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Abstract. Anisotropic slipline theory, with non-uniform lattice rotation field, is used to discuss new slipline solutions for
the plane strain problems of punch indentation and mode 1 stationary crack in a ductile single crystal with piecewise
linear yield locus. The proposed solution allows for both linear dislocation arrays and sectors with bulk dislocation density.
Such features provide considerable latitude in the number of allowable stress discontinuities, and their orientation, when
compared to the solutions which assume uniform lattice rotation.
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1. Introduction

The formalism of plane strain, elastically rigid, incompressible, perfect plasticity, otherwise known as
slipline theory, has a unique mathematical structure such that the governing partial differential equations
remain hyperbolic for all stress values during plastic deformation [5,6]. This allows us to gain considerable
analytical insight into the solutions of a variety of physical problems posed using the slipline theory
[9,13,18]. The assumption of elastic rigidity restricts elastic deformation to be a lattice rotation field.
The rotation field can be eliminated as long as it remains constant throughout the solid [7]. It is for
this reason that lattice rotation is ignored both in the well-studied isotropic slipline theory [5,6,9] and
in the anisotropic slipline theory at incipient plastic flow [15]. The lattice rotation field is otherwise non-
uniform in anisotropic solids and cannot be neglected [7]. Moreover, incorporating it in the plasticity
theory is tantamount to prescribing plastic spin as a constitutive function [3,7]. We also note that the
non-uniformity in lattice rotation field gives rise to a non-trivial geometrically necessary dislocation
distribution in the solid. In particular, a discontinuity in the lattice rotation field creates a dislocation
wall, which is equivalently a grain boundary in the present situation, whereas its gradient represents a
continuous distribution of dislocations [7].

The purpose of this brief note is to construct new solutions of some classical problems in anisotropic
slipline theory by incorporating a non-uniform lattice rotation field, which was hitherto ignored in pre-
viously developed anisotropic slipline models [8,15] and their applications [11]. The present work can be
used to explain certain experimental observations for stress field distribution around a crack tip in single
crystals [1,2,10] and for deformation fields in plane strain indentation test on single crystals [12]. In the
former, angular sectors of uniform stress, separated by lines of stress discontinuity, are observed around
the crack tip. Existing theories (such as [16]) fall short in the correct prediction of the number of sectors,
the inclination of discontinuity lines, the existence of boundaries with a jump in lattice rotation field, and
the dependence of solution on crack tip orientation. By incorporating non-uniform lattice rotation field
in the slipline theory, some of these experimental predictions can be justified in the proposed framework.

In Sect. 2, we summarize the governing equations of anisotropic slipline theory while emphasizing the
nature of discontinuities in stress, velocity, and rotation fields. We discuss in detail the nature of solution
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in a region where the stress state belongs to a vertex of the yield locus. Subsequently, in Sect. 3, we use
the anisotropic slipline theory to revisit the classical problems of plane punch indentation and mode 1
stationary crack in a ductile single crystal.

2. Anisotropic slipline theory

Under plane strain assumption, the velocity field is taken of the form v = ue1 + ve2 with components u
and v dependent only on the in-plane components x = x ·e1 and y = x ·e2 of the position vector x. Here,
unit vectors {e1, e2, e3} form a fixed right-handed orthonormal basis. The lattice rotation field is assumed
to have axis along e3 and is hence completely determined by a scalar field γ = γ(x, y, t), where t denotes
time. γ represents the angular change in the lattice orientation measured anticlockwise with respect to
the e1-axis. As noted before, spatial gradient of γ quantifies bulk dislocation density field, away from any
curves of γ discontinuity in the plane, whereas the jump in γ across any such curve represents a surface
dislocation density field [7]. Let σ = σijei ⊗ ej denote the symmetric Cauchy stress tensor such that the
components σij are all independent of the out-of-plane spatial variable. Let σ1 and σ2 be the in-plane
principal stresses and u1 and u2 be the corresponding principal directions of the Cauchy stress. Let θ be
the angle between e1 and u1 measured anticlockwise from the former. Hence, σ11 −σ22 = (σ1 −σ2) cos 2θ
and 2σ12 = (σ1−σ2) sin 2θ. Due to the non-trivial lattice rotation field, the second Piola–Kirchhoff stress,
say S, is distinct from the Cauchy stress. In fact, in terms of the components Sij = S · Sym(ei ⊗ ej),
S11 − S22 = (σ1 − σ2) cos(2θ − 2γ), and 2S12 = (σ1 − σ2) sin(2θ − 2γ).

We will first collect the governing equations away from curves with discontinuous fields. The equilib-
rium equations, neglecting body forces and inertia, are given by

∂xσ11 + ∂yσ12 = 0 and ∂xσ12 + ∂yσ22 = 0, (1)

where ∂x is the partial derivative with respect to x, etc. The yield criterion is assumed to be of the form
F (S) = 0, where F is continuously differentiable. Under plane strain assumption, it reduces to [7]

σ1 − σ2 = 2k(θ − γ), (2)

where k, a continuously differentiable function of its argument, denotes the maximum shear stress. The
deviation from circularity in the polar plot (k(θ − γ), 2(θ − γ)), such as those shown in Figs. 1 and 4a,
represents anisotropy in the yield behavior. For isotropic solids, k is constant while for anisotropic solids,
with uniform lattice rotation, it is only a function of θ. It should be noted that although the yield locus is
fixed in the space of second Piola–Kirchhoff stress, it can vary in the Cauchy stress space parameterized by

2θ = π/2
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Fig. 1. Rectangular yield locus
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γ. Such dependence characterizes a geometric hardening (or softening) which appears due to the rotation
of crystal slip systems with respect to the material axes. The plastic incompressibility condition, due to
the absence of elastic strains, is given by

∂xu + ∂yv = 0. (3)

The symmetric part of the plane strain plastic flow rule, upon using (2), reduces to [7]

2∂xu cos(2θ + 2ψ) + (∂yu + ∂xv) sin(2θ + 2ψ) = 0, (4)

where ψ is defined from k′ = 2k cot 2ψ. The superscript prime denotes the partial derivative of k with
respect to (θ − γ). Accordingly, 2ψ is the anticlockwise inclination of the tangent to the polar plot with
respect to the radial direction. The skew part of the flow rule is given by [7]

2
Ω21 sin(2ψ)
sin(2θ + 2ψ)

∂xu + ∂yu − ∂xv + 2∂tγ + 2u∂xγ + 2v∂yγ = 0, (5)

where Ω21 is a constitutively prescribed plastic spin field and ∂t is the partial derivative with respect
to t. We refer the interested reader to Gupta and Steigmann [7] for a detailed derivation of the above
relations. The six governing Eqs. (1)–(5) are used to solve for three in-plane stress components, two
velocity components, and lattice rotation angle. Note that Eq. (5) appears due to considerations of
lattice rotation and plastic spin. The existing anisotropic slipline theories ignore both of these factors; in
particular, they assume k to be a function of only θ.

We allow for discontinuities in stress, velocity, and lattice rotation fields (and their gradients) within
plastic regions or at the boundary of rigid and plastic regions. The jumps in stress and velocity fields across
a discontinuity curve in the plane, with normal n = sin φe1 − cos φe2, satisfy equations of equilibrium

�σ11� sin φ − �σ12� cos φ = 0 and �σ12� sin φ − �σ22� cos φ = 0, (6)

and incompressibility
�u� sin φ − �v� cos φ = 0, (7)

where �.� = (.)+ − (.)− denotes the jump across the curve, with superscripts ± as the limiting value of
the field as it approaches the curve from the regions into which n and −n are directed, respectively. The
two relations in (6), combined with (2), give an equation for the slope of the discontinuity curve

cot(2φ − 2〈θ〉) =
�k� cot�θ�

2〈k〉 , (8)

where 〈.〉 = ((.)+ + (.)−) /2 is the average across the curve. The velocity and stress jumps cannot coincide
across a curve when the yield locus is strictly convex. Indeed, consider F (〈S〉) = 0 as the yield locus for
points on the discontinuity curve. The dissipation at the curve is given by 〈σ〉 · (�v� ⊗ n) [7]. Hence, if
F (〈S〉) < 0, the interface remains rigid implying sym(�v�⊗n) = 0 or equivalently, using (7), �v� = 0. On
the other hand, it is clear that velocity and stress jumps can coincide across curves where the limiting
bulk stresses in the neighboring points belong to a vertex or an edge of the yield locus. Consequently,
such coincidence is prohibited in the isotropic theory but permissible in the anisotropic slipline theory.

For the purpose of the present article, we will assume γ to be known at a given time instant. The
stress and velocity solution for a given γ can then be substituted into (5) to determine the evolution of γ.
The stress equations (1)–(2) and the velocity Eqs. (3)–(4), both strictly hyperbolic, are decoupled from
each other. Moreover, for a stress state away from the vertex on the yield locus, both have coinciding
characteristic directions given by θ + ψα (α-lines) and θ + ψβ (β-lines), where ψα,β are roots of k′ =
2k cot 2ψ such that ψβ = ψα + π/2 and ψα,β ∈ [−π/2, π/2]. In particular, 2ψβ is the anticlockwise angle
from the radial direction to the tangential direction of the polar plot (k(θ−γ), 2θ−2γ). The α and β-lines
are collectively called sliplines. The normal forms associated with stress and velocity equations are given
in Gupta and Steigmann [7].
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We will restrict our attention to polygonal yield contours, such as those shown in Figs. 1 and 4a. Each
edge of these piecewise linear contours has a distinct k(θ − γ) = C |sin (2η0 − 2(θ − γ))|−1, where C is
a material constant and 2η0 is the constant anticlockwise inclination of the outward normal to the edge
with respect to the positive S12-axis [7]. When the stress states in a plastic region lie on the same linear
segment (edge) of the yield locus, the sliplines are two families of curves inclined at η (α-lines) and η+π/2
(β-lines) with respect to e1. The angle 2η is the anticlockwise inclination of the outward normal to the
edge with respect to the positive σ12-axis on the polar plot. Interestingly, η = γ + η0, and hence, the
curvature of the sliplines is identical to that of the glide lines. The glide lines are a family of two mutually
orthogonal curves, each with a spatial distribution of edge-type dislocations of same sign [14], along which
the dislocations undergo pure gliding. For stress states belonging to an edge, stress discontinuity curves
coincide necessarily with either a slipline or a γ discontinuity (this is not true when we consider strictly
convex yield contours [7]). Note that, since �γ� = �η�, lattice rotation cannot be discontinuous across a
slipline in such regions.

For a plastic region whose stress state belongs to a vertex on the yield contour, the second Piola–
Kirchhoff stress is fixed, but σ11 − σ22 and σ12 remain variable due to non-uniformity of γ. The vertex
state can be thought of as the intersecting state of two linear yield loci characterized by a constant
value of (θ − γ). Clearly, γ discontinuities in such a region necessarily coincide with (Cauchy) stress
discontinuities. The stress equations are again strictly hyperbolic with characteristic curves inclined at
θ ± π/4. The curvature of these characteristic curves, given in terms of the gradient of θ, is related to
the gradient of γ and hence to a distribution of dislocation density in the region. The characteristic
curves associated with velocity equations (sliplines) are, however, no longer identical to those of stress
[7]. The γ discontinuity curves in the considered region can also coincide with the sliplines. The slope of
such curves, say φ, is related to �γ� according to the criteria φ − η2 ≤ �γ� ≤ φ − η1, where 2η1 and 2η2
(such that η1 ≤ η2) are angles extended by the outward normal, measured anticlockwise with respect to
2θ = π/2 line on the polar plot, to the two linear segments which intersect at the vertex. Indeed, each
vertex defines an admissible range for the slipline angles by the inclination of the outward normals to the
two constraints that intersect at the vertex. Due to the change �γ� in the lattice rotation, the outward
normals reorient themselves at 2η1 + 2�γ� and 2η2 + 2�γ�, respectively. The admissible range for slope of
α-lines is therefore from η1 + �γ� to η2 + �γ�.

We would like to note that, in general, γ discontinuities do not coincide with streamlines. They
coincide only in very restricted situations with strong assumptions on the continuity of velocity and
plastic spin fields in addition to assuming that such interfaces remain stationary. This is contrary to what
was proposed in Gupta and Steigmann [7].

3. Examples

3.1. Punch indentation

A flat-ended, rigid, frictionless punch is considered to be indenting on half plane of a ductile single crystal;
see Fig. 2a. On the surface below the indenter, σ12 = 0 and θ = 0, and on the free surface, σ12 = 0,
σ22 = 0, and θ = ±π/2. The y-velocity component of material points on AB is equal to the downward
punch velocity. The isotropic slipline solution to this problem, as provided by Prandtl, is symmetric about
the central line of the indenter, consisting of triangular regions of uniform stress below the indenter surface
and the free surface [9]. There is a centered fan zone with continuous non-uniform stress field connecting
the two uniform stress regions. The indentation pressure associated with yielding for this solution is
k1(2 + π), where k1 is the radius of the circular yield locus. Our aim is to construct anisotropic slipline
solutions for the indentation problem with a rectangular yield locus, as shown in Fig. 1. Two distinct
stress solutions for the anisotropic problem can be obtained depending on whether the lattice rotation
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Fig. 2. a Slipline solution with minimum number of γ jumps for tan−1 a
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, assuming γ = 0 at AB. b Cauchy stress

states in different sectors of the punch indentation solution connected with linear chords. The notation UR, etc., indicates
that the stress state in region R corresponds to point U on the yield locus

field γ is prescribed below the indenter (Fig. 2a) or left arbitrary at all the boundaries (Fig. 3); these are
discussed below. The velocity solution for the anisotropic problem remains similar to the isotropic case.
It is symmetric about the center line of the indenter, with regions P, T, and R (see Figs. 2a, 3) of uniform
velocity directed along ED, along GC, and downward, respectively. Regions Q, given by Q1 ∪ Q2 ∪ Q3 in
Fig. 2a and by Q1∪Q2∪Q3∪Q4 in Fig. 3, and S, given by S1∪S2∪S3 in Fig. 2a and by S1∪S2∪S3∪S4 in
Fig. 3, have a velocity with vanishing component in the radial direction. The velocity field is discontinuous
along lines AF and BF.

For a stress discontinuity curve, such that the stress state lies on the same vertex across the jump,
(8) implies that φ = 〈θ〉 ± π/4. Recall that, at such stress discontinuities, �γ� = �θ�. Considering the
case with φ = 〈θ〉 + π/4 (the other case is similar), the rectangular yield locus in Fig. 1 and the flow
rules on each side of the stress jump require that π/4 ≤ φ and π/4 + �γ� ≤ φ. Hence, �θ� ≤ 〈θ〉. The
relation 2〈θ〉 = tan−1 a

b + �θ�, which follows from the geometry of the yield locus assuming a ≤ b, can be
then used to conclude that �θ� ≤ tan−1 a

b or equivalently �γ� ≤ tan−1 a
b . In other words, for any solution
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with stress state on a single vertex of the rectangular yield locus, the maximum allowable value of �γ� is
tan−1 a

b .
First, we construct a stress solution by fixing the lattice orientation at the surface below the indenter,

such that γ = 0 on AB (see Fig. 2a). The piecewise uniform solution for stress and γ fields is symmetric
about the central line of the indenter with three triangular regions P, R, and T, of uniform stress and
γ, such that θP − θR = −π/2. The symmetry in the slipline solutions is due to the symmetry of the
loading and the yield locus. The triangular regions are connected through the intermediate regions Q and
S; see Fig. 2a. Across lines AF and BF, stress is discontinuous, but γ is continuous, such that the stress
state in regions R, Q, and S corresponds to points U, V, and Z, respectively, on the yield locus. The
stress state in regions P and T belongs to the vertex V and Z, respectively. As a result, (θ − γ) remains
constant in P ∪ Q and T ∪ S. Regions Q and S contain a finite number of radial lines of γ and (Cauchy)
stress discontinuity. These lines, shown as AI, AH, BJ, and BK in Fig. 2a, are accordingly represented
as dislocation walls. They divide the intermediate regions Q and S each into three angular sectors with
uniform stress and lattice rotation. In our solution, the number of sectors dividing Q and S is decided
so as to minimize the number of γ discontinuity lines in the intermediate zone. Indeed, the boundary
condition on θ requires that the sum of all γ jumps is necessarily

(
π − tan−1 a

b

)
/2. Hence, the lowest

number of γ discontinuity lines in each intermediate sector is

n =
⌈(

π − tan−1 a
b

2 tan−1 a
b

)⌉
, (9)

where �.	 denotes the least integer function. Any solution with n or more γ discontinuity lines in the
intermediate zone is admissible.

A different solution is obtained if we do not impose any boundary conditions on γ. Such a consideration
allows us to construct solutions where the entire plastic region has a stress state belonging to one vertex of
the yield locus. The solution shown in Fig. 3, for instance, has a stress state corresponding to vertex V on
the yield locus given in Fig. 1. Accordingly, (θ−γ) is constant over the entire plastically deforming region.
In particular, sectors P, R, and T have uniform stress and γ fields. Both Q and S contain γ discontinuity
lines across which (Cauchy) stress is also discontinuous. These are shown as dislocation walls in Fig. 3.
The number of sectors in Q and S is again decided in order to minimize the number of γ discontinuity
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curves. The lowest number of γ discontinuity lines in each intermediate sector is now given by

n =
⌈

π

2 tan−1 a
b

⌉
. (10)

Note that the slipline solution in Fig. 3 does not have any discontinuity lines across which stress is
discontinuous but γ continuous. Moreover, contrary to the previous case, we can also construct asymmetric
slipline solutions in the present scenario in addition to the symmetric solution shown in Fig. 3. This is
due to the freedom in choosing a γ value below the indenter. Interestingly, for the same reason, one can
also construct a symmetric slipline solution for an asymmetric yield locus.

We digress briefly to calculate the indentation pressure associated with the solutions outlined above.
We show that indentation pressure p = −(σ22)R, where the subscript R indicates the region, where the
stress component is to be evaluated, is the sum of the length of chords associated with each γ jump,
in addition to (a + b + r), where r =

√
a2 + b2. First, we note that, for the two stress states across a

discontinuity line, traction continuity (6) implies �σ�2− l2 = 0, where σ = (σ11+σ22)/2 is the mean stress
and l2 = �(σ11 − σ22)/2�2 + �σ12�

2 is length-square of the straight chord connecting the two stress states
in the Cauchy stress space on the polar plot. Hence, either �σ� − l = 0 or �σ� + l = 0. Our solution in
Fig. 2a, in conjunction with traction continuity conditions, admits the latter. Referring to Fig. 2b, which
shows stress state in various sectors and the connecting chords, and using (σ)P = −r, we can obtain
p = r + b + a + l1 + l2. This expression can be simplified to the form p =

(
a + b + r + 4r sin π

5

)
. We can

similarly calculate the indentation pressure for the solution in Fig. 3 as p =
(
2r + 4r sin π

5 + 2r sin π
10

)
.

Clearly, the solution with minimum number of γ jumps also minimizes the indentation pressure.
Each radial dislocation wall within the intermediate sectors Q and S, in the solutions above, can be

replaced by an angular sector with a continuous distribution of dislocation density. This is an alternative
way to account for the non-uniformity in lattice rotation and Cauchy stress. In such sectors, γ and stress
field both vary continuously over the angular coordinate while remaining constant in the radial direction.
The stress state in the intermediate sectors would still belong to one vertex of the yield locus. In general,
one can have both dislocation walls and sectors with dislocation distribution; their arrangement would
always be such that the θ boundary condition is satisfied.

Finally, we recall the slipline solution from Rice [15] for the same problem as considered above, which
assumed a uniform lattice rotation field. This solution consists of sectors with uniform stress states
belonging to different vertices of the yield contour punctuated by lines of stress discontinuity (see also
[17]). Due to a uniform γ field, there is no possibility of incorporating bulk and surface dislocation density
fields in the solution. Moreover, the edges in the yield locus uniquely determine the possible angles at
which stress discontinuities can occur thereby fixing the number of sectors of uniform stress in the solution.
This constraint is relaxed in our solutions as described above. The indentation pressure is (4b + 2a), which
is always less than that of our solutions with non-uniform lattice rotation field. The slipline solutions are
symmetric due to the symmetry of the loading and the yield locus. For an asymmetrical yield locus, as
shown by Rice [15], the slipline solutions will also be asymmetrical.

3.2. Stationary crack

We consider a mode 1 stationary crack in a ductile single-crystal solid such that, on crack flanks AC,
σ12 = 0, σ22 = 0, and θ = π/2, whereas, on the crack propagation line AB, σ12 = 0 and θ = 0. We
are interested in the asymptotic behavior of the stress close to the crack tip where the stress field is
predominantly a function of the angular position. The solution to this problem, as suggested by Rice
[16] for an hexagonal yield locus (see Fig. 4a) and uniform lattice orientation field, is analogous to the
punch indentation solution with a similar yield locus, i.e., angular sectors of uniform stress separated
by radial lines originating from the crack tip. In this solution, there are four sectors with three stress
discontinuity lines on one side of the crack. Moreover, the angle of radial discontinuity lines is fixed by
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Fig. 4. a Hexagonal yield locus. b Crack solution for non-uniform lattice orientation. The solution is symmetric with respect
to x axis

the slipline direction corresponding to the linear segment across which the jump occurs. Due to uniform
lattice orientation, this solution has a trivial dislocation density field associated with it. Experimental
observations [1,2,10] agree with the general structure of the solution suggested by Rice [16] with sectors of
uniform stress separated by radial discontinuity lines. However, there is a disagreement on the radial angle
of discontinuity lines, the number of sectors, the existence of γ discontinuity lines, and on the dependence
of the solution on crack tip orientation. In fact, the theory proposed by Rice [16] necessarily requires stress
discontinuity lines (where stress jumps from one vertex to the other keeping lattice orientation constant)
at fixed angles unless certain angular sectors around the crack tip are assumed to remain elastic [4].
Moreover, the experiments also make note of stress discontinuities involving jump in lattice orientation.

As with the punch indentation problem, allowing for non-uniform lattice orientation relaxes several
restrictions imposed by the solution proposed by Rice [16]. We show one solution of the anisotropic
problem with non-uniform γ in Fig. 4b. The centered fan region has angular regions with piecewise
uniform distribution of stress and γ fields. The stress state in the whole sector meanwhile remains on a
single vertex of the yield locus. The stress discontinuity lines at fixed radial angles in [16] can be replaced
by γ discontinuity lines (for instance, AE in Fig. 4b). The γ discontinuity lines have greater flexibility with
respect to their radial angles. Additionally, the solution can also contain angular regions of non-uniform
stress and γ, where γ is radially uniform, but changes with the angular coordinate (sector Q3 in Fig. 4b).
Within our framework, in general, there is considerable latitude in the number of stress discontinuities
and their orientation. Furthermore, a stress discontinuity can now arise between stress states jumping
from one vertex to another (as considered by Rice [16]) and also at γ discontinuity lines with stress state
remaining on a single vertex (such as those observed experimentally [10]).
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