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Abstract
A constitutive model has been proposed for predicting rate-dependent stress–strain response of sand and further imple-

mented in finite element code to explore the influence of strain rate on the localization behavior of sand. The proposed

model simulates various constitutive features of sand subjected to higher strain rates, e.g., enhanced shear strength, early

peak followed by a softening response, reduced compression for loose sand, etc., which have been reported in the literature.

Numerical simulations predict a delayed onset of strain localization and increase in the band angle with increasing strain

rate. Strains are noticed to localize in the hardening regime for loose sand, whereas for denser state localization emerges in

the post-peak regime.

Keywords High strain rate � Localization � Rate-dependent response � Sand � Viscoplasticity

1 Introduction

The rate-dependent response of geomaterials becomes

imperative while modeling the soil behavior under transient

and dynamic events such as blast, earthquakes, aircraft

wheel loadings on runways and fast installation processes

involved in pile foundation or tunneling. The existing lit-

erature reveals that at quasi-static regime (10-8–10-4/s),

the strength and deformation response of sand is sensitive to

the changes in strain rate rather than to the magnitude of the

strain rate itself [5, 16, 17, 28, 50]. Stress–strain response of

sand has been noticed to differ significantly in transient tests

with strain rates varying from 10-5 to 1/s or even higher

[1, 13, 25, 30–32, 46, 53–55, 58, 59].

Although many of the earlier studies suffer from insuf-

ficient instrumentation and measurement issues at higher

rates under transient loading, a general trend of increased

strength (10–20%) is generally reported at high strain rate

[38, 47, 53]. Such strength increase in dry sand was asso-

ciated with an increase in the peak friction angle, initial

shear modulus and an early peak followed by enhanced

post-peak softening [1, 13, 25, 32, 54, 55]. Furthermore, a

reduced compressive response has also been reported at

higher strain rate which under saturated condition resulted

in a noticeable increase in the undrained shear strength

(30–40%) of loose sand [54, 58]. Rate effects in loose sand

were evident at lower confinements, whereas they were

more significant for dense sands at higher confinement

[32, 46, 59]. At lower confinements, reduced compressive

response and inertial and viscous effects are the primary

reasons behind rate effects under transient loading [53].

However, a marked increase in transient strength of dense

sand under higher confinement is associated with the

influence of strain rate on particle crushing

[26, 30, 31, 58, 59]. The shape and gradation of sand can

also influence the rate-sensitive response [29]. The failure

and instability behavior of sands at higher rates is relatively

less explored; however, in case of coral sand Yamamuro
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et al. [59] noticed an early onset of localization and

decreasing trend in shear band angle with an increase in the

strain rate. On the contrary, Watanabe and Kusakabe [53]

observed the failure mode in Toyoura sand at low strain

rate to be bulging with distinct shear band formation due to

strain localization, which changed into a diffused bulging-

type failure when subjected to higher strain rate. Based on

the biaxial experiments on saturated St. Peter Sandstone

sand, Han and Vardoulakis [21] argued that the presence of

small amount of strain rate sensitivity can provide stability

against liquefaction phenomenon near the peak deviatoric

stress. Theoretical studies of Garagash [20] also indicated

that degree of rate sensitivity, along with the ratio of the

material pore diffusion length scale to the specimen size,

decides whether the final failure mode will be a diffused or

localized one.

The rate-dependent response of sand is generally mod-

eled within elasto-viscoplastic framework, which can be

broadly classified into two categories. The first category is

of the overstress models based on the viscoplastic consti-

tutive equations proposed by Perzyna [40, 41]. Rate-de-

pendent sand models formulated under this category are

basically an extension of commonly used critical state

models with the modified flow rule to take into account the

evolution of viscoplastic strain rate [4, 11, 15, 23, 27, 51].

The second category of viscoplastic models is developed

for general prediction of any time-dependent phenomenon,

e.g., creep or step-changed loading [16, 17, 29, 39, 50].

Such models are mostly empirical or semiempirical in

nature where nonlinear functions are used to represent the

delayed stress–strain response with time. The experimental

observations of sand at high strain rate exhibiting strength

increase along with early peak, followed by enhanced rate-

induced softening and reduced compressive response, are

not aptly captured by these models. Furthermore, the

influence of strain rate on failure and instability behavior of

sand is yet to be explored.

A rate-dependent constitutive model has been proposed

here for predicting stress–strain response of sand at high

strain rate. In order to include rate dependency, Perzyna-

type framework has been used to modify the flow rule of

the underlying 3D non-associative rate-independent mate-

rial model of Wood et al. [57] and Wood [56]. A small

deformation formulation has been employed for predicting

the rate-dependent response. The influence of model

parameters on prediction of such rate-dependent response

has been assessed through simulation of biaxial test with

varying strain rates. In this regard, the uniform stress–strain

prediction of the model has been examined at two different

initial densities and confining pressure. The proposed

model further has been employed to predict the constitutive

response of two different soils at different strain rates under

triaxial loading condition, and the same has been compared

against the experimental data available in the literature. In

addition, the model has been implemented in ABAQUS,

commercially available finite element software, by writing

a user-defined material model subroutine (UMAT). Simu-

lations are carried out to predict localized instability

response of sand at varying strain rates.

2 Proposed rate-dependent model

2.1 Mathematical formulation

Wood et al. [57] proposed a 3D non-associative constitu-

tive model based on critical state concept which includes

both shear and volumetric hardening. Recently, Mukherjee

et al. [33, 34] performed a large deformation-based plane-

strain bifurcation analysis employing this model in order to

explore various drained and undrained instabilities in sand

when subjected to biaxial loading condition. The model

fairly captured the stress–strain and volumetric response of

sand along with different instability modes, i.e., diffused,

localized and/or solid–fluid instabilities at various densities

and confinement. The rate-dependent constitutive relations

are formed here within small deformation framework, and

a Perzyna-type overstress formulation has been adopted

here for extending the rate-independent constitutive model

of Wood et al. [57] and Wood [56] to a rate-dependent

form. The dynamic (fd) and static (fs) yield surfaces take

the following form:

fd ¼
ffiffiffiffiffiffiffi

3J2

p

� gyd

I
0
1

3
¼ 0 ; ð1Þ

fs ¼
ffiffiffiffiffiffiffi

3J2

p

� gys

I
0
1

3
¼ 0 ; ð2Þ

where I
0

1 is the first invariant of effective stress tensor (r
0
),

J2 is the second invariant of deviatoric stress tensor and gyd

and gys represent the dynamic and static shear stress ratios,

respectively (Fig. 1). The dynamic stress ratio is related to

the current stress state and the viscoplastic strain starts to

evolve when gyd � gys. The plastic potential is given by

gd ¼
ffiffiffiffiffiffiffi

3J2

p

�MC

I
0
1

3
ln

3P
0
r

I
0
1

¼ 0 ; ð3Þ

where MC is the slope of the critical state line and P
0
r is the

intercept of plastic potential on the I
0
1

�

3 axis. In case of

overstress model, the evolution of viscoplastic strain (evp)
is generally captured by introducing an exponential or

power-law-type relation [11, 24, 37]. Furthermore, the

high-strain-rate experiments in sand revealed that the peak

stress ratio varies nearly linearly over the logarithmic scale

of strain rate [32, 46, 59]. Following this observation, we
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have employed a power-law-type relation for modifying

the flow rule which is given as

_evpij ¼ _eref

gyd

gys

 !n
ogd

or0
ij

; when
gyd

gys

� 1 : ð4Þ

Here, _eref and n are the reference axial strain rate and power

law exponent controlling the rate-dependent behavior. The

strength increase at any strain rate is mapped with respect

to the chosen reference strain rate parameter. A lower value

of reference strain rate and power law exponent reflects

higher sensitivity toward strain rate. Similar to rate-de-

pendent model, gys depends on the accumulated vis-

coplastic shear strain evpq , and its evolution is governed by

the following hyperbolic hardening law:

gys

gps

¼
evpq

aþ evpq
; ð5Þ

where a is the material parameter and gps is the static peak

shear stress ratio. Here, gps is a function of another state

variable w, which represents relative density of sand in

some sense and includes information of specific volume ve
and mean stress

gps ¼ MC � jw ¼ MC � j ve � Cþ KC ln
I
0
1

3

� �� �

; ð6Þ

where j is the material constant, KC is the slope of the

critical state line in compression plane and C is the inter-

cept of the critical state line on the specific volume axis at

mean pressure level of 1 kPa. It has been assumed for

simplicity that the elastic volumetric strain roughly bal-

ances the effect of the change in mean effective stress [56].

Hence, only the dependence of gps on viscoplastic volu-

metric strain evpp has been taken into account. The subse-

quent sections present the rate-dependent stress–strain

response predicted by the model at varying strain rates for

different confining pressures and density states.

2.2 Model response under biaxial condition

A code has been written in MATLAB to predict the rate-

dependent uniform stress–strain behavior of sand in

drained biaxial test. A one-step forward Euler stress-update

algorithm [52] has been used to numerically integrate the

rate-dependent constitutive relations given in the previous

section. Details of the algorithm and related derivations are

discussed in ‘‘Appendix’’. Numerical integration requires a

threshold time step for convergence, and its magnitude is

found to be smaller for higher rates. A typical time dis-

cretization number of _ea;max

�

10 _eref has been employed for

all the simulations, where _ea;max ¼ 0:1/s. The trends of rate-

dependent stress–strain and volumetric response are pre-

dicted at two different densities (e0 ¼ 0:9 and e0 ¼ 0:65)

and confinement (100 and 300 kPa) based on assumed

values of rate-dependent parameters, i.e., reference strain

rate ( _eref) and power law exponent (n). The rate-indepen-

dent model parameters are given in Table 1 which conform

to the properties of Hostun RF sand [19, 56], and the

assumed values of rate-dependent parameters are

_eref ¼ 1 � 10�6/s and n ¼ 60.

Figure 2 shows the evolution of stress–strain behavior,

volumetric response and the state variable gps, i.e., static

peak shear stress ratio with continued shearing for loose

sand (e0 ¼ 0:9) with 300 kPa confining pressure. Similar to

the experimental observations reported by Omidvar et al.

[38] and Watanabe and Kusakabe [53], increasing shear

Fig. 1 Static and dynamic yield surface, plastic potential in the stress

space

Table 1 Material constants considered for the biaxial test simulation

[19, 56]

Parameter Description Value

l Shear modulus G0=3**

m Poisson’s ratio 0.1

MC Slope of critical state line in
ffiffiffiffiffiffiffi

3J2

p
� I

0
1

�

3

plane

1.2

KC Slope of critical state line in specific volume

(ve) - lnðI 01
�

3Þ plane

0.03

C Intercept for critical state line in ve � lnðI 01
�

3Þ
plane at 1 kPa effective mean pressure

1.969

a Parameter controlling hyperbolic stiffness

relationship

0.0016

j Relation between changes in state parameter

(w) and current peak stress ratio (gps)

2

**G0 is the small strain shear modulus which is function of specific

volume ve and mean effective stress I
0
1

�

3 expressed in kPa [56]

G0 ¼ 3230
ð3:97�veÞ2

ve

ffiffiffiffiffiffiffiffiffi

I
0
1

�

3
q

ð7Þ
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stress and enhanced dilation can be noticed at any level of

shear strain with an increase in strain rate from 1 � 10�6 to

0:1/s. Rate effects on stress–strain response become more

evident at lower range of strain in contrast to volumetric

behavior, where such effects manifest at larger strain. The

pronounced strain hardening response at lower rates

gradually diminishes with increasing rate of strain. The

state variable gps controls the shear-based hardening

behavior of the material. At higher rates, the enhanced

dilation leads to a reduction in gps, which further results in

such reduced hardening response. In case of simulations at

reference strain rate 1 � 10�6/s, the stress–strain response

predicted from rate-dependent analysis becomes compara-

ble with the same from rate-independent one (Fig. 2).

Figure 3 depicts the influence of parameter n on stress–

strain–volume prediction of loose sand at a lower con-

finement. As mentioned earlier, a lower value of n results

in stronger rate-dependent response. Hence, the simulations

with n ¼ 60 predict an enhanced strain rate effect in terms

of strength increase and less compressive response than

those with n ¼ 200. The model captures early peaks fol-

lowed by strain softening response in loose sands at lower

confinement for the case with n ¼ 60, i.e., simulations with

higher rate dependency. This type of behavior was also

noticed experimentally by Lee et al. [32] and Yamamuro

et al. [59]. At higher n values, the rate-induced strength

increase remains nearly uniform with continued shearing;

however, similar to lower n values the rate effects on

volumetric response become more evident with accumu-

lated strain during shearing. This is also consistent with the

experimental observations of Yamamuro et al. [59] and

Watanabe and Kusakabe [53]. The rate parameters n and

_eref may vary over different strain rate regimes, and such

variations can be captured through experiments. It is

important to note that the proposed model can be used to

predict rate-dependent response over both low and high

range of strain rate, provided the rate parameters are

selected carefully over the considered strain rate regime.

The predicted behavior of dense sand with varying strain

rates is shown in Fig. 4. Similar to loose case, at any level

of strain higher strain rate results in an increase in shear

stress. However, delayed stress peaks are noticed in such

cases with stronger post-peak softening. Unlike loose sand,

increased strain rate leads to the prediction of reduced

dilative response in dense sand. This behavior remains

unchanged even at higher confinements. Though experi-

mental observation of rate effects in dense sand is limited,

the existing literature suggests that the rate-induced

strength increase in dense sand is less pronounced than in

loose state [32]. Such change in strength can be incorpo-

rated by calibrating the rate parameter, n over different

density ranges. The power law exponent becomes an

important parameter since it controls the applicability of

the model for different density states and various ranges of

strain rate, medium to high strain rate.

(c)

(a)

(b)

Fig. 2 Evolution of a stress–strain, b volumetric response and c state

variable gps with varying strain rates at e0 ¼ 0:9 and confining

pressure 300 kPa

Acta Geotechnica

123



3 Validation of proposed model against
experimental observation

There are only a few studies available on the rate-depen-

dent behavior of sand and moreover, and their experimental

data are not sufficient for a comprehensive calibration of all

the model parameters. The model predictions are compared

in this section against the triaxial experimental data on

crushed coral sand and silica sand as reported in Yama-

muro et al. [59] and Suescun-Florez and Iskander [46],

respectively.

For the dry crushed coral sand, the stress–strain and

volumetric response in triaxial test was reported for two

different density states, i.e., RD = 58% (e0 ¼ 0:94) and

36% (e0 ¼ 1:03), each subjected to initial confining pres-

sures of 98 and 350 kPa. The experiments were performed

at different strain rates ranging from 0.0022 to 1764%/s.

The variation in the peak stress ratio over these strain rate

ranges is plotted in Fig. 5a. It can be noticed that the peak

stress ratio nearly remains unaffected by the strain rate

below 0.23%/s, which has been considered as the reference

strain rate ( _eref) for simulation of stress–strain and volu-

metric response of coral sand. Beyond the reference strain

rate, the stress ratio increases linearly over logarithmic

increase in the strain rate magnitude which further justifies

the implementation of the power-law-type flow rule in rate-

dependent enhancement of the critical state model. Fig-

ure 5b presents the peak shear stress values from different

strain rates normalized by the peak value at the lowest

strain rate. Similar to the stress ratio, a sharp increase in the

peak shear stress value is evident beyond the reference

strain rate and such increase is more significant at higher

confinement. The average slope of the semi-logarithmic

curves of Fig. 5b beyond the reference strain rate

_eref ¼ 0:23%/s has been calculated, and it tentatively rep-

resents the magnitude of the power law exponent, n ¼ 42.

The rate-independent material parameters for coral sand

have been estimated iteratively to match the stress–strain

response at _eref ¼ 0:23%/s for the case with RD = 58%

using the triaxial data of two different magnitudes of

confining pressure [59]. The calibrated constitutive model

parameters for the coral sand are listed in Table 2. Due to

(a) (b)

(c) (d)

Fig. 3 Evolution of a, c stress–strain, b, d volumetric response with varying strain rates at e0 ¼ 0:9 and confining pressure 100 kPa for two n

values
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limited data, simultaneous calibration against both stress–

strain and volumetric response could not be carried out

rigorously. The focus was mainly to mimic the stress–strain

response by trading off the volume change behavior pre-

diction. As a result, more deviation from the experimental

data was noticed in case of the volumetric behavior even

for the rate-independent response predicted at the reference

strain rate. The comparison of simulated stress–strain and

volumetric response for varying strain rates at different

relative densities and confining pressures is depicted in

Fig. 6. It can be noticed that the model can aptly capture

the rate-dependent stress strain response of the sand for

both the density states, which includes strength increase at

higher strain rate, early peak followed by a softening

response. The predicted magnitude of peak stresses and

their strain levels are also comparable with the

experimental data. The model can fairly mimic the general

trend in volumetric behavior with increasing strain rate,

i.e., reduced compression and dilation at lower and higher

density, respectively. In this regard, it is important to note

that the proposed rate-dependent model has been framed

following the Perzyna-type overstress formulation, which

has been widely applied for predicting the viscoplastic

behavior of metals. In this type of formulation, the strength

enhancement over the varying ranges of strain rate gets

captured through the power law exponent which in turn

permits only limited control for replicating the rate-induced

volume change characteristics to an extent.

A similar comparison has also been carried out for silica

sand based on the triaxial test data reported by Suescun-

Florez and Iskander [46] at four different strain rates,

0.01%/s, 0.1%/s, 1%/s and 10%/s. Two density states,

(a) (b)

(c)  (d)

Fig. 4 Evolution of a, c stress–strain, b, d volumetric response with varying strain rates for e0 ¼ 0:65 at confining pressures 100 and 300 kPa,

respectively
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RD = 85% (e0 ¼ 0:53) and 55% (e0 ¼ 0:63), with 400 kPa

initial confining pressure have been considered for the

validation. The peak shear stress response, normalized by

the peak shear stress at 0.01%/s, is plotted against the strain

rate range in Fig. 7a for these two density states. It can be

noticed that the rate-induced strength increase is more

prevalent for the dense sand compared to the loose one.

The average slope of the two curves given in Fig. 7a has

been estimated as n ¼ 28, and the lowest strain rate 0.01%/

s has been considered as the reference strain rate. Due to

lack of information in the literature regarding the volu-

metric response, rate-independent material parameters have

been extracted iteratively to match solely the stress–strain

behavior at _eref ¼ 0:01%/s. The calibrated model parame-

ters are given in Table 3, and the predicted stress–strain

responses are depicted in Fig. 7b, c. It can be observed that

the experimental trends have been replicated well by the

proposed model predictions.

4 Instability prediction with varying strain
rates

Influence of strain rate on the localized instability mode has

been investigated by using the proposed rate-dependent

model. First, possible initiation of such instabilities has

been examined based on the uniform stress–strain

response. Thereafter, the model has been implemented in a

finite element framework to explore the emergence of

strain localization in the form of shear bands.

4.1 Instability from uniform stress–strain
response

In case of Perzyna-type rate-dependent model, the consis-

tency condition cannot be applied directly to the evolution

of dynamic yield surface [14, 48]. As a result, an explicit

expression for elasto-viscoplastic tangent stiffness modulus

cannot be formed in this case. This further restricts appli-

cation of global bifurcation-based instability approach to a

rate-dependent formulation. Following the local bifurcation

framework of Bigoni [6], the loss of positiveness of sec-

ond-order work criteria, i.e., drijdeij � 0, can be employed

to identify the initiation of instability in rate-dependent

problems [18]. Figure 8 presents the evolution of second-

order work in biaxial test at two different densities for the

parameter set given in Table 1. In case of loose sands, an

increase in the strain rate results in faster loss of posi-

tiveness of second-order work, whereas for dense sand it

gets delayed with increasing strain rate. However, this

criterion is not sufficient for ensuring onset of localized

modes, which is generally obtained from loss of positive

definiteness of acoustic tensor [36, 45, 49]. As no explicit

expression can be formed for tangent stiffness tensor, it is

not possible to check analytically the positive definiteness

criteria of acoustic tensor in rate-dependent framework.

Many of the researchers proposed method for deriving

algorithmic tangent stiffness tensor for viscoplastic models

[12, 22, 42, 52]. The algorithmic tangent stiffness tensor

for the proposed model is given in ‘‘Appendix’’, which is

derived based on Wang’s [52] formulation. However, the

acoustic tensor calculated from algorithmic modulus

Fig. 5 Variation in a peak stress ratio and b normalized peak shear

stress of dry crushed coral sand during triaxial test at varying strain

rates [59], where different indices stand for combination of density

and confining state: C11 (RD = 58%, rc ¼ 350 kPa), C12 (RD =

58%, rc ¼ 98 kPa), C13 (RD = 36%, rc ¼ 350 kPa), C14 (RD =

36%, rc ¼ 98 kPa)

Table 2 Calibrated constitutive model parameters used for triaxial simulation of coral sand

Parameter _eref (%/s) n MC KC C a j m l (GPa)

Value 0.23 42 1.4 0.036 2.25 0.0016 2.8 0.3 G0=3 as estimated from Eq. 7
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remains positive definite for Perzyna type of viscoplastic

models, which further ensures effectiveness of such models

in regularizing the localization behavior [18, 35, 44]. A

numerical approach can be adopted to explore the localized

type of instability within a rate-dependent framework.

4.2 Instability from finite element simulation

The proposed model has been implemented in ABAQUS

v6.12 by writing a UMAT subroutine. Plane-strain 2D

simulations are carried out to replicate the biaxial test

condition. The model geometry and boundary conditions

are shown in Fig. 9. The bottom-most boundary has been

kept fixed in x2 direction, whereas the displacement in x1

direction has been restricted only for the left bottom-most

corner in order to prevent rigid body rotation. The lateral

boundaries are subjected to the prescribed level of con-

fining pressure. Loading has been applied in two stages.

bFig. 6 Evolution of a, c, e, g stress–strain, b, d, f, h volumetric

response of coral sand under triaxial simulation with varying strain

rates for two relative densities (RD = 36% and 58%) and confining

pressures (rc ¼ 98 and 350 kPa)

Fig. 7 Variation in a normalized peak shear stress of dry silica sand during triaxial test at varying strain rates [46], and its b, c stress–strain

response for two density states at 400 kPa confining pressure

Table 3 Calibrated constitutive model parameters used for triaxial simulation of silica sand

Parameter _eref (%/s) n MC KC C a j m l (GPa)

Value 0.01 28 1.1 0.025 1.94 0.006 3.0 0.3 G0=3 as estimated from Eq. 7
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First, an initial confining pressure has been applied over all

the boundaries and the equilibrium condition has been

checked under such applied confinement. Next, the shear-

ing phase has been simulated by applying an axial dis-

placement on the topmost boundary such that the strain rate

remains constant. A full Newton–Raphson algorithm has

been selected for solving the boundary value problem

along with an unsymmetrical solver. The finite element

simulations have been carried out by employing the set of

material parameters listed in Table 1, which are same as

used while predicting the uniform stress–strain response

under biaxial loading condition in Sect. 2.2. These simu-

lations are first verified against the uniform stress–strain

predictions from the MATLAB code. Thereafter, hetero-

geneity has been induced in the left bottom-most element

by locally altering the initial magnitude of the material

parameter gys, i.e., 0.5% less than the global value used for

other elements. Such perturbation is necessary to initiate

localization in a finite element analysis.

Simulation results in terms of force–displacement curve

are presented in Fig. 10 for the biaxial shearing with e0 ¼
0:9 and 100 kPa initial confining pressure. In these simu-

lations, the assumed values of rate-dependent parameters

are _eref ¼ 1 � 10�6/s and n ¼ 60. A convergence study has

been performed first to obtain the optimum number of

element discretization. For a converged solution, the force–

displacement result nearly remains unaffected by the

change in mesh discretization. Both linear and quadratic

elements are used initially for the simulation at 0.1/s strain

rate. Four sets of quadratic elements with the number of

elements 1568, 6272, 7938 and 9800 and two sets of linear

elements with the number of elements 6272 and 9800 have

been considered in the convergence study. Compared to

linear elements, the element discretization with quadratic

Fig. 8 Loss of positiveness of second-order work for a dense and

b loose sand

Fig. 9 Finite element model geometry, loading and boundary

conditions

Fig. 10 Force–displacement curves obtained from 2D plane-strain

simulations at varying strain rates for biaxial shearing with e0 ¼ 0:9
and 100 kPa initial confining pressure (number of elements are

marked with element type, where ‘Q’ and ‘L’ stand for quadratic and

linear element, respectively)
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elements shows faster convergence. The simulation for this

case has been considered to be converged for a quadratic

meshing with 7938 number of elements, beyond which the

force–displacement result nearly remained unaffected by

the change in mesh discretization (Fig. 10). The applied

strain rate of 0.1/s is the average strain rate which is acting

at the top boundary; however, the strain rate within the

sample is noticed to differ from this average value. Such

Fig. 11 a Elements position and evolution of b local volumetric strain, c local shear strain and d local shear strain difference (measured with

respect to element no. 3632) with global axial strain
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variation becomes more pronounced with initiation of

localization. For example, the local strain rate varies from

0.01 to 8/s when the applied average strain rate is 0.1/s.

The drop in the force–displacement curve indicates the

initiation of localized shear band; however, it is difficult to

identify the exact initiation point. The sharp drop also

marks a deviation from the force–displacement curve of

uniform case, which further confirms that the localization

may have taken place within the neighborhood of this

strain level (8.52% global axial strain). In a series of true

triaxial experiments on Kaolin clay, Prashant and Penu-

madu [43] also noticed a sudden change in the evolution of

strain response near the point where specimens were

observed to have localized deformations. To examine fur-

ther, the local shear and volumetric strain has been

explored at multiple locations. During the initial phase of

the simulation, the non-uniform deformation initiates from

the left bottom-most corner, where the material hetero-

geneity was induced. With the continued deformation, a

zone of localized plastic strain emerges which contains the

element with initially induced heterogeneity. However, the

maximum plastic strain accumulation may not necessarily

occur at this location. By examining the evolution of

plastic strain across the complete domain, the element 2106

has been identified as the element with the maximum

accumulation of plastic strain. Four other elements, located

far from the zone of strain localization, have been selected

for exploring the local strain variations. The element

positions are marked in Fig. 11a, and the local volumetric

and shear strain has been plotted against the global axial

strain level for gauss points of these five different elements

in Fig. 11b, c, respectively. The local shear and volumetric

strain of the element no. 2106 starts to differ suddenly from

other elements around 7.7% global strain. This particular

element lies on the localized zone, and the sudden variation

in strain response for this element is a clear indication of

localization onset (Fig. 11d). It is to be noted that such

approach predicts an early localization onset compared to

the global force–displacement approach. Hence, the local

variations can be used effectively to identify the bifurcation

onset within a numerical framework. Figures 14a and 16a

present a comparison of localization onset predicted by

these two methods over different ranges of strain rate and

n values. It can be observed from Fig. 11b that once the

localization commences, the volumetric deformation pri-

marily takes place within the localized zone exhibiting a

sharp reduction in compressive response with continued

shearing. A gradual reduction in compressive response is

also visible in elements far from the localized zone, i.e.,

shear band (element nos. 7694, 5005, 3632). However, an

enhanced compressive response is noticed at elements

nearer to the shear band (element no. 2874).

After the mesh convergence, the thickness of the shear

band remains independent of the mesh size (Fig. 12).

Similar observation is also noted when the heterogeneity

has been induced at a different position, e.g., at mid-point

of the leftmost surface (Fig. 13). This is a typical attribute

of the rate-dependent models which regularizes the local-

ization problem by inducing a length scale due to the

presence of inherent timescale [35]. To understand the

instability behavior near a perturbed zone and yet keep the

analysis simple, the localization in the present study has

been initiated by inducing heterogeneity locally at a par-

ticular element. However, a more realistic representation of

material non-homogeneity can be obtained through random

distribution of a material parameter, e.g., spatially varying

density states [2, 3, 7, 8] or spatially varying degrees of

saturation [9], over the domain. As mentioned earlier, only

localized instability can be explored within the present

numerical framework due to the assumption of small

deformation.

The converged simulation results for two other strain

rates, i.e., 0.01 and 0.001/s, are also presented in Fig. 10. It

can be observed that for all of these cases, localization

emerges in the hardening regime and gets delayed with an

increase in the strain rate. Figure 14a presents the variation

of global axial strain at localization against axial strain

rates in logarithmic scale considering both global and local

response. The global response curves for localization onset

have been obtained by following the global force–dis-

placement approach, as explained in Fig. 10. The response

of element 2106, which exhibited the maximum accumu-

lation of plastic strain, has been used as a local response to

indicate the bifurcation onset. The global axial strain was

calculated by dividing the applied vertical displacement on

the top boundary with respect to the initial height of the

biaxial specimen. Due to the existence of non-uniform

deformation field, the global axial strain value is different

from the local strains, which further varies at different

locations within the model domain. Therefore, while

comparing the localization onset predictions from two

different approaches (global and local response), the global

axial strain value at the onset of localization has been

considered here as the basis for comparison. A linear

variation has been noticed which remains unchanged even

at higher confinements (300 kPa). An increase in the con-

fining pressure, however, further retards the emergence of

localization. As shown in Fig. 14b, shear band angle also

increases with an increase in applied strain rate. In case of

cFig. 12 Shear band developed for two quadratic mesh discretizations

with the number of elements a 7938 and b 9800 which are simulated

at 0.1/s strain rate with e0 ¼ 0:9 and rc ¼ 100 kPa (shear strain

contour at 8.7% global axial strain)
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100 kPa confining pressure, band angle increases from

47.5� to 49� (measured anticlockwise from horizontal) as

strain rate increases from 0.001 to 0.1/s, whereas bifurca-

tion-based rate-independent instability analysis predicts a

shear band angle of 47.6� [33]. Unlike band angle, the

shear band thickness remains independent of the strain rate.

The deformed profile indicates that the shear band orien-

tation and location do not vary much during the shearing

process but subsequent variation is observed in the mag-

nitude of shear strain developed within the localized zone.

The present study aims to explore influence of strain rate

on the emergence of localization and initial shear band

angle. Post-bifurcation analysis has not been carried out

here, and hence, subsequent growth and change in incli-

nation of shear band angle with continued shearing have

not been examined. Convergence issues are noticed in the

post-peak regime while performing simulations at lower

strain rate or with parameter values indicating low rate

sensitivity.

The effect of rate sensitivity of the material on local-

ization has been studied by varying the n parameter.

Simulations has been performed for three values of strain

rate exponent,n ¼ 60, 100 and 140 at 0.1/s rate, and the

force–displacement curves are presented in Fig. 15 for

100 kPa initial confining pressure. Similar to higher rates, a

lower value of n, i.e., higher rate-sensitivity, retards the

localization onset and results in an increase in the shear

band angle (Fig. 16). This nature remains unchanged even

for other confining pressures.

Figure 17 presents the force–displacement relationship

at two different strain rates, 0.0001 and 0.00001/s, for a

denser state with e0 ¼ 0:65 and 100 kPa initial confining

pressure (n ¼ 60 and _eref ¼ 1 � 10�6/s). Similar to loose

state, the localization is observed to get retarded with an

increase in the strain rate; however, in this case localization

forms in the post-peak regime. It is important to note that

this behavior is markedly different than the localization

emergence in rate-independent case, where localized

instabilities are captured in the hardening regime. The shear

band angle in the dense sand is also noticed to increase

slightly, i.e., from 46� to 46.5� (measured anticlockwise

from horizontal) as the strain rate increases from 0.00001 to

0.0001/s. The simulations in dense sand with higher strain

rates (C 0.001/s) do not lead to localization even when

shearing is continued till 20% global axial strain. The

assumption of small deformation no longer remains valid

beyond such strain level, and hence, localized instabilities

in dense sand for higher strain rates are not further explored.

bFig. 13 Shear band developed for two different mesh discretizations

with the number of elements a 7938 and b 9800 which are simulated

at 0.1/s strain rate, e0 ¼ 0:9 and rc ¼ 100 kPa with heterogeneity

induced at mid-point of the leftmost surface (shear strain contour at

8.8% global axial strain)

Fig. 14 Variation in a global axial strain at localization (considering

both global and local response) and b shear band angle with strain rate

at two initial confining pressures for e0 ¼ 0:9

Fig. 15 Force–displacement curves obtained from 2D plane-strain

simulations at different n values for a case with e0 ¼ 0:9 and 100 kPa

initial confining pressure
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5 Conclusion

A material model has been proposed to predict the rate-

sensitive stress–strain behavior of soil and implemented

further in a finite element framework to explore the influ-

ence of strain rate on the localization behavior of sand. The

proposed model simulates various constitutive features of

sand subjected to higher strain rate as reported in the

existing literature. This includes rate-induced strength

increase along with early peaks and reduced compressive

response in loose sand. At reference strain rate, the stress–

strain response predicted from the rate-dependent analysis

becomes comparable with the same from rate-independent

one. It is important to note that the proposed model can be

used for predicting rate-dependent response over both low

and high range of strain rate, provided the rate parameters

are selected carefully over the considered strain rate

regime. In addition to it, the change in rate-sensitive

response of sand over different density states can also be

incorporated by calibrating the rate parameter, n over dif-

ferent material states.

The drop in the force–displacement curve is generally

considered to indicate the initiation of localization in finite

element simulations; however, the local strain variations

are noticed here to give an early prediction of bifurcation

onset. An increase in the strain rate leads to a delayed onset

of strain localization along with an increase in the shear -

band angle. Strains are noticed to localize in the hardening

regime for loose sand, whereas for denser state localization

emerges in the post-peak regime. The thickness of the

shear band is observed to be independent of the size of the

mesh discretization.
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Appendix

In case of plastic or viscoplastic material response, the

nonlinear stress–strain relations are generally evaluated

incrementally. Following the approach given in Wang et al.

[52], this section presents a one-step Euler stress-update

algorithm for the proposed Perzyna-type viscoplastic

model. In case of small deformation formulation, the

incremental strain De can be decomposed into an elastic

part Dee and a viscoplastic part Devp according to

De ¼ Dee þ Devp: ð8Þ

In case of proposed model, flow rule is defined by

Fig. 17 Force–displacement curves obtained from 2D plane-strain

simulations at two different strain rates for a case with e0 ¼ 0:65 and

100 kPa initial confining pressure

Fig. 16 Variation in a global axial strain at localization (considering

both global and local response) and b shear band angle with power

law exponent, n at two initial confining pressures for e0 ¼ 0:9
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_evp ¼ _eref/�n; where �n ¼ ogd

.

or
0
and/ ¼ gyd

�

gys
� 	n

:

ð9Þ

The incremental stress is related to the elastic response

by

Dr
0 ¼ EðDe� DevpÞ ; ð10Þ

where E represents the elastic stiffness tensor. A general-

ized trapezoidal rule can be applied to estimate the incre-

mental viscoplastic strain and change in the internal state

variable

Devp ¼ ð1 � �hÞ _evpt þ �h _evptþDt


 �

Dt ;

D�j ¼ ð1 � �hÞ _�jt þ �h _�jtþDt

 �

Dt ;
ð11Þ

where �j denotes the internal variable of the viscoplastic

model, and for the proposed model, two internal variables

are considered, i.e., D�j1 ¼ evpq and D�j2 ¼ evpp . The inter-

polation parameter, �h, is such that 0� �h� 1, where �h ¼ 0

implies a complete explicit method and �h ¼ 1 stands for

the fully implicit method. In the one-step Euler integration

scheme, the viscoplastic strain rate at the end of the time

interval Dt is expressed in a limited Taylor series expan-

sion as

_evptþDt¼ _evpt þ o _evp

or0

� �

t

Dr
0 þ o _evp

o�j

� �

t

D�j

¼ _evpt þ ĜtDr
0 þ htD�j ;

ð12Þ

where Ĝt ¼ _eref

o/
or0 �n

T þ /
o�n

or0

� �

t

; ht ¼ _eref

o/
o�j

�n

� �

t

:

ð13Þ

Substitution of Eq. 12 into Eq. 11 yields

Devp¼ _evpt þ �hĜtDr
0 þ �hhtD�j

� 

Dt : ð14Þ

Further substitution of Eq. 14 into the incremental

stress–strain relation of Eq. 10 leads to the following

relation:

Dr
0 ¼ DcDe� D�q ; ð15Þ

whereDc ¼ E�1 þ �hDtĜt


 ��1
;

D�q ¼ E _evpt Dt þ �hDthtD�j
� 	

:
ð16Þ

The tensor Dc is the algorithmic tangent stiffness tensor.

Following are the expressions derived for updating the

stress–strain relation of the proposed model

ogd

or0
ij

¼
ffiffiffi

3

2

r

Sij
ffiffiffiffiffiffiffiffiffiffiffi

SklSkl
p þ dij

3
Mc � gyd

� 	

;

where Sij ¼ r
0

ij �
r

0
kkdij
3

; gyd ¼ 3
ffiffiffiffiffiffiffi

3J2

p

I
0
1

;

o2gd

or0
ijor

0
pq

¼
ffiffiffi

3

2

r

� SijSpq

2 SklSklð Þ3=2
þ
dpidqj � dijdpq

�

3
ffiffiffiffiffiffiffiffiffiffiffi

SklSkl
p

" #

� dij
3

ogyd

or0
pq

;

ogyd

or0
pq

¼
ffiffiffi

3

2

r

3Spq

I
0
1

ffiffiffiffiffiffiffiffiffiffiffi

SklSkl
p � 3

ffiffiffiffiffiffiffi

3J2

p
dpq

I
0
1

� 	2
;

Ĝijpq¼ n _eref

gyd

� 	n�1

gys

� 	n

ogyd

or0
pq

ogd

or0
ij

þ _eref

gyd

gys

 !n
o2gd

or0
ijor

0
pq

;

hijD�j¼ �n _eref

gyd

� 	n

gys

� 	nþ1

ogys

o�j1

D�j1 þ
ogys

o�j2

D�j2

� �

ogd

or0
ij

;

and
ogys

o�j1

¼
gps � gys

� 	2

agps

;
ogys

o�j2

¼
gys

gps

jv0 :

ð17Þ

The stress increase for a given strain increment can be

calculated from Eq. 16 along with Eq. 17, and subse-

quently, the viscoplastic strain increment can be estimated

from Eq. 12. A complete explicit stress-point integration

scheme has been adopted in the present work with �h ¼ 0. It

is important to note that such an explicit integration

scheme, also known as forward Euler scheme, is condi-

tionally stable and requires smaller discretization step

while performing the time integration. Alternatively, an

implicit-type time integration scheme, which is usually

more robust and unconditionally stable, can also be

employed for this purpose [10].
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