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Abstract The non-homogeneous Föppl-von Kármán equations for growing thin elastic
shallow shells are revisited by deriving the inhomogeneity source terms directly from the
non-metricity tensor associated with growth. This is in contrast with the existing litera-
ture where the source terms are obtained using the extensional and curvature growth strains
after exploiting the additive decomposition of the total strain into its elastic and growth
counterpart. Our framework not only establishes the additive decomposition but provides an
unambiguous illustration of the geometric nature of growth in terms of a genuine material
inhomogeneity measure given by the non-metricity tensor.
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1 Introduction

The stress and the deformation fields associated with a growing thin elastic shallow shell,
such as a leaf or a flower petal [7, 8], can be determined by solving the non-homogeneous
Föppl-von Kármán equations [6, 9]

�2Φ + E

2
[w,w] = −E

(
λg − 1

2

[
w0,w0

])
and (1a)

D�2w − [w,Φ] = −D
(
Ωg − �2w0

)
, (1b)

where Φ(θα) is the Airy stress function which determines the equilibrated stress field
through σαβ = eαμeβνΦ,μν , with e11 = e22 = 0, e12 = −e21 = 1, {θ1, θ2} ∈ R

2 is the sur-
face parametrization, and the subscript comma denotes ordinary spatial derivative with re-
spect to θα ; �2 is the biharmonic operator on R

2, defined as �2f = �(f,11 + f,22) =
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f,1111 + 2f,1122 + f,2222, and [·, ·] is the Monge-Ampère bracket, defined by [f,g] =
eαβeμνf,αμg,βν = f,11g,22 + f,22g,11 − 2f,12g,12, for sufficiently differentiable real-valued
functions f and g; w(θα) and w0(θα) are the height functions associated with the mid-
surface of the deformed and the reference shape, respectively (in fact, with w0(θα) = 0 we
recover the corresponding plate equations); E = E�h is the two-dimensional (2D) Young’s
modulus and D = E�h3/(12(1 − ν2)) is the bending modulus, where E� and ν are the
Young’s modulus and Poisson’s ratio, respectively, of the homogeneous, isotropic, linear
elastic material of the underlying three-dimensional (3D) shell, of constant thickness h,
which is being approximated by the 2D shell theory; further details on the notation are
given in the subsequent section. Here, and elsewhere, the fields are assumed to be suffi-
ciently differentiable as required. The source terms λg and Ωg contain information regard-
ing the growth of the elastic shell; they are related to growth strain fields, given in terms of
an extensional growth strain E

g

αβ and a bending growth strain Λ
g

αβ , as [6, 9, 13]

λg = eαβeμλE
g

αμ,βλ = E
g

11,22 + E
g

22,11 − 2E
g

12,12 and (2a)

Ωg = (
νδμνδαβ + (1 − ν)δμαδνβ

)
Λ

g

μν,αβ . (2b)

Equations (1a)–(1b), with source terms given by (2a)–(2b), were first derived by Mansfield
[9] (in the context of thermal strains) from the classical (compatible) Föppl-von Kármán
shallow shell theory [4] under appropriately scaled additive decompositions of the (com-
patible) total extensional and bending strains into (individually incompatible) elastic and
growth counterparts. The same equations were later obtained by Lewicka et al. [6] as the
Euler-Lagrange equations of an appropriate Γ -limit of the elastic energy functional of a
“thin” three-dimensional (3D) incompatible elastic body as its thickness goes to zero, un-
der appropriate scalings of the incompatible extensional and curvature growth strains that
constitute the incompatible strain field of the underlying 3D body.

In this research note we interpret λg and Ωg directly in terms of the material non-
metricity tensor field Q of the materially inhomogeneous shell without invoking the notion
of growth strains Eg and Λg . We derive

λg = 1

2
eαμeβνQαμβ,ν and (3a)

Ωg = −1

2

(
νQ3αα,ββ + (1 − ν)Q3αβ,αβ

)
, (3b)

where Qμαβ and Q3αβ are the only non-metricity components which make their appearance
due to the underlying Kirchhoff-Love kinematics. Recall that, for a non-Riemannian (geo-
metric) material space, a non-zero non-metricity tensor leads to non-preservation of the inner
product between the tangent vectors during parallel transport along material curves [12, 13].
Such geometric spaces have been the basis for a unified continuum theory of distributed
metric anomalies such as biological growth, thermal deformation, distributed point defects
[1, 5]. There have also been alternative proposals for constructing a geometric theory of
growth in shells [14]. As we shall argue, expressing growth in terms of non-metricity ten-
sor, which is a genuine invariant measure of material inhomogeneity (in addition to tor-
sion and curvature), yields an unambiguous geometrical characterization of the underlying
growth. Secondly, the notion of non-metricity is more general than that of growth strains,
since the form of the latter depends on the assumed shell kinematics; for instance, we will
need additional strain measures to deal with higher-order shell theories, but growth from the
standpoint of non-metricity will remain unchanged.
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Fig. 1 Various configurations of the mid-surface of the shell

2 Non-Riemannian Geometry of the Natural Configuration

Let ω, representing the mid-surface of the shell, be a 2D simply connected bounded man-
ifold, with piecewise smooth boundary ∂ω, homeomorphic to a closed disc in R

2. Let
B = ω × [−h/2, h/2] ⊂ R

3, for some real constant h > 0, be the cylindrical closed neigh-
borhood of ω, representing the sufficiently thin 3D shell. The sufficient thinness of the shell
is understood in terms of the relation ε = (h/L) � 1, where L is a characteristic linear
dimension of the mid-surface, e.g., the minimum wavelength of the deformation pattern
on ω for all deformations under consideration [4]. Let θα be the natural coordinate system
on ω, and let ζ be the transverse coordinate along the thickness direction. We use small
case Greek indices α,β,μ . . ., etc., to take values from the set {1,2} and small case Roman
indices i, j, k . . . etc., from the set {1,2,3}.

In Fig. 1, various configurations and strain fields of the shallow elastic shell are illustrated
describing the kinematics of the mid-surface. The pairs (Aαβ,Bαβ) and (Âαβ, B̂αβ), belong-
ing to S+

2 × S2, where S2 and S+
2 are the sets of symmetric and symmetric positive-definite

2 × 2 matrices on R
2, denote the first and the second fundamental forms of the reference

configuration R(ω) ⊂ R
3 and the current configuration R̂(ω) ⊂ R

3 of the mid-surface, re-
spectively. They satisfy the Gauss and Codazzi-Mainardi equations [13]

K1212 + [
B11B22 − B2

12

] = 0, −∂2B11 + ∂1B12 = 0, −∂2B21 + ∂1B22 = 0; (4a)
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Fig. 2 (a) The change in angle between two tangent vectors u and v, during parallel transportation along a
surface curve, due to non-zero Qμαβ . (b) The change in angle between two tangent vectors u and v, during
parallel transportation along a normal curve, due to non-zero Q3ij . (c) The change in length of a transverse
vector, during parallel transportation along a surface curve, due to non-zero Qμi3

K̂1212 + [
B̂11B̂22 − B̂2

12

] = 0, −∂̂2B̂11 + ∂̂1B̂12 = 0, −∂̂2B̂21 + ∂̂1B̂22 = 0, (4b)

where K1212 and K̂1212 are the Riemann-Christoffel curvatures associated with the metrics
Aαβ and Âαβ , respectively; ∂ and ∂̂ denote the covariant derivatives with respect to the
induced Levi-Civita connections Γ

μ

αβ and Γ̂
μ

αβ , respectively.
The local neighborhoods of the current configuration are relaxed through the elastic ex-

tensional strain field Ee
αβ and elastic curvature strain field Λe

αβ , the energetic duals of the

stress σ and the bending moment M , respectively, so that the functions aαβ = Âαβ − 2Ee
αβ

and bαβ = B̂αβ + Λe
αβ constitute the natural first fundamental form and the natural second

fundamental form, respectively, of the relaxed or natural (stress-free, moment-free) configu-
ration of the material surface. Unlike the reference and the current configuration, the natural
configuration, in general, cannot be realized as a connected isometric embedding of the mid-
surface ω in R

3 as a whole, and, as a result, the natural fundamental forms will not satisfy
the conventional Gauss and Codazzi-Mainardi equations. However, the natural configuration
can be realized as an appropriate 2D projection of an isometric embedding χ : B → M

3 in a
hypothetical 3D non-Riemannian space M

3 equipped with an inner product 〈·, ·〉 and a ma-
terial connection L [5]. Let g be the induced non-Riemannian metric on B coming from this
embedding, with components gij with respect to the natural coordinates (θα, ζ ). We assume
that the material connection L has vanishing torsion and Riemann-Christoffel curvature ten-
sors (hence, no dislocations and disclinations). The essential non-Riemannian nature of the
material surface is encoded in the third-order non-metricity tensor Q̃ with covariant compo-
nents Q̃kij = −gij ;k , where the subscript semicolon represents the covariant derivative with
respect to the material connection L [12]. The non-metricity tensor field Q = Q̃|χ(ω) on the
natural configuration χ(ω), with covariant components Qkij = Q̃kij (θ

α, ζ = 0), measures
the non-metricity on the mid-surface ω.

The geometrical meaning of Qijk , as a source for the non-preservation of the inner prod-
uct of tangent vectors (with respect to g) under parallel transport (with respect to L), is
illustrated in Fig. 2. In particular, considering u1A1 and v2A2 as two fixed orthogonal vec-
tors at a point θα ∈ ω, Q111 would change the length of u1A1 under its parallel transport
along θ1-direction; Q222 would change the length of v2A2 under its parallel transport along
θ2-direction; Q122 would change the length of v2A2 under its parallel transport along θ1-
direction (Q211 vice-versa); Q121(= Q112) would change the angle between u1A1 and v2A2

under their parallel transport along θ1-direction; Q212(= Q221) would similarly change the
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angle under their parallel transport along θ2-direction; Q311 would change the length of
u1A1 under its parallel transport along ζ -direction; Q322 would change the length of v2A2

under its parallel transport along ζ -direction; and finally Q312(= Q321) would change the
angle between u1A1 and v2A2 under their parallel transport along ζ -direction.

The natural fundamental form pair (aαβ, bαβ) ∈ S+
2 × S2 satisfy the so-called incompati-

ble Gauss and Codazzi-Mainardi equations [13]

k1212 + [
b11b22 − b2

12

] = I1, −∇2b11 + ∇1b12 = I2, −∇2b21 + ∇1b22 = I3, (5)

where

I1 = −2∇[1M2]12 + 2b1[1M2]32 + 2b2[1M2]13 − 2M[1|α2|Mα
2]1 − 2M[1|32|M3

2]1, (6a)

I2 = −2∇[1M2]13 + 2b1[1M2]33 − 2b
ρ

[1M2]1ρ − 2M[1|α3|Mα
2]1 − 2M[1|33|M3

2]1, (6b)

I3 = −2∇[1M2]23 + 2b2[1M2]33 − 2b
ρ

[1M2]2ρ − 2M[1|α3|Mα
2]2 − 2M[1|33|M3

2]2, (6c)

are the incompatibility measures;1 k1212 is the Gaussian curvature of the material metric
aαβ , and ∇ denotes covariant derivative with respect to the Levi-Civita connection s

μ

αβ in-
duced by aαβ . The functions Mijk(θ

α) are obtained by restricting the metric anomaly ten-
sor M̃ijk(θ

i) = (1/2)(Q̃ikj − Q̃kji + Q̃jik) on ω, i.e., Mkij (θ
α) = M̃kij (θ

α, ζ = 0). Also,
M̃k

ij = gkpM̃ijp , with [gij ] = [gij ]−1, where the components of the material metric gij on the
embedded image χ(B) ⊂ M

3 are defined as

gαβ = 〈χ ,α,χ ,β〉 = aαβ − 2ζbαβ + ζ 2cαβ, (7a)

gα3 = g3α = 〈χ ,α,χ ,3〉 = 0, and (7b)

g33 = 〈χ̂ ,3, χ̂ ,3〉 = 1 (7c)

in terms of the natural fundamental forms in accordance with the Kirchhoff-Love kinemati-
cal assumptions. Here, cαβ = aμνbαμbβν is the third fundamental form of the natural config-
uration. The components M̃i

jk measure the difference between the material connection and

the Levi-Civita connection induced by the material metric, M̃i
jk = Li

jk − si
jk [12].

3 The Auxiliary Material Space and the Specification of Growth

The non-metricity tensor Q̃ijk , in the absence of dislocations and disclinations, necessarily
satisfies the Bianchi-Padova relation [12]

Q̃[j |kl|;i] = (
Q̃jkl,i + L

p

jkQ̃ipl + L
p

jlQ̃ipk

)
[j i] = 0. (8)

In the above expression, a square bracket in the subscript is used to denote anti-
symmetrization with respect to the enclosed indices while the two vertical bars are used
to contain the indices which are to be exempted from anti-symmetrization. This conserva-
tion law ensures that the inner product is preserved under parallel transport along loops in

1The incompatibility measures written here are corrected version of the Eqs. (59)–(62) in [13].
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the material space with respect to the material connection L. It can be shown, by direct
substitution, that a non-trivial solution of (8) is given by

Q̃kij = −2q̃ij ;k, (9)

where q̃ij = q̃j i are arbitrary, sufficiently differentiable, functions over B [12]. It is a con-
sequence of the fundamental existence theorem of linear systems of first-order partial dif-
ferential equations that if the matrix field gij − 2q̃ij is positive-definite for symmetric q̃ij ,
then (9) is the only solution to (8) [12]. As a corollary of this result, we can introduce a
symmetric positive-definite tensor with components ḡij = gij − 2q̃ij , which can serve as a
metric, termed the auxiliary material metric, compatible with the material connection L,
i.e., ḡij ;k = 0.

In the absence of torsional and curvature anomalies, the auxiliary material metric ḡij

naturally introduces an auxiliary material space (B,L, ḡ) equipped with the material con-
nection L compatible with the auxiliary material metric ḡ. As a consequence of the funda-
mental theorem of Riemannian geometry, the space (B,L, ḡ) can be realized as an isometric
embedding χ̄ : B →R

3 in R
3, with an inner product ·, such that

ḡαβ = χ̄ ,α · χ̄ ,β = āαβ − 2ζ b̄αβ + ζ 2āμν b̄αμb̄βν, (10a)

ḡα3 = ḡ3α = χ̄ ,α · χ̂ ,3 = 0, and (10b)

ḡ33 = χ̄ ,3 · χ̄ ,3 = 1, (10c)

where āαβ and b̄αβ are the first and the second fundamental form of the embedded im-
age χ̄(ω) ⊂ R

3. The auxiliary fundamental forms āαβ and b̄αβ , by construction, satisfy the
Gauss and Codazzi-Mainardi equations such that we can write χ̄(θα, ζ ) = r̄(θα) + ζ n̄(θα),
where r̄ represents the embedded image of the auxiliary material space in R

3, the auxiliary
configuration of the shell, with unit normal n̄; and āαβ = āα · āβ , b̄αβ = −n̄,α · āβ , where
āα = r̄,α , n̄ = (ā1 × ā2)/|ā1 × ā2|.

The geometric nature of q̃ij is such that it corrects the incompatibility of the material
metric gij with respect to the material connection L so as to yield a compatible metric field
ḡij . Accordingly, we specify the non-metricity Qkij by prescribing both the compatible aux-
iliary configuration r̄(ω) and the field q̃ij defined on r̄(ω). The field −q̃ij is fundamentally
a strain-like object defined with respect to a known configuration, in this case, an arbitrary
compatible configuration r̄(ω). On the other hand, Qkij is a strain-gradient-like quantity,
cf. (9), Q̃kij = (gij − ḡij );k . In order to fix the inherent arbitrariness in defining the non-
metricity fields, without any loss of generality, we assume the auxiliary configuration r̄(ω)

to be identical with the reference configuration, i.e., r̄(ω) = R(ω). Therefore, āαβ = Aαβ

and b̄αβ = Bαβ . This choice coincides with the conventional idea in thermoelastic problems
of always specifying the temperature change with respect to a reference temperature which
is identical to the temperature of the reference configuration.

4 The Föppl-von Kármán Approximation

The Föppl-von Kármán equations are obtained from a general nonlinear shell under the
following kinematic assumptions:

1. The total and the elastic extensional (membrane) strains, and their first gradient, are
small, i.e., of order O(ε) [13].
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2. The total and the elastic curvature strains, and their first gradient, are moderately large,
i.e., of order O(ε

1
2 ) [13].

3. The reference configuration of the shallow shell has the Monge representation R(θα) =
θαeα + w0(θα)e3, where ei form a Cartesian bases of R

3 [2], such that (a) the height
w0(θα) with respect to a flat surface in R

2 is O(ε
1
2 ) and (b) the reference second fun-

damental form Bαβ = w0
,αβ + o(ε

1
2 ), implying |LBαβ | = O(ε

1
2 ) [10]. As a result, the

Gaussian curvature K = det(Bαβ)/det(Aαβ) of the reference surface is O(ε), and we
have an approximate commutation of the repeated covariant derivative, i.e., ∂αβuμ =
∂βαu

μ + O(ε), etc. [4].

In accordance with these, we assume the following form of the field q̃αβ(θα, ζ ):

q̃αβ = q0
αβ + ζq ′

αβ + ζ 2q ′′
αβ, q̃i3 = 0, (11)

where the symmetric q0
αβ(θα), and their first spatial derivatives, are assumed to be of or-

der O(ε); symmetric q ′
αβ(θα), and their first spatial derivatives, are assumed to be of order

O(ε
1
2 ); and symmetric q ′′

αβ(θα) are assumed to be of order O(1). Consequently, we obtain

Qμαβ = −2q̃αβ;μ|ζ=0 = −2q0
αβ,μ upto O(ε), (12a)

Q3αβ = −2q̃αβ;3|ζ=0 = −2q ′
αβ upto O

(
ε

1
2
)
, and (12b)

Qij3 ≡ 0. (12c)

Hence, we can have six distinct types of in-surface non-metricity components, represented
by their densities Qμαβ , and three distinct types of curvature non-metricity components,
represented by Q3αβ . We further obtain

M33i = 0, M3α3 = Mα33 = 0, (13a)

M3αβ = Mα3β = 1

2
Q3βα = −q ′

αβ, (13b)

Mαβ3 = −1

2
Q3βα = q ′

αβ, and (13c)

Mαβμ = 1

2
(Qαμβ − Qμβα + Qβαμ) = −(

q0
μβ,α − q0

βα,μ + q0
αμ,β

)
. (13d)

Using (10a)–(10c) and (11), and comparing the terms of orders O(ε), O(ε
1
2 ) and O(1),

respectively, we can identify

aαβ = Aαβ + 2q0
αβ, bαβ = Bαβ − q ′

αβ, and q ′′
αβ = q0μν

q ′
αμq ′

βν. (14)

Accordingly, Qμαβ = −(aαβ − Aαβ),μ, and Q3αβ = 2(bαβ − Bαβ). With the Föppl-von Kár-
mán approximations at hand, we can write the components of the elastic strain fields as (see
Fig. 1) Ee

αβ = (1/2)(Âαβ − aαβ) = Eαβ − q0
αβ , where we use Âαβ = Aαβ + 2Eαβ and (14)1,

and Λe
αβ = −B̂αβ + bαβ = Λαβ − q ′

αβ , using Λαβ = −w,αβ + w0
,αβ and (14)2, upto O(ε) and

O(ε
1
2 ), respectively. Here, Eαβ is the total extensional strain and Λαβ is the total curvature

strain (from reference configuration to the current configuration).
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We recall, cf. Koiter [4], the approximated equilibrium equations, consistent with the
shallow reference configuration approximations, Aαβ = δαβ + O(ε) and Bαβ = w0

,αβ +
O(ε

1
2 ),

σ
βα

,β = 0 and M
αβ

,αβ − (Bαβ + Λαβ)σαβ = 0; (15)

the approximated strain compatibility conditions,

eαβeμλ

[
Eαμ,βλ − BαμΛβλ + 1

2
ΛαμΛβλ

]
= 0 and eαβeμλΛβμ,λ = 0; (16)

and the linear elastic constitutive relations

σαβ = Eh

1 − ν2

(
(1 − ν)δαμδβν + νδμν

)
Ee

μν and (17a)

Mαβ = Eh3

12(1 − ν2)

(
(1 − ν)δαμδβν + νδμν

)
Λe

μν. (17b)

Combining these with the relations derived in the previous paragraph, we arrive at the Föppl-
von Kármán equations (1a)–(1b) with

λg = 1

2
eαμeβνQαμβ,ν and (18a)

Ωg = −1

2

(
νQ3αα,ββ + (1 − ν)Q3αβ,αβ

)
. (18b)

The right hand side of Eq. (18a) can be equivalently expressed as eαμeβνq0
αβ,μν = q0

22,11 +
q0

11,22 − 2q0
12,12 or as (1/2)((Q121,2 − Q122,1) − (Q211,2 − Q212,1)). The right hand side of

Eq. (18b) can be equivalently expressed as νq ′
αα,ββ + (1 − ν)q ′

αβ,αβ . Recalling Eqs. (2a)–
(2b), we observe that our geometric formulation coincides with the conventional formulation
of specifying growth in terms of strain fields E

g

αβ and Λ
g

αβ by imposing the identifications
E

g

αβ = q0
αβ and Λ

g

αβ = q ′
αβ . Combining this with the expressions for the elastic strains we can

immediately recover the additive decompositions of the total strains into their growth and
elastic counterparts. It is pertinent to remember that this exact correspondence is an outcome
of our identification of the auxiliary configuration with the reference configuration, without
any loss of generality. Note that, in the absence of curvature growth, i.e., Q3αβ = 0 (or Ωg =
0), the Föppl-von Kármán equations remain invariant if one replaces w with −w, implying
that the sign of the deflection is undetermined. A non-zero value of Ωg (or equivalently,
Q3αβ ) therefore fixes the preferred direction of the deflection.

In Table 1, we list all the non-trivial components of the non-metricity tensor Q and ex-
plain their physical meaning in terms of the specific growth type that they represent in the
context of a Föppl-von Kármán shell. The non-metricity components in the first block of
two rows do not contribute to either λg or Ωg . The components in the second block of four
rows contribute only to λg (see Eq. (18a)) and those in the last block of three rows contribute
only to Ωg (see Eq. (18b)). In third column of the table, we provide some illustrations of
symmetric growth components about the θ1-axis in a Föppl-von Kármán plate. The dashed
domains represent the rectangular flat reference configuration. The figure in the first row
depicts uniaxial membrane longitudinal growth Q111 > 0, non-uniform elongation along θ1,
that does not affect the flatness of the domain. In the fourth row, the figure illustrates mem-
brane growth Q211 > 0 with elongation along θ1 while increasing along θ2. In the fifth row,
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Table 1 Growth represented by different components of the non-metricity tensor

Components of
the non-metricity
tensor

The type of growth it represents Illustration

Q111 Extensional growth along θ1 varying in θ1 direction

Q111 > 0

Q222 Extensional growth along θ2 varying in θ2 direction

Q122 Extensional growth along θ2 varying in θ1 direction

Q211 Extensional growth along θ1 varying in θ2 direction

Q211 > 0

Q121(= Q112) In-plane shear growth along θ1 direction

Q121 < 0

Q212(= Q221) In-plane shear growth along θ2 direction

Q311 Curvature (differential) growth along θ1

Q311 > 0

Q322 Curvature (differential) growth along θ2

Q312(= Q321) Curvature (differential) shear growth

Q312 < 0
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the figure corresponds to Q121 < 0 with in-plane membrane growth of shear type, the initial
angle π/2 decreasing along θ1. The figures in row seven and nine correspond to the differ-
ential growth of a layered surface, where the top and the bottom layer experience different
relative growths. In the former the top layer is non-uniformly expanded by Q311 > 0 along
θ1 with respect to the bottom layer whereas, in the latter, the top layer is uniformly sheared
by Q312 < 0 along θ1 with respect to the bottom layer.

Example 1 (Non-metricity as a Power Law) For a rectangular plate of length A, width B ,
and thickness 2h, let Q111 = Q121 = Q122 = Q311 = Q312 = (θ1/A)n and Q222 = Q221 =
Q211 = Q322 = (θ2/B)n, where n is the growth exponent. The even and odd values of n rep-
resent, respectively, symmetrical and asymmetrical growth about the respective coordinate
axes. A form of Q211, proportional to the one given above, was used in [7] (with n = 10) to
explain the edge ripples observed in growing long leaves, where the proportionality constant
stood for the maximum growth at the edges.

Example 2 (Isotropic Growth) In case of isotropic growth, q̃ij (θ
α, ζ ) = q̃(θα, ζ )gij (θ

α, ζ ),
i.e., Q̃kij (θ

α, ζ ) = Q̃,k(θ
α, ζ )gij (θ

α, ζ ), where Q̃ = ln(2q̃ − 1) [1]. We expand the field
q̃(θα, ζ ) about ζ = 0, keeping in mind the Föppl-von Kármán assumptions, as

q̃
(
θα, ζ

) = q0
(
θα

) + ζq ′(θα
) + ζ 2q ′′(θα

)
, (19)

where q ′′(= (q ′)2/q0), q0, and its first spatial derivatives, are all of O(ε), and q ′ is of
O(ε

1
2 ). In thermal deformation problems, q̃(θα, ζ ) = αT̃ (θα, ζ ), where α is the homoge-

neous thermal expansion coefficient and T̃ is the temperature change with respect to the
temperature of the reference configuration. The fields T 0(θα) and T ′(θα), corresponding
to q0(θα) = αT 0(θα) and q ′(θα) = αT ′(θα), respectively, represent the first-order and the
second-order temperature in a thin layered shell [3]. The curvature longitudinal growth com-
ponents for the isotropic case, with Q311 = Q322 and Q312 = 0, appear in the literature of
growing elastic bilayers [11, 15].

5 Nilpotency

5.1 Nilpotent Growth

Nilpotent growth is characterized by a non-trivial non-metricity tensor Q for which the right
hand side incompatibility terms I1, I2, and I3 in (5) vanish identically. Such compatible
growth fields produce stress-free and moment-free (i.e., relaxed) current configurations (re-
alizable in the physical Euclidean space). This nilpotency condition reduces to

eαβeμλ

[
q0

αμ,βλ − w0
,αμq ′

βλ + 1

2
q ′

αμq ′
βλ

]
= 0 and (20a)

eαβeμλq ′
βμ,λ = 0. (20b)

A general solution of these equations is given by [4]

(
q0

αβ

)
nil

= 1

2

(
Uα,β + Uβ,α − 2w0

,αβW + W,αW,β

)
and (21a)

(
q ′

αβ

)
nil

= W,αβ, (21b)
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for arbitrary potential functions Uα and W defined over ω, once and twice continuously
differentiable, respectively. The corresponding non-metricity tensor has components

(Qμαβ)nil = −2U(α,β)μ + 2
(
w0

,αβW
)
,μ

− (W,αW,β),μ and (22a)

(Q3αβ)nil = −2W,αβ. (22b)

Equations (22a)–(22b) characterize the nilpotent growth fields in Föppl-von Kármán shells.
We assume Uα = 0, so as to specify a general distribution of nilpotent growth through a
single scalar field W(θα). The nilpotent source terms, (λg)nil = [(w0 − (1/2)W),W ] and
(Ωg)nil = �2W , when substituted into the Föppl-von Kármán equations (1a)–(1b), yield the
system of differential equations

�2Φ + E

2
[w,w] = E

2

[
w0 − W,w0 − W

]
and (23a)

D�2w − [w,Φ] = D�2
(
w0 − W

)
, (23b)

whose solutions are given by Φ = 0 and w = w0 − W .

5.2 Designing Growth to Achieve a Relaxed Target Shape

We can use the solution obtained above to substitute W = w0 − w into Eqs. (22a)–(22b) so
as to calculate the required growth field on a given reference shape w0 which will produce a
given target stress-free and moment-free, i.e., relaxed, shape w. These growth fields are

Qμαβ = 2
(
w0

,αβ

(
w0 − w

))
,μ

− ((
w0 − w

)
,α

(
w0 − w

)
,β

)
,μ

and (24a)

Q3αβ = −2
(
w0 − w

)
,αβ

. (24b)

For instance, if we assume the following shallow shapes

w0
(
θ1, θ2

) = −1

2
κ0

1

(
θ1

)2 − 1

2
κ0

2

(
θ2

)2
and w

(
θ1, θ2

) = −1

2
κ1

(
θ1

)2 − 1

2
κ2

(
θ2

)2
, (25)

for known constants κ0
α and κα , the reference and target principal curvatures, respectively,

then the design growth fields are

Q111 = −2κ1
(
κ1 − κ0

1

)
θ1, Q222 = −2κ2

(
κ2 − κ0

2

)
θ2, (26a)

Q121 = −(
κ1 − κ0

1

)(
κ2 − κ0

2

)
θ2, Q212 = −(

κ1 − κ0
1

)(
κ2 − κ0

2

)
θ1, (26b)

Q122 = −2κ0
2

(
κ1 − κ0

1

)
θ1, Q211 = −2κ0

1

(
κ2 − κ0

2

)
θ2, (26c)

Q311 = −2
(
κ1 − κ0

1

)
, Q322 = −2

(
κ2 − κ0

2

)
, and Q312 = 0. (26d)

5.3 Nilpotent λg and Ωg

An alternate approach towards nilpotency would be to evaluate the growth strain fields q0
αβ ,

q ′
αβ , and non-metricity fields Qiαβ , which satisfy λg = 0 and Ωg = 0. These necessarily

give rise to vanishing stresses and deflections (i.e., Φ = 0 and w = w0), unlike the weaker
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situation of vanishing stresses and moments in the previous section. These growth fields can
be obtained as solutions to

eαμeβνq0
αβ,μν = 0 and νq ′

αα,ββ + (1 − ν)q ′
αβ,αβ = 0 (27)

for growth strains, and

eαμeβνQαμβ,ν = 0 and νQ3αα,ββ + (1 − ν)Q3αβ,αβ = 0 (28)

for the non-metricity components. Note the decoupling of the in-surface and the out-of-
surface parts of growth. A general solution to Eq. (27) is

q0
αβ = φ(α,β) and q ′

αβ = [
(1 + ν)δαμδβν − νδαβδμν

]
eμρeνσ ψ(ρ,σ ), (29)

for arbitrary independent vector potentials φα(θ
α) and ψα(θ

α) with sufficient smoothness.
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