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Interfacial growth during closure of a cutaneous
wound: stress generation and wrinkle formation

Digendranath Swain and Anurag Gupta*

A biomechanical growth model for the proliferation stage of cutaneous wound healing is developed

emphasizing the emergence of stress and wrinkled skin during the healing process. The healing is

assumed to be primarily driven by growth at the wound edge (i.e. the interface between the wound and

the skin) leading to incompatible growth strains. A closed form solution of the boundary value problem is

obtained using a Varga hyperelastic membrane model for both the skin and the wound. The nature of the

solution is explored for various parametric values of the skin tension, healing rate, edge incompatibility,

wrinkled region radius, and wound stiffness. The obtained results for the stress field, wrinkling, and rate of

healing are qualitatively in good agreement with the existing experimental observations.

1 Introduction

Cutaneous wound healing is vital for restoring the integrity
of damaged skin tissues.31 The healing process is influenced
by both growth factors (cytokines)36 and mechanical stimuli
(stresses/strains)2,10,46 while undergoing four major stages:
hemostasis, inflammation, proliferation, and remodeling.33

During hemostasis, blood coagulates to form a fibrin clot which
controls the loss of blood and body fluids, avoids exposure of
the wound to the outer environment, and also acts as a
provisional matrix for various cell migration processes. In the
inflammatory stage, various white blood cells permeate into the
wound to assist its cleansing from debris and unwanted
bacteria. The macrophages formed in this stage help in the
secretion of various growth factors required for wound repair.
During the proliferation stage, the wound begins to resurface
by means of reepithelialization (restoration of epidermis),
collagen deposition (restoration of dermis), and restoration of
vascular networks (angiogenesis). Additionally, the fibroblasts,
which are otherwise responsible for the synthesis of collagen,
elastin, and extracellular matrix (ECM), transform into myofi-
broblasts under mechanical influence so as to facilitate wound
contraction. The final stage of healing is remodelling, which
brings about structural changes (cellular and tissue level rear-
rangements) in the scar tissue after a complete closure of the
wound; this is essential to improve the mechanical properties
of the scar.21

‘‘Fundamental to our understanding of wound-healing bio-
logy is knowledge of the signals that trigger relatively sedentary
cell linages at the wound margin to proliferate, to become

invasive, and then to lay down new matrices in the wound
gap’’.28 The central role played by the wound edge during
wound healing is taken as the basis of the model proposed in
the present work. Our consideration is motivated by several
experimental observations as summarised below. The wound
edge is a site for active secretion of growth factors.28 Both
epithelial and non-epithelial cells therein have been observed
to produce a large number of cytokines so as to assist in the
formation of actin filaments which allows cell migration over
the provisional matrix.36 The proliferation of epithelial cells is
encouraged by the absence of healthy cells adjacent to the
wound edge.36 Furthermore, it is observed that a narrow ring of
fibroblasts is accumulated under the wound margin, which is
responsible for closure of the wounds.18 The migrating fibro-
blasts at the margin exert sufficient force for wound contrac-
tion, thereby transforming fibroblasts into myofibroblasts and
consequently increasing the resistance to migration.16 The
experiments have also noted an increase in mitotic activity
during epidermal migration in the 1 mm thick band near the
newly formed epidermis with a maximal increase at the wound
edge, where it is fifteen times higher than the normal epidermis.31

Several continuum mechanics based models of wound heal-
ing incorporating skin elasticity have been proposed in the
literature; for a comprehensive review see chapters 9 and 10 in
ref. 31. Most of these follow Tranquillo and Murray42 in
formulating the healing problem within a mechanochemical
framework consisting of reaction-diffusion equations for fibro-
blasts, myofibroblasts, and growth factors, mass balance equa-
tions for ECM density evolution, and force balance equations for
ECM displacements. While these models have made significant
progress in understanding the nature of chemical kinetics
associated with the wound healing process, they assume elastic
strains to be infinitesimal and ignore the role of wound edge in
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the growth process. Moreover, they are single compartment
models, wherein only the wound domain has been considered
while ignoring the effect of the healthy skin adjacent to the
wound (an exception is the two-compartment model of Murphy
et al.30). The assumption on elastic strains is inappropriate due
to the nature of skin elasticity; it results in unphysical stress
magnitudes as well as prevents the possibility of instabilities
such as wrinkling in the skin. More recently, Wu and Amar45

have proposed a mechanistic model of growth which incorporates
the nonlinear elasticity of skin and the proliferating wound.
Restricting both growth and proliferation to an annular region
of the wound in the neighborhood of healthy skin, but allowing
for anisotropic growth, they have used this model to primarily
investigate interfacial instability leading to the loss of circularity of
wound edge under various material and geometric parameters.

Our model is fundamentally based on the theory of bio-
mechanical growth where growth is regarded as the irreversible
addition of mass which may or may not result in a change
in form.8,9,14,25 The mechanistic effect of growth is repre-
sented by a growth distortion tensor, whose incompatibility
is related to the emergence of residual stress fields34,37 (the
notion of incompatibility is explained in Section 2.1). This
naturally leads to a kinematics involving multiplicative decom-
position of deformation gradients,34 analogous to formulations
of elastoplasticity and thermoelasticity.27 However, unlike the
models of bulk growth, we propose a framework where mass
addition, as well as incompatibility in growth distortion, is
restricted to sharp interfaces within the solid.19 A similar
interfacial growth model, but one which neglects incompat-
ibility at the interface, has been proposed by Ciarletta and
co-authors.6 On the other hand, the incompatibility of growth
distortion has been incorporated in some recent models of bulk
growth, see e.g. ref. 29 and 45, mainly towards explaining
emergence of interfacial instabilities. We introduce our growth
model by developing a novel formulation of the wound healing
phenomenon where wound and skin, both considered to be two-
dimensional hyperelastic membranes (with wound having lower
stiffness), are treated as different domains separated by a sharp
interface. Our framework is suitable for deep partial thickness
injuries,35 which normally heal with fibroplasia and contraction
ending up with scar formation. We restrict our attention to the
proliferation stage alone, ignoring retraction of the wound
immediately after the injury as well as remodelling. We also
ignore skin anisotropy and any interaction with substrates; these
can be included in a straightforward manner in our model. An
important aspect of our work is to predict wrinkling of skin in the
vicinity of the wound margin and relate it to the nature of
interfacial growth. The formation of wrinkles during wound
healing has been observed experimentally,5,26 but it has not been
accounted for in any of the available models of wound healing.
Wrinkle formation in unwounded skin has however been studied
extensively, see e.g. ref. 5, 7 and 11. In this paper, we have used
the tension field theory, following Pipkin and Steigmann,32,39,40

to model wrinkles in nonlinear elastic skin membranes.
The interfacial growth model for cutaneous wound healing

is formulated in Section 2. In doing so we depart from the

established growth models by considering mass addition and
deformation incompatibility at a non-material interface in the
body. The model is kept simple enough to derive analytical
solutions, which we discuss in detail in Section 2.5; a compar-
ison with relevant experimental data is also given therein.
Finally, in Section 4 we conclude our study.

2 A model for cutaneous wound
closure

The wound healing problem that we are concerned with
involves growth of the healthy skin and annihilation of the
wound driven by a mass source at the wound edge. For
analytical convenience, we consider the wound to be a thin
circular disc surrounded by skin (in the form of an annular
circular disc) such that the thickness h (possibly nonuniform)
of the arrangement is much smaller than the wound radius.
Both wound and skin are assumed to behave as Varga hyper-
elastic membranes with nonlinear responses (see Section 2.3
for details). The wound-skin configuration at a certain time
instant t is shown as Bt in Fig. 1, where a denotes the wound
radius and b the outer radius of the skin. We also consider an
axisymmetric traction distribution over the skin edge and
assume the skin region surrounding the wound to be large
enough such that the traction forces at the boundary are
obtainable from the internal stress values in the unwounded
skin. We assume body forces and inertia to be negligible. The
deformation is assumed to be axisymmetric so that the wound-
skin arrangement remains in the form of a circular disc as skin
grows radially towards the wound center. In this section, we
provide details of our model and use it to obtain closed form
solutions for the stress field and wrinkling instability in the
skin region during healing.

Fig. 1 Kinematics of growth during wound closure. Here, B0 is the
reference configuration with O1 (wound) and O2 (skin), Bi is the inter-
mediate grown configuration with G1 (wound) and G2 (skin), and Bt is the
current configuration with o1 (wound) and o2 (skin).
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2.1 Kinematics

The deformation of the wound and the skin is measured with
respect to a fixed reference configuration B0, taken to be the
initial state of the wounded domain, see Fig. 1. In this configu-
ration, the wound and the skin regions are of radius A and B,
respectively. For a contracting wound we require a o A. The
thickness H of the disc in B0 is assumed to be uniform such
that H { A. The thickness h of the deformed disc in Bt is taken
to be a function of only the radial distance. The wound-skin
arrangement has residual stresses, whose nature can be deter-
mined by unloading the body to a zero stress state. Presently,
we assume that in order to unload the body Bt we will have to cut
it along the wound edge, in addition to removing the traction
force at the skin edge. Such a consideration is to emphasize the
role of the wound edge in driving the closure of the wound. As we
shall see, growth at the wound edge leads to a residually stressed
state in the body which provides the driving force for wound
healing. We call the stress-free configuration as the intermediate
relaxed configuration and denote it as Bi, see Fig. 1. As expected
the wound edge and the internal edge of the skin are no longer
coincident in Bi, but are separated by an axisymmetric gap (the
axisymmetry of the gap is an additional assumption on the
nature of the growth, see the following paragraph). The wound
in Bi has a radius Â*. The annular skin region in Bi is of inner
and outer radius A* and B*, respectively.

The current and the reference configuration are related by a
continuous bijective map which transforms position vector
X 2 B0, given in terms of polar coordinates as X = Rer(Y) +
Zez (with 0 r R r B, 0 r Y r 2p, and �H/2 r Z r H/2),
to x 2 Bt where x = rer(y) + zez (with 0 r r r b, 0 r yr 2p, and
�h/2 r z r h/2) such that r = r(R), y = Y, and z = (h(R)/H)Z
(we do not restrict h to be continuous at R = A). Here er, ey and ez

are unit basis vectors along radial, circumferential, and axial
directions, respectively of the polar coordinate system. The
deformation gradient F := qXx is then given by

F ¼ r0ðRÞer � er þ
r

R
ey � ey þ

h

H
ez � ez; (2.1)

where qX denotes the partial derivative with respect to X and the
superscript prime is used to denote the derivative with respect
to R. The tensor product a # b between two vectors a and b is
defined such that for any third vector c, (a # b)c = (b�c)a, where
b�c denotes the Euclidean dot product between vectors b and c.
On the other hand, position vector X� 2 Bi is related to X by a
piecewise continuous map such that X* = R*er(Y*) + Z*ez, where
R* = R*(R), Y* = Y, and Z* = Z. This characterises the nature of
growth kinematics in our model. We will assume a piecewise
linear form for R* given by k1R if 0 r R r A and k2R if A r R r B,
where k1 and k2 are constants (we will discuss more about them
in the following). The growth distortion tensor Fg := qXX* there-
fore is of the form

Fg = ka(er # er + ey # ey) + ez # ez, (2.2)

where ka should be replaced by k1 and k2 for 0 r R r A and A r
R r B, respectively; it is clear that growth distortion is isotropic

in the plane. The elastic distortion tensor Fe := qX*x satisfies the
multiplicative decomposition F = FeFg,34 and hence is given by

Fe ¼
r0ðRÞ
ka

er � er þ
r

kaR
ey � ey þ

h

H
ez � ez: (2.3)

We assume elastic deformation to be incompressible, i.e. det
Fe = 1; hence det F = det Fg, which yields

rr0

R
¼ ka

2H

h
: (2.4)

This equation cannot be solved until we determine h(R) using
equilibrium equations, as discussed below.

The distortions F, Fe, and Fg are compatible away from
the wound edge since they can all be written as a gradient of
a certain (position) vector field. On the other hand, we call
the distortion, say F, to be compatible on the wound edge if
(F+ � F�)ey = 0, where F+ is the limiting value of F at the wound
edge as it is approached from the skin side, and F� as it is
approached from the wound side (this notation has also been
used in subsequent sections). For a general discussion on
compatibility, both in the bulk and at a singular interface,
see ref. 19 and 20. It is clear from (2.1) that F indeed satisfies
this condition and is hence compatible at the wound edge.
However, (Fg

+ � Fg
�)ey = (k2 � k1)ey and consequently the

growth distortion is incompatible unless k1 = k2. This incom-
patibility manifests itself geometrically as a gap in the form of a
annular region (between wound and skin) in Bi; in fact we
require k2 4 k1, otherwise the two domains will penetrate into
each other in Bi. The elastic deformation overcomes this radial
incompatibility so as to make the total deformation compati-
ble. As a result internal forces are generated at the wound edge.
The biological origin of such forces is due to the presence of
fibroblasts, myofibroblasts, and keratinocytes in the vicinity of
the wound edge and their interaction with the surrounding
cells in the skin.26 These internal forces supplement external
forces (due to skin tension and body movement) in driving the
wound to its closure.2 The preceding arguments provide phy-
sical basis for the introduction of incompatibility at the wound
edge, here represented by non-vanishing of (k1 � k2). The
parameters ka can of course be constitutively related to the
biochemical processes governing the healing process; we dis-
cuss this briefly in the following subsection, but otherwise
ignore the details in the present work. We note that unlike
most of the existing theories of volumetric growth, where both
growth and elastic distortions are incompatible in the domain,
the incompatibility is restricted here to the interface at the
wound edge, cf. ref. 29 and 45.

2.2 Mass balance

Consider an arbitrary part o (with thickness h) of Bt such that it
intersects the wound edge on a surface s. Allowing for a mass
source (represented by a density p per unit area) at the inter-
face, the statement of balance of mass for o is given by

d

dt

ð
o
rdV ¼

ð
s

pdA; (2.5)
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where r is the mass density per unit volume of the current
configuration and dV and dA represent the infinitesimal
volume and the area in Bt. In writing the above relation we
have ignored the presence of any excess mass density at the
interface as well as neglected any sources/sinks of mass in the
bulk domain away from the interface. The mass source p can be
attributed to the proliferation of various cells and growth
factors at the wound edge. The global mass balance equation
is equivalent to the following local relations:

@rw
@t
þ div rwvð Þ ¼ 0 for 0 � ro a;

@rs
@t
þ div rsvð Þ ¼ 0 for ao r � b; and

u rs � rwð Þ � rsv
þ � rwv

�ð Þ � er ¼ p at r ¼ a;

(2.6)

where rw and rs are mass densities of the wound and the
surrounding skin in the current configuration, u is the normal
velocity of the wound edge in Bt, and v is the particle velocity;
div stands for the divergence operator. According to the last of
these equations, a mass source can be present at the interface
only when there is a non-trivial difference in the reference
densities of the neighboring domains and the interface is not
stationary in the reference configuration; the latter requires the
wound edge to be a non-material interface. The mass balance at
the wound edge can be used to derive a relationship between ka,
u, r0 and p. Towards this end, let r0w and r0s be mass densities
of the wound and surrounding skin with respect to B0. We have
r = r0 det Fg owing to incompressible elastic deformation. We
assume a quasi-static evolution, where particle velocities have
much small magnitudes than the wound edge velocity, so as to
reduce (2.6)3 to

u(k2
2r0s � k1

2r0w) = p. (2.7)

This equation relates growth distortions to the mass addition
and the evolution of the wound edge. It is clear that mass
addition is possible even at a compatible interface but with
discontinuous density.

2.3 Equilibrium relations and constitutive assumptions

For quasi-static deformations with no body force, and recalling
the symmetry in the problem, we have only one non-trivial equili-
brium condition for stress, i.e.24

hTrrð Þ
0

r 0
þ h Trr � Tyyð Þ

r
¼ 0 for

0 � RoA; AoR � B and

(2.8)

(h+Trr
+ � h�Trr

�) = 0 at R = A, (2.9)

where Trr(R), etc. are components of the Cauchy stress with
respect to the cylindrical coordinate system.

Skin is an anisotropic viscoelastic material exhibiting non-
linear stress–strain response.13 However, the viscoelasticity of
skin can be neglected for the time scales involved in wound
healing.22 Moreover, since the dermis is much softer than the
epidermis, skin easily slides over the substrate, allowing us to

model it as an elastic membrane.5 For analytical simplicity we
assume the membrane to behave like an incompressible Varga
hyperelastic material whose strain energy density is given as

W(l1, l2, l3) = 2m(l1 + l2 + l3 � 3), (2.10)

where m is a material constant and li are principle stretches
associated with elastic distortion. Elastic incompressibility
requires l3 = 1/(l1l2), hence we introduce

bW l1; l2ð Þ ¼W l1; l2; 1= l1l2ð Þð Þ: (2.11)

For the wound a similar model can be assumed with a different
material parameter. We assume wound to be less stiffer than
skin since it has inferior properties. The granulating surface of
the wound acts as a single contractile body, hence wound can
be considered as a solid domain.3 We note that ignoring the
viscoelasticity of the wound is a strong assumption and it
would be important to extend the present formulation to
include this physical property and study its effect on stress
generation and wrinkling.

The non-trivial components of the Cauchy stress for hyper-
elastic response are given by24

Trr ¼ l1 bW1; and Tyy ¼ l2 bW2; where bWi ¼
@ bW
@li

: (2.12)

For the Varga material

Trr ¼ 2ml1 1� 1

l12l2

� �
and

Tyy ¼ 2ml2 1� 1

l1l22

� �
:

(2.13)

Substituting these in equilibrium eqn (2.8), while recalling
from (2.3) that l1 = r0/ka, l2 = r/(Rka), and l3 = h/H, we get

r00rR + (r0)2R � r0r = 0 for 0 r R o A and A o R r B.
(2.14)

2.4 Unwrinkled solution

Eqn (2.14) can be solved separately in the skin and the wound
region to get

rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1R2 þ C2

p
and rw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1R2 þD2

p
; (2.15)

respectively. Here, and in what follows below, we use super-
scripts ‘s’ and ‘w’ to differentiate between skin side and wound
side variables. Substituting these in (2.4) we can immediately
see that h(R) is a piecewise constant, i.e. hw = k1

2H/D1 and hs =
k2

2H/C1.
The solution will be completed using the following bound-

ary and interfacial conditions: (i) Ts
rr(B) = T s

N(40), where Ts
N is

the magnitude of the far field stress in the skin (obtained from
unwounded skin), (ii) rw(0) = 0 (therefore cavitation is not
allowed), (iii) r s(A) = rw(A), and (iv) stress equilibrium at
the wound edge given by (2.9). The first condition will be
considered assuming B - N. In this limit T s

rr ¼
2ms

ffiffiffiffiffiffi
C1

p �
k2 � k2

2
�
C1

� �
which is to be equated to T s

N to solve
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for C1/k2
2. It should be noted that, for T s

N 4 0, the cubic
equation has only one real root as can be checked by calculat-
ing the discriminant; moreover, we should necessarily have
C1 4 k2

2. The second condition implies D2 = 0, reducing (2.15)2

to rw ¼
ffiffiffiffiffiffi
D1

p
R. With this we readily obtain Tw

rrðRÞ ¼ Tw
yyðRÞ ¼

2mw
ffiffiffiffiffiffi
D1

p �
k1

� �
1� k1

3
�
D1

3=2
� �

; the wound region therefore is in
a constant hydrostatic stress state. The stresses are tensile if
and only if D1 4 k1

2. It is useful to interpret D1 in terms of the
current position of the wound edge (given by a) which is usually
available from the experimental data (see for instance4). The
velocity of healing or the rate of contraction is known to
decrease with time.4 This motivates us to take a = Azd�1, where
z is the healing constant (zo 1 for healing) and d is the number
of days (d 4 1 assuming that there will be no proliferation of

wound during the first day). We get
ffiffiffiffiffiffi
D1

p
¼ a=A ¼ zd�1. The

continuity of the deformation at the wound edge (third con-
dition) is used to determine C2 in terms of C1 and D1 as C2 =
(D1 � C1)A2. If we fix the value of parameters ms, mw, z, d, and k2,
then the fourth condition simplifies to a fourth order equation
which can be solved for k1; the selected value of k1 should
satisfy k1 o k2 and D1 4 k1

2. Knowing reference densities, this
will also determine the rate of mass addition p in (2.7), where u
can be inferred from D1. On the other hand, if we fix p, then we
have to keep both k1 and k2 as unknown variables, to be solved
using the fourth boundary condition and (2.7) while being
restricted by various inequalities as discussed above.

2.5 Wrinkled solution using tension field theory

It is well known that elastic membranes remain stable only for
non-negative stress fields.38 The emergence of compressive
stresses can be accommodated by buckling of the membrane
in the form of infinitesimal wrinkles. As the wound heals the
wrinkles are expected to appear only in the circumferential
direction.5,12 The radial stresses accordingly should remain
positive throughout. In the wound region, the radial and the
hoop stresses are both equal and hence no wrinkling is
predicted. The positivity of stresses in the wound is guaranteed
as long as D1 4 k1

2; this inequality is used as a restriction on
the admissible values for k1 assuming that D1 is known from
experimental data of wound contraction (see the discussion

above). In the skin region we have T s0
rrðRÞ ¼ 2msC1C2

�
k2r

s3
� �

and T s0
yyðRÞ ¼ 2msC2

�
rsk2

2R2
� �

. We have already seen that, for
far field radial stress in the skin to be positive, C1 4 k2

2.
Observations of wrinkling during healing reveal that it is
restricted to a finite region in the skin adjacent to the wound
edge. Therefore, the hoop stress should increase as we go from
the wound edge towards healthier skin. This requires C2 o 0
which is equivalent to D1 o C1. The wrinkled region has T s

yyo 0.
To find the size of this region (denoted by radius Rc) we can use
T s
yy = 0 which in the present case yields a nonlinear equation

C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1Rc

2 þ C2

p
¼ k2

3Rc: (2.16)

The limiting condition which ensures no wrinkling can be
obtained by substituting Rc r A in the above equation to get
k2

3 � C1

ffiffiffiffiffiffi
D1

p
.

The solution in the preceding subsection assumes non-
negative stress in the whole domain. In the presence of wrinkling
the domain will be divided into three regions: wound (0 r R r A),
wrinkled regions (A r R r Rc), and skin (Rc r R r B). The solution
(2.15) remains valid in the wound and the skin region. To solve the
boundary value problem in the wrinkled region we will use the
tension field theory as proposed by Pipkin and Steigmann32,39,40

(see also ref. 24). For an annular region to lower its circumference
below what would be in simple (radial) tension, compressive hoop
stress would be required. The tension field theory instead
postulates that the reduction of circumference is accom-
plished by wrinkling while keeping hoop stress to a vanishing
value throughout the wrinkled region. The fine scale nature of
the wrinkled pattern remains unresolved in this theory; in
order to do so one would need to incorporate bending into
membrane energetics.41 The essential features of the tension
field theory emerge as a consequence of a relaxed strain
energy density.32 Towards this end we first solve Tyy = 0 from

(2.13)2 to obtain l2 in terms of l1; we get l2 ¼ 1
� ffiffiffiffiffi

l1
p

, the
‘natural width’ of the membrane.32 The relaxed strain energy
density for the incompressible Varga material is obtained by
substituting this expression in place of l2 in (2.10):

bW l1ð Þ ¼ 2ms l1 þ
2ffiffiffiffiffi
l1
p � 3

� �
: (2.17)

In the wrinkled region, i.e. A r R r Rc, l2 � 1
� ffiffiffiffiffi

l1
p

and Tyy = 0.
Using the latter in (2.8) reduces the stress equilibrium
relation to

hTrrð Þ
0

r 0
þ hTrr

r
¼ 0 for A � R � Rc; (2.18)

which immediately implies that rhTrr is constant. The radial
stress Trr can be written in terms of the relaxed energy density

as l1fW 0 l1ð Þ. With r = l2Rk2, h = l3H, and l1l2l3 = 1, the stress

equilibrium implies that RfW 0 l1ð Þ or, equivalently, R(1� l1
�3/2) is

a constant in the wrinkled region. The use of l1 = r0/k2 and
subsequent integration yields

rtðRÞ ¼
ð

R

R� d1

� �2=3

k2dRþ d2; (2.19)

where d1 and d2 are constants; the superscript t is used to
identify the variables in the tension field (wrinkled) region. The
solution is completed using the following boundary and inter-
facial conditions: (i) T s

rr(B) = T s
N(40), (ii) rw(0) = 0, (iii) r t(A) =

rw(A), (iv) r s(Rc) = r t(Rc), and (v) (htT t
rr � hwT w

rr) = 0 at R = A, and
(vi) (hsT s

rr � htT t
rr) = 0 at R = Rc. As before, the first condition is

used to solve for C1/k2
2 and the second one implies D2 = 0. Also,

we can continue to interpret D1 in terms of the wound healing
rate. Then, fixing the value of parameters ms, mw, z, d, and k2, we
can use the rest of the conditions, in conjunction with (2.16), to
find C2, d1, d2, Rc, and k1.
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3 Discussion

Before venturing into a detailed parametric study we illustrate
the nature of the solution for a typical choice of constants. We
consider ms = 6.5 kPa, mw = 0.7ms, z = 0.95, k2 = 1.1, and T s

N =
1 kPa. The value for ms is taken from the available experi-
mental results13 while mw is chosen so as to ensure that wound
is less stiffer than the skin. We have taken d = 2 to investigate
the nature of healing after the first day. The value of healing
constant z is motivated from the wound healing data given in
ref. 4 for a 36 year old patient with a wound on the left iliac
region. We converted the area of the wound, available from
the study, into an equivalent circular wound and subsequently
determined the radius. The decrease in normalized current
wound radius r/A versus time is shown in Fig. 2. The value of
k2, which essentially provides the skin growth deformation,
has been taken in the range of 1 to 1.3. A large value of k2

would signify a large opening at the wound edge after making
an incision and vice-versa. Even though no experimental data
is available for k2, we solve our problem with data which does
not create large openings. The considered skin tension value
of 1 kPa is lower than the reported literature range of about
5.4 kPa to 90 kPa.10,13 We are restricted to work with lower values
of skin tension because we would otherwise get imaginary
values for the constant D1 inside the wound. This restriction
is an outcome of the simple hyperelastic model chosen for
analytical convenience. The stresses in the skin region are
plotted against the normalized radius R/A shown in Fig. 3.
The critical wrinkle radius can be read as Rc = 1.424A. We have
here illustrated a case of wrinkle formation which is inline with
the literature.5,12

We will now investigate how stress generation and wrink-
ling are affected by varying skin tension, healing constants,
incompatibility at the wound edge, the radius of the wrinkled
region, and wound stiffness. In several of these studies we will
fix the wrinkle radius and instead calculate the healing con-
stant as a part of the solution. Fixing the wrinkle radius
simulates the condition of the constrained boundary for

instance during vacuum or adhesive bandage assisted healing.
The variation of the wrinkle radius in this paper is considered
in the range of 1 to 3. This range is inspired from the experi-
mental results obtained in ref. 5 and 12.

3.1 Effect of skin tension

The effect of the skin tension on the solution is given in Fig. 4
and 5, and in Tables 1(a) and 2(a). With a fixed healing
constant, the wrinkle radius increases with decrease in the
far field skin tension. This result is in agreement with earlier
analytical studies23 and experiments.5,12,15 For higher tension
smaller wrinkled regions will appear, in addition to higher
stresses. This would also help the fibroblasts to transform into
myofibroblasts, which furthers the contraction process.2,10,16

Hence, wounds under large tensile forces show less apoptosis
and promote fibrosis and fibroplasia leading to hypertrophic
scars.1,2,10,44 The evidence of abnormal scars appearing at
mobile sites such as chest, shoulder muscles, abdomen and
scapula, where the skin is frequently stretched due to respira-
tion, upper limb movements, seating, and standing motions
are some illustrations. Immobile sites like the scalp and the
anterior low leg do not show such scars.2,43,44 The results in
Table 1(a) show that the stresses in the wound and the skin
region decrease with decreasing skin tension; this is of course
related to the incompatibility k2 � k1 generated at the edge. The
loss of tension during healing results in wound atrophy due to
the disappearance of alpha-SMA (smooth muscle actin) and
myofibroblasts from the wound site.2,17 In another parametric
study, we keep the wrinkle radius constant and vary the skin
tension as shown in Fig. 5 and Table 2(a). In this case, the
healing constant increased (slower healing) with loss in skin
tension, and higher stresses in the wound and the surrounding
skin appear as a result of higher skin tension. For normal

Fig. 2 The healing data for an open wound for patient no. 217 taken from
ref. 4.

Fig. 3 Stress values in the skin region calculated for ms = 6.5 kPa, mw =
0.7ms, z = 0.95, Ts

N = 1 kPa, and k2 = 1.1. Here, and in subsequent figures,
T̂rr = hTrr and T̂yy = hTyy. ‘TF’ stands for the tension field.
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wound healing an optimized tension is required to limit the
spreading of scar and formation of wrinkles.5

3.2 Effect of healing constant

The effect of varying healing constant on the solution is shown
in Fig. 6 and Table 1(b). Higher rates of contraction can be
achieved through artificial means such as vacuum assisted
closure, adhesive tapes, bandages, skin grafts, scaffolds seeded

with stem cells, dampening the wound, and maintaining
proper hygiene.2–3,10 From our results we observe that lower
values of the healing constant (faster healing) lead to higher
stresses and larger wrinkled regions. This is in qualitative
agreement with the available experimental results.5,12,15 The
lower values also lead to greater incompatibilities at the wound
edge. A large incompatibility is related to high contractile forces
being generated near the wound edge, as highlighted in the
previous section. It should be noted that artificial wound
control methods have to appropriately balance the skin tension
and the natural healing rate. The formation of scars strongly
depends on the contraction during healing,46 which in turn is

Fig. 4 The radial and circumferential stresses plotted for Ts
N = 1.2 kPa,

1 kPa, and 0.5 kPa, with ms = 6.5 kPa, mw = 0.7ms, k2 = 1.2, and z = 0.95.

Fig. 5 The radial and circumferential stresses plotted for Ts
N = 1.2 kPa,

1 kPa, and 0.5 kPa, with ms = 6.5 kPa, mw = 0.7ms, k2 = 1.2, and Rc = 1.7A.

Table 1 Effect of various parameters on wrinkling, stresses, and incom-
patibility when healing constant (z), k2, ms, mw, and Ts

N are known. The stress
T̂rr(A) would be both the radial and hoop stress inside the wound

Parameter
variation

Parameter
values Rc/A k1

T̂rr [kPa mm]
(R = Rc)

T̂rr [kPa mm]
(R = A)

(a) z = 0.95, k2 = 1.2, ms = 6.5 kPa, mw = 0.7ms

T s
N (kPa) 1.2 1.623 0.7 2.365 4.018

1 1.78 0.746 1.976 3.685
0.5 2.63 0.824 0.994 2.739

(b) k2 = 1.2, ms = 6.5 kPa, mw = 0.7ms, T s
N = 1 kPa

z 0.9 1.948 0.6533 4.08
0.95 1.78 0.7460 1.976 3.685
0.99 1.637 0.811 3.359

(c) z = 0.95, mw = 0.7ms, ms = 6.5 kPa, T s
N = 1 kPa

k2 1.05065 1.258 0.8377 2.522
1.10065 1.463 0.8086 1.976 2.969
1.20065 1.78 0.7456 3.685

(d) z = 0.95, k2 = 1.2, ms = 6.5 kPa, T s
N = 1 kPa

mw

ms
0.7 0.746
0.75 1.78 0.7708 1.976 3.685
0.9 0.8158

Table 2 Effect of various parameters on healing constant, stresses, and
incompatibility when wrinkle radius (Rc/A), k2, ms, mw, and T s

N are known.
The stress T̂rr(A) would be both the radial and hoop stress inside the wound

Parameter
variation

Parameter
values

Healing
const. (z) k1

T̂rr [kPa mm]
(R = Rc)

T̂rr [kPa mm]
(R = A)

(a) Rc/A = 1.7, k2 = 1.2, ms = 6.5 kPa, mw = 0.7ms

T s
N (kPa) 1.2 0.9238 0.63075 2.365 4.235

1 0.9726 0.7831 1.976 3.502
0.5 1.0894 1.0095 0.994 1.722

(b) k2 = 1.2, ms = 6.5 kPa, mw = 0.7ms, T s
N = 1 kPa

Rc

A

1.5 1.026 0.867 3.052
1.7 0.973 0.783 1.976 3.502
2 0.884 0.614 4.202

(c) Rc/A = 1.7, ms = 6.5 kPa, mw = 0.7ms, T s
N = 1 kPa

k2 1.1 0.8915 0.7179
1.2 0.9726 0.7831 1.976 3.502
1.3 1.0536 0.8484

(d) Rc/A = 1.7, k2 = 1.2, ms = 6.5 kPa, T s
N = 1 kPa

mw

ms
0.7 0.7831
0.75 0.9726 0.8044 1.976 3.502
0.9 0.8448
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related to the cellular densities inside the wound. These
densities should decrease during the progression of wound
healing to avoid the formation of an ugly scar.

3.3 The role of incompatibility in the wound edge

The variation of incompatibility, i.e. k2 � k1, controls the
generation of internal stresses at the wound edge. A balance
between the external and internal stresses is maintained for
natural healing leading to normal scars.2 The incompatibility
also has a direct influence on the contraction rate. The effect of
the skin growth factor k2 on healing and other parameters is
shown in Fig. 7 and in Tables 1(c) and 2(c). For a fixed healing
constant, an increase in k2 results in higher radial stress, lower
hoop stress, and larger wrinkled regions. It also results in a
lower value of k1 but a higher value of k2 � k1. Note that smaller
values of k1 indicate large contraction, hence higher cellular
densities with increased activities. On the other hand, when the
wrinkle radius is kept constant, the effect of lowering k2 value
(as reported in Table 2(c)) has an adverse effect on healing.
It can be noticed that k2 � k1 does not change appreciably in
this case. The constrained wrinkling increases the value of k1

when k2 is increased, which means that the cellular activities in
the wound are balanced out by the extracellular activities in the
skin; as a result excessive internal stresses are not generated.
The skin tension away from the wound remains constant in this
case, implying that healing cannot be accelerated with constant
external forces.

3.4 Effect of the radius of the wrinkled region

The dependence of the solution on the size of the wrinkled
region is presented in Fig. 8 and Table 2(b). An increased
wrinkle radius decreases the healing constant but increases

the stress and incompatibility at the wound edge. It is clear that
the size of the wrinkled region has a strong effect on wound
healing, especially on the quality of scars formed after healing.12

For instance, when the large wrinkling radius is associated with
small values of stress (as in Table 1(a)), the scar may no longer
remain hypertrophic and can turn ugly.12 However, when it is
associated with high stress values (as shown in Table 2(b)) then
the scar is hypertrophic. Sometimes keloids can be larger than

Fig. 6 The radial and circumferential stresses plotted for z = 0.99, 0.95,
and 0.9; here ms = 6.5 kPa, mw = 0.7ms, T s

N = 1 kPa, and k2 = 1.2.
Fig. 7 The radial and circumferential stresses plotted for k2 = 1.01, 1.05,
1.1, and 1.2, with ms = 6.5 kPa, mw = 0.7ms, T s

N = 1 kPa, and z = 0.95.

Fig. 8 The radial and circumferential stresses plotted for Rc = 1.5A, 1.7A,
and 2A; Here ms = 6.5 kPa, mw = 0.7ms, k2 = 1.2, and Ts

N = 1 kPa.
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the initial wound, which can be considered as the after-effect of
the large wrinkling radius associated with high stresses.3

3.5 Effect of wound stiffness

The effect of wound stiffness on wound healing is shown in
Tables 1(d) and 2(d). In both the cases, a change in wound
stiffness value does not bring any change in the average stresses
generated in the skin (the mid-plane stress values do change).
In fact, as is clear from the governing equations, an increase in
mw is accommodated by an increase in k1 for fixed values of ms,
T s
N, k2, and z (or Rc). This is expected since incompatibility

should decrease with improved wound properties. The decreased
incompatibility also decreases the (mid-plane) stress in the wound,
making it favourable for scar control. Therefore, methods which
improve wound properties, such as grafting, autologous seeding,
stem cells, etc., have a positive effect on healing and scars.

4 Concluding remarks

We have proposed a continuum mechanics based biomechanical
growth model for cutaneous wound closure after an injury locally
alters the stress state of the skin. The formation of scars is an
outcome of such an altered stress state in the skin after healing.
Our approach differs from the existing wound healing literature
in the way we have incorporated mass addition and incompat-
ibility at the wound edge, and their relation with the stress field
generated and wrinkle formation in the wound and the adjoin-
ing skin area. The results of our model are in excellent qualita-
tive agreement with the available experimental data. However, as
noted in the previous section, the model works only for far field
skin tension values which are significantly below actual values.
This is due to the simplistic Varga hyperelastic model chosen
from obtaining exact solutions. Numerical solutions with a
more realistic Ogden hyperelastic model or including visco-
elastic effects may allow us to use realistic tension values in the
unwounded skin.

For the known properties of the skin, our model can be used
for an a priori estimation of stresses developed during wound
closure at various stages of healing. It has been shown that the
stresses generated depend directly on the extent of healing.
Therefore, cases of abnormal or rapid healing can be identified
easily by altering various parameters based on the microscopic
events. In particular, the stress states can be used to indicate
the severity of the scar formed and a better wound treatment
plan can be evolved to prevent cases of hypertrophic scars and
keloids. Our simplistic model can be enriched in many ways to
deal with realistic healing situations. For example, the micro-
scopic equations for cell activity in the two compartment
models can be used to evolve skin growth factors k1 and k2.
These factors can be related constitutively to various chemical
(biochemical) and biological processes occurring during the
healing process. On the other hand, we can modify the
membrane model to include some bending energy, which can
then be used to resolve finer features of the wrinkled skin.41
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