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Abstract Metric anomalies arising from a distribution of point defects (intrinsic intersti-
tials, vacancies, point stacking faults), thermal deformation, biological growth, etc. are well
known sources of material inhomogeneity and internal stress. By emphasizing the geomet-
ric nature of such anomalies we seek their representations for materially uniform crystalline
elastic solids. In particular, we introduce a quasi-plastic deformation framework where the
multiplicative decomposition of the total deformation gradient into an elastic and a plastic
deformation is established such that the plastic deformation is further decomposed multi-
plicatively in terms of a deformation due to dislocations and another due to metric anoma-
lies. We discuss our work in the context of quasi-plastic strain formulation and Weyl geom-
etry. We also derive a general form of metric anomalies which yield a zero stress field in the
absence of other inhomogeneities and any external sources of stress.

Keywords Material inhomogeneity · Non-metricity · Metric anomalies · Crystalline
defects · Point defects

Mathematics Subject Classification 74E05 · 74E10 · 74E15 · 53Z05

1 Introduction

The purpose of this article is to discuss several issues regarding the geometric nature of
metric anomalies in materially uniform simple elastic solids. Metric anomalies appear in a
non-Riemannian geometric space whenever the inner product of any two tangent vectors is
not preserved under parallel transport. They are represented by a non-trivial non-metricity
tensor field in the geometric space [31]. In the context of elastic solids, where the rele-
vant geometric space is the stress-free material space, they can be identified with material
inhomogeneity fields arising from a distribution of point defects (intrinsic interstitials, va-
cancies, point stacking faults), thermal deformation, biological growth, etc. [3, 7, 19, 21, 26,
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Fig. 1 Schematic diagram of a
split-interstitial in fcc lattice. The
original interstitial, located at A,
is unstable and relaxes into a
dumbbell shaped split-interstitial
A′B ′ (reproduced from [11])

Fig. 2 Schematic diagrams of a (a) tetra and a (b) penta vacancy in Copper in their stable configurations
(reproduced from [34])

41–43]. This association is made on the basis of the metrical nature of these material inho-
mogeneities, such as that leading to an inhomogeneous volume change due to a distribution
of spherical point defects, isotropic thermal deformation or isotropic growth. The correspon-
dence of non-metricity with metric anomalies is analogous to that of torsion of the material
space with dislocation density [6, 18] and curvature of the material space with disclination
density [1]. Both dislocations and metric anomalies are commonly observed sources of ma-
terial inhomogeneity in crystalline elastic solids. A precise understanding of the geometric
nature of the inhomogeneity distribution is essential for posing meaningful boundary-value-
problems to determine residual stresses and shape changes in materially inhomogeneous
solid bodies [19].

We are in particular interested in representations of anisotropic metric anomalies. This
is in contrast to the more popular isotropic descriptions of a distribution of spherically
symmetric point defects [26, 41–43] and isotropic thermal expansion coefficient. It is well
known that stable configurations of clusters of point defects form exotic anisotropic shapes
[15, 16, 34]. In these works, divacancies have been found to be more mobile than single
vacancies and clusters of trivacancies in Copper stronger, with increased binding energy,
against separation into single vacancies. As reported by Kiritani et al. [15, 16], high density
of small vacancy clusters in the form of stacking-fault tetrahedra dominate the plastic de-
formation of thin foils of fcc materials under high strain-rate without any intervention from
dislocations. Anisotropic cluster formation is usually more stable than free standing spher-
ically symmetric defects. For example, as shown in Fig. 1, an intrinsic interstitial atom in
fcc lattice relaxes into a split-interstitial in order to achieve stability. The interstitial atom
at the original position A pushes the atom at B towards right yielding a dumbbell shaped
defect A′B ′ in the stable state. Rather than modelling point defects as spherically symmetric
objects, it is only appropriate to consider point defect density as a distribution of infinitesi-
mal rod-like dumbbell structures in the crystalline body. The individual dumbbells display
transverse isotropic symmetry about their axes. In Fig. 2, stable configurations of tetra and
penta-vacancies in fcc Copper are depicted. The stable configurations are of octahedral and
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decaoctahedral shape for tetra vacancies, and of octahedral and bi-tetrahedral shape for penta
vacancies. A continuous description of these clusters of vacancies requires an anisotropic
representation of metric anomalies. Another example of elementary anisotropic point de-
fects was described by Kröner [20, 21] in the form of point stacking faults. In this case, the
individual point stacking faults are themselves anisotropic. Further instances of anisotropic
metric anomaly are provided by finite thermal deformation in crystalline materials [5] and
bulk growth in biological materials [39]. In these cases, the thermal expansion or the growth
coefficient is described by an anisotropic, symmetric second order tensor. It is prudent to
emphasize here that the anisotropy we are referring to is the anisotropy associated with the
structural symmetry of the distributed inhomogeneity (metric anomalies in the present case),
which is independent of the symmetry (anisotropic or otherwise) of the material response
function. For instance, a materially uniform body with isotropic material response can con-
tain a distribution of anisotropic point defects such as those shown in Figs. 1 and 2.

In the first part of this article (Sect. 2) we introduce the notion of material space by at-
tributing a metric and a non-metric affine connection, with non-zero torsion and curvature,
to the 3-dimensional body manifold of a materially uniform simple elastic solid. The metric
and the connection are both constructed from a given distribution of inhomogeneities in the
body and an assumed constitutive response. In doing so, we extend the formulation of Noll
[27] and Wang [36], which is restricted to a dislocated material body, where the material con-
nection and metric are derived solely from the constitutively determined material uniformity
field. We describe the geometrical significance of torsion, curvature and non-metricity, and
relate them to distributions of dislocations, disclinations and metric anomalies, respectively.
The main result in this section is the development of the notion of metrical disclinations
and their relation with metric anomalies (see Proposition 2.1). Metrical disclinations can
appear only in a non-metric space and are related to path dependence of the inner product
of tangent vectors. Unlike the well known rotational disclinations, which are the only kind
of disclinations possible in metric-compatible spaces, metrical disclinations are not funda-
mental line defects in materially uniform simple elastic solids. A distribution of rotational
disclinations is also unfeasible in crystalline solids due to their unrealistically high elastic
energy. Motivated by these concerns, we look for simplified representations of non-metricity
in the absence of curvature in material space. This is equivalent to requiring distant material
parallelism for crystalline solids.

In the second part of the paper (Sect. 3) we focus on obtaining rigorous results of rep-
resentations for non-metricity tensor for a zero curvature space. Towards this end, we use
the third Bianchi-Padova relation to obtain a necessary and sufficient representation of non-
metricity in terms of a symmetric second order tensor (see Proposition 3.1). This also leads
us to introduce the auxiliary material space which inherits the affine connection from the ma-
terial space but has a metric such that the non-metricity vanishes identically. In particular,
we recover the quasi-plastic strain framework, proposed by Anthony [3], now established on
firm geometrical grounds. We also discuss non-metricity in the context of semi-metric ge-
ometry (which with zero torsion is called Weyl geometry). We show that the non-metricity
tensor therein necessarily has an isotropic form, given in terms of a scalar field, when cur-
vature of the space is identically zero (see Proposition 3.2). As a result, the Weyl geome-
try framework in its standard form, where the Weyl co-vector form is exact leading to an
isotropic form of non-metricity [41, 43], is insufficient to model anisotropic metric anoma-
lies.

We propose a novel representation of metric anomalies in terms of a second order tensor
(we call it quasi-plastic deformation) such that the total deformation gradient (with respect
to a fixed reference configuration) can be multiplicatively decomposed into an elastic and
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a plastic deformation. Moreover, the plastic deformation is further decomposed multiplica-
tively in terms of a dislocation induced deformation and the quasi-plastic deformation (see
Proposition 3.3). Such a framework is amenable to analytical and numerical solutions of
boundary-value-problems for (internal) stress and displacement fields for elastic solids hav-
ing a continuous distribution of dislocations and metric anomalies. The representation of
non-metricity in terms of quasi-plastic deformation also allows us to consider a broader
range of metric anomalies than what is afforded by quasi-plastic strain framework.

Finally, before concluding in Sect. 5, we digress briefly in Sect. 4 to obtain the general
form of non-metricity tensor which corresponds to a zero stress field in the absence of dislo-
cations, disclinations and any external source of stress. We derive a closed form solution to
this problem in a linearized situation, assuming non-metricity and elastic strain to be small
and of the same order (see Proposition 4.1).

2 Material Response Function and Associated Geometric Constructions

Our prototype for the theory of a continuous material body is a 3-dimensional differential
manifold B which can be covered with a single chart. B is classically known as the material
manifold [27, 36] and the points in B, designated by X, are called material points. We
assume the manifold structure on B to be sufficiently differentiable as the context demands
and use a holonomic curvilinear coordinate system θ i to label the material points X ∈ B.
Lowercase Roman indices (i, j , p etc.) take the values 1, 2 and 3, and Einstein’s summation
convention holds over repeated indices. From its manifold structure, B naturally inherits the
Euclidean properties of R3, including the Euclidean inner product (denoted by ·). Let Gi be
the natural basis vector field of the coordinate system θ i , Gij := Gi ·Gj be the components
of the Euclidean metric tensor with respect to the coordinates θ i , [Gij ] := [Gij ]−1 and Gi :=
GijGj the natural co-vector basis field.

With the tangent space TXB of B at X as the underlying vector space, we denote Lin
and InvLin+ as the set of all second order tensors and invertible second order tensors with
positive determinant, respectively, Sym and Sym+ as the set of all second order symmetric
and symmetric positive definite tensors, respectively, Skw as the set of all second order
skew symmetric tensors, Unim as the set of all second order tensors with determinant equal
to 1 and Orth+ as the set of all proper orthogonal second order tensors (i.e., rotations). We
denote the identity tensor field over the manifold B by I := GijG

i ⊗ Gj = GijGi ⊗ Gj .
The inverse of an invertible tensor is indicated by a superscript (−1) while the transpose
is denoted by a superscript T . We use the shorthand notation (·),i for the ordinary partial
derivative ∂(·)

∂θi .

2.1 Material Uniformity

We restrict our consideration to materials classically known as simple elastic solids (with-
out heat conduction). The constitutive response function for such a material is given by a
mapping

Ŵ : Sym+ × B →R
+, (1)

known as the strain energy density function. Here, R+ denotes the set of non-negative real
numbers. In addition, the body is assumed to be materially uniform in the sense that for every



Non-metric Connection and Metric Anomalies. . . 5

pair X,Y ∈ B, there exists a second order tensor KXY : TXB → TYB, with detKXY > 0 (det
denotes the determinant operator), such that

Ŵ
(
KT

XY hKXY ,X
) = Ŵ (h,Y ) (2)

is satisfied for all h ∈ Sym+.1 It can be shown that the set of values of KXY satisfying (2),
for fixed X,Y ∈ B, forms a group KXY . Moreover, the material symmetry group at X,
defined as GX := KXX , in order to conform to the mass consistency condition, must satisfy
GX ⊆ Unim [27].

Fixing a material point X0 ∈ B in the materially uniform body, we can define a field
K(X) := KX0X that satisfies

WX0

(
KT (X)hK(X)

) = Ŵ (h,X) (3)

for all h ∈ Sym+, where WX0 : Sym+ → R
+ is defined as WX0(·) := Ŵ (·,X0). K is known

as the material uniformity field with respect to the material point X0 [10]. Since the body is
assumed to be materially uniform, the choice of the material point X0 is arbitrary. This ren-
ders the constitutive response function independent of any explicit dependence on material
points, as is clear from the expression (3). The body is called a materially uniform solid, if
we can choose such a X0 such that GX0 ⊆ Orth+.2 In the present work, we restrict ourselves
to materially uniform simple elastic solids.

2.2 Material G-Structure, Material Connection and Material Metric

The material uniformity field K appearing in (3) is, in general, multi-valued due to non-
trivial symmetry groups at X as well as at X0. A fibre bundle can be constructed by attaching
the values of K(X) at respective X ∈ B, giving rise to the material G-structure [10, 36]. It
can be shown that the material G-structure is a principal fibre bundle, with structure group
(which is the same as the standard fibre) G := GX0 . The domain of K , given a fixed degree of
differentiability Ck , may not span the whole material manifold B. The material G-structure
is hence, in general, non-trivial.

For geometric constructions on the material G-structure, it can be equipped with an arbi-
trary affine connection and metric. However, in order to formulate a geometric theory of the
underlying material structure, we choose only a particular affine connection L and a particu-
lar metric g out of these infinite possibilities, as informed by the inhomogeneities present in
the material structure, if any. The fundamental geometric objects associated with L and g,
namely, the torsion tensor T, the curvature tensor R and the non-metricity tensor Q can be
naturally identified with the densities of dislocations, disclinations and metric anomalies,
respectively, as we will see in the following. Once these identifications are made, and the
defect densities in a given material body are known in terms of these fundamental geometric

1The domain of the partial function Ŵ (·,X), for X ∈ B, is customarily assumed to be InvLin+ , the space
where the deformation gradients reside [27, 36], which, under the Principle of Material Frame Indifference,
gets restricted to its subset Sym+ . In presence of certain material inhomogeneities (e.g., disclinations), a well-
defined element in InvLin+ may not exist to appear in the constitutive function. Our treatment bypasses this
limitation, as it is always guaranteed that a well-defined element in Sym+ exists to appear in Ŵ (·,X) as an
argument. This well-defined element could be, in our context, any of the standard measures of strain.
2Apart from the point symmetry group G, which essentially describes rotational symmetries, the material
structure presently under consideration possesses, due to its expanse in the Euclidean 3-space, spatial trans-
lational symmetries.
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objects over B, the connection L and the metric g can be constructed from these geometric
objects by solving a system of PDEs. This system is constituted of the respective defining
equations of the tensors T, R and Q in terms of L and g.

For instance, the governing equation for L, for an appropriately specified tensor R (the
density of disclinations), is a system of first order non-linear PDEs. From a result by Talvac-
chia [33, Theorem 7] on the existence of an affine connection over a Unim-principal bundle3

with 3-dimensional base manifold whose curvature tensor is prescribed a priori as a generic
real analytic function, and from the fact that the material G-structure is a principal subbundle
of a Unim-principal bundle (since G ⊆ Orth+ ⊂ Unim) with the 3-dimensional base mani-
fold B, it follows that a solution L exists, provided that R is analytic which we assume to
be the case here. The torsion tensor obtained from this affine connection L has to be equal
to an appropriately specified tensor T (the density of dislocations). On the other hand, the
governing equation for g is a system of first order non-homogeneous linear PDEs, given
appropriately the functions Q (the density of metric anomalies) and L. If we assume Q and
the previously obtained L, as just discussed, to be analytic, then a unique analytic solution
g indeed exists as a consequence of the Cauchy-Kowalevski and Holmgren’s existence and
uniqueness theorems for first order linear system of PDEs with analytic coefficients and
data.4 We will construct an explicit solution for L and g involving the material uniformity
field K and other physically relevant quantities in Sect. 3.3.

The affine connection L, thus constructed, is called the material connection, and the met-
ric g, the material metric. The “material” nature of this connection and metric is clear from
the above discussion; the fundamental geometric objects they yield, viz. the torsion, curva-
ture and non-metricity, represent various inhomogeneity measures present in the material
structure of the body.

Remark 2.1 The above construction of material connection and material metric general-
izes the original idea of Noll [27] and Wang [36], which is purely constitutive in nature
and is applicable to dislocated material bodies free from any curvature and metric anoma-
lies. The general form of a zero-curvature connection is determined solely in terms of an
invertible second order tensor field which, in turn, determines the metric compatible with
the connection (see Sect. 3.3 for details); Noll identified this second order tensor with the
material uniformity field K . In the presence of curvature and metric anomalies, material
connection and metric can no longer be derived from the material uniformity field alone
but require additional information which comes from a given distribution of curvature and
metric anomalies. In fact, with whatever connection and metric one is adorning the material
G-structure, they should be compatible with the underlying constitutive nature of the body
and the contained inhomogeneities.

2.2.1 The Material Space

Manifold B, equipped with the material connection L and the material metric g, forms the
material space. We denote the material space by the triple (B,L,g) and the coefficients of
L and the components of g, with respect to the embedded coordinate system θ i , by Li

kj

3A Unim-principal bundle is a principal fibre bundle whose structure group is the group Unim.
4Within the realm of the classical solutions of the PDEs that we are considering here, the existence and
uniqueness theorems of Cauchy-Kowalevski and Holmgren do no extend to the class of smooth functions
which are not analytic; in this context, we would like to refer to the well-known Lewy’s example that demon-
strates a linear PDE with smooth coefficients which has no solution [23].
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and gij , respectively. The raising and lowering of indices of components of tensorial objects
are performed with respect to the purely covariant components gij and the purely contravari-
ant components gij , where [gij ] := [gij ]−1. The covariant differentiation of a quantity with
respect to L is denoted by ∇ , for example,

∇j u
i := ui

,j + Li
jku

k, ∇jui := ui,j − Lk
jiuk etc., (4)

where all the components are with respect to the coordinates θ i .
Given a tangent vector with components ui

0 at the initial point of a curve C :=
{Ci(s)Gi (s) ∈ B | s ∈ [0,1]}, a materially constant tangent vector field ui(Ck(τ )) is con-
structed by solving the linear ODE

dui(τ )

dτ
= −Li

kj (τ )uj (τ )Ċk(τ ), ui(τ = 0) = ui
0. (5)

In other words, a materially constant vector field on a curve, by definition, has zero direc-
tional covariant derivative with respect to the material connection throughout the curve.

It is evident from our construction of the material connection L and the material met-
ric g, as discussed previously, that the fundamental geometric objects of the material space
(B,L,g) provide natural measures for various material inhomogeneities contained within
the body. Importantly, the material inhomogeneity densities remain unaffected by a super-
posed compatible deformation of the body. In other words, material space is a geometric
space where an internal observer would be able to detect only configurational changes in the
body (i.e., those arising out of defects) but would otherwise fail to observe any compatible
deformations incurred by the body as a result of external loading, etc. [19].

2.3 Material Torsion Tensor

The third order torsion tensor T associated with the material connection L is a mapping

T : TXB × TXB → TXB, (6)

which is bilinear and skew with respect to its arguments. Its components Tjk
i with respect

to the coordinates θ i are defined as

Tjk
i := Li

[jk]. (7)

Here, the square bracket in the subscript indicates the skew part of the field with respect
to the enclosed indices (whereas a round bracket is used to indicate the symmetric part).
Torsion tensor measures the closure failure of an infinitesimal parallelogram in the material
manifold, and it is one of the fundamental geometric objects on the material space. The
construction of such a parallelogram is illustrated in Fig. 3(a).

2.3.1 Torsion Inhomogeneities

Torsion tensor of the material manifold is the natural measure for density of dislocations in
the material body (first identified by Kondo [18] and, later, independently by Bilby et al. [6]).
Dislocations are one of the fundamental line defects in materially uniform simple elas-
tic solids; they are associated with the translational symmetries of the underlying material
structure. This identification is evident from the similar nature of the two objects, viz. the
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Fig. 3 (a) Closure failure of an infinitesimal parallelogram due to torsion. (b) Change in length and angle
between two vectors under parallel transport due to non-metricity

closure failure of infinitesimal parallelograms in the material space and the closure failure
of the Burgers circuit [19]. The second order axial tensor of torsion, which has compo-
nents αij := εimnTmn

j , is called the dislocation density tensor. The diagonal components of
the matrix [αij ] measure the density of edge dislocations and the off-diagonal components
measure the density of screw dislocations [19].

2.4 Material Curvature Tensor

The fourth order Riemann-Christoffel curvature tensor R of the material connection L is a
mapping

R : TXB × TXB → Lin, (8)

which is bilinear and skew with respect to its arguments. Its components Rjiq
p with respect

to the coordinates θ i are defined as

Rjiq
p := L

p

iq,j − L
p

jq,i + Lh
iqL

p

jh − Lh
jqL

p

ih. (9)

The curvature tensor R measures, in the linear approximation, the change that a tangent vec-
tor suffers under parallel transport along an infinitesimal loop. It is our second fundamental
geometric object on the material space.

We also define the purely covariant components Rklji of R, by lowering the fourth index
with the material metric gij , as

Rklji := gipRklj
p. (10)

It follows from the definition that Rklq
p = −Rlkq

p and Rklij = −Rlkij .

2.4.1 Decomposition of the Curvature Tensor

It is useful for our present objective to decompose the components Rklij as (cf. [28])

Rklij = εpklεqij θ
pq + εpklζij

p, (11)

where θpq and ζij
p are defined as

θpq := 1

4
εpij εqklRij [kl]

(
= 1

4
εpij εqklRijkl

)
and ζij

p := 1

2
εpklRkl(ij). (12)
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Fig. 4 (a) The symmetric part of R(·, ·), characterized by the tensor ζ , measures the stretching part of the
change brought about by R. Here, v is a principal vector of ζn. (b) The skew part of R(·, ·), characterized
by the tensor θ , measures the purely rotational part of the change brought about by R

Here, εijk := g− 1
2 eijk and εijk := g

1
2 eijk , where eijk = eijk is the 3-dimensional permutation

symbol and g := det[gij ]. The second order tensor field θ := θpqGp ⊗ Gq characterizes the
skew part and the third order tensor field ζ := ζij

pGp ⊗Gi ⊗Gj characterizes the symmetric
part of the tensor field R(·, ·) ∈ Lin. The geometric interpretation of the symmetric and skew
part is illustrated in the following.

Let us consider an infinitesimal planar loop γ inside B originating and terminating at X.
A tangent vector v at X, when parallelly transported along γ , suffers a change 	v which, in
the linear approximation, can be characterized by a second order tensor β := βijG

i ⊗ Gj ,
i.e., 	v = βv, where βij is given by [31]

βij = −	A

2
Rklij ε

rklnr = −	Aεqij θ
pqnp − 	Aζij

pnp. (13)

Here, 	A is the area of the infinitesimal flat surface bounded by γ and n := nrG
r its unit

normal. The first term Wij := −	Aεqij θ
pqnp in the above expression is skew with an axial

vector wm = θpmnp	A. It represents the amount of rotation with respect to the axis Gp , for
a fixed p, given by three Euler angles θpq . Hence, θ is the measure of a small rotation about
the axis n. The second term Sij := −	Aζij

pnp is symmetric; it represents a stretching, with
the three principal values of the tensor ζn as measures of the stretch along its three principal
directions (Fig. 4(a, b)).

As an example, let us assume first that ζ = 0 and the coordinates θ i are orthonormal
(i.e., Gi = Gi ) locally at a point X. Let the infinitesimal loop γ be such that n(X) = G3.
Then, βij = −	Aεqij θ

3q . Choose v = G1. The deviation, after parallel transport along γ ,
is given by 	v = −	Aεqi1θ

3qGi = 	Aθ33G2 − 	Aθ32G3. Since 	v has no component
along v, it is evident that v has suffered a rotation characterized by θ32 and θ33. Next,
assume that θ = 0, θ is and γ as above, and vi as the principal direction of ζij

pnp = ζij
3

with the principal value λ, i.e., ζij
3vj = λvi . The deviation after parallel transport along γ

is now given by 	v = −	Aζij
3vjGi = −	Aλv. Clearly, there is a stretching of the vector

along its original direction.

2.4.2 Curvature Inhomogeneities

Curvature inhomogeneities are known as disclinations. As is evident from the above dis-
cussion, there are two independent sources that might lead to disclinations: the second order
tensor θ and the third order tensor ζ . The θ -disclinations are pure rotational anomalies in the



10 A. Roychowdhury, A. Gupta

material structure. Identification of rotational disclinations with the tensor θ was first made
by Anthony [1]. Rotational disclinations are the second kind of fundamental line defects
which our material structure (i.e., materially uniform simple elastic solid) allows.5 They are
associated with the rotational symmetry group G of the material. The pure rotation that a
vector suffers under parallel transport along a loop in the material space due to the presence
of θ -disclination lines piercing this loop necessarily belongs to G.

A non-zero ζ measures the distribution of another kind of disclinations in the material
structure. The disclinations characterized by the tensor ζ are not fundamental line defects in
the present material structure under consideration (see footnote 5). As already seen, these are
related to the stretching of vectors under parallel transport along loops, and hence, are asso-
ciated with the metrical properties of the material space. We simply call them ζ -disclinations
or metrical disclinations. We will shortly prove that metrical disclinations cannot exist in a
metric compatible manifold (they require a certain kind of non-metricity to exist). Materials
with more enriched symmetry groups, for which generalized Volterra processes exist, can
indeed sustain these metrical disclinations as fundamental line defects, as has been observed
in the context of general relativity [17].

The absence of disclinations whatsoever is classically known as distant material paral-
lelism. Under distant material parallelism, crystallographic vector fields can be unambigu-
ously defined over the whole material space. Non-zero values of either θ or ζ will lead to
deviation from distant material parallelism. For an unambiguous definition of crystallinity
at every point, distant material parallelism is a required condition (see also Sect. 3).

2.5 Material Non-metricity Tensor

The (third order) non-metricity tensor Q := QkijG
i ⊗ Gj ⊗ Gk of the material manifold is

defined as the negative of the covariant derivative of the material metric g with respect to
the material connection L [31]:

Qkij := −∇kgij = −gij,k + L
p

kjgip + L
p

kigjp, (14)

where the negative sign in the definition is conventional. It measures how the measuring
scale for length and angle, i.e., the material metric, varies over the material space. It forms
the third fundamental geometrical object (see Fig. 3(b)).

2.5.1 Unambiguous Definition of a Metric Tensor Field

Let us consider an infinitesimal parametric loop C := {Ci(s)Gi (s) ∈ B | s ∈ [0,1],Ck(0) =
Ck(1)}, starting and ending at the origin of the coordinate system θ i , i.e., Ck(0) = 0, and
let the metric tensor at the base point s = 0 of this loop be given as some appropriate func-
tions g0

ij . We would like to investigate whether g0
ij remains invariant under parallel transport

along the loop and, consequently, gives rise to a metric tensor field on the material space. To
proceed, we transport g0

ij along the loop by solving the PDE

gij,k − L
p

kjgip − L
p

kigjp = −Qkij (15)

5This is with reference to Weingarten’s classical theorem [37] in linear elasticity and the subsequent con-
struction of elementary dislocations and disclinations by Volterra [35] as the fundamental line singularities in
a linear elastic solid. The same construction also holds in non-linear elasticity, cf. [44, Chap. 1] and [40].
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along C, with known functions Qkij and L
p

ij . The above PDE follows from the defini-
tion (14). At an arbitrary position s on the loop we have

gij (s) = g0
ij −

∫ s

0
Qkij (τ )Ċk(τ ) dτ +

∫ s

0
L

p

ki(τ )gpj (τ )Ċk(τ ) dτ

+
∫ s

0
L

p

kj (τ )gip(τ )Ċk(τ ) dτ. (16)

Let us expand Qkij (τ ) and gij (τ ) within first order in Ck(τ) as

Qkij (τ ) ≈ Qkij (0) + Qkij,m(0)Cm(τ), (17a)

gij (τ ) ≈ g0
ij − Qkij (0)Ck(τ ) + L

p

kj (0)g0
ipCk(τ ) + L

p

ki(0)g0
jpCk(τ ). (17b)

After some careful calculations, it can be shown that the above relations give us the final
value gF

ij after the parallel transport along C to be

gF
ij ≈ g0

ij + [
Rmk(ij) − (

Qkij,m + L
p

kiQmpj + L
p

kjQmpi

)
[mk]

]
(0)

∮

C
Cm dCk. (18)

The expression in the square bracket is identically zero from the third Bianchi-Padova rela-
tion (31). Hence, the definition of the metric tensor is always unambiguous (path indepen-
dent) in spite of the presence of non-metricity in the space, and this is the very reason why
the material metric exists. But the inner product which comes via this unambiguous metric
is not unambiguous, as we will see next.

2.5.2 Parallel Transport of the Inner Product and Its Path Dependence

Let us calculate how the inner product g(u,v) = giju
ivj of two tangent vectors, with com-

ponents ui and vj , changes under parallel transport along the small parametric loop C as
defined above. According to the definition (14), upon parallel transport to a generic point s

on C, the inner product between the said vectors is given by

giju
ivj (s) = giju

ivj (0) +
∫ s

0

(
giju

ivj
)
,k
(τ )Ċk(τ ) dτ

= giju
ivj (0) +

∫ s

0

[
gij,ku

ivj + giju
i
,kv

j + giju
iv

j

,k

]
(τ )Ċk(τ ) dτ

= giju
ivj (0) +

∫ s

0

[(−Qkij + L
p

kigpj + L
p

kjgip

)
uivj

+ gij

(∇ku
i − Li

kpup
)
vj + giju

i
(∇kv

j − Li
kpvp

)]
(τ )Ċk(τ ) dτ

= giju
ivj (0) −

∫ s

0
Qkij (τ )ui(τ )vj (τ )Ċk(τ ) dτ (19)

since ∇ku
iĊk ≡ 0 and ∇kv

j Ċk ≡ 0 throughout C. This yields the well-known result (cf. [32])
that inner product of arbitrary tangent vectors on a non-metric space is preserved under
parallel transport if and only if non-metricity Q vanishes identically.
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Let us now expand ui(τ ) and vj (τ ) around τ = 0, within first order in Ck(τ), as

ui(τ ) ≈ ui(0) − Li
mp(0)up(0)Cm(τ) and (20a)

vj (τ ) ≈ vj (0) − Lj
mq(0)vq(0)Cm(τ), (20b)

keeping in mind that the fields ui(τ ) and vj (τ ) are materially parallel. Using the approxi-
mations (17a) and (20a), (20b) into (19), we obtain, within second order in Cm(τ),

giju
ivj (s)

≈ giju
ivj (0) − Qkiju

ivj
∣
∣
τ=0

∫ s

0
Ċk(τ ) dτ

− uivj
∣∣
τ=0

[
Qkij,m(0) − L

p

mi(0)Qkjp(0) − L
p

mj (0)Qkip(0)
] ∫ s

0
Cm(τ)Ċk(τ )dτ. (21)

Hence, for the loop C,

giju
ivj

∣
∣
F

≈ giju
ivj

∣
∣
I
− uivj

∣
∣
I

[
Qkij,m − L

p

miQkjp − L
p

mjQkip

]
I

∮

C
Cm(τ) dCk, (22)

where the subscripts F and I denote the final and initial values of the respective expressions.
Since

∮
C Cm(τ) dCk = − ∮

C Ck(τ) dCm, only the skew part of the expression within the
square bracket with respect to the indices mk appears in the above expression, i.e.,

giju
ivj

∣∣
F

≈ giju
ivj

∣∣
I
− uivj

∣∣
I

[
Qkij,m − L

p

miQkjp − L
p

mjQkip

]
[mk]I

∮

C
Cm(τ) dCk, (23)

which can be rewritten as

giju
ivj

∣
∣
F

≈ giju
ivj

∣
∣
I
− uivj

∣
∣
I

[
Qkij,m + L

p

kiQmjp + L
p

kjQmip

]
[mk]I

∮

C
Cm(τ) dCk. (24)

Consequently, due to non-vanishing of the expression within the square bracket for a gen-
eral non-metricity tensor Qkij , parallel transport of the inner product depends on the path.
For path independence of the inner product, vanishing of this expression is necessary and
sufficient. Also, as we will see shortly, the third Bianchi-Padova relation implies that this
expression is directly proportional to the tensor ζij

k (see (31)). Hence, we have

Proposition 2.1 Inner product of arbitrary tangent vectors on a non-metric space is path
independent under parallel transport if and only if

[
Qkij,m + L

p

kiQmjp + L
p

kjQmip

]
[mk] = 0 (25)

identically. This condition is equivalent to the vanishing of ζ identically over B.

In particular, a tangent vector in the material space, under parallel transport along loops,
does not change its length if and only if ζ , i.e., the distribution of metrical disclinations,
vanishes identically.
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2.5.3 Non-metric Inhomogeneities

The non-metricity tensor of the material space measures the non-uniformity of the material
metric over the body manifold, thus, quantifying the density of a variety of metric anoma-
lies: (i) Point defects (intrinsic interstitials, vacancies, point stacking faults etc.) change the
local notion of length by distorting the lattice spacings, hence, are naturally identifiable with
the material non-metricity; (ii) Non-uniform thermal strain or bulk material growth may
inflate/deflate/shear volume elements in the material and, hence, associable with material
non-metricity; (iii) Magnetostrictive strain locally changes the orientation of the magneti-
zation vector and can be associated to the non-metricity tensor in ferromagnetic materials,
cf. [3]. However, a distribution of foreign interstitials will fall in the realm of materially
non-uniform bodies and is outside the scope of this work. For a treatment of such materials,
see Epstein and de León [9].

2.6 Compatibility of the Geometric Objects in Material Space

The functions Rklj
i , Tij

k and Qkij associated with the material space cannot be arbitrary due
to geometric restrictions. They satisfy the following algebraic and differential compatibility
conditions (the differential conditions are known as Bianchi-Padova relations) [31]:

R(ij)q
p = 0, Qk[ij ] = 0, T(ij)

k = 0, (26a)

2∇[iTjk]l = R[ijk]l + 4T[ij pTk]pl, (26b)

∇[iRjk]lp = 2T[ij qRk]ql
p and (26c)

∇[iQj ]kl = Rij (kl) − Tij
pQpkl. (26d)

In the above expressions, anti-symmetrization with respect to three indices is defined as

A[nml]······ := 1

6

(
Anml······ + Alnm······ + Amln······ − Almn······ − Anlm······ − Amnl······

)
. (27)

The algebraic conditions (26a) follow immediately from the definitions (9), (7) and (14).
The first Bianchi-Padova relation (26b) is obtained by alternation of the indices jiq in (9).
The second relation (26c) is the first order integrability condition of (9), considered as a PDE
in Li

jk , given the functions Rjiq
p , whereas the last relation (26d) follows from the formula

for the second skew covariant derivative of the material metric, i.e., ∇[i∇j ]gkl . Schouten [31]
has mentioned another identity where the term Rijkl − Rklij can be written in terms of the
covariant derivatives of the torsion and the non-metricity tensor. In case of a Riemannian
manifold, i.e., when Tij

p ≡ 0 and Qkij ≡ 0, the identities satisfied by the curvature tensor
are R(ij)kl = 0, Rij (kl) = 0, R[ijk]l = 0 and Rijkl = Rklij . Hence, for a Riemannian manifold,
θ is symmetric and ζ vanishes identically.

2.6.1 Conservation of Material Inhomogeneities

The Bianchi-Padova relations can be written in terms of various defect density tensors,
namely, the disclination densities θ ij and ζij

p , the dislocation density αij and the density
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of metric anomalies Qkij , as (cf. [28])

∇iα
ik = εkmnθnm + εijmαijαmk + ζm

mk + 1

2
αmkQmn

n, (28a)

∇iθ
ik = εijmαij θmk + 1

2
θmkQmn

n + 1

2
θmnQmn

k − 1

2
εkmnζmi

pQpn
i, (28b)

∇iζkr
i = εijmαij ζkr

m + 1

2
ζkr

mQmn
n + θmnQm(k

pεr)np − Qm(k
pζr)p

m and (28c)

εijk∇iQjmn = 2ζmn
k − αkpQpmn. (28d)

These relations represent the conservation laws for various defect densities. Clearly, in the
absence of metric anomalies, ζ = 0 and the above relations reduce down to the conservation
laws for the dislocation density αij and the disclination density θ ij :

∇iα
ik = εkmnθnm + εijmαijαmk and (29a)

∇iθ
ik = εijmαij θmk. (29b)

Assuming αij and θ ij to be small and of the same order, we recover the well-known conser-
vation laws

∇iα
ik = εkmnθnm and (30a)

∇iθ
ik = 0, (30b)

which state the classical result that in absence of metric anomalies, dislocation lines must
end on disclinations (within the body) and disclination lines cannot end inside the body [1].

3 Representation of Metric Anomalies

For anisotropic elastic solids (e.g., crystalline materials), the (rotational) symmetry group G
is discrete. In the continuum limit of such a material from its discrete state, the translational
symmetry parameters, which have the order of magnitude of one lattice parameter, get in-
finitesimally small. But the rotational symmetries (the elements of G) remain finite in the
continuum limit. The rotation that a tangent vector suffers under parallel transport along a
loop in the material space that encircles the θ -disclination lines necessarily belongs to the
symmetry group G. If the loop encircles infinite number of these disclination lines, as is
the case when a continuous distribution of disclinations is present, the resulting rotational
deviation can go unbounded, leading to an unbounded elastic energy. Due to such unrealis-
tic energy penalty, a continuous distribution of θ -disclinations has never been observed in
crystalline materials having discrete rotational symmetry groups. It is therefore reasonable
to assume θ = 0 in anisotropic simple elastic materials [4]. Moreover, as the metrical discli-
nations lead to ambiguity in the definition of inner product field and are not fundamental
line defects within the scope of the present class of materials being considered, we will also
assume ζ to be identically zero.

Under this assumption of absolute distant material parallelism, we will now discuss three
possible models of the non-metricity tensor in the following.
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3.1 Irrotational Metric Anomalies

The third Bianchi-Padova relation (26d) can be rewritten as
(
Qjkl,i + L

p

jkQipl + L
p

jlQipk

)
[j i] = Rij (kl) (31)

or equivalently

1

2
εqij

(
Qjkl,i + L

p

jkQipl + L
p

jlQipk

) = ζkl
q . (32)

Clearly, Qkmj = 0 is the trivial solution of the last equation for ζkm
p = 0, but there exist

non-trivial solutions. For θ = 0, we seek the most general form of the non-metricity tensor
that uniquely corresponds to ζ = 0. In the absence of θ -disclinations, such a form of non-
metricity is necessary to maintain absolute distant material parallelism throughout the body.
We have

Proposition 3.1 If B is simply connected and θ = 0, then the necessary condition for ζ = 0
is that there exists a tensor field q := qijG

i ⊗ Gj : B → Sym such that Qkij = −2∇kqij .
Moreover, if q is such that ḡ := g − 2q is positive definite, then the above condition is also
sufficient.

The factor −2 appearing in the form of Qkij is conventional (cf. [3, Equation (33)]). Note
that the sufficient condition involves the material metric g. Towards proving this proposition,
we will need the following theorem. For our purpose, sufficient regularity of the respective
fields can be assumed. The notations used for various functional spaces are standard.

Theorem 3.1 (Fundamental Existence Theorem for Linear Differential Systems [25]) Let
Ω be a simply connected open subset of Rp whose geodesic diameter is finite, and let q ≥ 1
be an integer. Let there be matrix fields Aα ∈ L∞(Ω,Mq), Bα ∈ L∞(Ω,Mp) and Cα ∈
L∞(Ω,Mp×q) such that

Aα,β + AαAβ = Aβ,α + AβAα, (33a)

Bα,β + BαBβ = Bβ,α + BβAα and (33b)

Cα,β + CβAα + BαCβ = Cβ,α + CαAβ + BβCα (33c)

are satisfied in D′(Ω,Mq), D′(Ω,Mp) and D′(Ω,Mp×q), respectively. In this theorem,
the Greek indices α, β varies over 1,2, . . . , p. Then there exists a matrix field Y ∈
W 1,∞(Ω,Mp×q) that satisfies

Y,α = YAα + BαY + Cα in D′(Ω,Mp×q
)
. (34)

Proof of Proposition 3.1 In the above theorem, choose p = q = 3, Ω = B, Ak = Bk =
[Li

kj ] and Ck = [Qkij ]. Then the conditions (33a) and (33b) amount to Rijq
p = 0, i.e. θ = 0

and ζ = 0 and the condition (33c) yields (Qjkl,i + L
p

jkQipl + L
p

jlQipk)[ij ] = 0 which, due
to (32), is equivalent to ζ = 0. Hence, as a consequence of the above theorem, there exists a
sufficiently regular matrix field [qij ] such that

Qkij = −2qij,k + 2L
p

kiqpj + 2L
p

kjqip = −2∇kqij . (35)

The symmetry Qkij = Qk(ij) implies the symmetry of the matrix field [qij ].



16 A. Roychowdhury, A. Gupta

To prove the sufficiency, we insert Qkij = −2∇kqij in (31) to obtain

−Rjikmqm
l − Rjilmqm

k = Rij (kl). (36)

Here, qm
k := gimqik . For the time being, let us assume that ζ = 0. For θ = 0, Rjikm =

Rji(km) = εpjiζkm
p , (36) reduces to

εpji

(
ζkm

pqm
l + ζlm

pqm
k

) = −εijpζkl
p, (37)

which implies
(

qml + 1

2
gml

)
ζm

k
p +

(
qmk + 1

2
gmk

)
ζm

l
p = 0. (38)

We now find out the conditions on the matrix [qij ] such that the 3 × 3 matrix [ζ i
j
p], for

each p, is identically zero. Recalling that [gij − 2qij ] is symmetric, there exists a basis in
which it is a diagonal matrix. In that basis, [gij − 2qij ] can be written as diag(a1, a2, a3),
where ais are the three real eigenvalues of [gij − 2qij ]. Moreover, let us denote by [bi

j ] :=
[ζ i

j
p] for some fixed p. The last expression boils down to

diag(2a1, a1 + a2, a1 + a3, a1 + a2,2a2, a2 + a3, a1 + a3, a3 + a2,2a3)

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

b1
1

b1
2

b1
3

b2
1

b2
2

b2
3

b3
1

b3
2

b3
3

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0
0
0
0
0
0
0
0
0

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

.

(39)

The condition for [bi
j ], hence ζ , to vanish identically is that the determinant of the 9 × 9

diagonal matrix in the above expression is non-zero, i.e.,

a1a2a3(a1 + a2)
2(a2 + a3)

2(a3 + a1)
2 = 0. (40)

Hence, if [qij ] is such that the eigenvalues ais of [gij − 2qij ] satisfies (40) everywhere, then
ζ vanishes identically. For a positive definite [ḡij ] := [gij − 2qij ], (40) is always satisfied. �

Metric anomalies characterized by Qkij = −2∇kqij , where q satisfies the necessary and
sufficient conditions of Proposition 3.1, are called irrotational, because they uniquely corre-
spond to the vanishing of material curvature. Only irrotational metric anomalies are allowed
under our present assumption of absolute distant parallelism in a materially uniform simple
elastic solid. The tensor field q is a complete measure of irrotational metric anomalies. It
induces a field of orthonormal triple of eigenvectors {a,b, c}, corresponding to a field of
eigenvalues a, b and c, respectively: qa = aa, qb = bb and qc = cc. The tensor field q , as
well as its field of eigenpairs {a,a} etc. can be restricted to a curve. Then, we have a field
of rectangular parallelepiped formed by the triple of orthogonal vectors {aa, bb, cc} over
this curve (see Fig. 5(a)). This field of rectangular parallelepiped is uniquely defined over
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Fig. 5 (a) General irrotational metric anomalies change the orientation, shape and size of a cube along a
curve, whereas (b) isotropic metric anomalies, which are also irrotational, change the orientation and size,
but not the shape, of a cube along a curve

the whole material space because of distant material parallelism. The parallelepiped returns
to its initial shape, size and orientation after circumnavigation along a loop. The formula
(21) for inner product of arbitrary vectors under parallel transport, in presence of purely
irrotational metric anomalies, reduces down to (upto leading order)

giju
ivj (s) ≈ giju

ivj (0) + 2
(∇kqiju

ivj
)∣∣

τ=0

∫ s

0
Ċk(τ ) dτ. (41)

3.1.1 Quasi-plastic Strain

For irrotational metric anomalies, the positive definite symmetric tensor field ḡ can be used
to define an auxiliary material space (B,L, ḡ), equipped with the original material connec-
tion L and the metric ḡ. The non-metricity of this auxiliary material space vanishes identi-
cally by definition: ∇kḡij = ∇k(gij − 2qij ) = −Qkij +Qkij = 0. The curvature is identically
zero for both (B,L,g) and (B,L, ḡ). Auxiliary material space is a geometric space derived
from the material space, with identical torsion and curvature fields, whose non-metricity is
identically zero.

Anthony [1, 2] (cf. [12]) used q (calling it quasi-plastic strain) to study metric anomalies
when absolute distance parallelism is maintained throughout the material space. The funda-
mental geometric reasoning behind the existence of q , as we discussed above, was absent
in their work. The terminology “strain” is clear from the relation q = 1

2 (g − ḡ), i.e., q is
the difference between the respective metric tensors of the material space and the auxiliary
material space.

Remark 3.1 (Isotropic Metric Anomalies) The second order tensor q characterizing irrota-
tional metric anomalies has the unique decomposition

qij = λgij + qij , (42)

where λ := 1
3qk

k is the trace of q (λgij is called the spherical/isotropic part), and qij is the
deviatoric part of qij , i.e., qk

k = 0. Let us consider the case when q is purely isotropic, i.e.,
qij = λgij . Then, it is straightforward to obtain Qkij = −μ,kgij , where μ := ln(1 + 2λ). In
this case, the formula (41) for the inner product of arbitrary vectors under parallel transport
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along a curve C reduces to

giju
ivj (s) ≈ giju

ivj (0)

[
1 + μ,k|τ=0

∫ s

0
Ċk(τ ) dτ

]
. (43)

Hence, orthogonal vectors always remain orthogonal under parallel transport. Since all the
eigenvalues of an isotropic tensor are equal, the cube formed by the eigenpairs {λa, λb, λc},
where {a,b, c} are any triple of orthonormal vectors forming the eigenspace of q (any or-
thonormal triple of vectors forms the eigenspace of an isotropic tensor), inflates/deflates
as one moves along the curve C (see Fig. 5(b)). The auxiliary material space for isotropic
metric anomalies is conformal to the original material space, because ḡ = (1 + 2λ)g.

Remark 3.2 (Regularity of the Induced Field of Parallelepipeds) The one parameter fields of
eigenvalues of the one parameter tensor field q(s) along a parametric curve C always posses
the same regularity as that of q(s) [22, 29]. If all the eigenvalues are simple throughout C,
then the corresponding field of eigenvectors has the same regularity as that of q . This is also
true if the multiplicity of all the eigenvalues remains constant throughout the curve. In case
of isotropic metric anomalies, the multiplicity is 3 throughout C; hence, the field of cubes
has the same regularity as the function μ,k(s) along C.

3.2 Semi-metric Geometry

For a second representation of metric anomalies we look into semi-metric geometry. In
semi-metric geometry, Qkmj is given in terms of a vector Qk as Qkmj = Qkgmj (semi-metric
geometry with zero torsion is called Weyl-geometry) [31]. This form of Qkij , when plugged
into the third Bianchi-Padova relation (31), reduces it to

Q[j,i]gkm = Rij (km). (44)

If θ = 0 and the domain B is simply connected, (44) implies, from Poincaré’s lemma, that
Rij (km) = 0 if and only if there exists a function φ : B → R such that Qi = φ,i [13]. Define
ψ := expφ −1. Then, φ,i = ψ,i

ψ+1 ; hence, ∇kḡij = 0 where ḡij := (ψ +1)gij , i.e., we recover

the isotropic representation discussed in Remark 3.1. Moreover, using the Helmholtz repre-
sentation (decomposition of a vector field into a curl free and a divergence free part) of the
vector field Qj as Qj = φ,j + gij ε

imn∇mqn, with ∇nqn = 0 (cf. [14]), we have the following

Proposition 3.2 In semi-metric geometry, with B simply connected and θ = 0, the curl free
part of Qk , expressed as φ,k for some scalar function φ, and the divergence free part of Qk ,
characterized by the vector field qi as above, uniquely correspond to ζ = 0 and ζ = 0,
respectively.

The concept of non-metricity, as well as its semi-metric form (in fact, with vanishing
torsion), was introduced by Hermann Weyl [38, pp. 121–125] in an attempt to unify gravity
with electromagnetism. The semi-metric form of non-metricity preserves the ratio of the
magnitude of two vectors during parallel transport along a curve. Indeed (cf. [32]), let u =
giju

iuj and v = gij v
ivj be the squared lengths of two tangent vectors at any point on a

curve C. Then, upon parallel transport along an infinitesimal sector dCk , the changes in u

and v, by (19), are given by 	u = −uQk dCk and 	v = −vQk dCk , respectively. Hence,

	

(
u

v

)
= 	u

v
− u

v2
	v = −

(
u

v
− u

v

)
Qk dCk = 0. (45)
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Semi-metric geometry, with Qi = φ,i , has been used by Miri and Rivier [26] and more
recently by Yavari and Goriely [41, 43] to model isotropic metric anomalies in the context
of a distribution of spherically symmetric point defects. It is clear from Proposition 3.2 that,
with θ = ζ = 0, the semi-metric model can represent only isotropic metric anomalies. In this
context, the scope of quasi-plastic strain model discussed previously is larger and physically
amenable in representing anisotropic metric anomalies.

3.3 Quasi-plastic Deformation

The auxiliary material space (B,L, ḡ), defined in Sect. 3.1, inherits the affine connection
L (with zero curvature) from the material space (B,L,g) but has a different metric field
ḡ such that its non-metricity vanishes identically, i.e., ∇kḡij = 0. With both curvature and
non-metricity identically zero, the auxiliary material space can still have non-trivial torsion.
Therefore (B,L, ḡ) can support only dislocations as possible sources of inhomogeneity. In
this scenario, according to a classical result in differential geometry (cf. [30, Theorem 2.1]),
there exists a sufficiently smooth invertible tensor field H̄ := H̄ijG

i ⊗Gj over B such that

L
p

ij = (
H̄−1

)pl
H̄li,j and (46a)

ḡ = H̄
T
H̄ . (46b)

The auxiliary metric ḡ is positive definite by construction. We assume det H̄ > 0. The tensor
H̄ maps the tangent spaces of the auxiliary material space to the tangent spaces of the current
configuration κt (B) ⊂ E

3 (see Fig. 6). Here, E3 denotes the 3-dimensional Euclidean point
space.

Fig. 6 Mappings between the
tangent spaces of various
configurations and spaces
associated with the material
manifold B, see Sect. 3.3 for
details
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We assume that there exists a sufficiently smooth tensor field in InvLin+, Q := Qi
jGi ⊗

Gj , over B which maps the tangent spaces of the material space to the tangent spaces of the
auxiliary material space, such that

g = QT ḡQ. (47)

The tensor Q is the third representation of metric anomalies discussed in this paper. We
call it quasi-plastic deformation for reasons that will be discussed below. The preceding
assumption is tantamount to the existence of a well-defined material uniformity field and a
crystallographic basis field over the material space. Indeed, substituting (46b) in (47) allows
us to write material metric as

g = H T H , (48)

where H = H̄Q is a sufficiently smooth tensor field in InvLin+ which maps the tangent
spaces of the material space to the tangent spaces of the current configuration of the body
(see Fig. 6). Consider a fixed reference configuration κr(B) ⊂ E

3 and let F ∈ InvLin+ be
the deformation gradient tensor which maps tangent spaces in κr to those in κt (see Fig. 6).
The field h ∈ Sym+ introduced in Sect. 2.1 is of the form F T F . Recalling the discussion in
Sect. 2.1, and using (48), we can construct a well-defined smooth material uniformity field
K ∈ InvLin+ such that (see Fig. 6)

H = FK. (49)

The tensors H and K are conventionally called the elastic and the plastic deformation tensor,
respectively. The tensors H and K−1 are usually denoted as F e and F p , respectively, in the
plasticity literature. With the above mappings in place, we can define an auxiliary plastic
deformation tensor K̄ ∈ InvLin+ such that H̄ = FK̄ . The multiplicative decomposition

K = K̄Q (50)

of the plastic deformation tensor follows immediately (see Fig. 6). With the existence of
Q we can also construct an unambiguous crystallographic vector field gi = HGi such that
gij = gi ·gj .

The motivation for introducing Q is clear from the multiplicative decompositions (49)
and (50). Consider the case when the material space (B,L,g) has only metric anomalies and
is therefore free of dislocations. Then, the auxiliary material space (B,L, ḡ) is free of any
inhomogeneity, and will be a connected subset of E3. We can identify it with the reference
configuration κr , i.e., K̄ = I and H̄ = F identically over the whole domain. The tensor Q
then determines the plastic distortion K , hence the terminology quasi-plastic deformation.
On the other hand, when the material space is dislocated and also has metric anomalies, the
components of the torsion tensor can be calculated from (46a) as

Tij
p = (

H̄−1
)pl

H̄l[i,j ]. (51)

It is clear that the information about dislocation density in the material space is contained
only in the incompatibility of H̄ (or equivalently of K̄). The tensor Q can then be un-
derstood to contain information about the metric anomalies, as described in the following
paragraph. The proposed framework can be seen as a generalization of a version of the fun-
damental theorem of Riemannian geometry in the context of continuum theory of material
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defects, as stated and proved in Roychowdhury and Gupta [30, Theorem 2.1], by includ-
ing metric anomalies into consideration. In the absence of non-metricity we recover Theo-
rem 2.1 in [30].

Combining equations ∇kḡij = 0 and Qkij = −∇kgij with (47), it is straightforward to
relate the non-metricity tensor of the material space to the quasi-plastic deformation tensor
as

Qkij = 2
[
(∇kQip)

(
Q−1

)p
j

]
(ij)

, (52)

where Qij := gipQp
j . However, the quasi-plastic deformation Q cannot be an arbitrary

tensor. According to the third Bianchi-Padova relation (26d), it has to necessarily satisfy the
following second order non-linear PDE in order to conform to the vanishing of θ and ζ :

[(∇[m∇k]Q−1
ip

)
Qp

j + (∇[mQp |i|
)∇k](Qjp)−1 − Tmk

p(∇pQiq )
(
Q−1

)q
j

]
(ij)

= 0. (53)

This equation has been obtained by substituting (52) into (26d) and imposing Rijp
q = 0. The

indices enclosed within the vertical bars | · | are exempt from any symmetrization or anti-
symmetrization operation. We should emphasize that a description of metric anomalies in
terms of the quasi-plastic deformation tensor Q is an alternative model for irrotational met-
ric anomalies in crystalline solids as proposed in Sect. 3.1. While the present representation
allows us to obtain elegant multiplicative decompositions of total and plastic deformations,
it comes at the cost of satisfying conditions (53). The quasi-plastic strain model in Sect. 3.1
is free from such constraints but provides no basis for multiplicative decompositions. Both
of these representations can be used to model anisotropic metric anomalies. By comparing
(47) with an equation for ḡ in Proposition 3.1, we can obtain a relation between Q and q:

Q−T gQ−1 = g − 2q. (54)

For a given q these provide only six (nonlinear) equations to be solved for Q. This is il-
lustrated clearly in the linearized setting of Remark 3.3 below. In the absence of metric
anomalies it is reasonable to take q = 0 (so that ḡ is identical to g) and Q = I (so that the
auxiliary material space is identical to the material space).

A multiplicative decomposition framework, such as that provided by Equations (49)
and (50), is useful for analytical and numerical studies of displacement boundary-value-
problems of inhomogeneous solids. Our purpose is to provide a rigorous setting in which
such a decomposition can be justified in the presence of metric anomalies. Moreover, repre-
sentation of metric anomalies by Q allows us to take into account more general distortional
defect densities such as those arising in a distribution of point stacking faults [20, 21].

We summarize the above discussion in the following

Proposition 3.3 If the non-metricity Q is given in terms of the quasi-plastic deformation
Q by (52) such that (53) is satisfied in order to conform to distant material parallelism,
i.e., θ = ζ = 0, then there exist multiplicative decompositions (49) and (50) of the total
deformation gradient into an elastic and a plastic part, and further of the plastic part into a
term which relates to dislocations and other to metric anomalies.

Remark 3.3 (Linearization of Quasi-plastic Deformation) Consider the linearizations

Q≈ I + q̂ + w and (55a)

g ≈ I + 2ε, (55b)
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where q̂ ∈ Sym, w ∈ Skw and ε ∈ Sym such that they are all of the same order. Also assume
the quasi-plastic strain q to be infinitesimally small of the order of q̂ . Substituting the above
approximations into (54), and collecting the leading order terms, we can identify q̂ with q .
The tensor w is left undetermined. The two frameworks therefore coincide in a linearized
formulation.

Remark 3.4 (Anisotropic Distribution of Point Defects) In the introduction, we referred to
certain clusters of point defects in crystals which form exotic shapes in their stable equi-
librium configurations (Figs. 1 and 2). A continuous distribution of such anisotropic point
defects can be represented in terms of quasi-plastic deformation tensor Q for a suitable
symmetry class. The symmetry class of Q corresponds to the structural symmetries of the
shape of the point defect clusters distributed throughout the body; it is the point symmetry
group of each clusters in E

3. For example, for the case of split-interstitials (as shown in
Fig. 1), each cluster is transversely isotropic with axis along the dumbbell. We can read off
the transversely isotropic representation form for Q from the table provided in Sect. 4 of
Lokhin and Sedov [24]. This table contains forms of various invariant tensors for all the
crystal symmetry classes. If the transverse isotropy axis field is given by k(X), then Q

has the representation Q = A(X)Gi ⊗ Gi + B(X)k ⊗ k in terms of the two scalar fields
A(X) and B(X) and the unit vector field k(X). Note that the scalar field B(X) captures the
anisotropic part of Q.

Remark 3.5 (Anisotropic Thermal Deformation) Thermal deformation can be modelled as
metric anomalies in the material manifold [19]. For modelling thermal deformation, the
appropriate form of quasi-plastic deformation is Q = Λ	T , where Λ is the symmetric
tensorial coefficient of thermal expansion and 	T is the temperature change. Anisotropic
deformation is characterized by appropriate forms of Λ chosen from the table provided in
Lokhin and Sedov [24] for the specific symmetry class under consideration.

4 Stress-Free Distribution of Metric Anomalies

By alternating various indices in the definition (14) of the non-metricity tensor, the coeffi-
cients of the material connection can be written as [31]

L
p

ij = Γ
p

ij + Wij
p, (56)

where

Γ
p

ij := 1

2
gpn(gni,j + gnj,i − gij,n), (57a)

Wij
p := Cij

p + Mij
p, (57b)

Cij
p := gpk(−Tikj + Tkji − Tjik), (57c)

Mij
p := 1

2
gpk(Qikj − Qkji + Qjik) and (57d)

Tijp := Tij
kgkp . The functions Γ

p

ij are the coefficients of the Levi-Civita connection of the
metric gij , whereas the functions Cij

p form the components of the contortion tensor [27]. It
is straightforward to derive the following identity relating the purely covariant components
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Rijpl and Kijpl of the Riemann-Christoffel curvatures of the material connection L
p

ij and the
Levi-Civita connection Γ

p

ij , respectively (cf. [31, Part III, Sect. 4]):

Rijpl = Kijpl + 2∇[iWj ]pl + 2W[j |p|mQi]ml − 2W[i|ml|Wj ]pm + 2Tij
mWmpl (58)

or equivalently

Rijpl = Kijpl + 2∂[iWj ]pl + 2W[i|ml|Wj ]pm, (59)

where Wijp := Wij
kgkp ; ∂ denotes covariant differentiation with respect to the Levi-Civita

connection Γ
p

ij . The skew part of (59) (or (58)) with respect to indices pl yields the third
Bianchi-Padova identity (26d) (recall that Kij [pl] = 0 by definition). The symmetric part,
on the other hand, provides a system of non-linear PDEs for the material metric gij , given
various material inhomogeneity measures in terms of material curvature Rijp

q , material tor-
sion Tij

p and material non-metricity Qkij . In fact, in the absence of inhomogeneities, (59) is
reduced to Kijpl = 0 which, provided that B is simply connected, yields the classical fun-
damental theorem of Riemannian geometry, i.e., there exists a sufficiently smooth diffeo-
morphism χ : B → R

3 such that g = (Gradχ)T Gradχ . Here Grad denotes the covariant
differentiation with respect to the Levi-Civita connection of the Euclidean metric Gij .

In order to formulate the boundary value problem for the internal stress field in the
body due to a distribution of material inhomogeneities, the above discussion leads us to
the important interpretation of the material metric g in terms of the elastic strain tensor
E := 1

2 (g − I ). Consequently, the curvature Kijpl can be identified with the incompatibility
of the elastic strain field Eij . Vanishing of Kijpl in the absence of material inhomogeneities
in a simply connected body results in the existence of an elastic deformation field χ such
that E = 1

2 ((Gradχ)T Gradχ − I ) [8, 19].6 Hence, the symmetric part of (59) (or (58))
with respect to indices pl, along with the equilibrium equations which arise from the classi-
cal minimization problem of the functional

∫
B W(I + 2E)dV over a suitable solution class

of functions E (equivalently g) compatible with the boundary data, constitute the boundary
value problem for internal stress field generated by a given distribution of material inhomo-
geneities [19].

Under the assumption of absolute distant material parallelism, i.e., Rijpl = 0, and zero
dislocation density, i.e., Tij

p = 0, (59) yields

0 = Kijpl + 2∂[iMj ]pl + 2M[i|ml|Mj ]pm. (60)

In absence of metric anomalies, i.e., Mijk = 0, Kijpl = 0, which would imply a vanishing
internal stress field if there are no external sources of stress. The contrary however is not
true. We can have a non-trivial distribution of metric anomalies which lead to Kijpl = 0. In
rest of this section our aim is to obtain the general form of the non-metricity tensor Qkij ,
which when substituted into (60) gives Kijpl = 0, under the assumption that both elastic
strain Eij and Qkij are small and are of the same order. Under such an assumption, with
Kijpl = 0, (60) can be linearized to obtain

∂iMjpl − ∂jMipl = 0 (61)

with Mj(pl) = 2Qjpl and Mj [pl] = Q[pl]j . Taking the symmetric part of (61) with respect
to pl, we obtain

∂iQjpl − ∂jQipl = 0. (62)

6Recall, from our discussion of quasi-plastic deformation in the last section, the tensor H which is now
identified with Gradχ in the absence of material inhomogeneities.
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The torsion and curvature corresponding to both the connections L
p

ij and Γ
p

ij are identi-
cally zero. The last equation then implies, from Poincaré lemma, assuming B to be simply
connected, that there exists a symmetric matrix field [Spl] over B such that

Qipl = ∂iSpl. (63)

On the other hand, the skew part of (61) with respect to pl, i.e., ∂iQ[pl]j −∂jQ[pl]i = 0, after
substituting from (63), yields

∂i∂pSlj − ∂j ∂pSli − ∂i∂lSpj + ∂j ∂lSpi = 0. (64)

This relation implies that there exists a sufficiently smooth vector field Al over B, such that

Spl = ∂(pAl). (65)

Hence,

Qipl = ∂i∂(pAl) (66)

is the most general form of stress-free distribution of metric anomalies under the assump-
tions made above. We summarize the result as

Proposition 4.1 In absence of dislocations and disclinations in a simply connected material
body B, if the elastic strain and non-metricity tensor are assumed to be small and of the same
order, then there exists a sufficiently smooth vector field Aj over B such that the stress-free
distribution of metric anomalies is given by Qkij = ∂k∂(iAj).

5 Concluding Remarks

Metric anomalies in a materially uniform simple elastic solid, in general, give rise to a dis-
tribution of metrical disclinations which requires the inner product of tangent vectors in
the material space to be path dependent. For an unambiguous definition of crystallinity at
all points in a crystalline elastic solid absolute distant parallelism must be maintained and
curvature anomalies (disclinations) should disappear. With this geometrical viewpoint, met-
ric anomalies in a materially uniform elastic crystalline solid have to be irrotational. Weyl
geometry furnishes an isotropic non-metricity field under the assumption of irrotationality
and is hence insufficient to represent anisotropic metric anomalies. The quasi-plastic strain
formulation is sufficiently general but provides no basis for a multiplicative decomposition
of the deformation gradient. The quasi-plastic deformation framework, as introduced in this
article, overcomes this shortcoming but only at the cost of satisfying additional equations.
It allows for a multiplicative decomposition of the material uniformity field (plastic deforma-
tion tensor) into a deformation tensor, due to dislocation distribution, and the quasi-plastic
deformation tensor which represents the non-metricity in the material space. The present
work can be used to understand the geometrical nature of a wide variety of anisotropic
metric anomalies as they may appear in a distribution of point defects, anisotropic thermoe-
lasticity, anisotropic biological growth, etc. We defer detailed applications of our framework
to a future work.



Non-metric Connection and Metric Anomalies. . . 25

References

1. Anthony, K.H.: Die theorie der disklinationen. Arch. Ration. Mech. Anal. 39, 43–88 (1970)
2. Anthony, K.H.: Nonmetric connexions, quasidislocations, and quasidisclinations: A contribution to the

theory of non-mechanical stresses in crystals. In: Simmons, J.A., Bullough, R. (eds.) Fundamental As-
pects of Dislocation Theory, vol. 1. Nat. Bur. Stand. (U.S.) Spec. Publ., vol. 317, pp. 637–649 (1970)

3. Anthony, K.H.: Die theorie der nichtmetrischen Spannungen in Kristallen. Arch. Ration. Mech. Anal.
40, 50–78 (1971)

4. Anthony, K.H.: Crystal disclinations versus continuum theory. Solid State Phenom. 87, 15–46 (2002)
5. Barron, T.H.K.: Generalized theory of thermal expansion of solids. In: Ho, C.Y. (ed.) Thermal Expansion

of Solids, pp. 1–105. ASM International, Materials Park (1998)
6. Bilby, B.A., Bullough, R.M., Smith, E.: Continuous distributions of dislocations: A new application of

the methods of non–Riemannian geometry. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 231, 263–273
(1955)

7. Bilby, B.A., Gardner, L.R.T., Grinberg, A., Zorawski, M.: Continuous distributions of dislocations. VI.
Non-metric connexions. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 292, 105–121 (1966)

8. de Wit, R.: A view of the relation between the continuum theory of lattice defects and non-Euclidean
geometry in the linear approximation. Int. J. Eng. Sci. 19, 1475–1506 (1981)

9. Epstein, M., de León, M.: Homogeneity without uniformity: Towards a mathematical theory of function-
ally graded materials. Int. J. Solids Struct. 37, 7577–7591 (2000)

10. Epstein, M., Elzanowski, M.: Material Inhomogeneities and Their Evolution, a Geometric Approach.
Springer, Berlin (2007)

11. Eshelby, J.D.: Point defects. In: Hirsch, P.B. (ed.) The Physics of Metals—Sir Nevill Mott 60th Anniver-
sary Volume, pp. 1–42. Cambridge University Press, Cambridge (1975)

12. Falk, F.: Theory of elasticity of coherent inclusions by means of non-metric geometry. J. Elast. 11, 359–
372 (1981)

13. Günther, H., Zorawski, M.: On geometry of point defects and dislocations. Ann. Phys. 46, 41–46 (1985)
14. Hehl, F.W., McCrea, J.D., Mielkeand, E.W., Ne’eman, Y.: Metric-affine gauge theory of gravity: Field

equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171
(1995)

15. Kiritani, M.: Similarity and difference between fcc, bcc and hcp metals from the view point of point
defect cluster formation. J. Nucl. Mater. 276, 41–49 (2000)

16. Kiritani, M., Satoh, Y., Kizuka, Y., Arakawa, K., Ogasawara, Y., Arai, S., Shimomura, Y.: Anomalous
production of vacancy clusters and the possibility of plastic deformation of crystalline metals without
dislocations. Philos. Mag. Lett. 79, 797–804 (1999)

17. Kohler, C.: Line defects in solid continua and point particles in (2 + 1)-dimensional gravity. Class.
Quantum Gravity 12, 2977–2993 (1995)

18. Kondo, K.: On the geometrical and physical foundations of the theory of yielding. In: Proceedings of the
2nd Japan National Congress for Applied Mechanics, Tokyo, pp. 41–47 (1953)

19. Kröner, E.: Continuum theory of defects. In: Balian, R., et al. (eds.) Les Houches, Session XXXV,
1980—Physique des défauts, pp. 215–315. North-Holland, New York (1981)

20. Kröner, E.: The differential geometry of elementary point and line defects in Bravais crystals. Int. J.
Theor. Phys. 29, 1219–1237 (1990)

21. Kröner, E.: Crystal lattice defects and differential geometry. J. Mech. Behav. Mater. 5, 233–246 (1994)
22. Lax, P.D.: Linear Algebra and Its Applications. Wiley, New Jersey (2007)
23. Lewy, H.: An example of a smooth linear partial differential equation without solution. Ann. Math. 66,

155–158 (1957)
24. Lokhin, V.V., Sedov, L.I.: Nonlinear tensor functions of several tensor arguments. J. Appl. Math. Mech.

27, 597–629 (1963)
25. Mardare, S.: The fundamental theorem of surface theory for surfaces with little regularity. J. Elast. 73,

251–290 (2003)
26. Miri, M., Rivier, N.: Continuum elasticity with topological defects, including dislocations and extra-

matter. J. Phys. A, Math. Gen. 35, 1727–1739 (2002)
27. Noll, W.: Materially uniform bodies with inhomogeneities. Arch. Ration. Mech. Anal. 27, 1–32 (1967)
28. Povstenko, Y.Z.: Connection between non-metric differential geometry and mathematical theory of im-

perfections. Int. J. Eng. Sci. 29, 37–46 (1991)
29. Rellich, F.: Perturbation Theory of Eigenvalue Problems. Gordon & Breach, New York (1969)
30. Roychowdhury, A., Gupta, A.: Material homogeneity and strain compatibility in thin elastic shells. Math.

Mech. Solids (2015). doi:10.1177/1081286515599438
31. Schouten, J.A.: Ricci-Calculus, an Introduction to Tensor Analysis and Its Geometrical Applications.

Springer, Berlin (1954)

http://dx.doi.org/10.1177/1081286515599438


26 A. Roychowdhury, A. Gupta

32. Steinmann, P.: Geometrical Foundations of Continuum Mechanics, an Application to First- and Second-
Order Elasticity and Elasto-Plasticity. Springer, Berlin (2015)

33. Talvacchia, J.C.: Prescribing the curvature of a principal bundle connection. Ph.D. thesis, University
of Pennsylvania (1989). Dissertations available from ProQuest. Paper AAI9004831. http://repository.
upenn.edu/dissertations/AAI9004831

34. Vineyard, G.H.: General introduction. Discuss. Faraday Soc. 31, 7–23 (1961)
35. Volterra, V.: Sur l’équilibre des corps élastiques multiplement connexes. Ann. Sci. Éc. Norm. Super. 24,

401–517 (1907)
36. Wang, C.-C.: On the geometric structure of simple bodies, a mathematical foundation for the theory of

continuous distributions of dislocations. Arch. Ration. Mech. Anal. 27, 33–94 (1967)
37. Weingarten, G.: Sulle superfici di discontinuità nella teoria della elasticità dei corpi solidi. Rend. R.

Accad. Naz. Lincei 10, 57–60 (1901)
38. Weyl, H.: Space-Time-Matter. Dover, New York (1952)
39. Yavari, A.: A geometric theory of growth mechanics. J. Nonlinear Sci. 20, 781–830 (2010)
40. Yavari, A.: Compatibility equations of nonlinear elasticity for non-simply-connected bodies. Arch. Ra-

tion. Mech. Anal. 209, 237–253 (2013)
41. Yavari, A., Goriely, A.: Weyl geometry and the nonlinear mechanics of distributed point defects. Proc.

R. Soc. Lond. Ser. A, Math. Phys. Sci. 468, 3902–3922 (2012)
42. Yavari, A., Goriely, A.: The geometry of discombinations and its applications to semi-inverse problems

in anelasticity. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 470, 20140403 (2014)
43. Yavari, A., Goriely, A.: Non-metricity and the nonlinear mechanics of distributed point defects. In:

Knops, R.J., Chen, G.Q., Grinfeld, M. (eds.) Differential Geometry and Continuum Mechanics. Springer
Proceedings in Mathematics and Statistics (2014)

44. Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin
(1997)

http://repository.upenn.edu/dissertations/AAI9004831
http://repository.upenn.edu/dissertations/AAI9004831

	Non-metric Connection and Metric Anomalies in Materially Uniform Elastic Solids
	Abstract
	Introduction
	Material Response Function and Associated Geometric Constructions
	Material Uniformity
	Material G-Structure, Material Connection and Material Metric
	The Material Space

	Material Torsion Tensor
	Torsion Inhomogeneities

	Material Curvature Tensor
	Decomposition of the Curvature Tensor
	Curvature Inhomogeneities

	Material Non-metricity Tensor
	Unambiguous Deﬁnition of a Metric Tensor Field
	Parallel Transport of the Inner Product and Its Path Dependence
	Non-metric Inhomogeneities

	Compatibility of the Geometric Objects in Material Space
	Conservation of Material Inhomogeneities


	Representation of Metric Anomalies
	Irrotational Metric Anomalies
	Quasi-plastic Strain

	Semi-metric Geometry
	Quasi-plastic Deformation

	Stress-Free Distribution of Metric Anomalies
	Concluding Remarks
	References


