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A B S T R A C T

We consider singular dislocation and disclination fields within a three-dimensional, possibly non-contractible,
connected domain, given in terms of piecewise smooth bulk densities and as concentrations over internal
surfaces and curves. We obtain conservation laws for the defect fields which characterize the admissibility of
defect configurations in the domain. The conservation laws necessarily include global (non-local) conditions
whenever the domain has a boundary consisting of multiple, mutually disjoint, connected components, as is
the case with a hollow ball or a hollow torus. We demonstrate the applicability of the global conditions for
several defect configurations in a hollow ball.
1. Introduction

A single dislocation in a three-dimensional (3D) elastic solid is
characterized by a constant Burgers vector and a curve which cannot
terminate inside the body so as to ensure a well-defined distortion
field away from the curve [1]; the curve can either form a loop or
end at the boundary of the domain. For a continuous distribution of
dislocations, characterized by a smooth density 𝜶𝐵 over the domain,
we analogously require div𝜶𝑇

𝐵 = 𝟎 to ensure the existence of a smooth
distortion field 𝜷 such that 𝜶𝐵 = curl 𝜷 [1]. These restrictions, on an
isolated defect curve and on the smooth density field, are however
insufficient (for the existence of the distortion field) when the domain is
non-contractible with a boundary which consists of multiple, mutually
disjoint, connected components. Within a hollow ball, for instance, a
regular dislocation curve cannot intersect both the outer and the inner
boundary (of the ball) unless there is at least one more dislocation
which also intersects both boundaries (see Figs. 1(a) and 1(b)). An
admissible dislocation density field over a hollow ball, on the other
hand, should be divergence free and should also have a vanishing
net flux across the inner boundary (or equivalently across the outer
boundary), see Eqs. (21). In this paper we establish such results, which
are novel to the best of our knowledge, in a broader framework which
allows for continuous as well as singular descriptions of dislocation and
disclination fields.

We consider defect fields as distributions given in terms of piecewise
smooth densities over a 3D domain, smooth concentrations over in-
ternal surfaces, and smooth concentrations over internal curves within
the domain [2,3]. Examples of the latter two include defect walls and
defect curves. Motivated by the classical defect theory [4], we postulate
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a relationship between defects and kinematical fields (strain and bend-
twist) and ask for the necessary and sufficient conditions on the defect
densities for the existence of strain and bend-twist fields which satisfy
the posited relationship. The equation connecting dislocation density to
the distortion field, as mentioned in the preceding paragraph, is a spe-
cial case of such a postulation. The necessary and sufficient conditions,
given in Eqs. (10) and (11), are derived as a consequence of a theorem
by De Rham [5], see Section 3. Due to their mathematical structure and
physical significance, these conditions are called conservation laws for
the considered defect density fields. Some of the derived conditions are
global in the sense that they depend on the overall shape of the domain
and are non-trivial only when the 3D domain is non-contractible with
a boundary which consists of multiple, mutually disjoint, connected
components.

As an immediate application of our results we consider several
defect configurations over a hollow ball and emphasize the restrictions
imposed by the global conditions, see Section 4. This was already
discussed in the context of dislocations above. In the following, we
briefly summarize certain implications for disclination curves. In or-
der to satisfy the local conservation laws, isolated disclination curves
(without any dislocation content) are necessarily straight lines of a pure
wedge character [6]. An isolated disclination line cannot intersect both
the boundaries of the ball unless there is at least one more disclination
line which does the same. If only two of such disclination lines are
present then they should have identical Frank vector and be collinear
(see Fig. 1(d)). The pair of disclinations can be non-collinear in the
presence of a dislocation curve or a dislocation wall (see Figs. 1(f)
and 1(h)). If three disclination lines are present then they necessarily
need to be coplanar and meet at a point (see Fig. 1(e)). A non-straight
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disclination can appear if the curve is allowed to have non-trivial
dislocation content or if the curve forms an edge of a dislocation
wall (see Fig. 1(g)), among other possibilities. Such restrictions have
been overlooked in the literature, particularly in the recent works on
defective spherical shells [7–9]. We note that our global conditions
are distinct from those imposing a net disclination charge on two-
dimensional spherical crystals [10], which arise (as a consequence of
the Gauss–Bonnet theorem) due to the inherent lattice microstructure of
the crystalline domain. In the context of our work, these can be imposed
a posteriori in addition to the derived global conditions.

2. Mathematical preliminaries

2.1. Notation

Let 𝛺 ⊂ R3 be a bounded, connected, open set, with a smooth
boundary 𝜕𝛺. The boundary 𝜕𝛺 has 𝑘 mutually disjoint, smooth, con-
nected components given by 𝜕𝛺𝑖, 0 ≤ 𝑖 ≤ 𝑘 − 1, i.e., ∪0≤𝑖≤𝑘−1𝜕𝛺𝑖 = 𝜕𝛺
and 𝜕𝛺𝑖 ∩ 𝜕𝛺𝑗 = ∅, for any 𝑖 ≠ 𝑗, where ∅ is the empty set. We
distinguish between two cases: either 𝑘 = 1 or 𝑘 > 1, regardless of

hether 𝛺 is simply or multiply connected. In the former case, 𝜕𝛺
as only one connected component (e.g., solid ball, hollow cylinder),
nd in the latter, 𝜕𝛺 has multiple components which are disjoint with
espect to each other (e.g., hollow ball, hollow torus). Let 𝑆 ⊂ 𝛺 be
regular, oriented, surface, with bounded area, having unit normal 𝒏

and boundary 𝜕𝑆. If 𝜕𝑆 − 𝜕𝛺 = ∅, where 𝐴 − 𝐵 denotes the difference
between sets 𝐴 and 𝐵, then 𝑆 is either a closed surface or its boundary
s completely contained within the boundary of 𝛺. On the other hand,

if 𝜕𝑆 − 𝜕𝛺 ≠ ∅ then at least some part of 𝜕𝑆 lies in the interior of 𝛺.
Let 𝐿 ⊂ 𝛺 be a regular, oriented, smooth curve, with bounded length,
having unit tangent 𝒕 and boundary 𝜕𝐿. If 𝜕𝐿− 𝜕𝛺 = ∅ then 𝐿 is either
a closed curve or its two ends are completely contained within the
boundary of 𝛺. On the other hand, if 𝜕𝐿−𝜕𝛺 ≠ ∅ then at least one end
of the curve 𝐿 lies in the interior of 𝛺. We use dv, da, and dl to represent
volume, area, and length measures on 𝛺, 𝑆, and 𝐿, respectively.

Let  be the translational space of R3 (set of vectors). Let {𝒆1, 𝒆2, 𝒆3}
be a fixed orthonormal right-handed basis in  . The inner product
and the cross product of any two vectors 𝒖, 𝒗 ∈  are given by
⟨𝒖, 𝒗⟩ ∈ R and 𝒖 × 𝒗 ∈  , respectively. Let Lin be the space of
linear transformations from  to  (second order tensors). The space
of symmetric and skew symmetric second order tensors are denoted
by Sym and Skw, respectively. The identity tensor in Lin is denoted
by 𝑰 . For 𝒖, 𝒗,𝒘 ∈  , the dyadic product 𝒖 ⊗ 𝒗 ∈ Lin is defined such
that (𝒖⊗ 𝒗)𝒘 = ⟨𝒗,𝒘⟩𝒖. For 𝒂 ∈ Lin, 𝒂𝑇 , sym(𝒂), and skw(𝒂) represent
the transpose, the symmetric part, and the skew part of 𝒂, respectively.
The axial vector of 𝒃 ∈ Skw is 𝑎𝑥(𝒃) ∈  such that, for any 𝒗 ∈  ,
𝒃𝒗 = 𝑎𝑥(𝒃) × 𝒗. For 𝒂, 𝒄 ∈ Lin, the inner product is given by ⟨𝒂, 𝒄⟩ ∈ R.
The trace of 𝒂 ∈ Lin is defined as tr(𝒂) = ⟨𝒂, 𝑰⟩. The cross product of
a vector 𝒗 ∈  with a tensor 𝒂 ∈ Lin is a tensor (𝒗 × 𝒂) ∈ Lin such
that (𝒗 × 𝒂)𝒖 = (𝒗 × 𝒂𝒖), for all 𝒖 ∈  . We use 𝐶∞(𝛺), 𝐶∞(𝛺,), and
𝐶∞(𝛺,Lin) to represent spaces of smooth scalar valued, vector valued,
and tensor valued functions on 𝛺, respectively. For a function 𝑓 on 𝛺
and a subset 𝜔 ⊂ 𝛺, 𝑓 |𝜔 is the restriction of 𝑓 to the subset 𝜔.

We denote the gradient, the divergence, and the curl of a smooth
function on 𝛺 with ∇, div, and curl, respectively. Analogously, the sur-
face gradient, the surface divergence, and the surface curl of a smooth
function on 𝑆 are denoted by ∇𝑆 , div𝑆 , and curl𝑆 , respectively [3]. In
particular, the surface curl of 𝒗 ∈ 𝐶∞(𝑆,) is a smooth vector field
curl𝑆 𝒗 ∈ 𝐶∞(𝑆,) defined as ⟨curl𝑆 𝒗,𝒅⟩ = div𝑆 (𝒗 × 𝒅), for a fixed
2

𝒅 ∈  . b
2.2. Distributions and their derivatives

Let the spaces of compactly supported smooth functions from 𝛺
to R,  , and Lin be (𝛺), (𝛺,), and (𝛺,Lin), respectively. The
spaces of scalar, vector, and tensor valued distributions, represented as
′(𝛺), ′(𝛺,), and ′(𝛺,Lin), respectively, are the spaces of all linear
continuous functions on (𝛺), (𝛺,), and (𝛺,Lin), respectively [3,
11]. The product of a scalar function 𝑓 ∈ 𝐶∞(𝛺) with a distribution

∈ ′(𝛺) is a distribution 𝑓𝑇 ∈ ′(𝛺) such that (𝑓𝑇 )(𝜙) = 𝑇 (𝑓𝜙)
for all 𝜙 ∈ (𝛺). The gradient of a scalar distribution 𝑇 ∈ ′(𝛺) is a
ector valued distribution ∇𝑇 ∈ ′(𝛺,) such that ∇𝑇 (𝝓) = −𝑇 (div𝝓),
or all 𝝓 ∈ (𝛺,). The gradient of a vector valued distribution

∈ ′(𝛺,) is a tensor valued distribution ∇𝑻 ∈ ′(𝛺,Lin) such
hat ∇𝑻 (𝝓) = −𝑻 (div𝝓), for all 𝝓 ∈ (𝛺,Lin). The divergence of a
ector valued distribution 𝑻 ∈ ′(𝛺,) is a scalar valued distribution
iv𝑻 ∈ ′(𝛺) such that Div𝑻 (𝜙) = −𝑻 (∇𝜙), for all 𝜙 ∈ (𝛺). The
ivergence of a tensor valued distribution 𝑻 ∈ ′(𝛺,Lin) is a vector
alued distribution Div𝑻 ∈ ′(𝛺,) such that Div𝑻 (𝝓) = −𝑻 (∇𝝓), for
ll 𝝓 ∈ (𝛺,). The curl of a vector valued distribution 𝑻 ∈ 𝐷′(𝛺,)
s a vector valued distribution Curl𝑻 ∈ ′(𝛺,) such that (Curl𝑻 )(𝝓) =
(curl𝝓), for all 𝝓 ∈ (𝛺,). The curl of a tensor valued distribution
∈ 𝐷′(𝛺,Lin) is a tensor valued distribution Curl𝑻 ∈ ′(𝛺,Lin) such

hat (Curl𝑻 )(𝝓𝑇 ) = 𝑻
(

(curl𝝓)𝑇
)

, for all 𝝓 ∈ (𝛺,Lin).

.3. A consequence of De Rham’s theorem

For a smooth vector valued function 𝒗 ∈ 𝐶∞(𝛺,), over a domain 𝛺
hose boundary has only one disjoint component (𝑘 = 1), the necessary
nd sufficient condition for there to exist a 𝒖 ∈ 𝐶∞(𝛺,) such that
url 𝒖 = 𝒗 is given by div 𝒗 = 0. For our purposes, however, we need
generalization of this result for distributions over domains whose

oundary have multiple, mutually disjoint, components (𝑘 > 1). We ob-
ain the required result, stated in the following lemma, using De Rham’s
heorem [5, Theorem 17’] which gives the necessary and sufficient
onditions for an arbitrary current to be exact on an arbitrary manifold.
he lemma is derived from De Rham’s theorem in the supplementary
ocument.

emma 2.1. Given a distribution 𝑷 ∈ ′(𝛺,) there exists 𝑸 ∈ ′(𝛺,)
uch that Curl𝑸 = 𝑷 if and only if 𝑷 (𝝓) = 0 for all 𝝓 ∈ (𝛺,) such that
url𝝓 = 𝟎.

In the next lemma, we obtain a useful characterization of the curl
ree compactly supported smooth vector valued functions, i.e., for 𝝓 ∈
(𝛺,) such that curl𝝓 = 𝟎.

emma 2.2. Given a compactly supported vector valued function 𝝓 ∈
(𝛺,) such that curl𝝓 = 𝟎, there exists a smooth function 𝑢 ∈ 𝐶∞(𝛺)
hich satisfies ∇𝑢 = 𝝓 in 𝛺 and 𝑢 = 𝑐𝑖 on 𝜕𝛺𝑖, where 𝑐𝑖 ∈ R are constants
ith 𝑐0 = 0.

roof. Since 𝝓 is compactly supported, ∫𝐿0
⟨𝝓, 𝒕⟩ dl = 0 for any loop

0 ⊂ 𝜕𝛺. Given curl𝝓 = 𝟎, we can therefore write ∫𝐿⟨𝝓, 𝒕⟩ dl = 0
or any loop 𝐿 ⊂ 𝛺, regardless of whether 𝛺 is simply connected or
ot. Consequently, there exists a 𝑢 ∈ 𝐶∞(𝛺) such that ∇𝑢 = 𝝓 in 𝛺.
oreover, ∇𝑢 = 0 on 𝜕𝛺𝑖 due to 𝝓 being compactly supported in 𝛺.
herefore 𝑢 is constant on 𝜕𝛺𝑖, i.e., 𝑢 = 𝑐𝑖 on 𝜕𝛺𝑖 where 𝑐𝑖 ∈ R are
onstants, out of which one constant, say 𝑐0, can be taken as 0, without
ny loss of generality. □

.4. Identities

We consider 𝑩 ∈ ′(𝛺,Lin), 𝑪 ∈ ′(𝛺,Lin), and 𝑯 ∈ ′(𝛺,Lin)
f the form 𝑩(𝝍) = ∫𝛺⟨𝒃,𝝍⟩ dv, 𝑪(𝝍) = ∫𝑆⟨𝒄,𝝍⟩ da, and 𝑯(𝝍) =

𝐿⟨𝒉,𝝍⟩ dl, for 𝝍 ∈ (𝛺,Lin), where 𝒃 ∈ Lin is a piecewise smooth

ounded function on 𝛺, possibly discontinuous across 𝑆, 𝒄 ∈ Lin is
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a smooth bounded function on 𝑆, and 𝒉 ∈ Lin is a smooth bounded
function on 𝐿. The discontinuity in 𝒃 is assumed to be a smooth function
on 𝑆. If 𝜕𝑆 − 𝜕𝛺 ≠ ∅ then it should vanish as one approaches the
boundaries of 𝑆 within 𝛺. For 𝑥 ∈ 𝑆, [[𝒃]] (𝑥) = 𝒃+ (𝑥) − 𝒃− (𝑥), where
𝒃± (𝑥) are the limiting values of 𝒃 at 𝑥 on 𝑆 from 𝛺 (the − value is from
the side into which 𝒏 points), represents the discontinuity in 𝒃. The
following identities, whose proof is straightforward [3], will be useful
for our later calculations.

Identities 2.1. Let 𝒖 ∈ 𝐶∞(𝛺,) be a vector valued smooth function
which satisfies 𝒖 = 𝒄𝑖 on 𝜕𝛺𝑖, where 𝒄𝑖 ∈  are vector valued constants
with 𝒄0 = 𝟎, and whose gradient is a tensor valued compactly supported
smooth function, i.e. ∇𝒖 ∈ (𝛺,Lin). Then,

𝑩 (∇𝒖) = −∫𝛺
⟨div 𝒃, 𝒖⟩ dv+∫𝑆

⟨[[𝒃]]𝒏, 𝒖⟩ da

+
∑

1≤𝑖<𝑘−1

⟨

𝒄𝑖,∫𝜕𝛺𝑖

𝒃𝒏 da

⟩

,
(1)

𝑪 (∇𝒖) = −∫𝑆

⟨(

div𝑆 𝒄 + 𝜅𝒄𝒏
)

, 𝒖
⟩

da+∫𝑆

⟨

𝒄𝒏, 𝜕𝒖
𝜕𝑛

⟩

da

+ ∫𝜕𝑆−𝜕𝛺
⟨𝒄𝝂, 𝒖⟩ dl +

∑

1≤𝑖≤𝑘−1

⟨

𝒄𝑖,∫𝜕𝑆∩𝜕𝛺𝑖

𝒄𝝂 dl

⟩

,
(2)

here 𝜕𝒖∕𝜕𝑛 = (∇𝒖)𝒏 is the derivative along 𝒏, 𝜅 is twice the mean
urvature of surface 𝑆, and 𝝂 = 𝒏× 𝒕 is the in-plane outward normal to
he edge of the surface 𝑆, and

(∇𝒖) = ∫𝐿
⟨𝒉(𝑰 − 𝒕⊗ 𝒕),∇𝒖⟩ dl −∫𝐿

⟨

𝜕(𝒉𝒕)
𝜕𝑡

, 𝒖
⟩

dl

+ (⟨𝒉𝒕, 𝒖⟩)|𝜕𝐿−𝜕𝛺 +
∑

1≤𝑖≤𝑘−1

⟨

𝒄𝑖, (𝒉𝒕)|𝜕𝐿∩𝜕𝛺𝑖

⟩

,
(3)

where 𝜕(⋅)∕𝜕𝑡 is the tangential derivative along 𝒕. The restriction (⋅)|𝜕𝐿
valuates the value of (⋅) at the boundary of 𝐿 taking into consideration
he orientation of 𝐿 at the end point 𝜕𝐿.

3. Defect densities and conservation laws

In the classical micromechanical theory of defects in linear elas-
tic solids [4], smooth bulk densities of dislocations and disclinations
(denoted by 𝜶𝐵 ∈ 𝐶∞(𝛺,Lin) and 𝜽𝐵 ∈ 𝐶∞(𝛺,Lin), respectively)
are related to smooth strain and bend-twist fields (denoted by 𝝐 ∈
𝐶∞(𝛺,Sym) and 𝜿 ∈ 𝐶∞(𝛺,Lin), respectively) as 𝜽𝐵 = curl𝜿𝑇 and
𝜶𝐵 = curl 𝝐 + tr(𝜿)𝑰 − 𝜿𝑇 . The necessary and sufficient conditions on
𝜽𝐵 and 𝜶𝐵 for there to exist 𝝐 and 𝜿 fields, such that these equations
are satisfied for a domain with a single connected boundary component
(𝑘 = 1), are div𝜽𝑇𝐵 = 𝟎 and div𝜶𝑇

𝐵 + 𝑎𝑥(𝜽𝑇𝐵 − 𝜽𝐵) = 𝟎. For a vanishing
disclination density, i.e., 𝜽𝐵 = 𝟎, there exist an infinitesimal rotation
field 𝝎 ∈ 𝐶∞(𝛺,Skw) such that 𝜿𝑇 = ∇𝑎𝑥(𝝎) and a distortion field
𝜷 ∈ 𝐶∞(𝛺,Lin) such that 𝜷 = 𝝐 + 𝝎 and 𝜶𝐵 = curl 𝜷. The integrability
condition on 𝜶𝐵 is then given by div𝜶𝑇

𝐵 = 𝟎. The necessary and
sufficient conditions on 𝜽𝐵 and 𝜶𝐵 , as discussed above, are called
conservation laws for the defect densities; they provide restrictions on
the defect distribution such that the defect densities remain consistent
with the underlying kinematics of the solid continua. A prescription of
defect densities over the body cannot be therefore arbitrary and should
necessarily conform to these conditions [4]. The defect conservation
laws are closely related to the Bianchi Padova identities in classical
differential geometry [12,13]. Our interest is to obtain the conservation
laws when the defect densities are additionally allowed to concentrate
on surfaces and curves (as in a dislocation/disclination wall or a
dislocation/disclination loop) and when the domain 𝛺 has a boundary
which has multiple mutually disjoint components (𝑘 > 1).

We introduce distributional forms of the defect and kinematic fields
with 𝑲 ∈ ′(𝛺,Lin) representing the distributional bend-twist field,

′ ′
3

𝑬 ∈  (𝛺,Sym) the distributional strain field, 𝜣 ∈  (𝛺,Lin) the s
distributional disclination density field, and 𝑨 ∈ ′(𝛺,Lin) the dis-
tributional dislocation density field, all defined for a non-contractible
domain 𝛺 ⊂ R3 as introduced in Section 2.1. Following the classical
relationships between these fields (as mentioned above), we postulate
the following equations [3]:

𝜣 = Curl𝑲𝑇 and 𝑨 = Curl𝑬 + tr(𝑲)𝑰 −𝑲𝑇 . (4)

We seek the necessary and sufficient conditions on 𝜣 and 𝑨 which
would ensure the existence of a bend-twist field 𝑲 and a strain field
𝑬 such that they satisfy (4). This problem statement is stated in an
alternate but equivalent form in the lemma below.

Lemma 3.1. For a given distribution of defect densities 𝜣 ∈ ′(𝛺,Lin)
and 𝑨 ∈ ′(𝛺,Lin), the existence of distributions 𝑲 ∈ ′(𝛺,Lin) and
𝑬 ∈ ′(𝛺,Sym), satisfying (4), is equivalent to the existence of distributions
𝑲 ∈ ′(𝛺,Lin) and 𝑭 ∈ ′(𝛺,Lin) satisfying (4)1 and

𝑨 + (𝒙 ×𝜣𝑇 )𝑇 = Curl𝑭 , (5)

where 𝒙 ∈ 𝛺 denotes the position vector of a point in 𝛺.

Proof. Assume that there exist 𝑲 ∈ ′(𝛺,Lin) and 𝑬 ∈ ′(𝛺,Sym)
which satisfy (4). Noting the identity

Curl(𝒙 ×𝑲𝑇 ) = (𝒙 ×𝜣𝑇 )𝑇 + tr(𝑲)𝑰 −𝑲𝑇 , (6)

which follows from (4)1, we can rewrite (4)2 as 𝑨 + (𝒙 × 𝜣𝑇 )𝑇 =
Curl(𝑬 + 𝒙 × 𝑲𝑇 ). The desired distribution 𝑭 ∈ ′(𝛺,Lin), defined as
𝑭 = 𝑬 +𝒙×𝑲𝑇 , satisfies (5). To prove the converse, assume that there
exist distributions 𝑲1 ∈ ′(𝛺,Lin) and 𝑭 ∈ ′(𝛺,Lin) which satisfy
𝜣 = Curl𝑲𝑇

1 and (5). Using the identity (6) (in terms of 𝑲1), we can
rewrite (5) as 𝑨 = Curl𝑭 1+tr(𝑲1)𝑰−𝑲𝑇

1 , where 𝑭 1 = 𝑭 −(𝒙×𝑲𝑇
1 ). The

desired distributions 𝑲 ∈ ′(𝛺,Lin) and 𝑬 ∈ ′(𝛺,Sym), defined as
𝑲 = 𝑲1 + (∇𝑎𝑥(𝑺))𝑇 and 𝑬 = sym(𝑭 1), where 𝑺 = skw(𝑭 1), satisfy (4).
The identity tr(∇𝑎𝑥(𝑺))𝑰 − ∇𝑎𝑥(𝑺) = Curl𝑺 is used in proving the
preceding assertion. □

The required conditions on 𝜣 and 𝑨, as given in the following
lemma, follow immediately on using Lemma 2.1 with Lemma 3.1.

Lemma 3.2. Given 𝜣 ∈ ′(𝛺,Lin) and 𝑨 ∈ ′(𝛺,Lin) there exist
distributions 𝑲 ∈ ′(𝛺,Lin) and 𝑬 ∈ ′(𝛺,Sym) such that Eqs. (4) are
satisfied if and only if

𝜣(𝝓) = 0 and
(

𝑨 + (𝒙 ×𝜣𝑇 )𝑇
)

(𝝓) = 0, (7)

for all 𝝓 ∈ (𝛺,Lin) such that curl𝝓 = 𝟎.

In the rest of this section we will derive the consequences of (7)
for specific forms of the distributional defect densities. We consider a
distributional dislocation density 𝑨 ∈ ′(𝛺,Lin) of the form

𝑨(𝝓) = ∫𝛺
⟨𝜶𝐵 ,𝝓⟩ dv+∫𝑆

⟨𝜶𝑆 ,𝝓⟩ da+∫𝐿
⟨𝜶𝐿,𝝓⟩ dl, (8)

for 𝝓 ∈ (𝛺,Lin), where 𝜶𝐵 is the piecewise smooth bulk dislocation
density tensor field over 𝛺 − 𝑆, possibly discontinuous across 𝑆, 𝜶𝑆
is the smooth surface dislocation density tensor field over 𝑆, and 𝜶𝐿
is the smooth curve dislocation density tensor field over 𝐿. Similarly,
we consider a distributional disclination density 𝜣 ∈ ′(𝛺,Lin) of the
form

𝜣(𝝓) = ∫𝛺
⟨𝜽𝐵 ,𝝓⟩ dv+∫𝑆

⟨𝜽𝑆 ,𝝓⟩ da+∫𝐿
⟨𝜽𝐿,𝝓⟩ dl, (9)

or 𝝓 ∈ (𝛺,Lin), where 𝜽𝐵 is the piecewise smooth bulk disclination
ensity tensor field over 𝛺 − 𝑆, possibly discontinuous across 𝑆, 𝜽𝑆 is
he smooth surface disclination density tensor field over 𝑆, and 𝜽𝐿 is
he smooth curve disclination density tensor field over 𝐿. Whereas 𝜶𝑆
nd 𝜽𝑆 describe defect concentrations over a surface in the domain, as
n dislocation/disclination walls and grain boundaries, 𝜶𝐿 and 𝜽𝐿 de-
cribe defect concentrations over a curve, as in dislocation/disclination



Mechanics Research Communications 118 (2021) 103806A. Pandey and A. Gupta

e
r
i
l

d

[

𝜽

∫

∫

+

𝛺
𝜕
a
a
s
f
c
a
𝜕
c
a
a
t
𝜕
d
s
t
b
a
t
t
b
a

v

𝜽

A
t
s
𝝑
(
a
d
T

c

R

f
t
r

R
o

o
c

𝜽

o

s
r
d
∑

w

R
p
t
𝜣
𝑲
e
(
c
b
d
c
b
a
𝜣
s
a
w
𝜸
𝝂
(

loops. Conditions (7), with 𝑨 and 𝜣 given as (8) and (9), can be written
quivalently in terms of the bulk, surface, and curve density fields by
ecalling Lemma 2.2 and using Identities 2.1. Assuming 𝜕𝑆 − 𝜕𝛺 = ∅,
.e., the surface 𝑆 has no boundary within 𝛺, they include the following
ocal conditions:

iv𝜽𝑇𝐵 = 𝟎 and div𝜶𝑇
𝐵 + 𝑎𝑥(𝜽𝑇𝐵 − 𝜽𝐵) = 𝟎 in 𝛺 − 𝑆, (10a)

[𝜽𝑇𝐵]]𝒏 − div𝑆 (𝜽𝑇𝑆 ) = 𝟎, [[𝜶𝑇
𝐵]]𝒏 − div𝑆 (𝜶𝑇

𝑆 ) − 𝑎𝑥(𝜽𝑇𝑆 − 𝜽𝑆 ) = 𝟎,

𝜽𝑇𝑆𝒏 = 𝟎, and 𝜶𝑇
𝑆𝒏 = 𝟎 on 𝑆, (10b)

𝑇
𝐿(𝑰 − 𝒕⊗ 𝒕) = 𝟎, 𝜶𝑇

𝐿(𝑰 − 𝒕⊗ 𝒕) = 𝟎, 𝜕
𝜕𝑡
(𝜽𝑇𝐿𝒕) = 𝟎,

and 𝜕
𝜕𝑡
(𝜶𝑇

𝐿𝒕) + 𝑎𝑥(𝜽𝑇𝐿 − 𝜽𝐿) = 𝟎 on 𝐿, (10c)

𝜽𝑇𝐿𝒕 = 𝟎 and 𝜶𝑇
𝐿𝒕 = 𝟎 at 𝜕𝐿 − 𝜕𝛺, (10d)

and the following global conditions:

𝜕𝛺𝑖

𝜽𝑇𝐵𝒏 da+∫𝜕𝑆∩𝜕𝛺𝑖

𝜽𝑇𝑆𝝂 dl +𝜽
𝑇
𝐿𝒕|𝜕𝐿∩𝜕𝛺𝑖

= 0 and (11a)

𝜕𝛺𝑖

(

𝜶𝑇
𝐵𝒏 + 𝒙 × (𝜽𝑇𝐵𝒏)

)

da+∫𝜕𝑆∩𝜕𝛺𝑖

(

𝜶𝑇
𝑆𝝂 + 𝒙 × (𝜽𝑇𝑆𝝂)

)

dl

(

𝜶𝑇
𝐿𝒕 + 𝒙 × (𝜽𝑇𝐿𝒕)

)

|

|

|𝜕𝐿∩𝜕𝛺𝑖
= 0, (11b)

each of which represent 𝑘−1 conditions (1 ≤ 𝑖 ≤ 𝑘−1) for the domain
whose boundary 𝜕𝛺 consists of 𝑘 mutually disjoint components

𝛺𝑗 , 0 ≤ 𝑗 ≤ 𝑘 − 1. The global conditions need to be imposed on
ny 𝑘 − 1, out of 𝑘, boundaries. In fact, if the local conditions (10)
re satisfied within the domain and the global conditions (11) are
atisfied for any 𝑘−1 boundaries then the global conditions are satisfied
or all the 𝑘 boundaries. Eqs. (10d) hold at those boundaries of the
urve 𝐿 which lie in the interior of 𝛺; they will not appear if 𝐿 is
closed loop or if both the boundaries of 𝐿 lie on 𝜕𝛺 (i.e., when
𝐿 − 𝜕𝛺 = ∅). Conditions (10) and (11) are the local and the global
onservation laws, respectively, to be satisfied by the bulk, surface,
nd curve concentrations of the defect densities. The global conditions
re topological in the sense that they depend on the overall shape of
he domain and are non-trivial only when 𝛺 is non-contractible with
𝛺 consisting of at least two disjoint components. Examples of such a
omain include a hollow ball and a hollow torus. While the former is
imply connected the latter is multiply connected. On the other hand,
here will be no global conditions for a hollow cylinder which, although
eing multiply connected, has a single connected boundary. If there
re multiple surfaces which intersect a boundary 𝜕𝛺𝑖 (𝑖 ≠ 0) then
he second integral in (11a) and (11b) has to be repeated for each of
hese surfaces. Similarly, if there are multiple curves which intersect a
oundary 𝜕𝛺𝑖 (𝑖 ≠ 0) then the last term on the left hand side of (11a)
nd (11b) has to be repeated for each of these curves.

Eqs. (10c)1,2 are equivalent to the existence of a pair of smooth
ector valued functions on 𝐿, 𝝑 and 𝒃, such that

𝐿 = 𝒕⊗ 𝝑 and 𝜶𝐿 = 𝒕⊗ 𝒃. (12)

ccording to (10d), a curve of defect concentration cannot end within
he domain (unless it ends at a junction where it meets another curve,
ee Remark 3.1). Furthermore, substituting (12)1 into (10c)3 yields
(𝒙) = 𝝑0, a constant vector along 𝐿. On the other hand, substituting
12)2 into (10c)4 yields 𝒃(𝒙) = 𝒃0+𝝑0 ×𝒙, where 𝒃0 is a constant vector
long 𝐿 [6]. Note that (10c)3,4, and hence the preceding consequences,
o not hold when 𝐿 coincides with a part of 𝜕𝑆−𝜕𝛺 (see Remark 3.2).
herefore, the defect concentrations 𝜽𝐿 and 𝜶𝐿, over a curve 𝐿 ⊂

𝛺 which does not coincide with an edge of the surface 𝑆, can be
equivalently described in terms of two constant vectors 𝝑0 and 𝒃0 (as is
expected from the classical Volterra line defects). Additionally, if 𝜶𝐿 =
𝟎 over any such curve then the disclination is necessarily of a wedge
character with a straight defect line 𝐿 such that 𝜽𝐿 = (1∕|𝝑0|)𝝑0 ⊗ 𝝑0.
Indeed 𝒃 = 𝟎 implies 𝒃0 +𝝑0 ×𝒙 = 𝟎 which, on differentiating along the
4

urve, imposes 𝝑0 × 𝒕 = 𝟎.
emark 3.1 (Intersecting Curves of Defect Concentration). Consider 𝑁
regular, oriented, smooth curves 𝐿𝑛 ⊂ 𝛺 (1 ≤ 𝑛 ≤ 𝑁), with unit tangent
vectors 𝒕𝑛, such that they intersect 𝜕𝛺 on one end and meet each other
at a common point 𝑂 ∈ 𝛺 at the other end, i.e., 𝜕𝐿 − 𝜕𝛺 = 𝑂. Let 𝜶𝐿𝑛
and 𝜽𝐿𝑛

denote smooth concentrations of dislocation and disclination
ields over the respective curves. Each of these satisfy (10c), in addition
o satisfying ∑𝑁

𝑛=1 𝜽
𝑇
𝐿𝑛
𝒕𝑛 = 𝟎 and ∑𝑁

𝑛=1 𝜶
𝑇
𝐿𝑛
𝒕𝑛 = 𝟎 at 𝑂. These conditions

eplace those in (10d) for an isolated curve ending within 𝛺.

emark 3.2 (𝜕𝑆−𝜕𝛺 ≠ ∅). Consider a 𝑆 such that 𝜕𝑆−𝜕𝛺 ≠ ∅. Let the
riented curve 𝜕𝑆−𝜕𝛺 be denoted by 𝐶 with unit tangent 𝒕. In addition

to bulk and surface concentrations of defects, as considered above, we
also include a smooth concentration of defects (given by 𝜶𝐶 and 𝜽𝐶 )
ver 𝐶. Eqs. (10c)1,2 and (10d) continue to hold for 𝐶 (with obvious
hanges in the notation) while (10c)3,4 are replaced by

𝑇
𝑆𝝂 −

𝜕
𝜕𝑡
(𝜽𝑇𝐶 𝒕) = 𝟎, 𝜶𝑇

𝑆𝝂 −
𝜕
𝜕𝑡
(𝜶𝑇

𝐶 𝒕) − 𝑎𝑥(𝜽𝑇𝐶 − 𝜽𝐶 ) = 𝟎 (13)

n 𝐶, where 𝝂 = 𝒏 × 𝒕.

Remark 3.3 (Intersecting Surfaces of Defect Concentration). Consider 𝑀
regular, oriented, smooth surfaces 𝑆𝑚 ⊂ 𝛺 (1 ≤ 𝑚 ≤ 𝑀), with unit
normal vectors 𝒏𝑚, such that they all meet at a curve 𝐼 ⊂ 𝛺 with unit
tangent 𝒕. Clearly, 𝐼 ⊂ 𝜕𝑆𝑚 − 𝜕𝛺 for all 𝑚. Let 𝜶𝑆𝑚

and 𝜽𝑆𝑚
denote

mooth concentrations of dislocation and disclination fields over the
espective surfaces. Let 𝜶𝐼 and 𝜽𝐼 denote smooth concentrations of
islocation and disclination fields over 𝐼 . On 𝐼 , (13) are replaced by
𝑀
𝑚=1 𝜽

𝑇
𝑆𝑚
𝝂𝑚 + 𝜕

𝜕𝑡 (𝜽
𝑇
𝐼 𝒕) = 𝟎 and ∑𝑀

𝑚=1 𝜶
𝑇
𝑆𝑚
𝝂𝑚 + 𝜕

𝜕𝑡 (𝜶
𝑇
𝐼 𝒕) + 𝑎𝑥(𝜽𝑇𝐼 − 𝜽𝐼 ) = 𝟎,

here 𝝂𝑚 = 𝒏𝑚 × 𝒕.

emark 3.4 (Incompatibility, Nilpotency, and Grain Boundary). We can
ose the existence problem (as in Lemma 3.1) in another form involving
he incompatibility tensor. For a given distribution of defect densities

∈ ′(𝛺,Lin) and 𝑨 ∈ ′(𝛺,Lin), the existence of distributions
∈ ′(𝛺,Lin) and 𝑬 ∈ ′(𝛺,Sym), satisfying (4), is equivalent to the

xistence of distributions 𝑲 ∈ ′(𝛺,Lin) and 𝑬 ∈ ′(𝛺,Sym) satisfying
4)1 and Curl𝜞 +𝜣 = 𝑵 , where 𝜞 = 𝑨 − 1

2 tr(𝑨)𝑰 is the distributional
ontortion tensor and 𝑵 = Curl Curl𝑬 is the distributional incompati-
ility tensor [3]. The verification of this claim is straightforward. The
efect density fields are called nilpotent if Curl𝜞 + 𝜣 = 𝟎. A special
ase is that of a grain boundary. Considering the defect densities to
e given only in terms of a surface 𝑆 of dislocation concentration and
curve 𝐿 of disclination concentration, i.e., 𝑨(𝝓) = ∫𝑆⟨𝜶𝑆 ,𝝓⟩ da and
(𝝓) = ∫𝐿 ⟨𝜽𝐿,𝝓⟩ dl, for 𝝓 ∈ (𝛺,Lin), such that 𝐿 = 𝜕𝑆 − 𝜕𝛺, we

ay that these defect densities represent a grain boundary if the associ-
ted incompatibility vanishes identically. Writing 𝜞 (𝝓) = ∫𝑆⟨𝜸𝑆 ,𝝓⟩ da,
here 𝜸𝑆 = 𝜶𝑆 − 1

2 tr(𝜶𝑆 )𝑰 , the nilpotency condition is equivalent to
𝑆 ×𝒏 = 𝟎, curl𝑆 𝜸𝑆 = 𝟎 on 𝑆, and (𝜸𝑆 ×𝝂)𝑇 +𝜽𝐿 = 𝟎 on 𝜕𝑆 − 𝜕𝛺, where
= 𝒏× 𝒕. Accordingly, we have 𝜸𝑆 = 𝜸⊗𝒏, where 𝜸 is a constant vector

representing the misorientation across the boundary) and 𝜽𝐿 = 𝒕⊗ 𝜸.
Therefore if a grain boundary has an edge within the domain then the
edge necessarily has to coincide with a disclination curve. The local
and global conservation laws (10) and (11) are identically satisfied for
these defect densities.

4. Applications for a hollow ball

In this section we demonstrate the applicability of the global con-
servation laws (11). Towards this end, we consider a hollow ball and
determine the restrictions on certain defect configurations as imposed
by the conservation laws. Our results, in fact, hold for any domain
which is topologically equivalent to a hollow ball. The consequences
for other types of domain, such as a hollow torus, can be derived in
an analogous manner. Let 𝛺 ⊂ R3 be a hollow ball, i.e., for any fixed
positive scalar 𝑎 ∈ R+, 𝛺 = {(𝑥1, 𝑥2, 𝑥3) ∈ R3

|𝑎2 < 𝑥12 + 𝑥22 + 𝑥32 < 1}.
The boundary 𝜕𝛺 of 𝛺 has two mutually disjoint components, 𝜕𝛺 =
0
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Fig. 1. Examples of admissible defect configurations in a hollow ball with two disjoint boundaries 𝜕𝛺0 and 𝜕𝛺1. Red curves denote dislocations, green lines denote wedge
disclinations, blue curves denote disclinations (of a non-wedge character) and solid pink regions denote a dislocation wall. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
{(𝑥1, 𝑥2, 𝑥3) ∈ R3
|𝑥12 + 𝑥22 + 𝑥32 = 1} and 𝜕𝛺1 = {(𝑥1, 𝑥2, 𝑥3) ∈

R3
|𝑥12 + 𝑥22 + 𝑥32 = 𝑎2}. The thickness (1 − 𝑎) of the spherical shell

is inconsequential for our results which, in particular, will hold true
even when the walls are infinitesimally thin.

4.1. Dislocation and disclination curves

We consider 𝑁 regular, oriented, smooth curves 𝐿𝑛 ⊂ 𝛺 (1 ≤ 𝑛 ≤
𝑁), with unit tangent vectors 𝒕𝑛, such that they intersect nowhere with
each other or with any surface of defect concentration (see Remarks 3.1
and 3.2). Let 𝜶𝐿𝑛

and 𝜽𝐿𝑛
denote smooth concentrations of dislocation

and disclination fields over the respective curves. Following an earlier
discussion (see (12)), each of these defect concentrations necessarily
have the form

𝜽𝐿𝑛
= 𝒕𝑛 ⊗ 𝝑0𝑛 and 𝜶𝐿𝑛

= 𝒕𝑛 ⊗ 𝒃𝑛, (14)

with 𝒃𝑛(𝒙) = 𝒃0𝑛+𝝑0𝑛×𝒙, where 𝒃0𝑛 and 𝝑0𝑛 are vector valued constants.
Each curve can possibly intersect the boundary 𝜕𝛺1 at zero, one, or two
points. Let 𝜉𝑛 be an indicator function (for the curve 𝐿𝑛) such that 𝜉𝑛 = 0
if 𝐿𝑛 intersects 𝜕𝛺1 at zero or two points and 𝜉𝑛 = ±1 if 𝐿𝑛 intersects
𝜕𝛺1 at one point (with the correct sign to capture the orientation of the
curve at the point of intersection). In the absence of bulk and surface
concentrations of defects, the global conditions (11), when written for
multiple curves, are reduced to
∑

1≤𝑛≤𝑁
𝜉𝑛𝝑0𝑛 = 𝟎 and

∑

1≤𝑛≤𝑁
𝜉𝑛

(

𝒃̂𝑛 + 𝒙𝑛 × 𝝑0𝑛
)

= 𝟎, (15)

where 𝒃̂𝑛 and 𝒙𝑛 are the values of 𝒃𝑛 and 𝒙, respectively, at the point
of intersection of curve 𝐿𝑛 with the boundary 𝜕𝛺1.

We interpret (15) under further simplifications. Consider, for in-
stance, a scenario when all the curves are pure dislocations, i.e., 𝝑0𝑛 = 𝟎
for all 𝑛. Then, according to (15),
∑

1≤𝑛≤𝑁
𝜉𝑛𝒃̂𝑛 = 𝟎. (16)

Therefore, if we have a single dislocation curve in the domain (𝑁 = 1)
then it can either appear as a loop (contained within 𝛺) or as a curve
whose both ends intersect only one of the boundaries, 𝜕𝛺0 or 𝜕𝛺1 (see
Fig. 1(a)) . However, if there are multiple dislocation curves then they
can indeed end on each of the two domain boundaries as a long as the
restriction (16) is satisfied (see Fig. 1(b)). It should be noted that the
global condition does not put any constraint on the mutual position of
the dislocations but only on the nature of their Burgers vector. This
is contrary to the case of disclinations, as we discuss next. Consider a
scenario where all the defect curves are pure disclinations, i.e., 𝒃𝑛 = 𝟎
for all 𝑛. Accordingly, (15) reduces to
∑

𝜉𝑛𝝑0𝑛 = 𝟎 and
∑

𝜉𝑛
(

𝒙𝑛 × 𝝑0𝑛
)

= 𝟎. (17)
5

1≤𝑛≤𝑁 1≤𝑛≤𝑁
Moreover, as discussed earlier (before Remark 3.1), the disclination
curves 𝐿𝑛 are necessarily straight with 𝒕𝑛 = (1∕|𝝑0𝑛|)𝝑0𝑛. A single discli-
nation line (𝑁 = 1), cutting through 𝜕𝛺1, is therefore prohibited (see
Fig. 1(c)). If we have two disclinations (𝑁 = 2), both intersecting 𝜕𝛺1
at one point, then 𝜉1𝝑01+𝜉2𝝑02 = 𝟎 and 𝜉1

(

𝒙1 × 𝝑01
)

+𝜉2
(

𝒙2 × 𝝑02
)

= 𝟎.
The former condition is solved by 𝜉1 = −𝜉2 = 1 and 𝝑01 = 𝝑02, which
essentially implies that 𝜽𝐿1

= 𝜽𝐿2
. The latter condition is then reduced

to
(

𝒙1 − 𝒙2
)

× 𝝑01 = 𝟎, which requires the two disclination lines to be
collinear (see Fig. 1(d)). If we have three disclinations (𝑁 = 3), each
with one end point on 𝜕𝛺1, then (17)1 can be satisfied by taking 𝜉1 =
𝜉2 = 𝜉3 = 1 (without loss of generality) and 𝝑01+𝝑02+𝝑03 = 𝟎. The three
disclination lines are therefore coplanar. Condition (17)2, on the other
hand, can then be manipulated to write 𝒙0×𝝑01+𝒙0×𝝑02+𝒙3×𝝑03 = 𝟎,
where 𝒙0 is the position of the point where lines 𝐿1 and 𝐿2 meet.
Further simplification yields

(

𝒙0 − 𝒙3
)

×𝝑03 = 𝟎. Consequently the three
disclination lines are such that they are coplanar and meet at a common
point (see Fig. 1(e)). We note that there are no such restrictions on
dislocation lines. We consider one final scenario where we take 𝑃 (out
of 𝑁) curves to be disclinations and the other 𝑁 − 𝑃 (= 𝑄, say)
curves to be dislocations. Under such circumstances, (15) takes the
form ∑

1≤𝑛≤𝑃 𝜉𝑛𝝑0𝑛 = 𝟎 and ∑

1≤𝑛≤𝑄 𝜉𝑛𝒃̂𝑛 +
∑

1≤𝑛≤𝑃 𝜉𝑛
(

𝒙𝑛 × 𝝑0𝑛
)

= 𝟎. It is
now possible to have a single dislocation line (𝑄 = 1), intersecting
𝜕𝛺1 at one point, as long as we have multiple disclination lines in
accordance with the above relations. On the other hand, if there are
two disclination lines (𝑃 = 2), each intersecting 𝜕𝛺1, then they no
longer have to be collinear in the presence of appropriate dislocations
(see Fig. 1(f)). Of course, if the 𝑃 disclinations satisfy (17), then the 𝑄
dislocations have to necessarily satisfy (16), and vice-versa.

4.2. Dislocation walls and disclination curves

We consider a surface 𝑆 such that a part of its boundary intersects
with 𝜕𝛺 while the other part 𝜕𝑆 − 𝜕𝛺 lies in the interior of 𝛺. More
specifically, the boundary 𝜕𝑆 − 𝜕𝛺 consists of two, mutually disjoint,
connected components 𝐶1 and 𝐶2, both intersecting 𝜕𝛺0 and 𝜕𝛺1 each
at one point (see Fig. 1(g)). We assume a smooth dislocation density
concentration 𝜶𝑆 over 𝑆 and smooth disclination density concentra-
tions 𝜽𝐶1

and 𝜽𝐶2
over 𝐶1 and 𝐶2, respectively. There are no other

defect fields prescribed over the domain. According to (10c)1,2 and
(13)1, the disclination densities are of the form 𝜽𝐶1

= 𝒕1 ⊗ 𝝑01 and
𝜽𝐶2

= 𝒕2 ⊗ 𝝑02, where 𝒕1 and 𝒕2 are unit tangents to the curves 𝐶1 and
𝐶2, respectively, and 𝝑01,𝝑02 are constant vectors. The only non-trivial
local conservation laws are those given by (10b)2,4 and (13)2, which
are reduced to

div𝑆 (𝜶𝑇
𝑆 ) = 𝟎 and 𝜶𝑇

𝑆𝒏 = 𝟎 on 𝑆, (18a)
𝑇 𝑇
𝜶𝑆𝝂1 − 𝒕1 × 𝝑01 = 𝟎 on 𝐶1 and 𝜶𝑆𝝂2 − 𝒕2 × 𝝑02 = 𝟎 on 𝐶2, (18b)
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Fig. 2. (a) A hollow ball with two disjoint boundaries 𝜕𝛺0 and 𝜕𝛺1. (b) A hollow ball
ith a cut which has only one disjoint boundary 𝜕𝛺0.

here 𝝂1 = 𝒏 × 𝒕1 and 𝝂2 = 𝒏 × 𝒕2. On the other hand, the global
onditions (11) require

1𝝑01 + 𝜉2𝝑02 = 0 and (19a)

𝜕𝑆∩𝜕𝛺1

𝜶𝑇
𝑆𝝂 dl +𝜉1(𝒙1 × 𝝑01) + 𝜉2(𝒙2 × 𝝑02) = 0, (19b)

where 𝜉2 and 𝜉2 are as defined in the previous subsection. According
o (18b)1, if 𝜶𝑇

𝑆𝝂1 ≠ 𝟎 then the edge 𝐶1 is necessarily a disclination of
non-wedge character (and hence not necessarily straight). However,

f 𝜶𝑇
𝑆𝝂1 = 𝟎 then the edge 𝐶1 need not support a disclination; if it does,

hen it has to be a wedge disclination and 𝐶1 has to be straight. We
llustrate this with a simple example. Consider 𝑆 to be planar (𝒏 = 𝒆3)
uch that two of its edges coincide with 𝜕𝛺 and the other two lie
ithin 𝛺 such that 𝝂1 = −𝒆1 and 𝝂2 = 𝒆1 (see Fig. 1(h)). We assume
𝑆 = 𝒆2 ⊗ 𝒃0, where 𝒃0 is a constant vector. Consequently (18a) are

dentically satisfied. Moreover, (18b) are also satisfied if we assume
anishing disclinations at the interior edges 𝐶1 and 𝐶2. Finally, the
lobal equation (11b) can be satisfied by considering two isolated
isclinations away from the dislocation wall, with the same Frank
ector, but not collinear (see Fig. 1(h)). This situation is similar to that
f Fig. 1(f) where the non-collinearity of the two disclination lines is
alanced by a single dislocation.

.3. Bulk defect densities

We consider defect fields over 𝛺 to be given in terms of a bulk
islocation density 𝜶𝐵 ∈ ∞(𝛺,Lin) and a bulk disclination density
𝐵 ∈ ∞(𝛺,Lin). There are no other defect densities. The classical
ontinuum theory of defects [4] is formulated within such a framework.
ccording to the discussion in Section 3, the following local and global
onditions (derivable from (10) and (11))

iv𝜽𝑇𝐵 = 𝟎 and div𝜶𝑇
𝐵 + 𝑎𝑥(𝜽𝑇𝐵 − 𝜽𝐵) = 𝟎 in 𝛺, (20a)

𝜕𝛺1

𝜽𝑇𝐵𝒏 da = 𝟎 and ∫𝜕𝛺1

(

𝜶𝑇
𝐵𝒏 + 𝒙 × (𝜽𝑇𝐵𝒏)

)

da = 𝟎 (20b)

re necessary and sufficient for there to exist a strain field 𝝐 ∈
∞(𝛺,Sym) and a bend-twist field 𝜿 ∈ 𝐶∞(𝛺,Lin) such that 𝜽𝐵 =
url𝜿𝑇 and 𝜶𝐵 = curl 𝝐 + tr(𝜿)𝑰 − 𝜿𝑇 . We first restrict ourselves to the
ase when 𝜽𝐵 = 𝟎. The preceding result can be recasted as follows. The
6

equations

div𝜶𝑇
𝐵 = 𝟎 in 𝛺 and ∫𝜕𝛺1

𝜶𝑇
𝐵𝒏 da = 𝟎 (21)

are necessary and sufficient for there to exist a distortion field 𝜷 ∈
𝐶∞(𝛺,Lin) such that 𝜶𝐵 = curl 𝜷. The dislocation density field 𝜶𝐵 =
𝒆𝑟 ⊗ 𝒃)∕𝑟2, where 𝑟 is the radial coordinate (𝑟2 = 𝑥21 + 𝑥22 + 𝑥23) and
𝒃 is a constant vector, satisfies (21)1 but not (21)2. It is therefore
an admissible dislocation density field for a contractible domain (as
long as the origin lies outside the domain), such as the one shown
in Fig. 2(b), but not for a hollow ball. Analogously, for the case with
𝜶𝐵 = 𝟎, the equations

div𝜽𝑇𝐵 = 𝟎 and 𝑎𝑥(𝜽𝑇𝐵 − 𝜽𝐵) = 𝟎 in 𝛺, (22a)

𝜕𝛺1

𝜽𝑇𝐵𝒏 da = 𝟎 and ∫𝜕𝛺1

(

𝒙 × (𝜽𝑇𝐵𝒏)
)

da = 𝟎 (22b)

are necessary and sufficient for there to exist a strain field 𝝐 ∈
∞(𝛺,Sym) such that 𝜽𝐵 = curl curl 𝝐. The field 𝜽𝐵 = (⟨𝒑, 𝒆𝑟⟩𝒆𝑟 ⊗ 𝒆𝑟 +
⊗𝒆𝑟+𝒆𝑟⊗𝒑−⟨𝒑, 𝒆𝑟⟩𝑰)∕𝑟2, where 𝒑 is a constant vector, satisfies (22a)
ut not (22b). It is therefore an admissible disclination density field for
contractible domain (as long as the origin lies outside the domain),

uch as the one shown in Fig. 2(b), but not for a hollow ball.
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