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Abstract: The emergence of possible instability modes under undrained biaxial shear of sand was investigated to develop better understanding
about the onset of localized and liquefaction-type solid-fluid instability modes using a generalized three-dimensional (3D) material model. These
two modes are the primary instability modes that can exist in most cases while conducting undrained biaxial testing of sand at different densities,
confining pressures, and boundary conditions. Using a 3D rate-independent and nonassociative constitutive model, the instability analysis was
performed as a plane-strain bifurcation problem from a uniform stress-strain state. Large deformation formulation was used to simulate the biax-
ial test configuration with both rigid and flexible boundaries in the lateral direction. The existing theoretical framework of solid-fluid instability
analysis under rigid boundaries was extended to the flexible lateral boundary condition. Interestingly, the onset of solid-fluid instability modes is
significantly influenced by the choice of boundary conditions. The trends for the onset of various undrained instability modes were assessed as a
function of material state variables.DOI: 10.1061/(ASCE)GM.1943-5622.0000690.© 2016 American Society of Civil Engineers.
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Introduction

Plastic instabilities in the form of bulging, surface buckling, volume
or two-phase instability, and strain localization are often encoun-
tered during laboratory experiments of soil samples (Vardoulakis
1980; Desrues and Hammad 1989; Lade and Pradel 1990; Han and
Vardoulakis 1991; Finno et al. 1996; Desrues and Viggiani 2004;
Desrues and Georgopoulos 2006; Khoa et al. 2006; Daouadji et al.
2010). The deformation field of such samples bifurcates from an ini-
tial homogeneous to an inhomogeneous mode as a result of emer-
gence of these plastic instabilities. The mode of instability depends
on the type of loading, boundary and drainage conditions, along
with the material properties (Vardoulakis 1981, 1985). Moreover,
one instability mode can trigger the other, which subsequently leads
to failure of the soil sample (Wan et al. 2013).

Liquefaction or flow sliding is a solid-fluid (SF) instability
mode, which is generally encountered during undrained shearing
experiments on loose sand (Lade 1992, 1993; Lade and Yamamuro
1997; Yamamuro and Lade 1997). Shear bands (localized zones of
intense shearing) are another instability mode commonly observed
in geomaterials that can result into catastrophic failure of complex
geotechnical structures (Desrues et al. 1985). Although experimen-
tal investigations have primarily focused on strain localization in
dense sands under drained conditions, recent studies have revealed
that localization can take place in both loose and dense sands sub-
jected to drained or undrained loading (Han and Vardoulakis 1991;

Finno et al. 1996). In the case of loose saturated sand, undrained
shear bands are of great concern because they can influence stability
and postliquefaction deformation of earth structures. The localiza-
tion phenomenon was observed to be more pronounced in biaxial
tests compared to the true triaxial or axisymmetric triaxial test con-
figuration (Desrues et al. 1985; Lade 2002; Alshibli et al. 2003).
The shear stress ratio associated with the onset of static liquefaction
also varied for these two types of tests (Wanatowski and Chu 2007;
Chu andWanatowski 2008).

Han and Vardoulakis (1991) carried out biaxial compression
tests on water-saturated fine-grained St. Peter sandstone sand at dif-
ferent density states. In the case of axial load controlled tests, flow
instability was noticed in loose and medium sand followed by shear
band at large strain. On the other hand, diffused modes were
observed in dense sand followed by localization and sometimes
unstable pore pressure response. However, no localization was
noticed in loose sands while performing undrained biaxial tests with
controlled axial displacement. In these cases, diffused modes were
found around peak and ultimate states. In displacement-controlled
tests, shear bands emerged in medium and dense sands along with
diffused modes at very large strain or prior to localization for the
respective cases. Unlike drained tests with an isolated band,
undrained shear bands emerged in conjugate periodic array, which
further corresponded to dilatant and contractant material bands,
indicating internal fluid flow to account for locally drained condi-
tions. Similar to Han and Vardoulakis (1991), Desrues and
Georgopoulos (2006), Khoa et al. (2006), and Daouadji et al.
(2010, 2011) also observed nonlocalized diffused failure modes in
the undrained displacement-controlled triaxial tests of loose sand
along different stress paths. In contrast, Finno et al. (1996, 1997)
and Mooney et al. (1997) noticed distinct shear bands in undrained
strain-controlled biaxial compression tests of loose fine masonry
sand. In these experiments, strain localization initiated in the form
of temporary shear bands before mobilization of the peak friction
angle, which finally formed a persistent shear band. The volume
change within such a persistent shear band was not that significant.
Mokni and Desrues (1998) performed a series of undrained biaxial
tests on Hostun RF sand and observed strain localization in both
loose and dense sand. In these experiments, localization in dense
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sand was associated with a cavitation phenomenon of pore fluid. It
was concluded that the nondrainage condition impedes the local-
ization phenomenon in dilative sand, and such cavitation was nec-
essary to relax the isochoric constraint (no volume change) locally
for allowing internal drainage in the sample.

Hill and Hutchinson (1975) presented a bifurcation-based the-
oretical study on different instability modes involved in plane-
strain tensile testing of incompressible solids. The theoretical
framework was modified by various researchers to incorporate
compressive loading and extended to nonassociative, pressure-
sensitive compressible media (Young 1976; Needleman 1979;
Vardoulakis 1981; Chau and Rudnicki 1990). Vardoulakis (1985)
further extended the plane-strain bifurcation analysis to water-
saturated compressible media by taking into account the diffusion
process. Row’s dilatancy-based nonassociative flow rule was used
therein to model the constitutive response of sand. SF and localized
instability modes were identified for undrained plane-strain testing
with rigid boundaries. Bardet and Shiv (1995) and Iai and Bardet
(2001) modified the plane-strain bifurcation framework to account
for general constitutive response and explored two-phase instabilities
in hypoelastic andMohr–Coulomb-type elastoplastic materials. More
recently, Guo (2013) and Guo and Stolle (2013) followed a similar
approach to explore undrained shear banding in sand. However, a bet-
ter representation of the stress-strain relation is required to explain
various instability modes that can emerge during undrained testing of
sand at different stress states. For instance, a generalized pressure-
dependent three-dimensional (3D) constitutive model with hardening
is expected to predict instability behavior closer to the experimental
observations. One of the objectives of this paper is to implement such
a 3Dmaterial model and develop novel insights into the emergence of
different undrained instability modes. Previously, Gajo et al. (2004,
2007) used a generalized 3D constitutive model and small deforma-
tion formulation to predict the localization onset and postlocalization
behavior of sand in a drained biaxial test at varying initial densities
and confining pressures. In a related study, Mukherjee et al.,
(“Emergence of drained instabilities in sand subjected to biaxial load-
ing condition,” submitted, Comput. Geotech., Elsevier, Philadelphia)
examined conditions for the onset of diffused and localized instability
modes in drained biaxial testing of sand by implementing a similar 3D
constitutive relation and large deformation framework. The back-
ground formulation used in this study is similar to Mukherjee et al.,
but with formulation and analysis focusing on SF instability and local-
ization under undrained biaxial loading conditions. In addition, the
existing basic formulation of the rigid boundary condition has been
extended in the study to incorporate flexible lateral boundaries by
deriving the necessary governing equations.

The instability analysis has been posed as a plane-strain bifurca-
tion problem from a uniform stress-strain state. The undrained biax-
ial test configuration is simulated for both rigid and flexible bounda-
ries in the lateral direction, which simulates displacement-controlled
and stress-controlled loading, respectively. The material is assumed
to follow a rate-independent framework of a generalized 3D nonas-
sociative constitutive model. A large deformation formulation was
used to investigate possible emergence of different bifurcatedmodes
(i.e., SF or localized instabilities) at different states of material and
boundary conditions. Trends for the onset of various undrained
instabilitymodes have been assessed further as a function ofmaterial
state variables. One can analyze instability in other such boundary
value problems by following a similar procedure or extending the
solution to various numerical tools, such as the FEM. The main con-
tributions of this paper are as follows:
• To explore possible instability modes that can emerge during

undrained biaxial testing of sand at different densities,

confining pressures, and boundary conditions. Implementation
of a generalized pressure-dependent 3D constitutive model
allows one to capture the emergence of two different
undrained instability modes (i.e., SF and localized instabil-
ities) under such different stress states that are consistent with
previous experimental observations.

• The theoretical framework for plain-strain–based SF instabil-
ity analysis has been extended to include flexible boundary
conditions in addition to rigid ones. Interestingly, the onset of
SF instability modes is significantly influenced by the choice
of boundary conditions.

Plane-Strain Bifurcation Analysis

Problem Statement

A biaxially loaded rectangular saturated soil specimen of width
2L1 and height 2L2 (Fig. 1) is considered here with two types of
lateral boundaries, flexible and rigid, while having a rigid bound-
ary in the vertical direction. Shear stresses are assumed to be
absent from all of the boundaries. Moreover, an undrained condi-
tion is imposed on these boundaries by ensuring no flow normal
to the boundaries. In the first case with a flexible lateral boundary,
as shown in Fig. 1(a), the top and bottom boundary (x2 ¼ 6L2) of
the soil sample are given constant velocity in the x2–direction,
and the lateral surfaces are subjected to constant stress (s11). In

(a)

(b)

Fig. 1. Boundary conditions for plane-strain bifurcation under undrained
loadingwith (a) flexible boundary and (b) rigid boundary
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the second case with a rigid lateral boundary [i.e., in Fig. 1(b)],
the sample is subjected to constant velocities in both x1- and x2-
directions at boundaries x1 ¼ 6L1 and x2 ¼ 6L2, respectively.
Although the stress-strain field initially remains homogeneous,
with continued loading, an inhomogeneous stress-strain rate field
may emanate as a result of bifurcation while satisfying the same
equilibrium and boundary conditions. The bifurcation analysis
aims to identify a nontrivial perturbed solution (v) (i.e., the differ-
ence between the inhomogeneous and homogeneous velocity
fields). The perturbed velocity field (v) should satisfy the equilib-
rium and continuity equations along with the boundary
conditions.

The equilibrium equations of the saturated sand sample under
biaxial loading and in the absence of body force can be written in
reference configuration as (Bardet 1991)

_S11;1 þ _S21;2 ¼ 0
_S12;1 þ _S22;2 ¼ 0 (1)

where _S = true rate of nominal stress tensor. If the current configura-
tion is chosen as the reference configuration, _S is related to the
Jaumann rate of Kirchhoff stress (s

5
) through the Cauchy stress (r),

rate of strain (D), and spin tensor ðWÞ; _S ¼ s
5 � r �W� D � r.

In the case of no shear stress (i.e., s 12 ¼ s21 ¼ 0), Eq. (1) then
leads to

s
5

11;1 þ s
5

21;2 � ðs11 � s 22ÞW12;2 ¼ 0

s
5

12;1 þ s
5

22;2 � ðs11 � s22ÞW12;2 ¼ 0 (2)

Eq. (2) is written in terms of total stress tensors and can be
related to the effective stresses by using Terzaghi’s (1943) effective

stress principle, s 0
ij ¼ s ij þ pd ij, where s ij; s

0
ij, and p are the total

Cauchy stress, effective Cauchy stress, and pore water pressure,
respectively. The grain particles are assumed to be rigid in such
effective stress principle (Terzaghi 1943). Notationally, dilation
and stresses in tension are considered to be positive. The following
relations can be obtained after substituting the effective stresses in
Eq. (2):

s 05

11;1 þ s 05

21;2 � ðs 0
11 � s 0

22ÞW12;2 ¼ _p;1

s 05

12;1 þ s 05

22;2 � ðs 0
11 � s 0

22ÞW12;2 ¼ _p ;2 (3)

For isotropic material and incompressible pore fluid, the final
form of equilibrium and continuity equations under plane-strain
conditions can be written as (Vardoulakis 1985; Schrefler et al.
1990; Bardet and Shiv 1995; Iai and Bardet 2001)

d1v1;11 þ d3v1;22 þ ðd4 þ d7Þv2;12 ¼ _p ;1
d5v2;11 þ d2v2;22 þ ðd4 þ d8Þv1;12 ¼ _p ;2
_p;11 þ _p ;22 ¼ bð _v1;1 þ _v2;2Þ (4)

where
d1 ¼ C1111 �s 0

11; d2 ¼ C2222 �s 0
22; d3 ¼ C1212 � 1=2ðs 0

11 �s 0
22Þ;

d4 ¼ C1212 � 1=2ðs 0
11 þ s 0

22Þ; d5 ¼ C1212 þ 1=2ðs 0
11 � s 0

22Þ; d6 ¼
C1212 þ 1=2ðs 0

11 þ s 0
22Þ; d7 ¼ C1122; d8 ¼ C2211, Cijkl = elasto-

plastic tangent modulus defined in the subsequent section;
b ¼ gw=k ; and gw and k = fluid unit weight and hydraulic per-
meability of the two-phase material, respectively. The per-
turbed velocity field should satisfy the following boundary
conditions:

Case 1 (flexible lateral boundary)

_S11 ¼ d1v1;1 þ d7v2;2 þ _p ¼ 0; _S12 ¼ d4v1;2 þ d5v2;1 ¼ 0; _p;1 ¼ 0 at x1 ¼ 6L1 and� L2 � x2 � L2

v2 ¼ 0; _S21 ¼ d3v1;2 þ d4v2;1 ¼ 0; _p ;2 ¼ 0 at x2 ¼ 6L2 and� L1 � x1 � L1 (5)

Case 2 (rigid lateral boundary)

v1 ¼ 0; _S12 ¼ d4v1;2 þ d5v2;1 ¼ 0; _p ;1 ¼ 0 at x1 ¼ 6L1 and� L2 � x2 � L2
v2 ¼ 0; _S21 ¼ d3v1;2 þ d4v2;1 ¼ 0; _p;2 ¼ 0 at x2 ¼ 6L2 and� L1 � x1 � L1 (6)

Previous mathematical formulations for undrained instability
analysis were developed under the assumption of a rigid boundary
condition (Vardoulakis 1985; Bardet and Shiv 1995; Iai and Bardet
2001). The existing theoretical framework of SF instability analysis
under rigid boundaries was extended here to incorporate flexible lat-
eral boundary conditions. The equations for SF instability modes
under flexible lateral boundaries are derived in Appendix I. These
equations can be easily simplified to retrieve the conditions of SF
instability under rigid boundaries (Appendix II), which were initially
derived by Bardet and Shiv (1995). Another possible instability
mode that can emerge under undrained biaxial loading with both
types of lateral boundaries is the solid (S) instability mode in the
form of localized shear bands. Although the undrained condition still
prevails globally, internal local drainage is allowed at the emergence

of such shear bands (Han and Vardoulakis 1991). Moreover, Guo
(2013) showed an early initiation of shear band with an increase in
permitted local volume change under globally undrained biaxial
loading. In this study, the most critical case for localization was con-
sidered by analyzing it under locally drained conditions. The onset
conditions for such modes are briefly discussed in Appendix III.

Material Model

Thematerial behavior is characterized by an incremental elastoplas-
tic constitutive relation

t 0
5

ij ¼ Cijkl Dkl (7)
where

© ASCE 04016042-3 Int. J. Geomech.
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Cijkl ¼ Eijkl � EijmnPmnQrs Erskl

H þ Qab Eabcd Pcd
(8)

Eijkl is the isotropic elastic stiffness tensor given by

Eijkl ¼ Gðd ikd jl þ d ijd klÞ þ λd ijd kl (9)

where G and λ = Lame constants; d ij = Kronecker delta; H = hard-
ening modulus; and P and Q = directions of outer normal to the
plastic potential (g) and yield surface (f), respectively (i.e., Pij ¼
∂g=∂t 0

ij and Qij ¼ ∂f=∂t 0
ij). Unlike the Mohr–Coulomb model, a

generalized 3D constitutive model can account for evolution of the
intermediate principal stress under plane-strain conditions. The 3D
constitutive model proposed by Wood (2004) was used in this
study. It is a nonassociative model based on a critical state concept
that includes both shear and volumetric hardening and incorporates
the effect of both density and confining pressure. The yield surface
(f) and plastic potential (g) are defined by

f ðs0 ; ɛpq; ɛpvÞ ¼
ffiffiffiffiffiffiffi
3J2

p
þ h y

I 01
3
¼ 0 (10)

gðs0 Þ ¼
ffiffiffiffiffiffiffi
3J2

p
þMc

I 01
3
ln

3P0
r

I 01
(11)

where ɛpq and ɛ
p
v = shear and volumetric components of the logarith-

mic plastic strain tensor; I 01 = first invariant of the Kirchhoff stress
tensor; J2 = second invariant of the deviatoric Kirchhoff stress ten-
sor; Mc = slope of the critical state line in

ffiffiffiffiffiffiffi
3J2

p
versus ð�I 01=3Þ

plane; P0
r = intercept of plastic potential on the I 01=3 axis; and h y =

shear stress ratio (�3
ffiffiffiffiffiffiffi
3J2

p
=I 01), which is taken as a state variable

and controls the evolution of the hardeningmodulus (H)

H ¼ � ∂f
∂h y

∂h y

∂ɛpij

T ∂g
∂t 0

ij
(12)

Evolution of the h y is related to accumulated plastic shear strain
(ɛpq) by the following hyperbolic function:

h y

h p
¼ ɛpq

aþ ɛpq
(13)

where a = constant; and hp = peak shear stress ratio. Here, hp is
defined as a function of another state variable (c ), which includes
information on density or specific volume andmean stress

hp ¼ Mc � kc ¼ Mc � kv� Cþ Kcln ð�I 01=3Þ (14)

where k = material constant; Kc = slope of the critical state line in
the compression plane; and C = intercept of the critical state line on
the specific volume axis at a mean pressure level of 1 kPa.

Undrained Biaxial Test Simulations

Undrained biaxial tests were simulated for sand samples (Hostun
RF sand) at different density states with initial void ratios (e0) vary-
ing from 0.65 to 0.85 and initial effective confining pressures rang-
ing from 100 to 400kPa. The material parameter values used in the
simulation are listed in Table 1. There exist many expressions in the
literature that consider the influence of mean pressure on the elastic
stiffness of soil (Desai and Siriwardane 1984; Lade and Nelson

1987; Hicher 1996; Houlsby et al. 2005; Einav and Puzrin 2004).
Following Gajo andWood (1999), a pressure-dependent elastic tan-
gent stiffness was used in the analysis. In this case, the elastic shear
modulus (m ) is related to the dynamic shear modulus (G0) through
a scalar factor, where G0 is a function of the initial specific volume
(v0) and the mean effective stress (I 01=3) is expressed in kilopascals
(Hardin and Black 1966)

G0 ¼ 3230
ð3:97� v0Þ2

v0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�I 01=3

q
(15)

The homogeneous stress-strain field for the undrained biaxial test
was obtained by numerically integrating the elastoplastic constitu-
tive Eqs. (8)–(14) using a fully explicit return mapping algorithm
(Simo and Hughes 2000) subjected to the boundary conditions [Eqs.
(5) and (6)]. An objective algorithm based on the notion of rotated
configuration was used for such large deformation simulations along
with the explicit return mapping scheme (Dodds and Healy 2001).
The plane-strain biaxial stretching, however, does not involve any
rotation until the emergence of any types of instability. Hence, for
such a case, the unrotated and the Jaumann rate of Cauchy stress
become identical for the homogeneous stress-strain field.

The sand samples are identified to be at loose or dense state
depending on the critical void ratio (ec) at any confining pressure,
which is calculated using Eq. (16), and its values are listed in Table 2

ð1þ ecÞ � Cþ Kcln ð�I 01=3Þ ¼ 0 (16)

Typical stress-strain behavior, pore pressure response, and stress
paths are plotted in Fig. 2 at two density states, with e0 = 0.65 and
0.85, and initial effective confining pressure varying from 100 to
400 kPa. For the dense sample (e0 = 0.65), where the void ratio is
lower than the critical void ratio, shear stresses were observed to
increase continuously with increased shearing, whereas for the
loose sample (e0 = 0.85) with a void ratio higher than the critical
value, shear stresses started to decrease after exhibiting a distinct

Table 1.Material Constants Considered in Analysis (Data from Gajo and
Wood 1999 and Wood 2004)

Parameter Description Value

G Shear modulus G0/3
� Poisson’s ratio 0.1
Mc Slope of critical state line in

ffiffiffiffiffiffiffiffiffiffiffið3J2Þ
p

–ð�I01=3Þ
plane

1.2

Kc Slope of critical state line in specific volume
(v)-ln ð�I01=3Þ plane

0.03

C Intercept for critical state line in v-ln ð�I01=3Þ
plane at 1 kPa effective mean pressure

1.969

a Parameter controlling hyperbolic stiffness
relationship

0.0016

k Relation between changes in state parameter (c )
and current peak stress ratio (hp)

2

Table 2. Critical Void Ratio at Different Initial Effective Confining
Pressures

Initial effective confining pressure (kPa) Critical void ratio (ec)

100 0.83
200 0.81
300 0.798
400 0.789

© ASCE 04016042-4 Int. J. Geomech.
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peak, irrespective of the level of confining pressure. The continued
shearing of loose sand showed an increasing trend in the pore pres-
sure response, confirming a contractive volumetric behavior. In
contrast, the dense sand showed an initial increase and then a grad-
ual decrease in pore pressure, indicating an overall dilative volumet-
ric response. The variation of pore pressure also affected the mean
effective stress during shearing, which is presented in the stress-
path plots of Figs. 2(e and f). Fig. 3 presents the stress-strain behav-
ior and the associated stress paths of undrained biaxial loading on
sand at various void ratios for two initial effective confining pres-
sures, 100 and 400 kPa. The trend in stress-strain response and
stress-path behavior at these two confining pressures remained
unchanged for dense and loose sands. However, in the case of me-
dium to dense sand (e0 = 0.7), the level of confinement had a signifi-
cant influence on the nature of stress-strain and stress-path behavior.
At a lower confining pressure (100 kPa), a temporary decrease of
shear stress was noticed after the initial peak, which was followed
by a sharp change in phase with a persistent increase in the shear
stress. In contrast, at a higher confinement (300 kPa), the shear
stress exhibited a continuously increasing trend accompanying
reduction in pore pressure. The simulated stress-strain and pore
pressure response was qualitatively in good comparison with the
behavior reported in various triaxial or biaxial experiments of sand
samples (Han and Vardoulakis 1991; Finno et al. 1997).

Instability under Various Boundary Conditions

The emergence of possible instability modes (i.e., two-phase and
localization instabilities) was investigated under the boundary con-
ditions given in Eqs. (5) and (6) for the undrained simulations pre-
sented in the previous section of a biaxial sample with an aspect ra-
tio (L2/L1) of 2. Because most of the instabilities were found at the
small strain level, results from large deformation simulations were

not very different from the small deformation analysis and are not
presented here separately. These instability modes were assumed to
develop from a homogeneous stress-strain field, which was valid
until the emergence of any instability. Hence, this analysis only pre-
dicts the onset of each of these possible types of instability modes
and does not include identification of gradually evolving multiple
instability modes on continued shearing under the given test
conditions.

The instability onsets are determined here based on Hill’s (1958,
1961) global stability framework, where localization is captured
from the loss of the ellipticity condition of the differential equation
governing the local rate equilibrium. Bigoni and Hueckel (1991)
and Bigoni (2000) proposed several local stability criteria to predict
the instability onset for nonassociative material; these criteria are
derived from the positiveness of second-order work. The global cri-
teria of bifurcation can also be used to derive these local criteria,
and the condition for localization under these two frameworks is
essentially the same (Bigoni 2000). Vardoulakis (1996a, b) used a
similar local stability approach for exploring the undrained instabil-
ities for biaxial loading on sand. Recently, Borja (2006) analyzed
liquefaction-type undrained instabilities under a general 3D loading
condition based on the local stability and uniqueness criterion. In
this case, instability modes do not depend on the flow boundary
condition; rather, the continuity equation was imposed as a con-
straint on the stability modes. However, the present analysis is
based on the global stability criteria, which were previously fol-
lowed by Hill and Hutchinson (1975), Bardet (1991), Vardoulakis
(1985), and Bardet and Shiv (1995).

Two-Phase Instability Modes under Rigid Boundary

Two-phase or SF instability modes in the rigid boundary were
identified by checking against the condition [Eq. (31)] from

(a) (b) (c)

(d) (e) (f)

Fig. 2. Evolution of (a and b) stress-strain, (c and d) pore pressure, and (e and f) stress-path behavior for e0 = 0.65 and 0.85 with varying initial effec-
tive confining pressures (s 0

c) (Note: q, s
0
m, p, and ɛq are the shear stress, effective mean pressure, pore pressure, and shear strain, respectively)

© ASCE 04016042-5 Int. J. Geomech.
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Appendix II. Fig. 4 presents the evolution of the undrained insta-
bility parameter (b2-4c) of Eq. (31) during shearing for a void ra-
tio of 0.7 at initial effective confining pressures of 100 and
400 kPa. The two-phase instability condition was observed to get
satisfied for the case with 100-kPa confining pressure. The wave-
length ratio (K ¼ b 1=b 2 ¼ 61) was obtained at the onset of
two-phase instability, which also corresponds to the case of
m1=m2 ¼ L1=L2 ¼ 1=2.

The onset of SF instability modes at various void ratios and
confinement was calculated and is marked in Figs. 2 and 3.
Such modes emerged just before the peak shear stress for sands
with loose and medium-density states. Hence, undrained strain
softening is generally associated with SF instability modes,
which is also termed as static liquefaction phenomenon. These
modes were observed to be delayed with decreasing void ratio
and an increase in the initial effective confining pressure. In
the case of medium-dense sand, two-phase instability modes
were activated only at lower confinements with a clear phase
change.

Two-Phase Instability Modes under Flexible Boundary

The onset of SF instability under the flexible lateral boundary was
analyzed for the first time theoretically. Two-phase instability
modes for the flexible boundary were investigated by checking
against the condition �G ¼ 0 from Eq. (26). Solutions were obtained
for the fundamental mode (m1 = 1 and m2 = 2), which was observed
to be the critical mode in the rigid boundary case. Because the
expression �G is undefined at x1 = 0, the expression lim

x1!0
�G for this

mode was evaluated near the point with x1 = 0

�G0þ¼ lim
x1!0

�G¼ð2d4þd7þd8�d1�d2Þg 12b 22

�d3b 24�d5g 14 (17)

The expression in Eq. (17) is very similar to the condition Gr = 0
of the rigid boundary case; however, b 1 is replaced here with g1,
and an additional constraint of Eq. (22) needs to be satisfied. The
expression of �G0þ was observed first to satisfy the condition �G ¼ 0
compared to the other values of x1, implying that the two-phase
instability initiates around a point with x1 ¼ 0. Iai and Bardet (2001)
also showed the vortex of the perturbed velocity field for this mode
(m1 = 1 and m2 = 2) to lie on the x2-axis. The evolution of �G0þ for
the simulation of the e0 = 0.85 sample at an initial effective confining
pressure of 100 kPa has been plotted in Fig. 5. SF instability mode
was identified when �G0þ changed its sign from negative to positive.
Two-phase instabilities for other simulations in the flexible condi-
tion were also determined and have been marked in Figs. 2 and 3. In
the flexible case, a general trend of delayed onset for two-phase
instability was observed in comparison to the rigid boundary condi-
tion. Unlike in the rigid boundary, no SF instability was observed for

(a) (b)

(c) (d)

Fig. 3. Evolution of (a and b) stress-strain and (c and d) stress-path behavior for s 0
c ¼ �100 and –400 kPa with varying void ratios (Note: q,

s 0
m; and ɛq are the shear stress, effective mean pressure, and shear strain, respectively)

Fig. 4. Evolution of undrained instability parameter (j ¼ b2 � 4c) for
void ratio 0.7 at initial effective confining pressures 100 and 400 kPa

© ASCE 04016042-6 Int. J. Geomech.
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the medium-dense sand with a void ratio of 0.7 under a 100-kPa ini-
tial effective confining pressure. Similar to the rigid case, two-phase
instability in the flexible boundary was also precluded with an
increase in level of confinement and decreasing void ratio. Because
the SF instability mode is more critical in the rigid lateral boundary
case, from here on, these modes will be discussed specifically in ref-
erence to the rigid boundaries only. SFmodes were important to ana-
lyze in the flexible case to explore the possibility of such modes
appearing before localization phenomena, which is further discussed
in the subsequent section.

LocalizedModes

The localization onsets for different biaxial test simulations were
captured using the conditions N = 0 or �N ¼ 0 as discussed in
Appendix III. For each of such biaxial loading configurations, a criti-
cal hardening modulus (Hloc) was calculated at every stress state for
satisfying the requirement of localization on the elliptic/hyperbolic
boundary. The localization mode was triggered only when the criti-
cal hardeningmodulus could exceed the actual hardeningmodulus at
any stress state. The evolutionof the critical hardeningmodulus, nor-
malized by the elastic shear modulus (G), is plotted in Fig. 6 for the
sand sample at e0 = 0.65 and 100 kPa initial effective confining pres-
sure. For this case, the localization took place at approximately
0.45% shear strain. Localization onsets for other biaxial simulations
were identified in a similar manner and have been marked in Figs. 2
and 3. Such modes for rigid boundaries were more prevalent for the
dense sand than the loose or medium-dense sands, where localized
modeswere precededby theSF instabilitymode.However, localized
modes emerged first in the flexible boundary case, followed by the
two-phase instabilitymodes in the case of loose-sand samples. Finno
et al. (1997) andMooney et al. (1997) also noticed that the localized
modes initiate from theuniformdeformationfield underbiaxial load-
ing with flexible lateral boundaries, compared to the two-phase or
liquefaction-type modes. Similar to the two-phase modes, localiza-
tion behaviorwas also retarded by an increase in the level of confine-
ment, resulting in a higher onset shear strain at localization.
However, for medium-dense sand, an increase in confinement
changed the instability type from a two-phase to a localized one.
Implementation of the generalized constitutive relation with the 3D
hardening rule allows one to capture such a change in the instability
behavior of the sand sample. Fig. 7(a) shows variation in the onset
shear strain at localization with a confining pressure for two void
ratios, e0 = 0.7 and 0.65. The effect of confining pressure on shear-
band orientation is presented in Fig. 7(b), which also depicts an

increasing trend with an increase in the initial effective confining
pressure. Finno et al. (1997), Mooney et al. (1997), and Mokni and
Desrues (1998) experimentally reported a similar trend in the orien-
tation of shear bandwith an increase in the initial effective confining
pressure duringundrained testingof saturated sand.

Friction and Dilatancy Angles at Onset of Instability

The evolution of friction and dilatancy angles is plotted in Fig. 8 for
e0 = 0.65 and 0.85 with varying confining stress. The instability onsets
in the rigid boundary are also shown in the plot. In all of these cases,
both SF and localization-type instabilities occurred before the stage
when the friction or dilation angles reached their peak. Moreover, the
friction and dilatancy angles at the onset of instability were observed

Fig. 5. Evolution of undrained instability parameter in flexible bound-
ary (�G0þ) for void ratio 0.85 at initial effective confining pressure
100 kPa

Fig. 6. Evolution of actual and critical normalized hardening modulus
for undrained biaxial test with void ratio 0.65 and initial effective con-
fining pressure of 100 kPa

(a)

(b)

Fig. 7. Effect of initial effective confining pressure (s 0
c) on (a) shear

strain at localization (ɛloc) and (b) band angle inclination (u s) for two
void ratios

© ASCE 04016042-7 Int. J. Geomech.
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to increase with increasing confinement. In the case of dense sands,
localization emerged near the limit of zero volume change, resulting
in a small positive dilation angle at localization. Han and Vardoulakis
(1991) and Finno et al. (1997) also observed that the localization takes
place before the peak friction angle is achieved.

Shear-band angles for the two-dimensional plane-strain problem
are often calculated using the following relations as a function of
the friction angle (f ) and dilatancy angle (c d) at the onset of
localization:

Mohr–Coulomb theory: u CM ¼ p

4
þ f

2

Roscoe theory: u CR ¼ p

4
þ c d

2

Arthur et al. (1977):

u CA ¼ p

4
þ f

4
þ c d

4
(18)

Inclination of shear bands was calculated for dense sand with
e0 = 0.65 at various confining pressures using the relations from
Eq. (18), which are depicted in Fig. 9. For all of these cases, the
values of u CA were lower and u CM were significantly higher than
the localization angle (u b) calculated from the bifurcation analy-
sis. The values of u CA were also on the slightly higher side, but
within 2–3° of difference. Similar to the bifurcation solution, the
band angles calculated from these relations implied an increasing
trend with an increase in the initial confining pressure.

Charts for Instability Onset

The effect of void ratio and initial effective confining pressure on
the emergence of possible instability modes in the rigid boundary

are further evaluated in this section. The state variable was used as a
parameter to characterize the instability response. The state variable
(c ) represents relative density of sand in some sense and includes
the effect of both initial density and confining pressure. A negative
value of the initial state variable (c 0) implies a denser state,
whereas a positive value indicates loose state. Fig. 10 presents the
evolution of the two-phase instability coefficient and normalized
critical hardening modulus associated with localization with the pa-
rameter c 0 for the case simulated at e0 = 0.73 and varying initial
confining pressure from 100 to 400kPa. The onset shear strains for
the two-phase and localized instability modes were determined by
following the procedure mentioned in Appendixes II and III and is
replotted in Fig. 10(c) against c 0. The density varied form loose to
a denser state as c 0 changed from –0.1 to –0.06. SF instability pre-
ceded the localization mode at loose states with c 0 � �0:08, after
which only localization-type instability was observed.

The onset shear strains for these two types of instabilities are
presented using contour plots in Fig. 11. The instability onsets
were obtained by varying the void ratio from 0.65 to 0.85 over

(a) (b)

(c) (d)

Fig. 8. Evolution of (a and b) friction angle (f ) and (c and d) dilatancy angle (c d) for e0 = 0.65 and 0.85 with various initial effective confining
pressures

Fig. 9. Effect of initial effective confining pressure (s 0
c) on inclination

of shear-band angle (u s) calculated from Eq. (18)

© ASCE 04016042-8 Int. J. Geomech.
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the initial effective confining pressure range of 100–400 kPa.
Figs. 11(a and c) present the contours of SF instability modes
along with the critical state line (CSL), characterized by c = 0. It
can observed from Fig. 11(a) that the onset shear strain for such
instability was a function of both void ratio and confining pres-
sure. As noticed in an earlier section, the onset strain increased
with the decrease in void ratio and increasing initial confining
pressure. However, the increasing slope of these contours indi-
cates a larger impact of void ratio at higher confinement com-
pared to the lower ones. This can further be analyzed from Fig.
11(c), where the contours were replotted against c 0 and confin-
ing pressure. The onset strains were not uniquely related to c 0

and showed significant dependence on confining pressure along
with c 0. The slope of these contours reduced with an increase in
the confining pressure, implying more pronounced effect of confine-
ment at a lower range of confining pressure, whereas at a higher con-
fining pressure, the influence of c 0 was induced mainly through
void ratio. The slope and spacing of such contours were different at
two sides of the CSL. The spacing in Fig. 11(a) was much larger on
the right side of the CSL, implying a higher influence of void ratio
and confining pressure at the loose state.

The contour plots of onset shear strains for localization insta-
bility are presented in Figs. 11(b) and 11(d). The strain contours
in Fig. 11(b) are nearly perpendicular to the CSL, and the radial
contours indicate a larger impact of void ratio and confining pres-
sure at higher void ratios and confinement. However, the influence
of confining pressure decreases with an increasing level of con-
finement, which is evident from the gradually reducing contour
slopes of Fig. 11(d). It is important to note that SF instability is
the dominating mode at higher void ratios and confinement, which
can even be followed by strain localization phenomena. Hence, in
this region, the strain contours for localization onset, as predicted
from a homogeneous stress-strain field, do not represent the actual
scenario and require a proper postbifurcation analysis through
appropriate FEM simulation. The material model used here for
the biaxial instability analysis does not capture the Lode angle
effect that is often observed in soils. However, this is not a con-
cern in the applicability of these charts in general, because the
Lode angle does not vary significantly during plane-strain shear-
ing (Vardoulakis 1980).

Two-Phase Instability Line in Stress Space

The two-phase instability line in stress space is defined by joining
the points of peak shear stress from a series of undrained tests to

the origin of the stress space (Lade 1992). The slope of the two-
phase instability line or instability angle is nonunique and
depends on initial relative density (i.e., more specifically, void ra-
tio and confining pressure at the start of undrained shearing)
(Lade 1993; Yamamuro and Lade 1997). In a series of undrained
triaxial experiments on Nevada sand, Yamamuro and Lade
(1997) noticed the instability angle remained constant at higher
relative densities, but increased with initial confining pressure at
lower densities, whereas a decreasing instability angle was
observed with the initial void ratio before shearing. Chu et al.
(2003) and Wanatowski and Chu (2007) also observed a reduc-
tion in the slope of the instability line with initial void ratio before
shearing during the undrained plane-strain test on marine sand.
Here, instability angles were calculated by joining the two-phase
instability point in the rigid boundary and the origin of stress
space, and its variation with initial void ratio and confining pres-
sure is plotted in Fig. 12. The observations are consistent with the
previous literature. The influence of confining pressure on insta-
bility line was more significant at lower void ratios and reduced
with a higher level of confinement.

Conclusions

The emergence of two types of instability modes (i.e., SF and
strain localization) has been assessed for undrained biaxial tests
on sand with both flexible and rigid lateral boundaries. A large de-
formation–based plane-strain bifurcation analysis was performed
to examine the possibility of these instability modes at different
densities, confining pressures, and the applied boundary condi-
tions. The material was assumed to follow the rate-independent
3D nonassociative constitutive law of Wood (2004) to capture
most of the undrained instability modes at different states of ma-
terial and boundary conditions. The existing analytical frame-
work for predicting two-phase instability under a rigid lateral
boundary was extended to laterally flexible conditions to look
into the effect of boundary condition on undrained instability
modes. The onset of two-phase instabilities under undrained biax-
ial loading with a flexible lateral boundary was thus analyzed the-
oretically for the first time in this study. The instability predic-
tions were found to be qualitatively in good agreement with the
experimental observations. The onset of undrained instabilities
from small deformation analysis overlapped with that from the
large deformation formulation.

The SF instability modes were found to be more crucial for loose
to medium-dense sands, which emerged just before the peak shear

(a) (b) (c)

Fig. 10. Evolution of (a) two-phase instability coefficient (j ¼ b2 � 4c), (b) calculated (H/G) and critical (Hloc=G) normalized hardening modulus
for localization, and (c) onset shear strains (ɛinst) of two types of instability modes with parameter c 0 for e0 = 0.73 and initial effective confining pres-
sures ranging from 100 to 400 kPa
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stress under biaxial loading with the rigid lateral boundary, whereas
emergence of such modes was delayed significantly in the case of
the flexible boundary. The localized deformation modes preceded
the two-phase instability modes in the flexible boundary case,
unlike the rigid boundary case. Hence, loose-sand samples may not

undergo SF instability or static liquefaction in such test configura-
tions, and the localized type of instabilities are more likely to take
place in these cases. These results are consistent with the experi-
mental observations by Han and Vardoulakis (1991), Finno et al.
(1997), andMooney et al. (1997) on loose sand under laterally flexi-
ble undrained biaxial testing. For dense sand, localization-type
modes were the primary instability mode under both boundary
conditions.

The onset of both SF instability and localized mode was retarded
by an increase in the initial effective confining pressure and a
decrease in void ratio. In the case of medium-dense sand, two-phase
instability modes were activated only at lower confinements with a
clear phase change. An increasing trend was noted in the inclination
of the shear-band angle with increasing initial confining pressure.
The charts of instability onset showed that the confining pressure
and void ratio both had strong influence in emergence of instabil-
ities at different magnitudes of these variables. In a similar way, the
slope of the two-phase instability line in stress space was also found
to be a function of both the initial void ratio and the confining pres-
sure before undrained shearing.

Appendix I. SF Instability Modes under Flexible Lateral
Boundary

The mathematical formulation for analyzing two-phase or SF
instability modes under flexible lateral boundary conditions is
derived in this appendix. The derived equations do not appear in
the existing literature. Two-phase or SF instability modes, which
can emerge during undrained loading of a saturated soil specimen,
should satisfy the stress rate equilibrium equation given in Eq. (4)
and the boundary conditions considered in Eqs. (5) and (6). For
biaxial loading, the general expression for the perturbed velocity
field associated with the two-phase instability can be represented
by

(a)

(b)

Fig. 12. Effect of (a) void ratio (e0) and (b) initial effective confining
pressure (s 0

c) on slope of instability line (h I)

(a)

(b)

(c)

(d)

Fig. 11. Contours of onset shear strain with (a and b) void ratio e0 and
initial effective confining pressure (s 0

c) and (c and d) c 0 and initial
effective confining pressure for SF and localization instability,
respectively
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v1 ¼V1 sin ðg 1x1þu 1Þcos ðb 2x2þu 2Þf ðtÞ
v2 ¼V2 cos ðg 1x1þu 1Þsin ðb 2x2þu 2Þf ðtÞ
_p¼P cos ðb 1x1þu 1Þcos ðb 2x2þu 2Þf ðtÞ (19)

where V1; V2, and P = arbitrary modal amplitudes; and f(t) =
unknown function of time. The assumed velocity modes satisfy
the boundary conditions of Eqs. (5) and (6) provided the coeffi-
cients b 1; b 2; u 1, and u 2 are selected as follows:

b 1L1 ¼
p

2
m1 for m1 ¼61;62;…

b 2L2 ¼
p

2
m2 for m2 ¼61;62;…

u 1 ¼
0 for m1 even
p

2
for m1 odd

and u 2 ¼
0 for m2 even
p

2
for m2 odd

8<
:

8<
:

(20)

where m1 and m2 = arbitrary integers. In the case of the flexible
boundary (Case 1), the boundary condition at x1 ¼ 6L1 and �L2 �
x2 � L2 requires g 1L1 6¼ m3p=2 for an arbitrary integer m3 ¼
61;62::: and

d1g 1V1 þ d7b 2V2 ¼ 0

d4b 2V1 þ d5g 1V2 ¼ 0 (21)

For nontrivial V1 and V2, determinant of simultaneous Eq.
(21) should be zero, which leads to the relation

d1d5g
2
1 � d4d7b

2
2 ¼ 0 (22)

Substituting the perturbed velocity fields of Eq. (19) into Eq.
(4) gives

ðd1g 2
1þ d3b 2

2ÞV1l1þðd4þ d7Þg 1b 2V2l1� b 1Pl3 ¼ 0
ðd4þ d8Þg 1b 2V1l2þðd5g 2

1þ d2b 2
2ÞV2l2� b 2Pl4 ¼ 0

g 1
�f
�
V1

l2
l4
þ b 2

�f
�
V2

l2
l4
þ b 2

1þ b 2
2

� �
P¼ 0

where l1 ¼ sin ðg 1x1 þ u 1Þ ; l2 ¼ cos ðg 1x1þ u 1Þ
l3 ¼ sin ðb 1x1þ u 1Þ ; l4 ¼ cos ðb 1x1þ u 1Þ (23)

The coefficient �f
�
is defined as

�f
� ¼ b_f ðtÞ

f ðtÞ ¼ � ðb 2
1 þ b 2

2ÞP
ðg 1V1 þ b 2V2Þ

l4
l2

(24)

The coefficient �f
� is independent of time; however, it

depends on spatial coordiate x1. The solution to Eq. (24) is
f ðtÞ ¼ f0 exp ð�f �t=bÞ, where f0 represents the initial amplitude of
a perturbation of the trivial solution of Eq. (4) and the exponen-
tial rate of growth or decay of f ðtÞ is ð�f �t=bÞ. In the case of
�f
�
> 0, f grows exponentially with time, and eventually becomes

infinite, whereas when �f
�
< 0, the initial perturbation dies out

with time. Hence, the mode considered in Eq. (19) is stable
when �f � < 0 and unstable when �f � > 0. The growth of perturba-
tion with time [i.e., f(t)] varies with x1 and so is the onset condi-
tion for SF instability, which can be derived by equating the
determinant of Eq. (23) to zero for ensuring nontrivial solution
of V1, V2, and P

�f
�

b 2
1 þ b 2

2

¼
�Nðg 1; b 2Þ

�Gðg 1; b 1; b 2Þ
(25)

where

�N ¼ d1d5g 4
1 þ d2d3b 4

2 þ g 2
1b

2
2fd1d2 þ d3d5 þ ðd4 þ d7Þðd4 þ d8Þg

�G ¼ ðd4 þ d7Þg 2
1b

2
2 � b 2

2ðd1g 2
1 þ d3b

2
2Þ þ

l2
l1

l3
l4
fðd4 þ d8Þg 1b 1b

2
2 � ðd5g 2

1 þ d2b
2
2Þg 1b 1g (26)

This equation is defined within the domain �L1 � x1 � L1,
except at x1 = 0. SF mode emerges for the condition �f

�
> 0 (i.e.,

�N=�G > 0), whereas an infinite exponential growth (f � ! þ1)
occurs for SF instability (SF1) modes when �G ¼ 0 and �N 6¼ 0.

S instability modes under globally undrained conditions can
also be explored within the present bifurcation framework. Eq.
(25) is further simplified to the following form using Eq. (24):

P
ðg 1V1 þ b 2V2Þ

cos ðb 1x1 þ u 1Þ
cos ðg 1x1 þ u 1Þ ¼

�N
�G

(27)

S instability mode (i.e., nontrivial Vi and P = 0) can be
obtained in the flexible boundary condition provided Eq. (27) is
satisfied by having �N ¼ 0. For the flexible boundary, S instabil-
ity modes can emerge in the form of either strain localization or
diffused instability modes. The restriction (P = 0) requires
assumption of locally drained conditions for emergence of such
S instabilities under globally undrained biaxial loading. This
assumption can be reasonable for the case of strain localization
or shear bands where only a small zone of intense shearing is

involved. However, such an assumption is not justified for dif-
fused instabilities that involve a larger volume of soil sample
with local internal drainage resulting in local volume change and
nonuniform pore pressure distribution. A finite-element–based
analysis may help in this regard. In the present study, the focus
was restricted only to the localized type of S instabilities.

Appendix II. SF Modes under Rigid Lateral Boundary

For the biaxial loading with rigid boundary (Case 2), two-phase
instability modes can be represented by the perturbed velocity field
of Eq. (19) provided g 1 ¼ b 1 to satisfy Eq. (6). After substituting
this modified velocity field, the governing equations for the rigid
boundary can still be represented by Eq. (23) with l1 = l2 = l3 = l4 =
1 and �f

� replaced by f*. The expression for coefficient f* is the
same as defined by Eqs. (30) and (32) in Bardet and Shiv (1995),
which were previously derived for detecting SF instability under
biaxial loading with rigid boundaries and incompressible pore fluid.
In this case, the coefficient f* is independent of time and space, and
the growth of perturbation with time [i.e., f ðtÞ ¼ f0 exp ðf �t=bÞ]
does not depend on the spatial coordinate. Similar to the flexible

© ASCE 04016042-11 Int. J. Geomech.
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boundary case, the SF instability mode with wavelength ratio K ¼
b 1=b 2 emerges when f � > 0 [i.e., NðKÞ=GrðKÞ > 0, where
N ¼ a1K

4 þ b1K
2 þ c1; andGr ¼ a2K

4 þ b2K
2 þ c2. The coeffi-

cients a1, b1, c1, a2, b2, and c2 are

a1¼d1d5 ; b1¼d1d2þd3d5�ðd4þd7Þðd4þd8Þ ; c1¼d2d3

a2¼�d5 ; b2¼�ðd1þd2�2d4�d7�d8Þ ; c2¼�d3 (28)

whereas SF1 instability is encountered for the condition Gr = 0
and N 6¼ 0. In the case of incompressible pore fluid, the condition
for SF1 mode requires K ¼ �V2=V1 (Bardet and Shiv 1995; Iai
and Bardet 2001). The condition for emergence of SF1 mode can
be rewritten as

Gr ¼ K4 þ bK2 þ c ¼ 0 (29)

where

b ¼ d1 þ d2 � 2d4 � d7 � d8
d5

and c ¼ d3
d5

(30)

To get a real solution for K, the following condition should be
satisfied at the onset of SF1 instability:

b2 � 4c � 0 and b < 0 (31)

A pure S instability mode under rigid boundaries requires
N = 0. The rigid boundary condition imposed by Eq. (6) restricts
the occurrence of diffused instability modes and allows only local-
ized shear bands to generate. It is important to note that the S insta-
bility conditions for both the rigid and flexible case (i.e., N = 0 and
�N ¼ 0) refer to the same characteristic equation in terms of b 1

and b 2 or g1 and b 2. The governing equations related to the local-
ization type of instability mode are discussed in the subsequent
section.

Appendix III. Solid Instability Mode in Form of
Localization

The localized type of solid instability mode arises when a non-
homogeneous velocity field (v) emerges in a planar region in the
form of shear bands. A globally undrained but locally drained
condition has been assumed to identify the onset condition for
localized modes. The velocity continuity for such a case requires
½ ½vi;j� � ¼ ginj, where ½ ½ � � denotes the jump or difference in mag-
nitude of the field variable within and outside the band. The nor-
mal vectors n and g are arbitrary vectors that depend only on the
distance across the band and vanish outside the band. Here, the
kinematic constraint due to plane-strain conditions is satisfied
when ½ ½D33� � ¼ ½ ½D13� � ¼ ½ ½D23� � ¼ 0, which further results in
g3 = n3 = 0. The equilibrium of stress rate across the shear band
is enforced by the relation nj½ ½ _Sji� � ¼ 0. The condition for the
nontrivial solution of g1 and g2 can be obtained by substituting
the velocity continuity relation into the equilibrium equation,
which leads to the same characteristic equation for both rigid
and flexible cases (i.e., N = 0 or �N ¼ 0) (Rice 1976; Bardet
1991). Based on the coefficients a1, b1, and c1, the characteristic
equation can have either four or two real roots, depending on
whether it is hyperbolic or parabolic in nature, respectively. For
the hyperbolic regime (i.e., z ¼ b21 � 4a1c1 � 0; b1=a1 � 0;
c1=a1 � 0), the solutions are

n1; n2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b1 �

ffiffiffiffi
z

p
2a1

s
; n3; n4 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b1 þ

ffiffiffiffi
z

p
2a1

s
(32)

whereas for the parabolic regime (i.e., c1=a1 < 0), the solutions
are given by

n1; n2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

�b1 �
ffiffiffiffi
z

p
2a1

;
�b1 þ

ffiffiffiffi
z

p
2a1

� �s
(33)

Such localized modes are first available on the elliptic/hyper-
bolic boundary (z = 0) with only two unique roots. The shear-band
angle (u s) from the lateral direction (i.e., clockwise from the x1-axis)
can be calculated by using the relation n1¼ sin u s and n2¼ cos u s.
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