

� �
dS; ð2:3Þ

where cijZ(vLU/vsij,k)nk. The coordinate xi denotes the position in the domain.
The Lagrangian LU is given as

LU Z
1

2
sij;ksij;k Cbskk;isij;j C

a

2
ðsik;ksij;j Csjk;ksji;iÞ

� �
: ð2:4Þ

The resulting Euler–Lagrange equations obtained as a consequence of the
variation of the functional (2.3) with respect to stress (equations (A 10)–(A 12))
coincide with equations (1.4)–(1.6) and are indeed the Beltrami–Michell
compatibility equations of three-dimensional elasticity. The Lagrange
expressions Jij are the left-hand side of equation (1.4) and vanish in the absence
of an incompatibility and body force gradients. If we substitute JijZ0 in
equation (2.1), we obtain a class of conservation laws from the corresponding
symmetries of the problem (eqns (4.4)–(4.14) of Li et al. (2005)),

Cka;k Z 0; ð2:5Þ

where

Cka h LU4ka C
vLU

vsij;k
ðxijaKsij;[4[aÞ

� �
: ð2:6Þ
Proc. R. Soc. A (2007)
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In the presence of an incompatibility and/or gradient of body forces, the
Beltrami–Michell equations have a non-zero right-hand side and therefore the
Lagrange expressions Jij do not vanish. In §3, we evaluate them by using
classical relations of incompatibility and equilibrium. A non-zero Jij will
subsequently contribute as a source term in the right-hand side of equation (2.1).
3. The Euler–Lagrange equations in the presence of incompatibility and
body forces

The Lagrange expressions obtained using equations (2.2) and (2.4) are given as

Jij hsij;kk Cbskk;ij Cbsmn;mndij Caðsik;kj Csjk;kiÞ: ð3:1Þ

These consist of two parts: (i) sij,kkCbskk,ij which can be recognized from the
Beltrami–Michell compatibility conditions and (ii) sik,kj which is the gradient of
the divergence of the stress tensor. Therefore, the Lagrange expressions contain
information about both compatibility and equilibrium. If the strain field is
compatible (i.e. sij,kkCbskk,ijZ0) and there are uniform body forces (which implies
sik,kiZ0), then the Lagrange expressions vanish identically. In the following, we
wish to express them in terms of Kröner’s incompatibility tensor hij and
the body force fi using the relations of force equilibrium and compatibility
of strain.

The force equilibrium equation in the presence of body forces is

sij;j C fi Z 0; ð3:2Þ

and the strain compatibility equation in presence of the incompatibility tensor
(Kröner 1958, 1981; Teodosiu 1982) is

Keiklejmneln;km Zhij ; ð3:3Þ

where eikl is the alternating tensor and eij the infinitesimal strain tensor. Recall
that for the case of linear and isotropic elasticity, the constitutive relation can be
written as

ekl Z
1

2m
sklK

n

1Cn
smmdkl

� �
; ð3:4Þ

where m is the shear modulus. Rewriting equation (3.3) we obtain

ekl;mmK elm;kmK ekm;lm Cðemp;mpK emm;ppÞdkl Cemm;kl Zhkl ; ð3:5Þ

and using equations (3.2) and (3.4) we get

skl;mm Cbðsmm;klK dklsmm;nnÞK fm;mdkl Cðfk;l C fl;kÞZ 2mhkl ; ð3:6Þ

where upon contracting the free indices we obtain

Kbdklsmm;nn Z
1

1Kn
ðfm;m C2mhmmÞdkl ; ð3:7Þ
Proc. R. Soc. A (2007)
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and therefore we rewrite equation (3.6) as

skl;mm Cbsmm;kl ZK
n

1Kn
fm;mdklK fk;lK fl;kK

2m

1Kn
hmmdkl C2mhkl ; ð3:8Þ

which is the modified Beltrami–Michell relation in the presence of an
incompatible strain field and the gradient of body forces. We now use this
relation with the gradient of the equilibrium equation (3.2) to write the modified
Euler–Lagrange equation as

sij;kk Cbskk;ij Cbsmn;mndij Ca½sik;kj Csjk;ki�

ZK
2m

1Kn
hmmdij C2mhijK

1Cn2

1Kn2
fm;mdijK

1Cn2

nCn2
ðfi;j C fj;iÞ; ð3:9Þ

where the Lagrange expressions Jij, instead of vanishing, are now evaluated
by the right-hand side of equation (3.9). The above relation extends equation
(1.4) to include body forces and the incompatibility tensor. The body forces
appear only in the form of gradients, and therefore, a uniform body force
distribution would not contribute to the right-hand side of the above equation.
4. Balance laws for incompatibility

It is evident from equation (2.1) that in the case of non-vanishing Lagrange
expressions, we do not have conservation laws in a strict sense of vanishing
divergences. Therefore, we call them balance laws instead of conservation laws.
The Lagrange expressions then act as source terms for the flux, which is
represented by the divergence term. We obtain various balance laws
corresponding to the symmetries of the variational principle. The symmetry
transformations involving the independent variable xi give rise to the
configurational balance equations, since the transformations induce a change in
the configuration of the material space.

The various balance laws obtained from Pobedrja’s formulation are different
from the existing ones (Maugin 1993; Gurtin 1999; Kienzler & Herrmann 2000).
The earlier configurational laws were obtained as a result of the change in the
internal energy functional with respect to a transformation of the material
configuration. The corresponding conserved quantities were therefore inter-
preted as configurational forces. On the other hand, the integral involved in the
Pobedrja’s variational principle has a physical meaning not of energy but of a
positive definite expression involving quadratic terms in the stress gradient
(Pobedrja & Holmatov 1982). The order of the differential operator in the
obtained laws is higher than the energy-based laws, and it can be checked easily
that they cannot be obtained merely by differentiating previously known laws.
If we consider Eshelby’s (1975) energy momentum tensor, the expression for
the Eshelby tensor involves quadratic terms in the stress. In contrast, the
corresponding quantity here is ~Xka (see equation (4.4)) which is obtained by
using the translational invariance of Pobedrja’s variational principle and
involves terms quadratic in the stress gradient. Therefore, it is not possible to
Proc. R. Soc. A (2007)

http://rspa.royalsocietypublishing.org/


X. Markenscoff and A. Gupta1384

 on September 27, 2011rspa.royalsocietypublishing.orgDownloaded from 
simply differentiate the quadratic terms in the stress to obtain the quadratic
terms in its gradient without introducing other higher order derivatives of
the stress.

In the following, we obtain various balance laws from the symmetries
expressing translation, rotational, scaling and pre-stress invariance of the
problem. The general form of these balance laws follows from equation (2.1):

Cka;k ZJijðxijaK sij;[4[aÞ; ð4:1Þ

where the quantities Cka are as given in equation (2.6) and the Lagrange
expressions Jij are evaluated from the right-hand side of relation (3.9). We
denote the source term JijðxijaKsij;[4[aÞ above by Fa. The source Fa can be
further decomposed into two parts, with contributions involving the incompat-
ibility tensor and the body force gradients, respectively. Such a decomposition is
possible as a result of equation (3.9) and we further write

Fa ZFi
a CFb

a; ð4:2Þ

where Fi
a is the source term containing the incompatibility and Fb

a, the gradient
of the body forces (superscripts on F do not represent an index).

We now obtain balance laws for the aforementioned invariances. First, we
obtain the balance law due to translational invariance. The infinitesimal
generators are 4iaZdia and xijaZ0. We then write the corresponding balance
law using equations (2.6), (3.9) and (4.1) as

~Xka;k ZFti
a CFtb

a ; ð4:3Þ

where (relation (4.28) from Li et al. (2005)),

~Xka Z
1

2
s[m;ns[m;ndkaK sij;asij;kKbsik;asqq;i; ð4:4Þ

and

Fti
a Z

2m

1Kn
hmmdklK2mhkl

� �
skl;a;

Ftb
a Z

1Cn2

1Kn2
fm;mdkl C

1Cn2

nCn2
ðfk;l C fl;kÞ

� �
skl;a: ð4:5Þ

Balance law (4.3) is a consequence of the translational symmetry of the integral
given in equation (2.3).

For rotational symmetry, the infinitesimal generators are 4iaZej iaxj and
ei jaZek iask jCel jasil (eqns (4.36) and (4.37) in Li et al. (2005)). Using equations
(2.6), (3.9) and (4.1), we write the balance law as

~Rka;k ZFri
a CFrb

a ; ð4:6Þ
Proc. R. Soc. A (2007)
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where (relation (4.5) in Li et al. (2005))

~Rka Z
1

2
s[m;ns[m;nepkaxpCðe[ias[j Ce[jasi[

Ksij;[em[axmÞ sij;k C
b

2
ðdjksqq;i Cdiksqq;jÞ

� �
;

and

Fri
a Z K

2m

1Kn
hmmdij C2mhij

� �
ðekiaskj CeljasilK sij;leklaxkÞ;

Frb
a Z K

1Cn2

1Kn2
fm;mdklK

1Cn2

nCn2
ðfk;l C fl;kÞ

� �
ðekiaskj CeljasilK sij;leklaxkÞ:

Another symmetry of the problem is obtained by an appropriate scaling. The
infinitesimal generators for the scaling symmetry are 4iaZxi and xijaZK(1/2)sij
with aZ1 (refer eqns (4.44) and (4.45) in Li et al. (2005)). Therefore, the balance
law is given by (using equations (2.6), (3.9) and (4.1))

~Sk;k ZFsi CFsb; ð4:7Þ

where (relation (4.6) in Li et al. (2005))

~Sk ZKs[m;ns[m;nxk Cð2sij;[x [ CsijÞ sij;k C
b

2
ðdjksqq;i Cdiksqq;jÞ

� �
;

and

Fsi Z K
2m

1Kn
hmmdkl C2mhkl

� �
1

2
skl Cskl;mxm

� �
;

Fsb Z K
1Cn2

1Kn2
fm;mdklK

1Cn2

nCn2
ðfk;l C fl;kÞ

� �
1

2
skl Cskl;mxm

� �
:

Finally, we consider a transformation by incrementing the stress by a constant
tensor which leaves the stress gradient invariant. The corresponding infinitesi-
mal generators are 4iaZ0 and xijaZcij where aZ1 and ci j is an arbitrary
constant symmetric matrix. We obtain the balance law as (using equations (2.6),
(3.9) and (4.1))

~Pk;k ZFpi CFpb; ð4:8Þ

where (relation (4.7) in Li et al. (2005))

~Pk Z sij;k C
b

2
ðdjksqq;i Cdiksqq;jÞ

� �
cij ;
Proc. R. Soc. A (2007)
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and

Fpi Z K
2m

1Kn
hmmdkl C2mhkl

� �
ckl ;

Fpb Z K
1Cn2

1Kn2
fm;mdklK

1Cn2

nCn2
ðfk;l C fl;kÞ

� �
ckl :

This law has no correspondence in classical conservation laws since it is obtained
as a result of the tensorial extension of Noether’s theorem. If cij is not a constant
tensor, then equation (4.8) is modified to

~Pk;kK
vLU

vsij;k
cij;k ZFpi CFpb; ð4:9Þ

the validity of which can be verified by a direct substitution. Equation (4.9) can
also be expressed in an integral form in the region of analyticity.

The invariance of integral (2.3) for the above considered symmetries has been
proved in Li et al. (2005). The surface term in integral (2.3) remains invariant
under the above transformations. This can be verified using the following
condition which should be satisfied identically by the infinitesimal generators for
checking invariance of the surface integral (eqn (3.44) from Li et al. (2005))

vLG

vxi
4ia Ccijxija

� �
CLG

d4ia

dxi
K

v4ia

vxj
ninj

� �
Z 0; ð4:10Þ

where

LG ZKcijsijK pisijnjK
1

2
sij;jsik;k Csijnjsiknk

	 
� �
: ð4:11Þ

The balance laws presented in this section can also be expressed in an integral
form. Take any arbitrary simply connected domain u3U with a smooth
boundary vu. The domain u is assumed to contain no singularities and the
integrands are assumed to be analytic in the domain. We then integrate equation
(4.1) over u and use the divergence theorem to obtainð

vu
CkamkdS Z

ð
u

Fi
a CFb

a

	 

du; ð4:12Þ

where mk is the outward unit normal to vu. We specialize this identity to specific
symmetries and obtain corresponding integral laws. It is clear from the integral
equation (4.12) that, in the case of vanishing source terms, we obtain a surface-
independent integral. Such a surface-independent integral represents the change
in the integral P which is a positive definite functional of the stress gradient
given by equation (2.3), with respect to the corresponding transformation. For
example, if we consider the change in P due to the transformation in the
dependent variable sij by a constant increment, then we have

dP

dsij
cij Z

ð
vu

~PkmkdS; ð4:13Þ
Proc. R. Soc. A (2007)
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which may assist our understanding of the physical nature of the integral P
depending on the interpretation of the surface term.

In the presence of source terms, equation (4.12) gives us a means to evaluate
the volume integrals that quantify the strength of the incompatibility or the
body force gradients in the domain from the values of the field variables on
the surface. In §5, we illustrate this point by demonstrating some applications in
the theory of continuous distribution of dislocations and theory of thermal
stresses. We also present an example of heat flow in a domain containing a
spherical cavity, which does not naturally contain singularities at the origin.
5. Applications

(a ) Continuous distribution of dislocations

Assume the domain to contain a continuous distribution of dislocations (Kröner
1958, 1981; Teodosiu 1982). Let aij denote the dislocation density; the Kröner
incompatibility hij is related to the dislocation density as (Kröner 1958, 1981)

hij Z
1

2
ðeiklalj;k Cejklali;kÞ: ð5:1Þ

Therefore, hiiZei k lal i, k. We now discuss some results obtained using the integral
form of balance law (4.8). The domain of integration is assumed to be free of
singularities so that the functions involved will be analytic. In the absence of
body forces, we write ð

vu

~PkdSkK

ð
u
FpiduZ 0; ð5:2Þ

where we have used the divergence theorem and the notation dSkZmkdS.

Substituting the expressions for ~Pk and Fpi we obtainð
vu
ðsij;k Cbdjksqq;iÞcijdSk C

ð
u

2m

1Kn
hmmdijK2mhij

� �
cijdUZ 0: ð5:3Þ

A measure of the incompatibility can be obtained from this relation. Let

ĥij ZK
2m

1Kn
hmmdij C2mhij ; ð5:4Þ

which is a symmetric tensor and, therefore, can be diagonalized. By choosing
an appropriate cij, one can identify all the diagonal components separately.
For example, let eak, aZ1, 2, 3 be the three normalized eigenvectors of ĥij . Then
cijZe1ie1j will separate out the first diagonal component of ĥij . Therefore, we
determine the volume integral of ĥij by calculating the stress gradient on
the surface.

We also express these relations in terms of the dislocation density. Equation
(5.3) can be rewritten using (5.1) in the formð

vu
ðsij;k Cbdjksqq;iÞcijdSk C

ð
u

2m

1Kn
emklalm;kdijK2meiklalj;k

� �
cijdUZ 0; ð5:5Þ
Proc. R. Soc. A (2007)
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where we have used the symmetry of cij. The above relation, therefore, provides a
way to obtain a volumetric measure of the gradient of the dislocation density,
from the values of the stress gradients on the surface enclosing the domain of
interest. By close measurements of the stress at points near the surface, the
gradient may be experimentally measured with some degree of accuracy. The
above illustration can be repeated for other quantities obtained in §5. A proper
application of these results lies, of course, in the hands of the experimentalist.
(b ) A thermoelastic example

We consider a linear thermoelastic problem for a simply connected domain
with zero body forces and a specified temperature distribution T. The stress
formulation for such a problem is given by Boley & Weiner (1997),

sij; j Z 0; cxk2U; ð5:6Þ

sij;kk Cbskk;ij ZK2ma
1Cn

1Kn
T;kkdijKT;ij

� �
; c xk2U; ð5:7Þ

sijnj Z pi; c xk2vU; ð5:8Þ

where a is the coefficient of linear thermal expansion. We would illustrate an
application by interpreting the temperature field as a source for the
incompatibility. We begin by denoting

ĥij ZK2ma
1Cn

1Kn
T;kkdij CT;ij

� �
: ð5:9Þ

Therefore, integral equation (5.3) becomes
ð
vu
ðsij;k Cbdjksqq;iÞcijdSk Z

ð
u
ĥijcijdU; ð5:10Þ

where ĥij is given by equation (5.9) above. If cij is not a constant tensor then the
above integral equation is modified using equation (4.9) to

ð
vu
ðsij;k Cbdjksqq;iÞcijdSkK

ð
u

ðsij;k Cbdijsmm;kÞcij;kdUZ

ð
u

ĥijcijdU: ð5:11Þ

The above equation gives a measure by which to detect the second-order
gradient of the temperature field inside the domain by measuring the first-order
stress gradient on the boundary enclosing the domain. We would next present an
example to illustrate this point. Consider the classical problem of a spherical
cavity in an uniform heat flow (Florence & Goodier 1959). We employ spherical
coordinates (r, q, f) (q2(0, p) and (f2(0, 2p)) for our discussion. The harmonic
function representing the temperature field with a uniform temperature gradient
t is given by

Tðr; qÞZ t r C
R3

2r2

� �
cos q; ð5:12Þ
Proc. R. Soc. A (2007)
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where R is the radius of the cavity. The corresponding stress field with a traction-
free cavity is (non-zero components only)

sr ZK2s
R2

r2
K

R4

r4

� �
cos q; ð5:13Þ

sq Z sf ZKs
R2

r2
C

R4

r4

� �
cos q; ð5:14Þ

srq ZKs
R2

r2
K

R4

r4

� �
sin q; ð5:15Þ

where

sZ
m

2

1Cn

1Kn

� �
atR: ð5:16Þ

We choose cijZerieqjCeqier j, where (eri, eqi, efi) form the triad of the orthogonal
unit vectors in the spherical coordinate system.We will need to verify the validity of
relation (5.11) as an identity for the above stress field. The temperature field as given
by equation (5.12) implies T,kkZ0 and

T;ij Z
3

2
t
R3

r4
cos qð2erierj Ctan qðerieqj CeqierjÞK eqieqjK efiefjÞ: ð5:17Þ

Relation (5.9) can be used to obtain

ĥijðerieqj CeqierjÞZK6mat
R3

r4
sin q; ð5:18Þ

which can then be used to evaluateð
u
ĥijcijdUZ

ð2p
0

ðp
0

ðr
R
ĥijcijr

2sin qdr dq dfZK6p2mtaR3 1

R
K

1

r

� �
; ð5:19Þ

which gives the value for the right-hand side integral of equation (5.11). The
integrand for the left-hand side integral can be obtained by using the stress
components given above and noting that the normal to the surface is Geri. The
gradient of the stress tensor is obtained using the following relation:

sij;k Z
vsab

vzc
CsdbGa

dc CsadGb
dc

� �
gaigbjg

c
k ; ð5:20Þ

where for the spherical coordinate system, g1iZeri, g2iZreqi, g3iZr sin qefi, g
1
i Zeri,

g2i Zð1=rÞeqi, g3i Zð1=r sin qÞefi. In the present case, the only non-zero components
of the Christoffel tensor are G1

22ZKr, G1
33ZKr sin2q, G2

12ZG2
21Zð1=rÞ,

G2
33ZKsin q cos q, G3

13ZG3
31Zð1=rÞ, G3

32ZG3
23Zcot q. The stress components in

the above equation are given by s11Zsr , s12Zs21Zð1=rÞsrq, s22Zð1=r2Þsq,
s13Zs31Zð1=r sin qÞ, s23Zs32Zð1=r2 sin qÞsqf, s33Zð1=r2 sin2 qÞsf. Using
these we obtain

ðsij;kerkÞðerieqj CeqierjÞZ 2rs12;r C2s12 Z 4s
R2

r3
K2

R4

r5

� �
sin q: ð5:21Þ
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Another calculation yields

smm;kdijerkðerieqj CeqierjÞZ 4s
R2

r3
sin q: ð5:22Þ

Therefore, we evaluate the integralð
vu
ðsij;k Cbdjksqq;iÞcijdSk ZK4p2sR2 1

R
K

1

r

� �
ð1CbÞ

C8p2sR4 1

R3
K

1

r3

� �
; ð5:23Þ

where dSkZKerkr
2sin q dq df for the internal surface (at radius R) and

dSkZKerkr
2sin q dq df at the outer surface (at radius r). To complete the

calculations, we would need to evaluate the gradient of the tensor cij. We use
equation (5.20) and note that the only non-zero components are c12Zc21Z1/r. We
then obtain the following:

cij; k Z
2

r
eqieqjeqk C

1

r
ðefieqj CeqiefjÞefkK

2

r
er ier jeqk C

cot q

r
ðefier j Cer iefjÞefk ;

ð5:24Þ
and subsequently

sij;kcij;k ZK12s
R2

r4
sin qK4s

R2

r4
cos2q

sin q
C16s

R4

r6
sin qC8s

R4

r6
cos2q

sin q
; ð5:25Þ

and

smm;kdijcij;k Z 12s
R2

r4
sin qC8s

R2

r4
cos2q

sin q
: ð5:26Þ

Using these results we evaluate the integralð
u

ðsij;k Cbdijsmm;kÞcij;kdUZ ð20bK16Þp2sR2 1

R
K

1

r

� �

C8p2sR4 1

R3
K

1

r3

� �
; ð5:27Þ

and therefore ð
vu
ðsij;k Cbdjksqq;iÞcijdSkK

ð
u

ðsij;k Cbdijsmm;kÞcij;kdU

ZK6p2mtaR3 1

R
K

1

r

� �
: ð5:28Þ

The fact that from (5.28) we retrieve (5.19) attests to the validity of relation (5.11)
as an identity. Thus, we have verified that a certain measure of incompatibility in
the volume can be obtained by a surface integral.

This research was partially supported through a NSF grant CMS-0555280 (X.M.).
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Appendix A

In the following, we briefly introduce Noether’s theorem for a functional
involving tensorial arguments. For details please refer to Li et al. (2005).
Consider the functional

Pðsij ;sij;kÞZ
ð
U

LUðxi; sij ; sij;kÞdUC

ð
vU
LGðxi;sij ;sij;kÞdS: ðA 1)

Assume that we are given an r-parameter family of invertible transformations on
coordinate variable xi and Cartesian tensor field sij ,

�xi Z �xiðxi;sij ; eaÞ; ðA 2)

�sij Z �sijðxi;sij ; eaÞ; ðA 3)

where eaZ(e1,e2,., er) such that

�xijeaZ0 Z �xiðxi;sij ; 0ÞZ xi �sij jeaZ0 Z �sijðxi; sij ; 0ÞZsij : ðA 4)

We expand these transformations about ea to get

�xi Z xi C4iaðxi;sijÞeaCoðeÞ; ðA 5)

�sij Zsij Cxijaðxi; sijÞea CoðeÞ; ðA 6)

where

4iaðxi; sijÞd
v�xi
vea

����
eaZ0

; ðA 7)

xijaðxi; sijÞd
v�sij
vea

����
eaZ0

; ðA 8)

represent the infinitesimal generators corresponding to xi and sij, respectively
(Olver 2000, p. 27).

Taking variations of the functional (A 1) with respect to stress, we obtain

dPZ

ð
U

vLU

vsij
K

d

dxk

vLU

vsij;k

� �
dsijdUC

ð
vU

vLU

vsij;k
nkK

vLG

vsij

� �
dsijdS ðA 9)

K

ð
vU

vLG

vsij;k
dsij;kdS;

the stationarity of which gives us the following Euler–Lagrangian equations

vLU

vsij
K

d

dxk

vLU

vsij;k

� �
Z 0; cxi2U; ðA 10)

vLU

vsij;k
nk C

vLG

vsij
Z 0; c xi2vU; ðA 11)

vLG

vsij;k
Z 0; cxi2vU: ðA 12)

By Lagrange expressions, we refer to the left-hand side of the above Euler–
Lagrange equations.
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As a result of Noether’s theorem generalized for tensors, the invariance of the
integral (A 1) implies
d

dxk
LU4kaC

vLU

vsij;k
xijaK

vLU

vsij;k
sij;[4[a

� �
C

vLU

vsij
K

d

dxk

vLU

vsij;k

� �� ��
xijaKsij;[4[a

�

Z0: ðA13)

Therefore, (linear independent) combinations of Lagrange expressions become
divergences. In case the second term in equation (A 13) vanishes as a result of
relation (A 10), we obtain r divergence-free quantities.
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