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This work presents a general unified theory for coupled nonlinear elastic and inelastic deformations of
curved thin shells. The coupling is based on a multiplicative decomposition of the surface deformation
gradient. The kinematics of this decomposition is examined in detail. In particular, the dependency of
various kinematical quantities, such as area change and curvature, on the elastic and inelastic strains is
discussed. This is essential for the development of general constitutive models. In order to fully explore
the coupling between elastic and different inelastic deformations, the surface balance laws for mass, mo-
mentum, energy and entropy are examined in the context of the multiplicative decomposition. Based on
the second law of thermodynamics, the general constitutive relations are then derived. Two cases are
considered: Independent inelastic strains, and inelastic strains that are functions of temperature and con-
centration. The constitutive relations are illustrated by several nonlinear examples on growth, chemical
swelling, thermoelasticity, viscoelasticity and elastoplasticity of shells. The formulation is fully expressed
in curvilinear coordinates leading to compact and elegant expressions for the kinematics, balance laws

and constitutive relations.
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1. Introduction

Many problems in science and technology are characterized
by different, competing deformation types. Apart from elastic de-
formations, which are studied predominantly in solid mechanics,
deformations can also arise from growth, swelling, thermal ex-
pansion, viscosity, plasticity and electro-magnetical fields. The de-
composition of these deformations is essential for the proper
modeling and understanding of coupled problems. In thermoelas-
ticity, for instance, mechanical stresses do not arise from thermal
deformations, but from the elastic deformations countering those.
In the general framework of large deformations, the decomposition
of deformations is based on the multiplicative split of the defor-
mation gradient. While the topic has been studied extensively for
three-dimensional continua, there are much fewer works studying
the multiplicative split for curved surfaces. In particular, a general
shell theory that unifies different deformation types is currently
lacking and therefore addressed here.
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The origins of the multiplicative decomposition of the defor-
mation gradient can be traced back to Flory (1950), who used
a 1D version of it to decompose elastic and inelastic stretches
during swelling, Eckart (1948) and Kondo (1949), who introduced
the notion of a locally relaxed (stress-free) intermediate configura-
tion that can be globally incompatible, and Bilby et al. (1957) and
Kroner (1959), who formalized the multiplicative decomposi-
tion for plasticity. Recent discussion on the origin, mathemat-
ical nature and application of the multiplicative decomposition
has been provided by Lubarda (2004), Gupta et al. (2007) and
Reina et al. (2018). Following its introduction for swelling and plas-
ticity, the multiplicative decomposition has been extended to ther-
moelasticity (Stojanovic et al., 1964), viscoelasticity (Sidoroff, 1974)
and growth (Kondaurov and Nikitin, 1987; Takamizawa and
Hayashi, 1987). Subsequently, a vast literature body has appeared
on the topic. Most of it deals with 3D continua or shell formu-
lations derived from those using the degenerate solid framework
(Ahmad et al., 1970; Parisch, 1978). These cases are based on a de-
formation decomposition in 3D - usually in the context of Carte-
sian coordinate systems. Instead of this, we are concerned here
with a decomposition of the surface deformation in the general
framework of curvilinear coordinates. Therefore we restrict the
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following survey to general shell structures based on such surface
formulations.

Growth and swelling of shells: The first general surface for-
mulations using a multiplicative decomposition to couple me-
chanical deformation and growth seem to be the works by
Dervaux et al. (2009) and Wang et al. (2018) on plates,
Rausch and Kuhl (2014) on membranes, Vetter et al. (2013,
2014) on Kirchhoff-Love shells, and Lychev (2014) on Reissner-
Mindlin shells. Similar approaches have also been considered by
Papastavrou et al. (2013) to model surface growth of bulk materials
and Swain and Gupta (2018) to model interface growth. A general
surface formulation coupling mechanical deformation and swelling
of membranes and shells seems to have appeared only recently by
the work of Lucantonio et al. (2017).

Viscoelasticity of shells: The work by Neff (2005) seems to be
the first general surface model for viscoelastic shells and mem-
branes that is using a multiplicative decomposition of the defor-
mation. All subsequent works seem to have resorted back to addi-
tive decompositions. Examples are the works by Lubarda (2011) on
erythrocyte membranes, Li (2012) on the derivation of shell formu-
lations from 3D viscoelasticity, Altenbach and Eremeyev (2015) on
micropolar shells and Dérr et al. (2017) on fiber reinforced com-
posite shells.

Elastoplasticity of shells: The research on general elasto-
plastic shells goes back to the works by Green et al. (1968),
Sawczuk (1982), Basar and Weichert (1991) and Simo and
Kennedy (1992). They follow however an additive decomposi-
tion of the strain. The work by Simo and Kennedy (1992),
seems to be the first FE model that is directly based on a sur-
face formulation instead of considering the thickness integra-
tion of 3D continua, as has been done by many others, e.g. see
Stumpf and Schieck (1994), Miehe (1998), Betsch and Stein (1999),
Eberlein and Wriggers (1999) and recently Steigmann (2015) and
Ambati et al. (2018). This property clearly distinguishes these
works from the approach taken here: Instead of integrating
3D continua, here the entire theory, including the multiplica-
tive decomposition, is directly based on a surface formulation.
The recent surface formulations by Dujc and Brank (2012) and
Roychowdhury and Gupta (2018), on the other hand, are based
again on an additive split, although the existence of a multiplica-
tive split of the surface deformation gradient has been alluded to
in the latter work.

Thermomechanics of shells: General surface formulations for
thermomechanical shells have been developed by Green and
Naghdi (1979), Reddy and Chin (1998) and recently Kar and
Panda (2016). However, none of these formulations is based on a
multiplicative decomposition. Instead, a general surface formula-
tion for thermomechanical shells based on a multiplicative decom-
position seems to be still lacking.

The survey shows that even though many works have appeared
on coupled elastic and inelastic deformations for shells, only few
use a general surface formulation in the general framework of
curvilinear coordinates, and none seem to start from a multiplica-
tive decomposition of the surface deformation gradient. Instead
they either start from an additive decomposition or they are based
on thickness integration of the classical multiplicative decomposi-
tion.

The use of a curvilinear coordinate description allows for a very
general treatment of shell geometry and deformation. Also it al-
lows for a direct finite element (FE) formulation that avoids the
overhead of a transformation to a Cartesian formulation as is clas-
sically used. Shell FE formulations tend to be much more efficient
that classical 3D FE formulations, since no thickness discretiza-
tion is needed. Instead, simplifying assumptions are used for the
thickness behavior. The most efficient shell formulation is based
on Kirchhoff-Love kinematics, which assumes that cross-sections

remain planar and normal to the mid-plane during deformation.
Further, a normal thickness stress is usually neglected. These as-
sumptions are suitable for thin shells, whose planar dimensions
are at least one order of magnitude larger than the thickness.

Following the works by Prigogine (1961), de Groot and
Mazur (1984), Naghdi (1972) and Steigmann (1999) on irre-
versible thermodynamics and nonlinear Kirchhoff-Love shell the-
ory, Sauer and Duong (2017) and Sahu et al. (2017) recently
developed a new multiphysical shell theory that is suitable for
both solid and liquid shells. Based on this theory, new fi-
nite element formulations have been proposed for engineering
shells (Duong et al., 2017), layered shells (Roohbakhshan and
Sauer, 2016), biological shells (Roohbakhshan and Sauer, 2017),
graphene (Ghaffari et al, 2017), lipid bilayers (Sauer et al,
2017), inverse analysis (Vu-Bac et al., 2018), phase transformations
(Zimmermann et al.,, 2019) and surfactants (Roohbakhshan and
Sauer, 2019). However, all of these works are restricted to elastic
deformations.

The restrictions in the current literature mentioned above moti-
vates the development of a general thin shell formulation for cou-
pled deformations. Such a formulation should be based on a mul-
tiplicative split, in order to handle large deformations, use curvi-
linear coordinates, in order to handle general surface geometries,
and account for the laws of irreversible thermodynamics, in order
to capture the full scope of coupling. Compared to existing formu-
lations, the formulation proposed here has several novelties:

« It provides a unified shell theory for coupled nonlinear elastic
and inelastic deformations.

It is based on the multiplicative decomposition of the surface
deformation gradient.

It accounts for growth, swelling, viscosity, plasticity and ther-
mal deformations.

It is fully formulated in the general and compact framework of
curvilinear coordinates.

It explores the coupling in the kinematic relations and local bal-
ance laws.

It is illustrated by several constitutive examples derived from
the second law of thermodynamics.

It is also shown that the multiplicative split on the surface de-
formation gradient generally leads to an additive split on certain
strain components. Additive decompositions are therefore not re-
stricted to small deformations. Further, some of the existing for-
mulations found in the literature are recovered as special cases of
the proposed multiplicative split.

The remainder of this paper is organized as follows.
Section 2 gives a brief overview of the general, curvilinear
description of curved surfaces. Sections 3 and 4 then discuss
the kinematics and motion of curved surfaces accounting for a
multiplicative decomposition of the surface deformation gradient.
This is followed by the presentation of the balance laws of mass,
momentum, energy and entropy in Section 5. These lead to the
coupled strong form problem statement, summarized in Section 6,
and the general constitutive equations, derived in Section 7. The
latter are illustrated by several examples for elastic and inelastic
material behavior. Section 8 concludes the paper.

2. Mathematical surface description

This section gives a brief summary of the three-dimensional
mathematical description of curved surfaces in the general frame-
work of curvilinear coordinates. It allows to track any surface de-
formation (discussed in Section 3), and it is particularly suited for
subsequent finite element formulations. In this framework, every
point x¥ on a surface S is given by the mapping

x=x(§%1). (1)
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Fig. 1. Surface description and kinematics: Multiplicative split into elastic and inelastic deformations and their relation to reference, intermediate and current configurations

So. S and S.

Here £¢, for o = 1, 2, denotes the two curvilinear coordinates that
can be associated with a 2D parameter domain P as illustrated in
Fig. 1, while t €0, te,q] stands for time.

Given (1), all geometrical aspects of the surface can be ob-
tained. The tangent plane at ¥ € S is characterized by the two tan-
gent vectors

0x

a, = 3570‘ (2)
while the surface normal at ¥ € S is given by
a x ap
n=_-—. 3
ar @] ®

The basis a;, a; and n allows to introduce the notion of in-plane
and out-of-plane surface objects. The tangent vectors a; and a, are
generally not orthonormal, meaning that the so-called surface met-
ric,

dop = ay ~aﬂ, (4)
generally gives [a,g]#[10; 01]. To restore orthonormality a set of
dual tangent vectors a® is introduced from a, = dy g af and a* =
a*Pag.! where [a®P] :=[a,p]~". such that a® - agz = 85 for [64] =
[1 050 1]. This illustrates a very important property of a,g and
a®f: They lower or raise indices.

Another important surface characteristic is the curvature. It fol-

lows from the out-of-plane components of the second derivative
a,p:=0a,/0&P, denoted as

baﬁ =0y p-N. (5)

These components can be arranged in the matrix [b"‘ﬁ]::

[a*Vb,, g], whose eigenvalues are the two principal surface curva-
tures

Ky =H+VH? — &, (6)
where
H:=1a*fp

et (7)
K := det[b 5]

1 Following index notation, summation (from 1 to 2) is implied on all terms with
repeated Greek indices, i.e. a*/ag = a*'a; + a*?a,.

are the mean curvature and Gaussian curvature of surface S, re-
spectively. The derivative a,, g is also referred to as the parametric
derivate of ay. It is generally different to the so-called co-variant

“wn

derivative of a, that is denoted by “;” and defined as
a,p:=mMen)a,z. (8)

For general scalars and vectors (that have no free index) the para-
metric and co-variant derivates are identical. Only for objects with
free indices (such as a, and a%) a difference appears.

Analogous to (1), physical fields on S are generally functions
of £€% and t. Examples are surface density p = p(£%,t) and sur-
face temperature T = T(£%,t). Their surface gradient follows from
P.a(= p,a) and Ty (=Tq) as gradsp = p,o a* and gradsT =T, a“.

A more comprehensive treatment of the mathematical descrip-
tion of curved surfaces can be found in the classical textbooks
on differential geometry, e.g. see Kreyszig (1991). A recent concise
treatment is also provided in Sauer (2018).

3. Surface kinematics

This section introduces reference, current and intermediate con-
figuration, and discusses the kinematical quantities between them.
The discussion is restricted to Kirchhoff-Love kinematics. These are
entirely based on the notion of surface strain and curvature, and
do not need any further kinematical measures. The description fol-
lows the classical treatment found in the works by Naghdi (1972,
1982), Pietraszkiewicz (1989) and Libai and Simmonds (1998).

3.1. Classical kinematical measures

Suppose that the surface S deforms over time. The initial con-
figuration at time t = 0 is defined as reference configuration, and
denoted Sy to distinguish it from the current configuration S at
time t> 0. In order to distinguish all the surface quantities intro-
duced in Section 2, upper case symbols (or the subscript "0") are
used for the reference configuration, while lower case symbols (or
no subscript) are used for the current configuration, see Fig. 1.

The primary measure relating S and Sy is the surface deforma-
tion gradient

F:=a, 2A%. (9)



56 RA. Sauer, R. Ghaffari and A. Gupta/International Journal of Solids and Structures 174-175 (2019) 53-68

Together with its generalized inverse

F'=A,®a", (10)
it transforms the tangent vectors as
a, = FA,,

-1
:Z Z iTa:‘i’ (1
a* =F A"

From F follow the two surface Cauchy-Green tensors

C:=F'F=q,,A" @A,

(12)

B:=FF' =A*Ya,®a;.
From these, the surface Green-Lagrange strain tensor
E:=j(C-1I) (13)
and the surface Almansi strain tensor
e:=3(i-B"), (14)
can be defined. Here,
I:'=A, ®A% =A,3A* ® AP,

o ® op ® (15)

i=a,®a" =a,50*®a’

denote the surface identity tensors on Sy and S, respectively. E has
the components

Eqp :=As EAg = 3 (aup — Aup). (16)
w.r.t. basis A%, while e has the components

Cap 1=y - elg = 3 (ap — Ayp) (17)

w.r.t. basis a*. To emphasize the equality e, g = E, g and, as is seen
later, the fact that the multiplicative split on F leads to an additive
split on these strain components, we introduce
€ap = 3 (dap — Aup). (18)
such that
E=c,3A" A",
wp’ % (19)
e=g,pa*@al.

Similar to (18), we introduce the relative curvature components
Kap = baﬁ *Balg. (20)

The surface Cauchy-Green tensors have two invariants, Iy and J. In

order to define them, the surface determinant of F is introduced

by

|IFVi x FV,||
V1 x V2l

for all non-parallel surface tangent vectors V; and V, (Javili et al.,
2014). Picking V,, = Ay, this leads to the second invariant

detF := (21)

lla; x ay]|
lA; x Azl

which is equal to

j— Vdetlaes] (23)
Jdet[Ag]

and corresponds to the local change of area between Sy and S. The
first invariant is

L =1:C=i:B=A"%a,z. (24)

J:=detsF = (22)

3.2. Kinematics of the multiplicative deformation split

The previous setting accounts only for a single deformation
source. Its primary unknown is position x, from which everything
else follows. In order to extend the setting to deformations com-
posed of two separate (i.e. elastic and inelastic) components, we
introduce the intermediate surface configuration & with the tan-
gent vectors d, that are now an additional set of unknowns. The
deformation Sy — & is taken as the inelastic part, while § — S is
the elastic part, see Fig. 1. Given the tangent vectors @y, the sur-
face normal #, metric daﬁ, inverse metric 4*#, dual tangent vec-

tors @*, curvature components Baﬁ, mean curvature H and Gaus-
sian curvature & are obtained analogous to expressions (3)-(7)
in Section 2. The introduced intermediate configuration $ implies
that the surface deformation gradient F can be multiplicatively
split as

F =Fy F, (25)
where
Fy:=a,@@",
Fin = ﬁa ®Aa
are the elastic and inelastic surface deformation gradients, respec-
tively. Split (25) implies the inverse split

(26)

F'=F)F, (27)
with

F;':=a, ®a°,

F':=A,0a". (28)
F,; and F;, transform the tangent vectors as

ay = Fel aa,

a, =F,'a,, (29)
a* =Fla°,

a® =F,"a"

and

&a = Fin Aa,

A, =F,l'a,,

A _Flas (30)
a“ =F,'A".

These relations can be used to push forward the right surface
Cauchy-Green tensor C to the intermediate configuration, i.e.

Co :=F, CF;' =FiFy = a,8" @, (31)

and to pull back the inverse left Cauchy-Green tensor B~! to the
intermediate configuration, i.e.

Bi_nl = FeTlB_1Fel :Fi;TFi;l =Agp a ®ﬁﬂ . (32)

In order to decompose the strain, it is convenient to introduce the
strain tensor

e:=g " @ (33)

analogous to (19). This strain corresponds to the push forward of E
and the pull-back of e to the intermediate configuration, since

e=F,'EF,' =F;eFq. (34)
Inserting (13) or (14) into (34) gives
é=13(Ca—B) (35)

which admits the simple additive decomposition

e= i\?el + & (36)
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based on the definitions
éel = %(Cel — i)

& =3 (i~ B,) 7
that are analogous to (13) and (14). Here,

i, 00" =d,p0" @@ (38)
denotes the surface identity on S analogous to (15). Introducing
e o (39
e, = eg‘ﬁ a Qa

then leads to the componentwise decomposition

Eap = Eg + ENg. (40)
with

sap = 3(0ap — up). (1)
Eup = 1(Gap — Aup).

which is analogous to (18). Thus we have showed that the multi-
plicative decomposition of F generally leads to the additive decom-
position of the intermediate strain tensor &. An alternative, but less
insightful approach is to directly propose an additive decomposi-
tion of the strain components without introducing F = FFj,, as
has for example been done by Reddy and Chin (1998) for thermoe-
lastic shells, by Simo and Kennedy (1992) for elastoplastic shells,
by Lubarda (2011) for viscoelastic shells, by Liang and Mahade-
van (2011) for shell growth, by van der Sman (2015) for shell
swelling, and by Roychowdhury and Gupta (2018) for surface de-
fects. In the more general context of 3D continua, the additive de-
composition (40) and (41) goes back to Sedov (1966)

We note that the proposed multiplicative split, apart from be-
ing more general than an additive split, equally applies to growth,
swelling, viscosity, plasticity and thermal deformations, and thus
allows for their unified treatment.

Likewise to decomposition (40), we introduce the additive cur-
vature decomposition

Kap = Kgjg + K1y (42)
with

K;lﬂ :=byp — byp. (43)
K&“ﬂ :=Dbyp — Bup -
Due to split (25), the local area change, introduced in (22) and
(23), becomes

] :.]el.]iny (44)
with
Joy = dets Foy = la; x az|| _ det[agg]

T el Jeeda, | (45)
h — det,F, — 1 <ol _ /detldup]

in = s Fin = — '

n " A x Ao detlAn,]

A further useful object is the first invariant of C,, given by the
surface trace

I8 = tryCoy = Cop 1 1= d*Fayp . (46)

It is equivalent to the surface trace trsB. = B : i, where B, =
F. F}.? Likewise the first invariant of C.;' is given by

I =t =

el el

ti=a"Pé, =trsBy =B . (47)

2 Here, the surface trace of a surface tensor is defined w.r.t. the surface the tensor
refers to.

Note, that in general I¢! 3 1/I¢l.

Remark 1. The inelastic deformation does not need to be compat-
ible, i.e. Fj; does not need to follow as the gradient of a defor-
mation mapping. Instead it can be treated as an independent un-
known. For a recent discussion on incompatible plastic deforma-
tions, see Gupta et al. (2007).

Remark 2. A multiplicative decomposition can also be used to
split the elastic deformation into two parts, e.g. a pre-strain and
an additional strain. In this case, the intermediate configuration &
is not stress-free but (pre-)stressed. The total stress then depends
on the total strain in the usual way, and so the kinematical decom-
position discussed above is not needed.

3.3. Inelastic dilatation

For many applications, like growth or thermal expansion, the
inelastic deformation is purely dilatational. Excluding rigid body
rotations (which can be accounted for in the elastic deformation),
inelastic dilatation is described by the intermediate tangent vectors

Gy = Ain A, (48)
such that

Fin = Ainl. (49)
Here Aj, = \/]Tn denotes the inelastic stretch. As a consequence,
Czaﬁ = JinAap> (50)
@ = A ],

and a@* = A%/A\;,. From this follows

I =1 /Jin. (51)

3.4. Inelastic isotropic bending

Analogous to inelastic dilatation is the case of inelastic isotropic
bending. In this case, the two principal curvatures defined in
(6) increase by the same scalar factor «;, during inelastic defor-
mation, i.e. the intermediate configuration is characterized by the
principal curvatures

’eot = ’zin Koo » (52)

where « ¢, are the two principal curvatures of Sy. This implies

H:IZmH(), I?:IZ%IK(). (53)
This follows for example from considering the curvature relation
Baﬂ = Kin B, (54)

which, together with (50), implies
Ejaﬂ :]_inlzinBaﬁv (55)
baﬂ = Kin Baﬁ/]in .

4. Surface motion

The kinematical quantities introduced in the preceding section
generally change over time, which is discussed in this section. To
characterize these changes, we introduce the material time deriva-
tive

. d... ad...
)= = 56
(1= (56)

Ot Ix_fixed
From (1) thus follows the surface velocity v :=%. In the follow-
ing two subsections, we summarize some of the consequences
of (56) for the classical kinematical measures introduced in
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Section 3.1 and the kinematical decomposition of Section 3.2.
While the expressions in Section 4.1 appear in older works, those
of Section 4.2 are mostly new. They are required for formulat-
ing general constitutive models, as is discussed later (Section 7).
Section 4.2 also exposes the coupling of elastic and inelastic con-
tributions that are present in some of the kinematical quantities.

4.1. Classical measures of the surface motion

From definition (18) follows the strain rate

éaﬁ = %daﬂ9 (57)
where
dop =@y - Qg + Qg - Ag, (58)

according to (4). With this we can find the material time derivative
of the area change J. Since ] = J(a,g) :](80(/3),3

. aJ . aJ .
J= m dop = @ Eap (59)
From (23) and (57) follows
a a

) _, =Ja*b, (60)
88aﬂ 8aaﬂ
so that
J o1 .

Sty (61)
Similarly, the first invariant of C, Iy = I (a,8) = I (648), gives

. o . ohL .
L= @aaﬂ = ap €ap> (62)
where

Oh 5 I g pes, (63)
Bsaﬂ Baa/g
due to (24) and (57).

In order to express various curvature rates, we require
n=—(a"@n)a,, (64)
and
. da*f .

of
a o > ys. (65)
with

da*f 1
aﬂyé _ 2 A(qoy 488 ad By 66
a = 9a; = 2(a a?® +a*af7), (66)

see Sauer (2018). From (20) then follows the relative curvature rate

Kop = bug, (67)
with
bup =Gy p -N+a,z-i, (68)

due to (5). Further, since H = H(dqg, dgg) and k = k (agg, dyg), We
find the mean curvature rate

oH . oH

H= % dop + m b(xﬁ’ (69)
with

oH _ 1 B oH _l B

g = 27" am,, =27 (70)

3 To simplify notation, the same symbol (here J) is used for the variable and its
different functions.

and the Gaussian curvature rate

oK . dK
K = @aaﬂ + mbaﬁ, (71)
with
O _ _eaqb, O _opqeb _pos, (72)
8aaﬁ Bbaﬁ

due to (7) and (65); see also Sauer (2018). Relations (57) and
(67) obviously imply

d... 0. d... 0.
88aﬁ N Baaﬁ’ aKaﬁ - 8baﬁ ’

(73)

4.2. Decomposition of the surface motion

The additive strain decomposition of (40) and (41) directly leads
to the additive rate decomposition

Eap = g+ £

g = z(aaﬂ dap). (74)
£y = 3dup,

where

Aup = Oy - g + 8y -G (75)

Also the multiplicative decomposition of ] leads to an additive rate
decomposition: From (44) directly follows

.] ]el ]m (76)

.I Jel Jm
In order to determine J,; and jin, we first note that for a general
function f(ayg, aaﬁ) = f(eaﬂ, 8”‘ﬁ) we have?

of ¢ L Of & _ 9f Af  sin
Baus “ T By ﬁ‘ag;l ‘. dein, Ceb” (77)

f=

From (74) then follows

of _,0f  f _,0f ,0f

= , -~ = +2—. 7
8821’3 Baaﬂ 38:;5 8(10(5 aaa'g (78)
Combing this with (73) leads to
af af
8861 880(/3 (79)

Applying (77) and (78) to f = Jin(Gup) = Jin (82‘5) defined in (45.2)
gives

8.]in 8.lin

=0, 0 _ Ji %P
882113 8821/5 .]m (80)
and
A 1 42
jf—“:ia“ﬂaaﬁ. (81)
mn

Applying (77) and (78) to f = Jei(agp. Gup) =]e1(8§lﬁ, '“B) defined
n (45.1) gives

d 0 N
8813 =Jua’. rﬁi =Ja (a*F - a*7) (82)
aff aff
and
j 1 . 1 .5~
% =50 oy =50 g (83)

4 Again the same symbol (here f) is used for the variable and its different func-
tions.
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The later equation agrees with (61), (76) and (81). A
Applying (78) to f=1I¢' = ¢ (ayg. dyp) =I$1(8;lﬁ,6‘glﬂ) defined
in (46) gives

81;' P 8I$l Bys
=24, —=2a"(a,s—d,s), 84
oect, dein, (ays —dys) (84)
where
oa*p 1
aepyd = —— = —_(a*vaP? 4 a¥ahr), 85
Ba},g 2( + ) ( )

analogous to (66). if' can then be obtained from (77).

Next we turn towards the curvature rates. The additive curva-
ture decomposition in (42) and (43) leads to the additive rate de-
composition

fap = 5+l

kly = bop — bap, (86)
K[';}} = Eaﬂ,

where

Dup =iy g A+ iyp R, (87)
and

fi=—(a"®h)a,, (88)

analogous to (64) and (68). In order to find various curvature rates,
we first note that for a general function f(ayg.dup. bap.bap) =

f(edly, einy kel ki) we have

af’“af’ Tap’ Tapf

. af . af af af

= Ay + =— Gy + by,g + —— by,
f 0ayp B 0dyp B 0byg B by p B

af . af af . af

- e £+ gem £ + el kS + i Kl (89)
From (74) and (86) then follow

of _ df  af _ 3f _ f (90)

= . — = + —
Lo dbeg”  Okly  Ibap 3,
together with the already known expressions in (78). Combing this
with (73) further leads to

of  of
Blcglﬁ 0Kep

(91)

Applying (78) and (90) to f = H(dyp.byp) =AM

aﬁ,xé“ﬁ) defined
by H = a*Fbgg/2 gives

O _o M _ je Mo M %a“ﬁ (92)
aeaﬂ Beaﬁ 8/(0”3 axaﬁ
analogous to (70).

A can then be obtained from (89).

Applying (78) and (90) to f:/?(&aﬂ,Baﬂ) :k(s&“ﬁ,/cg}g) de-

fined by & = det[b, ]/ det[d,z] gives
ok ok ok

=0, — — 2k e, =0,
dell, deln, dicsl,
a'fn = 206%F — P, (93)
Bkaﬂ

analogous to (72). & can then be obtained from (89). The fact that
the elastic derivatives in (92) and (93) are zero underlines the fact

that the intermediate configuration is an independent unknown
that is independent of sglﬁ and K;lﬁ

On top of those expressions, the constitutive models discussed
in Section 7 require the dependency of H and x on the elastic and
inelastic strain rates. Applying (78) and (90) to f = H(ayg, byg) =

H(eel,, ein, kel K(i;B) defined by (7) gives

af’ “ap’ tap’
oH _ BH — _beb, oH _ 8H =1a°"3 (94)
degly el gy Okl 2

due to (70). Applying (78) and (90) to f=«k(aeg, byg) =

K(esﬁ, S:XHIB,K;lﬂ, Ké“ﬁ) defined by (7) gives
8eaﬁ asaﬂ 8/(0”3 3/(0”3

(95)
due to (72).

5. Surface balance laws

This section discusses the balance laws of mass, momentum,
energy and entropy for curved surfaces. The derivation follows
the framework of Sauer and Duong (2017) and Sahu et al. (2017),
which is based on the works by Prigogine (1961), de Groot and
Mazur (1984), Naghdi (1972) and Steigmann (1999). It makes use
of three important theorems: Reynold’s transport theorem,

%/Sl..da=/8<(.:.)+§(...))da, (96)

which follows from substituting da =JdA and using the product
rule, the surface divergence theorem,

f 4..vads=/...;ada, (97)
s S

where vy = @, - v is the in-plane component of the boundary nor-
mal v and ”; «” is the co-variant derivative defined in Section 2,
and the localization theorem

/...da:O VRCS & ..=0 VXeSs. (98)
R

5.1. Surface mass balance

Mass balance is formulated here for the case of a mixture of
two species. This could for example be a solvent diffusing into
a matrix material and induce swelling. The partial surface densi-
ties p; = p1(£%,t) and p, = po (%, t) are introduced such that the
current surface density of the mixture is p = p; + o (with unit
mass per current area).

5.1.1. Total mass balance
Consider the Lagrangian description of the total mass balance

E/,oda:fhda VRCS (99)

where h is a surface mass source (mass per current area and
time) that originates for example from growth or swelling. Apply-
ing Reynolds’ transport theorem (96) and localization (98) gives

p+pJlf=h Vxes, (100)

which is the governing ODE for p. In order to determine p(t), the
initial condition p = pg at t = 0 is required.

If h =0, then p = pgy/J solves ODE (100), which elegantly elim-
inates unknown p and its ODE.

If h#0, then ODE (100) needs to be solved (numerically). h#0
induces growth, which is an inelastic deformation. An example is
isotropic growth discussed in Section 7.3.1.
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5.1.2. Partial mass balance

Additionally, the mass balance of the individual species needs
to be accounted for. Given (100), it suffices to account for the mass
balance of one species. We therefore introduce the relative concen-
tration ¢ = pq/p of species 1 and denote its source term hy. The
partial mass balance thus is

5/p¢da:/h1da+/ jvds VRcCS
dr Jg R IR

where the j, term accounts for a relative mass flux of species
1w.r.t. the average motion of the mixture. Defining the surface
mass flux vector j = j*a, through

(101)

Jv==j-v=—j"Va (102)

and using the surface divergence theorem (97) on this term then
leads to

/R(,O¢5+¢(p+pf/])—hl+j?;)da=0 VRCS. (103)

Defining h* := hy — ¢ h and making use of the localization theorem
(98) and ODE (100), then gives

pd=h;—je, (104)

which is the governing ODE for the relative concentration ¢. In or-
der to determine ¢(t), the initial condition ¢ = ¢y at t =0 is re-
quired. Interesting special cases for h} are h} = hy (the total mass
is conserved), hf = (1—¢)h (only the mass of species 1 is in-
creasing), hj = —¢ h (only the mass of species 2 is increasing) and
hi =0 (the mass increase of species 1 and 2 has the ratio ¢ to

1-¢).

VxeS

5.2. Surface momentum balance

Before exploring momentum balance, the stress and bending
moments of the shell have to be introduced. As with the strains
discussed in Section 5.2.1, these can be expressed w.r.t. the three
configurations S, Sy and 8. Based on this, linear and angular mo-
mentum balance are then discussed in Sections 5.2.2 and 5.2.3.

5.2.1. Stress and moment tensors
For shells, the Cauchy stress tensor takes the form

o=N¥a,®a;+5"a, ®n, (105)

with the in-plane membrane components N*# and the out-of-
plane shear components S¥. The traction vector on the boundary
with normal v = vy a® then follows from Cauchy’s formula

T=0p. (106)
Introducing
T® :=oTa”, (107)
then leads to T = T%v,.

For later reference the surface tension,
Y i=3ti0=30:1=INFa,, (108)
and the deviatoric surface stress,
Odgey ' =0 — Vi (109)
are introduced. The latter has the in-plane components
NP = N#B — y qoF (110)

in basis a,. The out-of-plane component S* is identical for o ey,
and o.

The Cauchy stress describes the physical stress in configuration
S. It can be mapped to the (non-physical) second Piola-Kirchhoff

stress tensor S in configuration Sy using the classical pull-back for-
mula

s—JF 'oF ", (111)
where F:=F+n®@N is the full 3D deformation gradient for
Kirchhoff-Love kinematics. In the same fashion we introduce the
stress in configuration S by

6 = JuEy oF, (112)
and note that

S =JnE, ' 6F, (113)
where F,| := F, +n®f and F, := F, + fi ® N. This lead to
6=N"Pa,0a5+5a, 0 (114)
and

S=N’ A, ®Ag+SiAs ® N (115)

where N&# := Ji, @B, QB i J, N*P, $% := J; 3 and §* := J; 5.
Similar to the stress tensor ¢ and the traction vector T, the
bending moment tensor

n=—M*a, ®ag (116)
and the moment vector
M= puTv = M*v,, (117)

with M* = uTa®, are introduced in configuration S. Just like o, p
can be pulled back to & and Sy by

o= Fy wEy = —NP a, @ d, (118)
and

e F W FT op
wo:=JF pF =-M;"A, ®Ag. (119)

where M2P := J;, NP and NP := Jy MP.

5.2.2. Linear surface momentum balance
The linear surface momentum balance is given by

i/pvda:/fdaJr Tds+/hvda VRCS, (120)
dr Jg R IR R

where v := x is the current surface velocity, f is a distributed sur-
face load (force per current area) that, for two-species mixtures,
has contributions acting on species 1 and 2 (ie. f=fi+£), T
is the traction vector on boundary dR and hv accounts for the
momentum change of the added mass. Applying Reynolds’ trans-
port theorem (96), surface divergence theorem (97), localization
(98) and ODE (100) gives

T, +f=pV VxeS, (121)
which is the governing PDE for the motion. In order to determine
v(t), the initial condition v =wvy at t =0 is required. In order to
determine x(t), the additional initial condition x =X at t = 0 is re-
quired. PDE (121) is exactly the same as for the mass conserving

case, e.g. see Sauer and Duong (2017).

Remark 3. The surface load can also be defined per mass, i.e.
b:=f/p and then decomposed as f = pb= p1b; + pob, for the
mixture.

If by = by, as for gravity, we find b= b; = b;,.
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5.2.3. Angular surface momentum balance
Also the angular surface momentum balance

Efxx,01/da=/x><fda-i—/ (x x T +m)ds
dt Jr R IR

+[xxhvda VR CS, (122)
R

where m:=n x M is a distributed moment acting on boundary R,
leads to the same local equations as before, i.e.
Sa — _Mﬁa’
B (123)
0P = Neb _ bﬁMV"‘ is symmetric

for all x € S, e.g. see Sauer and Duong (2017).
5.3. Surface energy balance

The surface energy balance can be expressed as

E/,oeda=/v~fda+/ (v.T+il~M)ds+/heda
dt R R oR R

+/,orda+/ gyds VRCS, (124)
R IR

where
(125)

is the specific energy (per unit mass) at x € B that contains the
stored energy u and the kinetic energy v-v/2. The first two terms
on the right hand side of (124) account for the mechanical power
of the external forces f and T and external moment M. The third
term accounts for the power required to add mass h: power is
needed to bring the added mass to energy level u and velocity v.°
The last two terms account for the thermal power of an external
heat source r and a boundary influx q,. Defining the surface heat
flux vector q = q*a, through

e=u+3iv-v

qv=—q-v=—q%y, (126)

the surface divergence theorem gives

/ qvds = _/ ¢ da. (127)
IR R

Using the surface divergence theorem on the v-T term gives

/ v~Tds=/ (v.T?‘a+1aaﬁaaﬁ+wﬁbaﬁ)da—/ - Mds,
IR R “ 2 IR
(128)

see Sahu et al. (2017). Using these two equations, ODE (100) and
PDE (121) then gives

pi=30"Paus +MPbyg+pr—q%. Vxes, (129)

which is the governing PDE for u. In order to determine u(t), the
initial condition u = uq at t = 0 is required. PDE (129) has the same
format as in the classical case when h = 0 and no split of F is con-
sidered (Sahu et al., 2017). But due to the split of F, we can now
write

pli=0P (e + €M) + MUP (kS + ki) +pr—q%, VxeS,

(130)
according to Egs. (57), (67), (74) and (86).
Remark 4. The J0*Pd, 4 da term can also be rewritten as
lo%i,pda=0:Dda=S:EdA, (131)

5 If the added mass carries initial, nonzero energy e, this energy contribution
can be accounted for in the pr term. Alternatively, if one does not wish to account
for eg in pr, he in (124) should be replaced by h (e —ep).

where
1.
D = 5dypa” ®af,

E = % .aﬂAa ®Aﬁ,
are the symmetric velocity gradient (e.g. see Sauer (2018)) and the
Green-Lagrange strain rate (following from (13)), respectively, and
o and S are given by (105) and (111). This illustrates that the stress
component o®# (and energy jo*Pd,g) is expressed neither w.r.t.
Sp nor 8, but directly w.r.t. parameter space P (Duong et al., 2017).
o and S, on the other hand are specific to S and S, respectively.

(132)

Remark 5. In (124) the quantities e, f, T, M, r and g, are defined
for the common mixture in order to avoid dealing with partial
quantities. In Sahu et al. (2017), on the other hand, f is defined
partially, such that the second term in (124) is the area integral
over vy - p1by + vy - pob,. This leads to an extra term in (129) and
(130) if by #b;.

5.4. Surface entropy balance

The surface entropy balance is given by

i/,osda=/ (,071e+p77i+hs)da+f Gods VRcCS,
dt J= R IR
(133)

where s is the specific entropy at x € S, ne is the external entropy
production rate caused by external loads and heat sources, G, is
an entropy influx on the boundary of the surface, hs accounts for
the entropy increase due to the added mass,® and »; is the inter-
nal entropy production rate, which according to the second law of
thermodynamics satisfies

N >0 VxeS. (134)
Defining the surface entropy flux vector q = §%a,, through
Go=—q-v=—G"vy (135)

the surface divergence theorem and the localization theorem lead
to the local equation

pPS=pne+pni—q4%, VxeS, (136)

which can be used to derive constitutive equations as is discussed
in Section 7. For this, we introduce the Helmholtz free energy ¢ :=
u —Ts, such that

§=(u—Ts—y)/T.

Here T>0 is the absolute temperature. Inserting this and PDE
(130) into (136) then gives

(137)

TS = 0" (e +e8y) M i)+ K3

q” q“Ta ; ]
+,0r—T<T>;a— T —pTs—pif.

(138)

In deriving this equation we have used local energy balance (129),
which in turn uses local mass balance (100) and local momentum
balance (121). We have thus used all PDEs apart from the local
concentration balance (104). In order to account for it we add it to
the right hand side of (138) using the Lagrange multiplier method,
ie.

Tps=...+u(pd—hi+ija). (139)

6 If the added mass carries initial, nonzero entropy, this additional entropy con-
tribution can be accounted for in the p 1. term.
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where u is the Lagrange multiplier that corresponds to the chem-
ical potential as will be shown later. The last term in (139) can be
rewritten as

=1(4) -1e(F)
MJ;O[—T< T >-a Tj ),

in order to combine it with the T(q%/T). o term. We thus find

o YO
T,os':,or—,uh’{—T(qT—MT]> + 0P (£ + €ly)
N4

(140)

+MP (kg + k) — psT -
+pud3—Tj"‘(%) —py.
o

On the right hand side here, the only source terms are the first two
terms, while the only divergence-like term is the third term. Com-
paring this with (136), we can thus identify ne =r/T — whi/(Tp)
and % = q%/T — u j*/T, such that the second law (134) yields

9T
T

(141)

Tpm:uﬂﬁ@%+é%)+MW%@%+k%)

q“T, u(ﬁ) —pl/}ZO.
T )«

—psT — T.

(142)

6. Problem statement

In this work we consider the case of coupling elastic deforma-
tions with either growth, swelling, viscosity, plasticity or thermal
deformation. So there is only coupling of two deformation types.
In principle three and more types can also be coupled. This would
require introducing further intermediate configurations. This sec-
tion discusses the strong form for the coupled two-field problem.
The recovery of the intermediate configuration is also addressed.

6.1. Strong form

The strong form can be unified by the problem statement: Find
X(§%, 1), dup(&7,t) and by (57, ) satisfying PDE (121) and,

« for growth, ODE (100). In this case, d, and Baﬁ are either pre-
scribed or defined through p. So the primary unknowns are x
and p. Examples are given by Eqs. (50), (55), (160) and (164).
for swelling, PDE (104). In this case, d,g and b, g are defined
through ¢, e.g. by (50), (55), (165) and (166), and so the pri-
mary unknowns are X and ¢. If the swelling is not mass con-
serving (i.e. h#0), p is also unknown and needs to be obtained
from ODE (100).

for viscoelasticity and elastoplasticity, an evolution law (ODE)

for Gyp and byg. like (185), (205), (214) or (223).
for thermoelasticity, PDE (130). In this case, d,g and Baﬁ are

defined through T, e.g. by (50), (55), (227) and (228), and so
the primary unknowns are x and T.

In general, the governing ODEs and PDEs are nonlinear and cou-
pled, and hence need to be solved numerically. The ODEs can be
solved locally using numerical integration schemes like the implicit
Euler scheme. The problem simplifies if p, ¢ or T are prescribed.
In those cases the problem decouples. In order to fully characterize
PDEs (104), (121) and (129), constitutive expressions for the mass
flux, stress, bending moments and heat flux are needed. Those are
discussed in Section 7.

6.2. Recovery of @,

Strictly the recovery of @; and @,, which fully define the inter-
mediate configuration S, is not needed to solve the problem, but

it may still be interesting to reconstruct @,, and from it F;,, for
various reasons.

The recovery is straightforward for isotropic growth, isotropic
swelling and isotropic thermal expansion, since in these cases @, is
given by (48), with A;, being either prescribed directly or defined
through p, ¢ or T, as in some of the examples of Section 7.3.

For viscoelasticity and elastoplasticity, on the other hand, the
two vectors @; and @, can be determined from the two equations

:)

ap =Gy g

aﬂ=“a,ﬂ'ﬁ

S Qy

(143)

that each have three cases. In order to eliminate rigid body rota-
tions, @; and @, need to be fixed at some point.

Remark 6. If no inelastic bending occurs, i.e. #i = N, the second

equation can be replaced by the scalar equation
@, -N=0, (144)

that has two cases and fixes the inclination of S, and the condition

(@) x @) -N = ||a; x @y]| (145)

that fixes the orientation of S. Additionally, @ (or @,) needs to be
fixed at a point to eliminate the rigid body rotation around N.

7. Constitution

This section derives the constitutive equations following from
the second law of thermodynamics and provides various examples
for growth, swelling, elasticity, viscosity, plasticity and thermal ex-
pansion.

7.1. Constitutive theory

In general, the Helmholtz free energy is supposed to be a func-
tion of the elastic strains selﬁ and ¢, temperature T and concen-

ﬂs
tration ¢, i.e.

U= (edy kS T. D). (146)
such that
0y EW el 31# Lo
W 88;1 a a aﬁ ,B + 8¢ ¢ (147)
Eq. (142) then yields’
0 . .
Tpn = (a“ﬁ - paglﬁflﬂ)sglﬁ +oPedy
(Mo~ p ai‘/efl )isls + MeP il
oy q*Ty
14 W
+ (- a¢>"’ T5(7), =0 (148)

We now invoke the procedure of Coleman and Noll (1964). Two
cases have to be considered. The first case supposes that e(‘;‘ﬂ and

K(l;}s are independent process variables. Then, since (148) is true

7 Replacing a’i‘ﬂ according to (74.1), Eq. (148) can be also expressed in terms of

£, and a;;ﬁ
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for all rates s'glﬁ, sg’ﬂ /cglﬂ K(‘x“ﬂ T, ¢ and gradients T.q, (t/T).qe, We

obtain the sufficient conditions®

ol =p 81&] . oobén >0,
ae;ﬁ
Maﬂ _ paa'(z . Maﬂ,&g[nﬂ > 0,
Kap (149)
d
s=—%, Ty <0,
_a o
M—%, J (T);QSO,

which are the general constitutive relations for the stresses o®#,
bending moments M*#, inelastic strains e(‘xnﬁ, inelastic curvature
change K(l;}s heat flux g%, entropy s, concentration flux j* and La-
grange multiplier . The latter is identified to be the chemical po-
tential.
e in .in .
On the other hand, if 9111,3 and K(lxﬂ are functions of T and ¢,

their rates can be expanded into

8gi“ 38in
in __ ap ap
fup = 3T 3 &
8Kin akin
~in _ __af ap j
Kip = =7 T+ 5% é. (150)

Inserting this into (148) then yields

3K/f el o 810 -.el
aselﬁ)‘ggﬂ * (M P =p 3,(615)"5/3

Tpn = (0“’5 -p

MeB Ik ol
o 0¢ * o d9¢ )d)_TJ (T);azo-
(151)

Since this is true for all é;lﬂ, Kglﬂ T, ¢, T.o and (u/T).¢, We now

find

Y oob dely  MeB k)
S=ar p 0T p 0T’ (152)
LAy goP 05y MeB 0Ky

together with the equations for 0®f and M*# and the inequality
conditions for g% and j* already listed in (149). Now, the condi-
tions a“ﬂéé“ﬂ >0 and M"‘ﬁk‘% >0 are no longer a requirement.
As (152) shows for the second case, the entropy and chemical po-
tential have contributions coming from the inelastic deformation
measures sg‘ﬂ and K(ixﬂ.

7.2. Alternative constitutive description

By redefining the Helmholtz free energy, we can rewrite some
of the above constitutive equations. Since the Helmholtz free en-
ergy ¥ is defined per unit mass, the total energy is

H::/demzfs,owda

8 They are not necessary conditions as they can be combined into new condi-
tions.

(153)

where the first integral denotes the integration over the total mass

of surface S. Defining p° as the current density in the reference

configuration, i.e. p°:=] p, we can also write

M= | p°ydA. (154)
So

Due to growth (h#0), density p° is changing over time and is not

equal to the initial density po (unless h = 0). Likewise, we intro-

duce p as the density in 8, ie. p :=Jq o, so that we can further
write

n:[ﬁwda:ﬁﬁjda, (155)
S S
where dd = J;, dA and
Ui=py (156)

is the Helmholtz free energy per unit intermediate area. Since p is
independent of the elastic deformation (as long as h = J; h is),° we
can rewrite the constitutive laws for o%# and M®# into

of 100
¢ E.
Jar 355 (157)
wp 1 0V

(el) — J;?Kélﬂ .

Subscript “(el)” is added here to indicate that this is the stress
following from the elasticity model. But since agf) = a(‘flf) =c9h,
brackets on this subscript are used. Using the alternative stress
measures introduced in (114) and using identities (79) and (91),

we can further write

5 — PG _ a@y
(e 8821 88aﬁ

A W
) Bigly  OKap

(158)

7.3. Constitutive examples

The following subsections give examples for the elastic and in-
elastic material behavior of curved surfaces resulting from the con-
stitutive laws in (149), (152) and (157). We therefore consider that
the Helmholtz free energy has additive mechanical, thermal and
concentrational parts, i.e.

¥ = Ymech + Ytherm + Yeonc - (159)

An additional energy due to growth is not required since the en-
ergy change due to mass changes is already accounted for in IT
through p, see (153).

7.3.1. Growth models

i. Isotropic in-plane growth: In this case @, and Fj, are given
by (48) and (49). If this growth is unrestricted and maintains con-
stant density over time, ie. Jo =1 and p = pg = const. Vt, ODE
(100) leads to the exponential growth law

Jin =Jo exp(ht/po) (160)

where Jo is a dimensionless constant. In case of restricted growth
at changing density (Jo#1, p# const.), expression (160) can still
be used as a possible model. However in that case, also other
growth models in the form

Jin :]in(t) (161)

9 We can rewrite ODE (100) into p + f Jin/Jin — it = O.
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are possible. Examples are linear'” growth in h,

Jin=Jo(1+cht)? (162)
and logarithmic expansion in time,
Jin=Jo (1+1n(1 +t/to)) (163)

where Jy, ¢ and ty are constants. No matter what growth model is
used, if p is not assumed constant, it has to be solved for from ODE
(100). If growth is mass conserving, e.g. during expansion (163),
p = po/] solves ODE (100). Given Ji,, dy g is then fully defined via
(50).

ii. Curvature growth: An example for curvature growth is the
isotopic bending model (52) with the linear increase

Km=1+cht (164)

that could be caused by a one-sided mass source h. Baﬁ is then
given by (55).

7.3.2. Models for concentration induced swelling and diffusion
i. Linear isotropic swelling: A classical model for swelling is
the linear model

]in:)\izm Ain =140 (¢ — o) (165)
where the material constant o denotes the coefficient of chemical
swelling. Without loss of generality, one can then use d,g = Jin Ap
as discussed in Section 3.3.

ii. Chemical bending: An example for concentration induced

curvature increase is the isotopic bending model (52) with the lin-
ear curvature increase

Kin =1+ a, (¢ — o) (166)

where o is a constant. This curvature increase could be caused by
a one-sided swelling, e.g. due to the binding of molecules to one
side of a flexible membrane (Sahu et al., 2017).

Another, less trivial, example is a curvature increase due to a
concentration difference between top and bottom surface, i.e.

Kin=1+0a,c (¢ —¢-) (167)
where ¢, and ¢_ denote the top and bottom concentrations of
surface S, respectively. These need to be defined in a suitable way,
e.g. by using two separate PDEs of type (104) for the top and bot-
tom surface.

iii. Surface mass diffusion: A simple surface diffusion model
satisfying (149) is

o aff ﬁ

J Ma ( T )ﬁ (168)
where M is a constant. Choosing

=214 (169)

where Co is a constant, we find the chemical potential

(zac Yo Ain + 40tc VOM Ain Kin + 204 VOM )‘izn)’
(170)
due to (152), (50), (55), (165) and (166). Here yp := 03P A,p/2

and yM:= Mg‘ﬁBaﬁ/Z follow from the stress definitions in

Eq. (123) and Section 5.2.1. For the special case that y, yOM and
T are constant across S, we arrive at Fick’s law

ja = —Da"‘ﬁ ¢;'3,

1
—yTh— —
n=cTd=75

(171)

where  D=C,M,  with &y =c,— (202 yo +4a? y)' in +

8ac oy yé\" Ain)/(T pJ), is the surface diffusivity.

10 w.rt. stretch Ajp = y/Jin

7.3.3. Mechanical membrane models

This section discusses mechanical material models for elastic,
viscous and plastic membrane behavior, for which bending mo-
ments are neglected. In this case we have N*# = ¢%F according
to (123).

i. Surface elasticity: An example for the elastic response is the
potential
%(; —1-2Injy) + g(lgl —2-2Injy).
which is adapted from the classical 3D Neo-Hookean material
model (Sauer and Duong, 2017). The parameters A and G are ma-
terial constants. From (172) follows the membrane stress

aﬂ_A 2 1 of E Aaf _ qap
%) = 7, Vi = 1) &+ (@ = a*?),

U= (172)

(el) — el — (173)
according to (157), (82) and (84). The two terms in (172) do not
properly split dilatational and deviatoric energies. Such a split is
achieved by the alternative model

. Ko, G /I8
b= (- 1-2Inja) + 5<JE ,2),
which is adapted from Sauer and Duong (2017). The constants K
and G denote the in-plane bulk and shear moduli. From (157) now
follows the membrane stress

ap _ Ko 1y oes E(w/S_E aﬂ)
o 2]el(el 1)a +Je21 a 5a").
Here the first part is purely dilatational, while the second is purely
deviatoric. Hence, the surface tension only depends on the first
part, while the deviatoric stress only depends on the second part:
From (108) and (109) follow the surface tension

(174)

(175)

K
=—(5-1 176
V=g, Ua 1) (176)
and the deviatoric stress
G . Iel
o(;’ef\’; =J71<a°‘ﬁ - %a“ﬂ> . (177)
e

A third elasticity example is the linear elastic membrane model

&1l apys el

llfzisgﬁé"" riels. (178)
with the material tangent

cxBys .= A GuPGYe + G (dayd’% + d"“sd’s?’) (179)

based on the constants A and G. (178) is analogous to the 3D St.-
Venant-Kirchhoff material, from which it can be derived.!’ From
(158) now follows

Gop = cbrogel, (180)
which can be expanded into

o A . N . N

6o = 5(1?1 —2)@*f +G(a* a5 aP° — a*P). (181)

ii. Surface viscosity: A simple shear viscosity model satisfying
(149) is

635 =—na%h, (182)
where the material constant >0 denotes the in-plane shear vis-
cosity.'? It is noted, that model (182) is not purely deviatoric, since

1A 3D energy density needs to be multiplied by the shell thickness in order to
obtain the membrane energy density W.

12 Proof: Using a%f = —4*7d, ;% and 2D :=d,5 8" ® @’ gives (r(”i’rf;)é(ix“ﬂ =2nD:
D/Jo = 0 for n>0.
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Fig. 2. Surface rheology: a. viscoelastic Maxwell fluid; b. generalized viscoelastic solid; c. viscoelastic Kelvin solid. Even though these are 1D models, they can be used in 2D
and 3D, e.g. by applying them to dilatation and shear. E then plays the role of bulk and shear modulus.

it generally leads to non-zero surface tension (y = %a"‘ﬂ ayp # 0).
Another simple viscosity model satisfying (149) is

G55 = h P,

(183)
where the material constant A >0 denotes the in-plane bulk vis-
cosity.”® It is noted, that model (183) is not purely dilatational,
since it generally leads to non-zero shear stresses.

If there is no elastic deformation, d,g = a,g. If there is elastic
deformation, d, g has to be determined from an evolution law. This
depends on the rheological model considered.

For a Maxwell element, see Fig. 2a, the evolution law for d*#
follows from

af (ay8\ _ 9B (avs Gvé
Oen (67°) = 03y (@7, @°),
which is a nonlinear ODE that can be solved locally using numeri-
cal methods (e.g. implicit Euler). For example, for models (173) and
(182), the evolution law is

A

; G
A _ 2 A
a*p = ﬁ(1 —J3)a*f + H(a"‘ﬁ fa“ﬁ),

(184)

(185)

where J; is a function of @*# according to (45). A second example
is to use models (175) and (183) and consider only inelastic dilata-
tion (dgp = JinAep) according to Section 3.3. Contracting (184) with
dqp and using the relations from Section 3.3 thus yields the evolu-
tion law

W= KL (Lt
Jn= -

A Il ]m ]

for Jip.

For a generalized viscoelastic solid, see Fig. 2b, evolution law

(184) needs to be solved for ﬁmﬂ within each Maxwell element

(186)

M. This defines the stress 0131"3 in each Maxwell element. The to-

tal stress is then the sum of the stresses in all elements, i.e.
af _ 2B (qy8 af (ay8
o“f = og (ay )+ZUM (aM).
M=1

This model contains the special cases of a single Maxwell element

- for M=1 and aeofoﬂ =0 - and the Kelvin model - for M =1 and

d*P = q*P (see Fig. 2c).

(187)

Remark 7. Apart of (182) and (183), also the slightly different
choices a(‘fnﬁ) =-—n&* and o(oi‘f) = AJip @*# are consistent with the
second law.

iii. Surface constraints: Constraints are important for various
applications. A popular example is incompressibility, which is dis-
cussed in the following.

Elastic incompressibility implies J.;=1. This conditions leads to
an extra stress that can for example be captured by the Lagrange
multiplier method. According to this, the stress follows from the
potential

U =q(—1). (188)

ebeing = 20J2/] > 0 for 2> 0.

13 Proof: From (81) follows T imEn

where q is the corresponding Lagrange multiplier. The constraint

stress, according to (157) and (82), thus is
U(iﬁ — qa®b, (189)

i.e. it is dilatational. The Lagrange multiplier ¢ is an additional un-
known that needs to be solved for. It can be avoided by consider-
ing the penalty regularization

- K
V= j(]el - 1)2,

where the in-plane bulk modulus K is set to a very large value to
ensure Jo; ~ 1. From (157) and (82) now follows

oo =K(Ja — 1) a*f .

(190)

(191)

Inelastic incompressibility implies J,=1, i.e. Ji, = 0. According to
(81) this leads to the constraint

(192)

on the internal variable d,g. This is a scalar equation, and so two
more equations are needed in order to determine d,g. We can find
those by contracting the evolution law with d, g and a,g. For evo-
lution law (185) we thus find

af d,5 =0

0=A(1-J2)+G(2-4/I¢) (193)
and
a*Pa,p = %(1 -J3)+ %(2 — . (194)

Eqs. (192)-(194) can then be solved for d,g.

iv. Surface plasticity: Plastic behavior can be characterized by
the yield surface fy = fy(a"‘ﬂ) = 0 that satisfies fy = 0 during plas-
tic flow. Hence,

afy d.ozﬁ -0
doob '
A common approach to determine an evolution equation for d,g
from this is to use the principle of maximum dissipation. This as-

sumes that for a given inelastic strain rate sg’ﬂ the true stress is
the one that maximizes the dissipation O'O’ﬂé‘g]ﬂ among all possible

stress states. This implies

(195)

d“ﬁe’(‘x“ﬁ =0. (196)
Together, Egs. (195) and (196) imply that

. 0

gty = A (197)

which is the evolution law for d,g. The scalar A follows from the
condition fy = 0.

An example (that is a 2D version of von Mises plasticity!4, see
Fig. 3a) is

V2 (198)

14 Another possibility is to use the classical 3D von Mises plasticity model together
with the plane stress assumption. In this case fy := ||Gaev|l — \/2/3 0y, Where G gey
is the full 3D stress deviator. See Fig. 3b.
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Fig. 3. Surface plasticity: Yield surface fy =0 in principal stress space for a. 2D von Mises plasticity and b. 3D von Mises plasticity.

where the material constant oy denotes the yield stress, and

§:=[65h 6y (199)
defines the 2D von Mises stress from the deviatoric stress
Gob =6 —PaP, 68 = 0uy 61, dsp (200)
and the surface tension
y = %6“’36&,3, (201)
similar to definitions (108) and (110). From
a... a...
IR S 202
doeb ~Jdg5ap (202)
and
6 a4P = 640 dgp = 0, (203)
then follows
dev
oy _ Joab (204)
doaB — % §
such that
A dev

in _ 3% 205
€y = h—o. (205)
with A :=Jo A, and
a“ﬂég‘ﬂ =AS. (206)

Eq. (149) is thus satisfied for A > 0. From (74), (203) and (205) fol-
lows that d,g dP =0, i.e. plasticity model (205) is inelastically in-
compressible.

7.3.4. Mechanical bending models
i. Bending elasticity: An example for a linear bending model is

- 1 -
b = gl P,

(207)
where f"‘ﬂV‘S are the components of a constant material tensor. For
shells made of a homogenous material, those are given by
~ h?

faBrd — 0 pupys (208)

12

where hg is the initial shell thickness and ¢*#¥$ is given by
(179). This bending model can be derived from the 3D St.-
Venant-Kirchhoff material model via thickness integration, e.g. see
Duong et al. (2017) for the purely elastic case. From (158) and
(207) follows

NI = fobrd el (209)

An example for a nonlinear bending model is
N N k,

_ 2 g ~\2
U =] (km(H—H) +5 (k- k) )

where km and kg are material constants. The model is an adaption
and modification of the bending model by Helfrich (1973). It pro-
duces the bending moment components

(210)

MR = ki (H = A) a®f + kg (i — & ) b (211)
and stress COmpOnentS

p_ ¥ . X
Oe = ];a“’s — 2k (H - A) b*F — 2k (i —R) @, (212)

due to (92)-(95). Here, b*P := 2H a®f — p*P.
ii. Bending viscosity: An analogous model to (182) is the bend-
ing viscosity model

A

1\7’32) =T1hp botﬁs (213)

since it satisfies (149) for an analogous proof as for (182). Setting
this equal to M((f;;) (i.e. assuming a Maxwell model) then yields
the evolution law for b, . For example taking (209) with fefrd =
fo (ﬁ"”’ ks + &“‘S&ﬂy)/Z yields the simple linear evolution law

2 fo( N )
bos = 22 (byp —bug ).
b=y \Dap = Dap

iii. Bending plasticity: Accounting for bending, the yield surface
from Section 7.3.3.iv needs to be extended to fy(o®#, M*#), such
that during plastic flow

(214)

8fy Uaﬂ + afy M(Xﬂ = O .
do P oMo
Invoking again the principle of maximum dissipation, which as-
sumes that for given inelastic strain rates é&“ﬁ and K(Tﬂ the true

stress and bending moment components are those that maximize
the dissipation a"‘ﬁé;‘ﬁ + M"‘ﬂk&"ﬂ among all possible stress states,
we find

GePéln, + MePil, = 0.

(215)

(216)

Multiplying Eq. (215) by A and subtracting it from (216) then gives

(et - 22 Yot + (sl 2 Oy Jwret <o,

doeh oMeh (217)

Since this is true for all 6%f and M*f we find the flow rules
(197) and

3 af,
Kl = At (218)




RA. Sauer, R. Ghaffari and A. Gupta/International Journal of Solids and Structures 174-175 (2019) 53-68 67

which are the evolution laws for d, g and Baﬂ. The scalar A again

follows from the condition fy = 0.
As an example we consider the simple extension of (198),
f = y N S V2
V"o "My 27
where the material constant My denotes the yield limit for bend-
ing, and

(219)

Sw 1=\ MGh NIdey (220)
with
WD, = NP — 9y 6P, NI =y NI, G (221)
and
P = gM@Ba, (222)

is defined analogous to (199)-(201). Due to this analogy, the flow
rule for K:;}S follows in analogy to (205), which is still valid here,
as

(rdev
kin, = X N{“ , (223)
SM

which also satisfies Eq. (149) for A >0.

The elasto-plasticity model described by the constitutive equa-
tions in (157), (197) and (218) is equivalent to the model of
Simo and Kennedy (1992). However, in Simo and Kennedy (1992),
(157) is written in terms of ® = py 1, the Helmholtz free en-
ergy per unit reference area (in the case of h = 0). Also, Simo and
Kennedy (1992), consider an alternative model to (219) that is
based on Shapiro (1961).

7.3.5. Thermal models
i. Thermal energy: Considering
@:CH[(T—TO)—Tln Tl] (224)
0
where Cy is a material constant and Ty is a constant reference tem-
perature (Holzapfel, 2000), gives the specific entropy

s = C7H In 1
p T
due to (149) and (156). This energy does not generate stresses.
Those only appear in response to mechanical deformations. Due to
(224), the stored energy (per intermediate area) is pu = p (Y +
TS) = CH (T - To)
ii. Surface heat conduction: A simple surface conductivity
model satisfying (149) is Fourier’s law

q* = —ka*F T

(225)

(226)

where the constant k is the surface heat conductivity. Model
(226) is analogous to Fick’s law (171).

iii. Thermal surface expansion: A simple linear model for
isotropic thermal expansion (analogous to chemical swelling) is

Jn=A2%. An=1+401(T-Tp). (227)

where the material constant ot denotes the coefficient of ther-
mal expansion. Without loss of generality, one can then use dqg =
JinAup as discussed in Section 3.3. Model (227) leads to an addi-
tional entropy contribution due to (152), analogous to the contri-
bution in @ seen in (170).

iv. Thermal bending: An example for temperature induced cur-
vature increase is the isotopic bending model (52) with the linear
curvature increase

Kin=1+a, (T -To) (228)

analogous to (166). Here «, is a material constant. This curvature
increase could be caused by a one-sided thermal expansion. Anal-
ogous to (167), one can also consider the model

Kin=1+0, (T, —T.) (229)

where T, and T_ denote the top and bottom temperatures of sur-
face S, respectively. Those need to be defined in a suitable way,
e.g. by using two separate PDEs of type (129) for the top and bot-
tom surface. Note that, models (228) and (229) lead to an addi-
tional entropy contribution due to (152), analogous to the contri-
bution in w seen in (170).

8. Conclusion

This work presents a general nonlinear shell theory for coupled
elastic and inelastic deformations, accounting for growth, swelling,
plasticity, viscosity and thermal expansion. The formulation is de-
rived from the balance laws of mass, momentum, energy and en-
tropy using a multiplicative split of the surface deformation gradi-
ent into elastic and inelastic contributions. The general constitutive
equations of this coupling are derived and illustrated by several ex-
amples. Those generally require the derivatives of various kinemat-
ical quantities w.r.t. the elastic and inelastic deformations.

Although the present formulation is purely theoretical, it is
suitable for computational analysis, for example within the finite
element method. There has been important recent progress on
rotation-free finite elements (FE) in the framework of isogeometric
analysis (Kiendl et al., 2009). Such FE formulations allow for a very
accurate yet efficient surface description that is particularly benefi-
cial for an accurate representation of curvatures. It can thus be ex-
pected that isogeometric shell FE formulations for coupled inelastic
and elastic deformations would be very beneficial. So far, it seems
that only elasto-plasticity and isotropic thermoelasticity have been
analyzed with multiplicatively split isogeometric shell FE (Ambati
et al., 2018; Vu-Bac et al., 2019). But the authors are currently ap-
plying the present theory to extend the hyperelastic graphene FE
model of Ghaffari and Sauer (2018) to anisotropic thermoelastic-
ity (Ghaffari and Sauer, 2019), and to study the growth of fluid
films using the FE model of Sauer (2014) and Roohbakhshan and
Sauer (2019).
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