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The diffused and localized instabilities in sand under drained biaxial loading have been analyzed here fol-
lowing a plane strain bifurcation framework, where the rate independent material is defined using a gen-
eralized 3D non-associative constitutive model. This study is focused on how various instability modes
emerge with respect to initial density, confining pressure, and the applied boundary conditions.
Results from large deformation framework have been compared with those from small deformation
approximation and the later is noticed to fail in capturing the emergence of diffused modes and predicts
delayed onset of localization. The theoretical predictions compares well with existing experimental
observations.
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1. Introduction

Soil samples, initially undergoing uniform deformation during
laboratory experiments, may experience non-uniform plastic
deformation beyond certain state of stress and strain. This state
is marked as the onset of plastic instability and acts as precursor
to failure. Plastic instabilities may appear in the form of two-
phase instability, bulging, buckling, or shear bands due to strain
localization [1–6]. Instabilities, either diffused or localized, can
emerge in any engineering system depending on the initial and
boundary conditions of the domain under consideration. For engi-
neering systems, localized instabilities are a cause of higher con-
cern as they lead to catastrophic failure. However, such localized
modes can emerge directly or evolve from other diffused instability
modes with continued deformation. In the later case, the localiza-
tion phenomena can get influenced significantly by the preceding
diffused modes. This is the main motivation behind the present
study.

In case of saturated sands under drained condition, shear band-
ing is one of the most commonly observed instability modes that
arises during triaxial or biaxial experiments as reported in the pre-
vious literature [7–13]. Experimental observations revealed that in
comparison to triaxial compression, sand samples are more sus-
ceptible to localization in biaxial compression experiments [14–
16]. Localization onset and shear band orientation in such tests
had significant influence of confining pressure [17,18]. Through a
series of experiments on Hostun RF and Manche sand, Desrues
and Hammad [17] observed that localization gets significantly
delayed with increase in confining pressure or decrease in density.
Antisymmetric diffused modes (i.e., buckling) were encountered
only in the experiments on loose sands at high confining pressure.
However, in all the cases localization was the final instability
mode. This type of diffused instability modes are different from
the diffused failures characterized by a sudden collapse of the
material [19,20].

Instability modes from a uniform states of stress and strain can
be assessed theoretically using bifurcation based instability analy-
sis. A bifurcation based instability prediction helps in understand-
ing the initiation of various possible instability modes which can
be further useful during modeling of complex geotechnical engi-
neering systems [21–23]. Hill and Hutchinson [24] presented a
bifurcation based analytical framework for exploring various
non-unique deformation modes that can emerge from a uniform
shear-free stress and strain fields during tensile testing of incom-
pressible solids under plane strain condition. Young [25] extended
this study to compressive loading and Needleman [26], Var-
doulakis [27,1], Chau and Rudnicki [28] further incorporated
non-associativity and compressibility in the formulation. However,
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the bifurcation problem in these cases were solved only for a set of
initial values of state variables instead of considering, the evolution
of these state variables with continued deformation. Hence the
predicted instability trends were limited to that parameter set.
The successive emergence of various instability modes can only
be predicted by considering the evolving response of the solid or
variation in the magnitude of the state variables with continued
deformation. A more general analytical approach in this regard
was presented by Bardet [3]. A Mohr–Coulomb type yield surface
was used with Rowe’s dilatancy based plastic potential. However,
such simple model cannot explain the variations observed in the
instability modes during experiments and a better representation
of stress–strain relation is required for predicting instability modes
at different stress states.

The experimental and theoretical understanding of instabilities
in sand, as available in the literature, is mainly built on the simple
plane strain material models. However, a generalized pressure
dependent 3D constitutive model with hardening is expected to
predict instability behavior more closely to the experimental
observations. This will also provide insights for different instability
modes. Previously, Gajo et al. [29,30] employed a 3D constitutive
model and small deformation formulation to predict localization
onset and post localization behavior of sand in drained biaxial test
at varying initial density and confining pressure. They assumed
such localized modes to evolve from a homogeneous stress–strain
state. It will be interesting to see how other possible diffused
modes can emerge and how do they compare with the onset of
localized modes, and that is the motivation of present study. Fur-
ther, it is of interest to identify the influence of small deformation
versus large deformation formulation on drained instability pre-
dictions. Mukherjee et al. [31] employed a similar pressure depen-
dent 3D constitutive model to examine emergence of localized and
liquefaction type solid–fluid instability modes in sand under
undrained biaxial loading condition. Such undrained instability
modes were noticed to get influenced significantly by the material
state and boundary conditions.

The present analysis attempts to assess various drained insta-
bility modes in sand that are possible under different densities,
confining pressures and the applied boundary conditions during
biaxial test. The instability analysis has been posed as a plane
strain bifurcation problem from a uniform stress–strain state that
follows a rate-independent framework of a generalized 3D non-
associative constitutive model. The biaxial condition is simulated
for both rigid and mixed boundary conditions with displacement
controlled and stress controlled lateral loading, respectively. It is
first analyzed with large deformation formulation and then simpli-
fied to small deformations. Possible emergence of different dif-
fused modes, i.e., both antisymmetric and symmetric bifurcated
modes along with localized shear bands, is analyzed at different
states of material and boundary conditions. Influence of loading
condition on drained localized modes has been examined by com-
paring the onset shear strain and shear band angle from biaxial and
true triaxial tests with varying intermediate principal stress ratio.

2. Plane strain bifurcation analysis

2.1. Material model

The material behavior is characterized by the following incre-
mental elasto-plastic stress–strain relation [32,33]

s
O
ij ¼ CijklDkl; ð1Þ

where s
O
is the Jaumann rate of Kirchhoff stress, D is the rate of

deformation tensor and Cijkl is a fourth order tensor representing
the elasto-plastic tangent stiffness of the material
Cijkl ¼ Eijkl � EijmnPmnQrsErskl

H þ QabEabcdPcd
; ð2Þ

Eijkl is the isotropic elastic stiffness tensor given by

Eijkl ¼ lðdikdjl þ dildjkÞ þ kdijdkl; ð3Þ
l and k are the Lamé constants, dij is the Kronecker delta, H is the
hardening modulus, P and Q are the directions of outer normal to
the plastic potential (g) and yield surface (f ), respectively

Pij ¼ @g
@sij

; Qij ¼
@f
@sij

: ð4Þ

Some other representations of stress rates also exist in the litera-
ture, e.g., convective rate, Truesdell rate, Cotter-Rivlin rate, Green–
McInnis rate etc. [34,35]; however, Jaumann rate is the most com-
monly used stress rate for analyzing instability of soil under biaxial
shearing [27,1,3,5]. Following Bardet [3], Jaumann rate of Kirchhoff
stress has been adopted in the present work. Unlike Mohr–Coulomb
model, a generalized 3D constitutive model can account for evolu-
tion of the intermediate principal stress under plane strain condi-
tion. The 3D constitutive model proposed by Wood [36] has been
employed in this study. It is a non-associative model based on crit-
ical state concept which includes both shear and volumetric hard-
ening and incorporates the effect of both density and confining
pressure. The yield surface (f ) and plastic potential (g) are defined
by

f ðs; epq; epvÞ ¼
ffiffiffiffiffiffiffi
3J2

p
þ gy

I01
3
¼ 0; ð5Þ

gðsÞ ¼
ffiffiffiffiffiffiffi
3J2

p
þMc

I01
3

ln
3P0

r

I01
: ð6Þ

In the above expressions, epq and epv are the shear and volumetric
components of logarithmic plastic strain tensor, I01 is first invariant
of Kirchhoff stress tensor, J2 is second invariant of deviatoric Kirch-
hoff stress tensor, Mc is the slope of the critical state line in

ffiffiffiffiffiffiffi
3J2

p
versus �I01=3 plane, P0

r is the intercept of plastic potential on the
I01=3 axis, gy is shear stress ratio (�3

ffiffiffiffiffiffiffi
3J2

p
=I01) which is taken as a

state variable and controls the evolution of hardening modulus (H)

H ¼ � @f
@gy

@gy

@epij

T
@g
@sij

: ð7Þ

Evolution of the gy is related to accumulated plastic shear strain epq
by the following hyperbolic function

gy

gp
¼ epq

aþ epq
; ð8Þ

where a is a constant and gp is peak shear stress ratio. Here, gp is
defined as a function of another state variable w which includes
information of density or specific volume (ve) and mean stress,

gp ¼ Mc � jw ¼ Mc � j½ve � CþK lnð�I01=3Þ�; ð9Þ
where, j is a material constant, K is slope of the critical state line in
compression plane, and C is intercept of the critical state line on the
specific volume axis at mean pressure level of 1 kPa.

2.2. Large deformation formulation

The mathematical framework for plane strain bifurcation anal-
ysis of solids has been presented in detail by Hill and Hutchinson
[24], Vardoulakis [1], and Bardet [3]. The governing equations for
such a bifurcation based instability analysis are presented briefly
in Appendix A. Two types of boundary conditions are considered
for the biaxially loaded drained sand sample (Fig. 1), namely mixed
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Ṡ21 = 0

x2

x10

−L2

L2

L1−L1
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Fig. 1. Boundary conditions imposed on the perturbed solutions for performing
plane strain bifurcation analysis with (a) mixed boundary and (b) rigid boundary.
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boundary and rigid boundary, while assuming no shear stresses
acting on any of the boundaries. In the first case, as shown in
Fig. 1(a), the top and bottom (x2 ¼ �L2) of soil sample are given
constant velocity in x2 direction and the lateral surfaces are sub-
jected to constant stress r11. In the second case (Fig. 1(b)), the sam-
ple is subjected to constant velocities in both x1 and x2 direction at
the boundaries x1 ¼ �L1 and x2 ¼ �L2, respectively. Initially a
homogeneous stress–strain field prevails during loading; however,
at some loading stage, a nonhomogeneous stress–strain rate field
may emerge satisfying the same equilibrium and boundary condi-
tions as that for homogeneous stress–strain field. The bifurcation
analysis comprises of identifying a non-trivial perturbed solution,
i.e., the difference between the nonhomogeneous and homoge-
neous fields of strain rate. The perturbed solution should satisfy
the following boundary conditions:

Case-1

_S11 ¼ d1v1;1 þ d7v2;2 ¼ 0; _S12 ¼ d4v1;2 þ d5v2;1 ¼ 0 at x1

¼ �L1 and � L2 6 x2 6 L2
v2 ¼ 0; _S21 ¼ d3v1;2 þ d4v2;1 ¼ 0 at x2 ¼ �L2 and
� L1 6 x1 6 L1; ð10Þ
Case-2

v1 ¼ 0; _S12 ¼ d4v1;2 þ d5v2;1 ¼ 0; at x1 ¼ �L1 and
� L2 6 x2 6 L2

v2 ¼ 0; _S21 ¼ d3v1;2 þ d4v2;1 ¼ 0; at x2 ¼ �L2 and
� L1 6 x1 6 L1: ð11Þ
During biaxial compression test with mixed boundary, a pres-

sure is imposed on the vertical edges of the samples. Such pressure
on the lateral boundary is generally modeled as follower type load-
ing. However, in the present scenario, where bifurcation is
assumed to emerge from a rectilinear homogeneous deformation
field, the rotation of lateral boundaries is insignificant (resulting
in a fixed normal to the boundary). The pressure exerted on the
lateral boundaries can therefore be modeled as a dead force act-
ing as normal traction. The onset of bifurcation is identified
assuming an infinitesimal transition from the homogeneous field
and the assumed perturbed velocity field should further satisfy
the same boundary conditions as is the homogeneous deforma-
tion field. A similar approach was taken by Vardoulakis [1] and
Bardet [3] in their analysis to model the stresses on lateral
boundaries.

The possibility of diffused instability modes is investigated, for
the boundary conditions considered in Eqs. (10) and (11), by satis-
fying the stress rate equilibrium equation given in (31). The bifur-
cated velocity fields corresponding to the diffused instability
modes for these two boundary conditions are presented in Appen-
dix B. The velocity field for case-1 (stress controlled) is given by
(33) which satisfies (10) and follows the characteristic Eq. (37).
There exist three possible solution regimes (EI, EC, P and H) for
this characteristic equation and the emergence conditions for
these different type of solutions are listed in Appendix B. Whereas,
the bifurcated velocity field for case-2 (displacement controlled)
satisfies the boundary condition (11) and has the form given in
(38). The solution of the characteristic equation for this case exists
only in the hyperbolic regime. In the hyperbolic regime, however,
the localized modes remain in competition with the diffused
instability modes, and both emerge simultaneously as the condi-
tion in (36) is met. Such localized modes and their onset condi-
tions are discussed in the Appendix Section C. Since localized
modes can develop independent of the boundary conditions, such
modes can emerge under both the cases considered in this
analysis.

2.3. Simplification with the assumption of small deformation

The previous relations are modified here assuming small defor-
mation, rotational components in the stress rate are thereby
neglected. In that case the 1st Piola–Kirchhoff, Cauchy and Kirch-
hoff stress tensors will be identical and the stress rate equilibrium
Eq. (29) can be written as

_r11;1 þ _r21;2 ¼ 0
_r12;1 þ _r22;2 ¼ 0: ð12Þ
The strain tensor �, related to the displacement vector u as
�ij ¼ 1

2 ðui;j þ uj;iÞ, satisfies the plane strain kinematic constraint
_�33 ¼ _�13 ¼ _�23 ¼ 0. The constitutive relation is defined by

_rij ¼ Cijkl _�kl: ð13Þ
The governing equations for instability analysis derived in (31) are
now replaced by the following relations



Table 1
Material constants considered in the analysis [42,36].

Parameter Description Value

l Shear modulus G0=3
m Poisson’s ratio 0.1
Mc Slope of critical state line in

ffiffiffiffiffiffiffiffiffiffiffið3J2Þ
p

–ð�I01=3Þ plane 1.2

K Slope of critical state line in specific volume
(ve)–lnð�I01=3Þ plane

0.03

C Intercept for critical state line in ve–lnð�I01=3Þ plane at
1 kPa effective mean pressure

1.969

a Parameter controlling hyperbolic stiffness relationship 0.0016
j Relation between changes in state parameter (w) and

current peak stress ratio (gp)
2

(a)

(b)

Fig. 2. Predicted stress–strain behavior of sand sample under biaxial loading, at (a)
e0 ¼ 0:65 and (b) e0 ¼ 0:90, with varying confining pressure.
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d1 _u1;11 þ d3 _u1;22 þ ðd4 þ d7Þ _u2;12 ¼ 0
d5 _u2;11 þ d2 _u2;22 þ ðd4 þ d8Þ _u1;12 ¼ 0; ð14Þ
where the coefficients in the above equation are redefined as

d1 ¼ C1111; d2 ¼ C2222; d7 ¼ C1122; d8 ¼ C2211

d3 ¼ d4 ¼ d5 ¼ d6 ¼ C1212: ð15Þ
The boundary conditions for the loading cases considered in Sec-
tion 2.2, with the assumption of small deformation, can be repre-
sented as

Case-1

_r11 ¼ 0; _r12 ¼ 0 at x1 ¼ �L1 and � L2 6 x2 6 L2
_u2 ¼ 0; _r21 ¼ 0 at x2 ¼ �L2 and � L1 6 x1 6 L1; ð16Þ

Case-2

_u1 ¼ 0; _r12 ¼ 0; at x1 ¼ �L1 and � L2 6 x2 6 L2
_u2 ¼ 0; _r21 ¼ 0; at x2 ¼ �L2 and � L1 6 x1 6 L1: ð17Þ

For case-1, the expression of perturbed displacement rates for
diffused instabilities under small deformation can be represented
as

_u1ðx1; x2Þ ¼ _u1ðx1Þ cos bx2 þ h2ð Þ
_u2ðx1; x2Þ ¼ _u2ðx1Þ sin bx2 þ h2ð Þ; ð18Þ
where _u1ðx1Þ ¼ Aeiax1

_u2ðx1Þ ¼ Beiax1 :

Substituting (18) into (13), a system of algebraic equation can be
formed in terms of the variable Z ¼ a=b

ðd1Z
2 þ d3ÞA� ðd4 þ d7ÞiZB ¼ 0

ðd4 þ d8ÞiZAþ ðd5Z
2 þ d2ÞB ¼ 0: ð19Þ

Nontrivial solutions for A and B are obtained only when the deter-
minant of coefficients in (19) is equal to zero, which gives the char-
acteristic equation of (36), but the coefficients are now calculated
using (15). The initiation conditions for such instability modes can
be obtained from Table 5 using these modified coefficients. Similar
simplifications also hold for case-2; however, the perturbed dis-
placement rates for this case take the form

_u1ðx1; x2Þ ¼ _U1 sinðb1x1 þ h1Þ cos bx2 þ h2ð Þ
_u2ðx1; x2Þ ¼ _U2 cosðb1x1 þ h1Þ sin bx2 þ h2ð Þ: ð20Þ
The emergence of diffused modes for case-2 is checked from Table 5
only in the hyperbolic regime.

The localization analysis with small deformation assumption is
similar to the one explained in Section C. The difference in the
strain rate field inside and outside the shear band should satisfy
the condition, s _�ijt ¼ 1

2 ginj þ gjni
� �

to maintain kinematic compati-
bility. Whereas, the stress rate equilibrium across the shear band
enforces the condition njs _rjit ¼ 0. The symbol s � t denotes the
jump or difference in magnitude of the corresponding field variable
within and outside the band. Plane strain constraint in this case is
ensured by s _�33t ¼ s _�13t ¼ s _�23t ¼ 0, which further results
g3 ¼ n3 ¼ 0. These conditions again lead to the characteristic equa-
tion identical to the diffused bifurcation case. The real roots can be
calculated at hyperbolic and parabolic regime from Table 5 with
modified expressions of a1; b1 and c1 from Eqs. (37) and (15).

3. Properties of material considered for instability analysis

Drained biaxial test simulations are carried out for sand (Hos-
tun sand RF) considering different density states with initial void
ratio (e0) varying from 0.65 to 0.9 and different confining pressures
ranging from 50 kPa to 400 kPa. The material parameters consid-
ered for the analysis are given in Table 1. There exist many expres-
sions in the literature which consider the influence of mean
pressure on the elastic stiffness of soil [37–41]. Following Gajo
and Wood [42], a pressure dependent elastic tangent stiffness
has been employed in the analysis. In this case, the elastic shear
modulus l is related to the dynamic shear modulus G0 through a
scalar factor, where G0 is function of initial specific volume v0

and mean effective stress I01=3 expressed in kPa [43]

G0 ¼ 3230
ð3:97� v0Þ2

v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�I01=3Þ

q
: ð21Þ
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Fig. 3. Predicted volumetric response of sand sample under biaxial loading, at (a)
e0 ¼ 0:65 and (b) e0 ¼ 0:90, with varying confining pressure.

Table 2
Critical void ratio at different confining pressure.

Confining pressure (kPa) Critical void ratio
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The homogeneous stress–strain field for drained biaxial test is
obtained by integrating the elasto-plastic constitutive Eqs. (2)–
(9) numerically by considering the boundary conditions of Eqs.
(10) and (11). A fully explicit return mapping algorithm has been
employed for this purpose [44]. In case of large deformation simu-
lations, an objective algorithm based on the notion of rotated con-
figuration has been used in conjunction with the explicit return
mapping [45]. However, the homogeneous stress–strain field
under plane strain biaxial stretching excludes any rotation, and
hence the unrotated and the Jaumann rate of Cauchy stress are
identical. As a result, the stress–strain response obtained for small
and large deformation problem are similar until bifurcation, i.e.,
onset of instability.

Typical stress strain behavior and volumetric response at two
void ratios 0.65 and 0.9 for confining pressure range 50 to
300 kPa magnitude has been plotted in Figs. 2 and 3 respectively.
A general trend of increasing shear stress has been observed with
increase in the confining pressure for both the cases of loading
boundary. It can be observed that the volumetric response is
throughout compressive at e0 ¼ 0:9; whereas it is initially com-
pressive and finally dilative for e0 ¼ 0:65 depending on the level
of confining pressure. Moreover, increase in the confining pressure
results into an enhanced compressive volumetric response at both
0.65 and 0.9 void ratio. Based on the volumetric response, the sand
samples with e0 ¼ 0:65 and 0.9 can be considered as dense and
loose, respectively. This can also be confirmed from the critical
void ratio (ec) at any confining pressure, which is calculated from
the following condition and listed in Table 2:

ð1þ ecÞ � CþK lnð�I01=3Þ ¼ 0: ð22Þ
Fig. 4(a) presents the volumetric behavior at various density

states for the confining pressure of 200 kPa. It can be observed that
the loose samples with void ratio higher than the critical void ratio
exhibit compressive response; whereas the dense ones with lower
void ratios shows dilative response. The corresponding stress–
strain behavior have been plotted in Fig. 4(b). The dense samples
exhibit strain softening response unlike the loose sands which
exhibit a continuous strain hardening behavior. This confirms to
the sand behavior reported in various triaxial or biaxial experi-
ments of sand samples [9].
50 0.851
100 0.83
150 0.818
200 0.81
250 0.803
300 0.798
400 0.789
500 0.783
4. Instability under large deformation framework

Under large deformation framework, the mixed boundary case
can possibly show instability with antisymmetric diffused mode,
symmetric diffused mode and localization; whereas only symmet-
ric type of diffused modes and localization can take place for rigid
boundary case [1]. Besides depending on density and confinement,
the diffused modes are also function of sample geometry, i.e.,
aspect ratio (L2=L1). Present analysis aims only to predict the onset
of each of these possible types of instability modes. For each of the
test simulations, however, the uniform stress–strain state predic-
tion is valid till emergence of any of such instability modes. Hence,
this analysis does not consider identification of gradually evolving
multiple instability modes during continued shearing under a
given test condition.

As mentioned earlier, the instability onsets are determined here
based on the global stability approach [46,24]. Following earlier
work of Hill and Raniecki, Bigoni [47,48] has presented a unified
framework to study bifurcation and instability in non-associated
elastoplastic materials addressing several global and local condi-
tions which ensure uniqueness and stability of the solution. These
conditions are essentially based on the concept of linear compar-
ison solid developed by Hill for associative plasticity, and extended
to non-associative plasticity by Raniecki [49] & Raniecki and
Bruhns [50]. As emphasized by Bigoni [47], the ‘‘in loading compar-
ison solid” (analogous to Hills comparison solid for associative
materials) provides only the upper bound for bifurcation. The
lower bound is obtained by using an optimal ‘‘Raneicki comparison
solid”. Both of these coincide for associative plasticity. The global
criteria of bifurcation can be used to derive several local criteria,
namely, (1) positive definiteness (PD) and (2) non-singularity
(NS) of constitutive operator, (3) strong ellipticity (SE), (4) elliptic-
ity (E), and (5) flutter (F); see Bigoni [47] for details. Under homo-
geneous conditions with all-round traction boundary conditions,
the failure of PD implies failure of Hill sufficient condition for sta-
bility and uniqueness. This is not generally true for non-associative
materials where failure of NS of constitutive tensor might be crit-
ical for bifurcation [47]. On the other hand, for the dual homoge-
neous problem with displacements prescribed all over the
boundary, it is the failure of SE which leads to bifurcation of solu-
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Fig. 4. Predicted (a) volumetric and (b) stress–strain behavior of sand sample under
biaxial loading at rc ¼ �200 kPa with density.
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tions [51]. However, for non-associative materials, SE is usually
lost while the acoustic tensor is still non-singular [47]. It is there-
fore appropriate to decide loss of uniqueness of solution in the
non-associative case on the basis of the loss of ellipticity of acous-
tic tensor. This condition marks the onset of strain localization in
elastoplastic solids, which is identical to the condition derived by
[24] for localization from a global bifurcation perspective. Hence,
for rigid boundary conditions (also known as ‘‘generalized van
Hove conditions”), global and local bifurcation criteria coincide.
In the present analysis with all-round rigid boundary, i.e., for
case-2, localization emerges as the initial bifurcation mode from
the global stability analysis, which is also identical to Bigoni’s local
criteria of loss of ellipticity. However for case-1, which is a mixed
boundary value problem, it is not very clear how the diffused insta-
bility modes can be directly related to the failure of various local
criteria.
0 0.05 0.1 0.15

−1

0

1

2

3

4

Shear strain

N
or

m
al

iz
ed

H
ar

de
ni

ng

0.045 0.05 0.055 0.06
0

0.05

Fig. 5. Normalized actual and critical hardening modulus evolution for void ratio
(a) 0.65 (l ¼ G0=3) and (b) 0.90 (l ¼ G0=6) at confining pressure 300 kPa.
4.1. Mixed boundary case

4.1.1. Antisymmetric modes
Three sets of aspects ratios, L2=L1 ¼ 3;2; and 1, are considered

to investigate probability of emergence of fundamental modes
(m ¼ 1) of antisymmetric diffused instabilities at different density
and confinement. For any biaxial loading configuration, simulated
at a particular initial density and confinement, the critical harden-
ing modulus for fundamental antisymmetric diffused mode (Hdiff )
is calculated at each stress state for a given aspect ratio. At a given
stress state, the critical hardening modulus corresponding to an
instability mode refers to the numeric value of the hardening mod-
ulus required to satisfy the equation of emergence of that particu-
lar mode. A particular instability mode is triggered only when the
critical hardening modulus exceeds the actual hardening modulus
(H) for the given stress state. The equation of emergence for
antisymmetric diffused mode (Table 5) is solved in EC regime by
employing numerical root finding technique (method of bisection).
The antisymmetric mode gets activated when Hdiff exceeds H. Fig. 5
(a) shows evolution of the normalized critical hardening modulus
during shearing for void ratio 0:65 at confining pressure 300 kPa.
Interestingly, the antisymmetric mode emerged only for the aspect
ratio L2=L1 ¼ 3. Diffused instability modes for this case can also be
obtained for aspect ratios, L2=L1 P 4. However, the discussions
here are restricted only up to L2=L1 ¼ 3 and results for L2=L1 P 4
are not included. The onset of antisymmetric modes associated
with different aspect ratios at various density and confinement
has been calculated and marked in Figs. 2–4. In case of dense sam-
ple (e0 ¼ 0:65), the antisymmetric mode for aspect ratio L2=L1 ¼ 3
emerges for 200 kPa confining pressure or higher, whereas for
loose sample, it gets activated from confining stress level of
150 kPa. For both dense and loose samples, increase of confining
pressure favors the initiation of antisymmetric diffused modes.
However, once such modes get activated, the onset shear strain
for these instabilities remain nearly independent of the level of
confinement. It is also observed that the onset shear strain for such
modes is sensitive to the density state and it decreases consider-
ably with increase in the void ratio (Fig. 4(b)). Such diffused insta-
bility modes are generated in the contractive regime irrespective of
what is the density state (Figs. 3 and 4(a)).

As antisymmetric diffused modes are more prone to emerge at
loose state or softer conditions, the simulations are repeated with a
reducedmagnitude of elastic shear modulus (l ¼ G0=6) to examine
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the effect of elastic properties on occurrence of such instabilities.
Example of evolution of the normalized critical hardening modulus
is shown in Fig. 5(b) for the sample with e0 ¼ 0:9 at 300 kPa confin-
ing pressure. Unlike the previous case of elastic stiffness, the
antisymmetric mode gets activated even for the aspect ratio
L2=L1 ¼ 2 along with L2=L1 ¼ 3. The stress–strain responses for dif-
ferent combinations of void ratio and confining pressure, with
l ¼ G0=6, are plotted in Figs. 6 and 7 respectively. Possible
antisymmetric diffused bifurcation modes are also marked in these
curves. Though the overall stress–strain response remained nearly
unaffected, the change in the elastic shear modulus shows its sig-
nificant influence on the observed instability characteristics. The
antisymmetric diffused modes associated with aspect ratio
L2=L1 ¼ 3, emerges at both the density states and at all levels of
confinement. However, the range of onset shear strain of such
modes are similar to the simulations with l ¼ G0=3. Unlike the
simulations with l ¼ G0=3, the onset shear strains of such instabil-
ities at L2=L1 ¼ 3 remain nearly independent of the level confine-
ment for loose sand in contrast to the dense samples, where it
slightly decreases with increasing confining pressure. On the other
hand, the antisymmetric mode is encountered only for loose sam-
ples at higher confining pressures during simulations with aspect
ratio L2=L1 ¼ 2. Diffused instability mode emerges at much higher
shear strains in case of L2=L1 ¼ 2 in comparison to that for aspect
ratio L2=L1 ¼ 3. It is clear from these figures that diffused antisym-
metric modes are more susceptible to slender samples with higher
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Fig. 6. Predicted stress–strain behavior of sand sample under biaxial loading at (a)
e0 ¼ 0:65 and (b) e0 ¼ 0:90 with varying confining pressure (l ¼ G0=6).
aspect ratio. However, they can even emerge for bulky samples at
lower densities and higher confinement. These predictions are con-
sistent with the observations reported by the previous researchers.
Theoretical study of Vardoulakis [1] and Bardet [3] also revealed
that higher aspect ratio favors the emergence of diffused antisym-
metric modes. Desrues and Hammad [17] performed series of biax-
ial experiments to examine instability behavior of sand at different
densities and confining level. They noticed diffused antisymmetric
instability modes to appear in the biaxial test of loose sample at
higher confining pressure. Such antisymmetric diffused mode
may appear in the form of buckling and induce non-uniform defor-
mation field, which physically result into non-uniform distribution
of void ratio or density field within the sample. In real field condi-
tion, antisymmetric diffused instabilities can be expected to
emerge at greater depth of soil strata containing loose sand.

4.1.2. Symmetric modes
Possibility of symmetric bifurcation modes has been explored in

EC domain. These modes do not develop in the simulations with
l ¼ G0=3 and G0=6; however, they emerge when shear modulus
values are further reduced to l ¼ G0=8. Even for such cases, these
modes get activated only for high density and high level of confine-
ment. For example, at e0 ¼ 0:65, the symmetric modes start emerg-
ing from 400 kPa confining pressure onward and no such modes
are observed in case of simulations with e0 ¼ 0:9. Due to pressure
dependency of soil, level of confinement has its impact on the elas-
tic modulus which further shows influence on the initiation of var-
ious instability modes. The scalar factor related to elastic shear
modulus in Table 1 has been varied here to take into account the
influence of soil type. At any given confinement, the diffused insta-
bility modes are observed to be more susceptible to a lower mag-
nitude of elastic stiffness as per the current finding. This implies
diffused instability will initiate for a softer material (e.g., sands
with higher percentage of fines) with a similar variation of density
and confinement.

Fig. 8(a) presents the critical hardening modulus evolution for
symmetric diffused mode at 0.65 void ratio and 400 kPa confining
pressure. Unlike antisymmetric mode, the symmetric bifurcation
solution presented here is obtained for fundamental mode
(m ¼ 1) of a bulky sample with aspect ratio L2=L1 ¼ 1. It can be
noticed from (34) that the result associated to the fundamental
mode also represents the solution for second symmetric diffused
mode (m ¼ 2) for a sample with aspect ratio L2=L1 ¼ 2. Hence,
higher symmetric diffused modes can emerge for slender samples
at very high confining stress when simulated for higher densities.
The stress–strain behavior for this sample (e0 ¼ 0:65 and



0 0.05 0.1 0.15 0.2 0.25

0

2

4

6

8

10

Shear strain

N
or

m
al

iz
ed

 H
ar

de
ni

ng
 m

od
ul

us

0.1 0.15 0.2 0.25
0

0.05

0.1

(a)

0 0.05 0.1 0.15 0.2
0

1000

2000

3000

4000

5000

Shear strain

Sh
ea

r
st

re
ss

(k
P
a)

(b)

Fig. 8. (a) Normalized critical hardening modulus evolution and (b) predicted
stress–strain behavior of sand sample under biaxial loading at the void ratio 0.65
and confining pressure of 400 kPa (l ¼ G0=8).

M. Mukherjee et al. / Computers and Geotechnics 79 (2016) 130–145 137
rc ¼ �400 kPa) is plotted in Fig. 8(b) and it is to be noticed that the
symmetric modes emerge only at high shear strains, e.g., around
20%. In such cases, the antisymmetric modes (m ¼ 1) for slender
samples with L2=L1 ¼ 3 and 2 are already in competition and their
emergence criteria are met at much lower shear strains, i.e., around
4 and 13%, respectively. Based on the theoretical study, Var-
doulakis [1] also suggested that symmetric diffused modes or bul-
ging type of instability is not common in biaxial tests and can be
observed in bulky specimens of dense sand.
4.1.3. Localized modes
The localization onset is identified by comparing the critical

hardening modulus for localization (Hloc) against the actual hard-
ening modulus (H), as depicted in Fig. 5(a). In this case, Hloc is cal-
culated by solving the equation of emergence in hyperbolic regime
using the relations from Section C. The onsets of localization for
various test simulations have been marked in Figs. 2–8(b). Local-
ization is observed in the hardening regime which is usually found
true with the use of non-associative constitutive relation [52].
Localization is found to be more significant at lower confining
pressure irrespective of the density state and it gets delayed with
increase in the confinement level (Figs. 2 and 6). For slender sam-
ples, however, the antisymmetric mode may precede the localiza-
tion mode in case of higher confining stress at lower density. For
any level of confinement, the shear strain at localization increases
considerably with decrease in the void ratio (Figs. 4 and 7). Unlike
diffused instability modes, the shear strain at localization is much
higher for the cases with l ¼ G0=6 than that for l ¼ G0=3 which is
consistent with the observation of Gajo et al. [30]. Similar to the
present theoretical predictions, Desrues and Hammad [17] also
noticed localization for both loose and dense sand samples during
their experiments. They also observed that increase in the confin-
ing pressure retarded the localization onset. Whereas, such
increase in the confining pressure resulted in the emergence of dif-
fused antisymmetric mode for loose samples which is consistent
with the present study. Shear bands were the final instability
modes observed for all of the tests. However, the localization phe-
nomena was observed to get retarded by the decrease in the den-
sity level, which could not be captured by the present theoretical
study.

Friction and dilatancy angle are two important parameters
often used in the previous literatures to determine the onset of dif-
ferent types of instability. The mobilized friction angle (/) is
defined in terms of major and minor principal stress; whereas
the dilatancy angle (wd) is defined in terms of major and minor
principal strain increments [53]. A positive value of wd implies dila-
tancy while a negative one corresponds to contraction. While ana-
lyzing diffused and localizationmodes, Vardoulakis [27,1] assumed
that these two parameters will achieve their peak values at the
onset of instability. However, biaxial experiments of Desrues
et al. [14] revealed that initiation of localization can take place
before the peak in the overall stress–strain curve. The mobilized
friction angle and dilatancy angle during shearing are plotted in
Fig. 9, at two density states with different confining pressure for
the case l ¼ G0=6. The instability onsets are also marked in the
plots. In all of the cases, instability occurs much before the stage
when the stress ratio or dilation angle reaches its peak. Irrespective
of the confining pressure and density, the instability emerges in
the compressive region indicating negative dilation angle.

4.2. Rigid boundary case

In case of rigid boundaries, instability gets activated just on the
Elliptic/Hyperbolic boundary where solution is available for dif-
fused symmetric modes in hyperbolic regime. However, localized
modes also emerge simultaneously at this point resulting into a
mixed mode of failure. As the homogeneous stress–strain simula-
tion results are same for the mixed and rigid boundary cases, the
localization onset marked in Figs. 2–8(b) are the only instability
onset points available for the corresponding rigid boundary test
configurations. The onset shear strain of localization and the incli-
nation of band angle for two density states with varying confining
pressure are plotted in Fig. 10 for the case of l ¼ G0=6. At higher
densities, the onset shear strain of localization increases more
rapidly with the increasing confining pressure. On the other hand,
the band orientation angle shows slightly decreasing trend with
increase in the confining pressure which is relatively more signifi-
cant at higher density. Han and Drescher [18] also observed exper-
imentally that for dense sand, the shear strain at onset of
localization increases with increase in the confining pressure;
whereas, the shear band orientation angle decreases.

Two conventional theories are used in Soil Mechanics to predict
the inclination of shear bands (measured clockwise from the minor
principal stress direction) for two-dimensional plane strain prob-
lems, namely Mohr–Coulomb theory (hCM) and Roscoe theory (hCR)

hCM ¼ p
4
þ /

2
and hCR ¼ p

4
þ wd

2
: ð23Þ

Bardet [53] showed that (23) gives upper and lower bounds of the
theoretically predicted shear band angles. Arthur et al. [54] pro-
posed an empirical formula considering an average of these two
values

hCA ¼ p
4
þ /

4
þ wd

4
: ð24Þ

The localization angles have been calculated for the void ratios
e0 ¼ 0:65 and 0.9 considering the above relations and using the
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Fig. 9. Evolution of friction angle and dilatancy angle at (a, c) e0 ¼ 0:65 and (b, d) e0 ¼ 0:90 with varying confining pressure for the case l ¼ G0=6.
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void ratio 0.65 and 0.9 for the case l ¼ G0=6.
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magnitude of friction and dilation angle at the onset of localization.
These values are listed in Table 3. For all of the cases, the values of
hCM are higher and hCR are considerably lower than the values hb cal-
culated from the bifurcation analysis. The values of hCA are also on
slightly higher side, but within 3–5 degrees of difference.

5. Instability under small deformation framework

5.1. Instabilities in biaxial test

Different types of instability modes are also examined with the
assumption of small deformation by employing the simplification
made in the Section 2.3. No diffused modes are captured in this
type of analysis and localization is the only instability mode
observed irrespective of the boundary type, mixed or rigid. The
localization predictions with small deformation assumption are
also presented in Fig. 10 in comparison with the large deformation
results. The observation regarding the effect of confining pressure
and density level on the onset shear strain for localization is similar
Table 3
Friction (h) and dilation angle (wd) at onset of localization, shear band orientation
angles calculated from plane strain bifurcation theory (hb) and (23) and (24) for sand
samples e0 ¼ 0:65 and 0:9 at different confining pressure under large deformation
framework.

Void
ratio

Confining pressure
(compressive)

/ wd hb hCM hCR hCA

e0 ¼ 0:65 50 59.1 1.8 55.6 74.5 45.9 60.2
100 57.8 1.2 55.2 73.9 45.6 59.8
150 57.2 0.8 54.9 73.6 45.4 59.5
200 56.9 0.6 54.8 73.5 45.3 59.4
250 56.7 0.4 54.7 73.4 45.2 59.3
300 56.7 0.3 54.6 73.3 45.1 59.2

e0 ¼ 0:9 50 34.9 �8.9 48.8 62.5 40.6 51.5
100 34.6 �9.3 48.6 62.3 40.4 51.3
150 34.5 �9.4 48.5 62.3 40.3 51.3
200 34.5 �9.5 48.5 62.3 40.3 51.3
250 34.5 �9.5 48.5 62.3 40.3 51.3
300 34.6 �9.5 48.5 62.3 40.3 51.3



Fig. 11. (a) Stress–strain and (b) volumetric behavior under biaxial and true triaxial
test configuration (b ¼ 0;0:25;0:4;0:5;0:75;0:8;0:95).
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to that of large deformation analysis and comparable with the
small strain localization predictions of Gajo et al. [29,30]. However,
the magnitude of predicted onset shear strains are comparatively
larger in case of small deformation framework. This difference
increases for denser samples and higher confining pressures,
where the predicted onset shear strain itself is relatively high. In
case of loose samples (e0 ¼ 0:9), such variation is within 1.5–
5.5%; whereas, for dense samples (e0 ¼ 0:65) the difference can
vary from 8.5 to 14% or even higher depending on the level of con-
fining pressure. Hence, a small deformation based localization
analysis can lead to delayed prediction of shear band initiation
and considerably overpredict the onset shear strain. Small defor-
mation approximation are often assumed while performing con-
ventional geotechnical analysis or design in the range of shear
strain level of 5–10%; however, that does not appear to be a good
assumption in the context of instability prediction. Delayed insta-
bility prediction in such framework will lead to unconservative
design with respect to failure of the structure. The band angle vari-
ation remains nearly similar under the two frameworks, with
slightly higher values for small deformation case, which is more
noticeable at higher confining pressure and densities.

5.2. Effect of loading condition on localized instability

Drained true triaxial tests are simulated at different intermedi-
ate principal stress ratios to explore the influence of loading condi-
tion on the emergence of localization, i.e., onset shear strain and
shear band angle. Similar to the plane strain instability case, the
3D instability analysis has been posed as a bifurcation problem
from a uniform stress–strain condition and the onset of localiza-
tion is identified when the acoustic tensor loses its positive defi-
niteness [52,55]. An expression of critical hardening modulus
corresponding to localization condition has been derived by Rice
[55].

Drained true triaxial and biaxial test simulations are carried out
for loose saturated Hostun RF sand specimen with e0 ¼ 0:84 at
300 kPa confining pressure. True triaxial tests are simulated for
seven different values (0, 0.25, 0.4, 0.5. 0.75, 0.85 and 0.95) of inter-
mediate principal stress ratio (b), which is defined by

b ¼ r2 � r3

r1 � r3
: ð25Þ

where, ri are the principal stress ratios. The homogeneous stress–
strain fields for the drained tests are obtained by integrating the
elastoplastic constitutive equations numerically, satisfying the
loading boundary conditions. Fig. 11 presents the stress–strain
and volumetric behavior under biaxial and true triaxial test config-
uration (b ¼ 0;0:25;0:4;0:5;0:75;0:8;0:95). For any level of shear
strain, the shear stress increases continuously with increasing inter-
mediate principal stress ratio. The stress–strain and volumetric
behavior under biaxial test simulation is very close to the true tri-
axial results with b ¼ 0:5.

At each stress state, the critical hardening modulus is obtained
by numerically solving the maximization problem for the rotation
of vector n̂. For true triaxial tests, the vector n̂ has been initially
rotated in three-dimensional stress space and observed that the
critical hardening modulus reaches its maximum value only when
the second component of n̂ is zero. Hence, the critical plane has
been observed to be perpendicular to the intermediate principal
direction, which is consistent with the previous study [52]. In case
of biaxial test, the critical plane for shear banding is calculated fol-
lowing the procedure mentioned in Section 2.3. Fig. 12 presents the
comparison between the plastic hardening modulus (H) and criti-
cal hardening modulus (Hcr) corresponding to the loss of ellipticity
for true triaxial tests at different b values. A similar comparison in
case of biaxial test has been presented in Fig. 13(a). For cases
b < 0:4, the Hcr decreases with increasing shearing and remains
significantly lower than the plastic hardening modulus. Whereas,
for b values equal or greater than 0:4;Hcr increases with the shear-
ing and remains almost constant at a small positive value. Similar
type of variation is also observed in the biaxial simulation, where
Hcr increases with shearing and reaches a positive value (Fig. 13
(a)). The onset of shear band occurs only when Hcr exceeds H and
it can be observed from Figs. 12 and 13(a) that the localization ini-
tiates for biaxial simulation and true tiaxial simulations with b val-
ues greater than 0.4. As mentioned earlier, localization occurs in
the hardening regime due to consideration of non-associative plas-
ticity [52].

The shear strain at onset of localization and shear band orienta-
tion angles are presented in Table 4. The shear band angles are
measured with respect to the direction of lateral confining pres-
sure. Though for true triaxial simulations, localization occurs only
when b values are equal or greater than 0.4, the onset shear strain
for localization initially reduces as b changes from 0.4 to 0.5. There-
after, the onset strain significantly gets delayed with increasing
bð> 0:5Þ values. The shear band angle is also noticed to increase
with increasing value of b. The variation of onset strain and band
angle with b values qualitatively match with the experimental
observations of Lade and Wang [56], Wang and Lade [57]. They
have performed series of drained true triaxial tests on Santa Mon-
ica Beach sand at different b values and noticed that the shear
bands are more sensitive to initiate at medium range of b values
(0.18–0.85).

The variation of b value in biaxial test with continued deforma-
tion is plotted in Fig. 13(b). If we ignore the very initial deforma-



Fig. 12. Variation of plastic hardening modulus and critical hardening modulus from loss of ellipticity condition for true triaxial simulations.

Fig. 13. (a) Variation of plastic hardening modulus and critical hardening modulus and (b) intermediate principal stress ratio in biaxial simulation.
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Table 4
Shear strain at onset of localization and shear band orientation angle for biaxial
simulation and true triaxial simulations for different b values.

Simulation type Shear strain at onset
of localization

Shear band orientation
angle (deg)

True triaxial b ¼ 0:40 0.037 49.3
b ¼ 0:50 0.017 49.7
b ¼ 0:75 0.02 54.1
b ¼ 0:85 0.029 56.5
b ¼ 0:95 0.085 59.7

Biaxial test 0.029 49.2
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tion regime, the b value in biaxial test increases from very small
positive magnitude to a value nearly equal to 0.5; whereas, the b
value near localization falls within the range 0.4–0.5. The onset
strain and shear band orientation angle in biaxial test is very sim-
ilar to that of true triaxial tests with b ¼ 0:4� 0:5, which may be
due to the similar stress state observed for these two types of test.
This analysis also explains the reason for biaxial tests to exhibit
more pronounced localization phenomenon than the conventional
axisymmetric triaxial test (b ¼ 0) during experiments under com-
pressive loading [14,16].
6. Charts for onset of Instability

The onset shear strains for different types of instabilities are
presented using contour plots in Figs. 14 and 15. These results
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Fig. 14. Contours of onset shear strain at localization with (a) void ratio & confining
pressure and (b) w0 & confining pressure for the case l ¼ G0=6.
are obtained by varying the initial void ratio from 0.65 to 0.9 and
confining pressure over the range 50–400 kPa for the case
l ¼ G0=6. As a reduced value of shear modulus favors the emer-
gence of various drained instability modes (Section 4.1.1), the
value G0=6 has been selected to establish a generalized trend for
the onset of such instability modes. The state variable w represents
relative density of sand in some sense and accounts for the effect of
both initial density and confining pressure. It defines the material
state with respect to the critical state, where w takes a value equal
to zero. A negative value of initial state variable (w0) implies denser
state with dilative response and positive value stands for loose
state with compressive response.

Fig. 14(a) presents the contour of shear strain at localization
along with the critical state line (CSL). These contours are found
to be nearly perpendicular to the CSL. The onset shear strain level
increases with decrease in the void ratio and increasing confine-
ment. Hence, void ratio and confinement both have significant
effect on the onset shear strain for localization. This is further ver-
ified from Fig. 14(b), where onset shear strains are presented with
respect to the confining pressure and w0, and which indicate no
unique relation with w0 due to dependence on both void ratio
and confining pressure.

Similar analysis is performed for diffused antisymmetric mode
at two different aspect ratios L2=L1 ¼ 3 and 2, for which charts
are shown in Fig. 15. Unlike localization, onset of this mode occurs
with the strain contours nearly parallel to the CSL line as shown in
Fig. 15(a) and (c). Further analysis with respect to w0 and confining
pressure in Fig. 15(b) and (d) indicates that the strain contours are
nearly independent of confining pressure and depend only on w0.
This implies that relative density plays the primary role in influ-
encing the onset shear strain for diffused instability in comparison
to confining pressure. Diffused instability predictions then can be
made solely based on the parameter w0.

The observations from above discussion have been summarized
in the charts shown in Fig. 16 for occurrence of different instability
modes. Onset shear strains for localization type of instabilities can
be obtained from Fig. 16(a) based on w0 and the confining pressure
of the biaxial test. Whereas, onset of diffused instabilities can be
predicted from w0 using Fig. 16(b) for a given aspect ratio of the
sample. Such charts will be helpful for identification of possible
instability modes in biaxial testing depending on the geometry of
sample, initial density state and confining pressure. The onset
shear strains for different instabilities, predicted from these charts,
are limited to the material parameters considered in the simula-
tion. However, similar analogy can be used for understanding the
occurrence of different instability modes in the biaxial testing of
other soils subjected to a different set of material parameter.
7. Conclusions

This study examines the emergence of various drained instabil-
ity modes of sand under biaxial loading condition with due consid-
eration to both large and small deformation formulation. Plane
strain bifurcation problem is analyzed for a rate independent 3D
non-associative constitutive model. Drained diffused instability
modes are encountered only for large deformation formulation.
Diffused instability modes can lead to localized mode on further
shearing, which makes it important to understand and predict rea-
sonably well. Moreover, the small deformation framework over-
predicts both the onset strain of localization and band angle in
comparison to the large deformation formulation. In case of small
deformation formulation, deformation gradient is assumed to be
small compared to unity. As a result, geometric linearization can
be performed by neglecting the higher order terms while calculat-
ing the strain tensors in small deformation framework. However,
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Fig. 15. Contours of shear strain at onset of diffused instability for L2=L1 ¼ 3 and L2=L1 ¼ 2 with (a, c) void ratio & confining pressure and (b, d) w0 & confining pressure for the
case l ¼ G0=6.
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such assumptions are not employed in a large deformation
framework. In case of shear band formation and diffused localiza-
tion, the deformation gradients are better represented by including
geometric nonlinearity in the formulation and hence, large defor-
mation formulation show early predictions of instability.

Diffused mode emerges only in case of mixed boundary, which
is also susceptible to the slenderness ratio of the sample. Previ-
ously, Desrues and Hammad [17] observed experimentally that
the antisymmetric diffused modes are more prone to emerge in
biaxial tests of loose sand samples at higher confining pressures.
It is interesting to note that present theoretical prediction for
emergence of antisymmetric diffused mode matches quite well
with this experimental observation. The onset shear strains for
these instabilities remain nearly independent of the level of
confinement. The symmetric diffused modes get activated gener-
ally for bulky samples at high stresses, specifically for higher
densities.

Strain localization occurs under both rigid and mixed boundary
conditions. The onset shear strain for localization is much higher
for dense sand in comparison to loose one. The onset shear strain
increases but the shear band angle from minor principal direction
decreases with the increase in the confining pressure, which is
qualitatively in good agreement with the experimental observa-
tions of Desrues and Hammad [17], and Han and Drescher [18].
Loading condition has pronounced influence on the instability
behavior. Compare to conventional triaxial compression, localized
instability modes are more susceptible to emerge in biaxial com-
pression or true triaxial shearing with intermediate stress ratio,
b > 0:4. The onset strain and shear band orientation angle in biax-
ial test is very similar to that of true triaxial tests with b = 0.4–0.5,
which may be due to the similar stress state observed for these two
types of test.

Elastic parameters are noticed to have strong impact on both
diffused and localized instability onsets. Hence, misinterpretation
of elastic properties can significantly influence the instability
prediction. As observed from the instability onset charts, void
ratio and confinement both have significant effect on the onset
shear strain for localization. Whereas, the onset shear strain
for diffused instability mainly depends on the relative density
of soil.



Table 5
Bifurcation conditions and roots for different diffused instability modes.a

Sol. Roots Velocity field Equation of emergence

EI iZ1 & iZ2, x1-symmetric x1-symmetric

Z1 ¼
ffiffiffiffiffiffiffiffiffiffi
�bZ1

q
V1ðx1Þ ¼ A1s1 þ B1s2 a1Z

2
1�f

gZ2
1�h

Z1t1 � a1Z
2
2�f

gZ2
2�h

Z2t2 ¼ 0

Z2 ¼
ffiffiffiffiffiffiffiffiffiffi
�bZ2

q
V2ðx1Þ ¼ A2r1 þ B2r2

x1-antisymmetric x1-antisymmetric
V1ðx1Þ ¼ A1r1 þ B1r2 a1Z

2
1�f

gZ2
1�h

Z1l1 � a1Z
2
2�f

gZ2
2�h

Z2l2 ¼ 0

V2ðx1Þ ¼ A2s1 þ B2s2

EC q� ip, V1ðx1Þ ¼ A1s5r6 þ B1r5s6 ½qs7 þ ps8�ðagðp2 þ q2Þ2 � 2ah

p ¼ I

ffiffiffiffiffiffibZ1

q� �
V2ðx1Þ ¼ A2r5r6 þ B2s5s6 ðp2 � q2Þ þ hf Þ þ ½qs7 � ps8�

q ¼ R
ffiffiffiffiffiffibZ1

q� � ðp2 þ q2Þðgf � ahÞ ¼ 0

V1ðx1Þ ¼ A1r5r6 þ B1s5s6 ½qs7 � ps8�ðagðp2 þ q2Þ2 � 2ah
V2ðx1Þ ¼ A2s5r6 þ B2r5s6 ðp2 � q2Þ þ hf Þ þ ½qs7 þ ps8�

ðp2 þ q2Þðgf � ahÞ ¼ 0

P iZ1 & Z2, V1ðx1Þ ¼ A1s1 þ B1s4

Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�min bZ1; bZ2

	 
r
V2ðx1Þ ¼ A2r1 þ B2r4 a1Z

2
1�f

gZ2
1�h

Z1t1 þ a1Z
2
2þf

gZ2
2þh

Z2t4 ¼ 0

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max bZ1; bZ2

	 
r
V1ðx1Þ ¼ A1r1 þ B1r4 a1Z

2
1�f

gZ2
1�h

Z1l1 þ a1Z
2
2þf

gZ2
2þh

Z2l4 ¼ 0

V2ðx1Þ ¼ A2s1 þ B2s4

H Z1 & Z2, V1ðx1Þ ¼ A1s3 þ B1s4,

Z1 ¼
ffiffiffiffiffiffibZ1

q
V2ðx1Þ ¼ A2r3 þ B2r4 a1Z

2
1þf

gZ2
1þh

Z1t3 � a1Z
2
2þf

gZ2
2þh

Z2t4 ¼ 0

Z2 ¼
ffiffiffiffiffiffibZ2

q
V1ðx1Þ ¼ A1r3 þ B1r4,
V2ðx1Þ ¼ A2s3 þ B2s4 a1Z

2
1þf

gZ2
1þh

Z1l3 � a1Z
2
2þf

gZ2
2þh

Z2l4 ¼ 0

a The coefficients used in the Table 5 are defined as follows:

f ¼ d3d5 � d4ðd4 þ d7Þ; g ¼ �d1d4; h ¼ d3d7;

s1 ¼ sinhðbZ1x1Þ; s2 ¼ sinhðbZ2x1Þ; s3 ¼ sinðbZ1x1Þ; s4 ¼ sinðbZ2x1Þ;
r1 ¼ coshðbZ1x1Þ; r2 ¼ coshðbZ2x1Þ; r3 ¼ cosðbZ1x1Þ; r4 ¼ cosðbZ2x1Þ;
r5 ¼ coshðbZ1x1Þ; r6 ¼ coshðbZ2x1Þ; r7 ¼ cosðbZ1x1Þ; r8 ¼ cosðbZ2x1Þ;
t1 ¼ tanhðbZ1L1Þ; t2 ¼ tanhðbZ2L1Þ; t3 ¼ tanðbZ1L1Þ; t4 ¼ tanðbZ2L1Þ;
l1 ¼ cothðbZ1L1Þ; l2 ¼ cothðbZ2L1Þ; l3 ¼ cotðbZ1L1Þ; l4 ¼ cotðbZ2L1Þ;
s5 ¼ sinhðbpx1Þ; s6 ¼ sinðbqx1Þ; s7 ¼ sinhð2bpL1Þ; s8 ¼ sinð2bqL1Þ;
r5 ¼ coshðbpx1Þ; r6 ¼ cosðbqx1Þ;bZ1 ¼ �b1þ

ffiffiffi
D

p
2a1

; bZ2 ¼ �b1�
ffiffiffi
D

p
2a1

:
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Appendix A. Governing equations

In absence of body force, the stress rate equilibrium equations
of a biaxially loaded drained soil sample of width 2L1 and height
2L2 can be written in reference configuration as

_S11;1 þ _S21;2 ¼ 0
_S12;1 þ _S22;2 ¼ 0; ð26Þ

where _S is the true rate of nominal stress tensor. If the current con-

figuration is chosen as the reference configuration, _S is related to

the Jaumann rate of Kirchhoff stress s
O
through the Cauchy stress

r, rate of strain D and spin tensor W by the relation

_Sij ¼ s
O
ij � rikWkj � Dikrkj: ð27Þ

The Jaumann rate of Kirchhoff stress s
O
can also be expressed in

terms of Jaumann rate of Cauchy stress r
O
by the following relation
s
O
ij ¼ r

O
ij þ rijDkk: ð28Þ

In the case of no shear stress, i.e., r12 ¼ r21 ¼ 0, (26)–(28) lead to

r
O
11;1 þ r

O
21;2 � ðr11 � r22ÞW12;2 ¼ 0

r
O
12;1 þ r

O
22;2 � ðr11 � r22ÞW12;2 ¼ 0: ð29Þ

Dilation and stresses in tension are considered positive in this
analysis.

By combining (27) and (1), the following constitutive relation
can be derived

_Sij ¼ Cijkl þ 1
2
ðrildjk � rjldik � rjkdil � rikdjlÞ

� �
vk;l; ð30Þ

where v is the velocity. For an isotropic material, (29) reduces to
the following form after substituting the constitutive relation from
(30) and enforcing the kinematic constraint for plane strain loading,
i.e., D33 ¼ D13 ¼ D23 ¼ 0
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d1v1;11 þ d3v1;22 þ ðd4 þ d7Þv2;12 ¼ 0
d5v2;11 þ d2v2;22 þ ðd4 þ d8Þv1;12 ¼ 0; ð31Þ
where

d1 ¼ C1111 � r11; d2 ¼ C2222 � r22

d3 ¼ C1212 � 1
2
ðr11 � r22Þ; d4 ¼ C1212 � 1

2
ðr11 þ r22Þ

d5 ¼ C1212 þ 1
2
ðr11 � r22Þ; d6 ¼ C1212 þ 1

2
ðr11 þ r22Þ

d7 ¼ C1122; d8 ¼ C2211: ð32Þ
Appendix B. Diffused instability mode

The bifurcated velocity field corresponding to the diffused
instability mode for case-1 (stress controlled) can be represented
as

v1ðx1; x2Þ ¼ V1ðx1Þ cos bx2 þ h2ð Þ
v2ðx1; x2Þ ¼ V2ðx1Þ sin bx2 þ h2ð Þ: ð33Þ
The coefficients b and h2 are selected such that the velocity fields
should satisfy the boundary condition given in (10) at x2 ¼ �L2

bL2 ¼ p
2
m for m ¼ 1;2;3; . . .

h2 ¼ 0 for m even
p
2 for m odd:

(
ð34Þ

The velocity field is x2-symmetric for even values of m and x2-
antisymmetric for odd values of m. A general form can be assumed
for the velocity solutions

V1ðx1Þ ¼ Aeiax1

V2ðx1Þ ¼ Beiax1 ; ð35Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
;a is a coefficient and A;B are arbitrary constants.

Substituting these velocity fields in (31) and (10), the following
characteristic equation can be obtained in terms of the variable
Z ¼ a=b to get nontrivial solutions for A and B [3]

a1Z
4 þ b1Z

2 þ c1 ¼ 0; ð36Þ
where

a1 ¼ d1d5; b1 ¼ d1d2 þ d3d5 � ðd4 þ d7Þðd4 þ d8Þ; c1 ¼ d2d3:

ð37Þ
Depending on the values of a1; b1 and c1, (36) has four different
types of solution in Z:
(EI)
 elliptic imaginary when it has four imaginary roots
(D P 0; �b1=a1 < 0 and c1=a1 P 0),
(EC)
 elliptic complex when it has four complex roots (D < 0),

(P)
 parabolic when it has two real and two purely

imaginary roots (c1=a1 < 0) and

(H)
 hyperbolic when it has four real roots

(D ¼ b21 � 4a1c1 P 0; �b1=a1 P 0 and c1=a1 P 0).
Table 5 presents the velocity fields and emergence
conditions for each of these type of solutions.
For case-2 with displacement control, the possible diffused
instability modes will have the following form in order to satisfy
the boundary condition given in (11)

v1 ¼ V1 sinðb1x1 þ h1Þ cosðb2x2 þ h2Þ
v2 ¼ V2 cosðb1x1 þ h1Þ sinðb2x2 þ h2Þ: ð38Þ
The coefficients b1;b2; h1 and h2 satisfy

b1L1 ¼ p
2
m1 for m1 ¼ 0;�1;�2; . . .

b2L2 ¼ p
2
m2 for m2 ¼ 0;�1;�2; . . .

h1 ¼ 0 for m1 even
p
2 for m1 odd

(
and h2 ¼ 0 for m2 even

p
2 for m2 odd:

(
ð39Þ

The velocity field is x1-symmetric for even values of m1 and x2-
symmetric for even values of m2. Whereas, the odd values of m1

and m2 result into x1-antisymmetric and x2-antisymmetric velocity
fields, respectively. Substitution of velocity field from (38) into (31)
and (11) gives the same characteristics equation as (36). Velocity
field of the form (38) will exist only in the hyperbolic regime as
listed in Table 5.

Appendix C. Localized instability mode

Strain bifurcates into localized modes when a velocity field dif-
ferent from the homogeneous field emerges in a planar region,
which is often referred to as shear band [52,7,27]. The velocity con-
tinuity condition along with the equilibrium of stress rate across
the shear band leads to a characteristic equation for such localiza-
tion modes [3]

a1z4 þ b1z2 þ c1 ¼ 0; ð40Þ
where z ¼ n1=n2;n represents the normal to the shear band and
a1; b1; c1 are given in (37). This equation is identical to the charac-
teristic Eq. (36) for diffused bifurcation. As discussed earlier, it has
four real solutions in the hyperbolic regime and two real solutions
in the parabolic regime (Table 5). The shear band angle (hs) from lat-
eral direction (i.e., clockwise from x1-axis) can be calculated by
substituting

n1 ¼ sin hs and n2 ¼ cos hs: ð41Þ
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