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Abstract

A cutaneous wound may rupture during healing as a result of stretching in the skin and incompatibility

at the wound-skin interface, among other factors. By treating both wound and skin as hyperelastic

membranes, and using a biomechanical framework of interfacial growth, we study rupturing as a problem

of cavitation in nonlinear elastic materials. We obtain analytical solutions for deformation and residual

stress field in the skin-wound configuration while emphasizing the coupling between wound rupture and

wrinkling in the skin. The solutions are analyzed in detail for variations in stretching environment,

healing condition, and membrane stiffness.

Keywords: Cutaneous wound healing, Wound rupture, Residual stress, Interfacial growth, Wrinkling,

Cavitation

1. Introduction1

The physiological, cytological, and dehiscence characteristics of cutaneous wound healing are all well2

researched in the biology literature (Singer and Clark, 1999; Broughton and Rohrich, 2005; Gurtner3

et al., 2008; Grinnell, 1994; Hahler, 2006; Harhap, 1993). On the other hand, mathematical modelling4

of wound healing has been conventionally restricted to mostly the biochemical aspects of the problem5

invoking reaction-diffusion equations for various cellular processes and growth factors (Murray, 2003).6

Subsequently, however, the importance of mechanical forces and elasticity in restoring the integrity of7

damaged skin tissues was established (Murray, 2003; Agha et al., 2011; Gurtner et al., 2008; Evans8

et al., 2013) leading to several proposals of mechanistic models of wound healing (Hall, 2008; Murphy9

et al., 2011; Tranquillo and Murray, 1992). It has been only recently that cutaneous wound healing10

is being explored as a problem of biomechanical growth with both skin and the wound modelled as11

nonlinear elastic materials (Swain and Gupta, 2015; Wu and Amar, 2015; Bowden et al., 2016). The12

nonlinearity in the elastic response leads to mechanical instabilities in the form of irregular wound13

geometries (Wu and Amar, 2015), wrinkling in the skin surrounding the wound (Swain and Gupta,14

2015) (see also Cerda (2005); Flynn and McCormack (2008); Li and Wang (2011)), and, as shown15

in the present paper, cavitation in the wound. An understanding of the biomechanics behind such16

instabilities can provide valuable insights into scar formation and wound management. To the best17
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of our knowledge, wound cavitation has not been incorporated in any of the previous mathematical18

models of cutaneous wound closure.19

The objective of our work is to study the mechanics of wound rupturing within the context of20

interfacial biological growth and cavitation in hyperelastic membranes. In particular, we are interested21

to explore the coupling between wound rupture, wrinkling in the unwounded skin, and the residual22

stress distribution in the skin-wound configuration. Studies in mammalian skin wounds show that23

the rupture strength of the wounded tissue is less than 10% of the unwounded skin within a week of24

wounding (Gál et al., 2006; Ramsastry, 2005). This leaves an open skin wound susceptible to rupture25

under sudden local stretching (Broughton and Rohrich, 2005; Gál et al., 2006). Most importantly, the26

rupture impairs the healing process and increases the trauma faced by the patient in addition to other27

health complications (Harhap, 1993). Figure 1(a) shows a ruptured wound surrounded by wrinkled28

unwounded skin. In our idealized mechanistic model we assume the wound geometry to be circular29

and consider initiation of rupture to be synonymous with void formation (cavitation) at the center of30

the wound, see Fig. 1(b). The void appears in the wound at some critical stretching of the skin; it is31

assumed to be unrelated to other forms of skin cracking such as due to dry weather and old age.32

In a recent paper, we investigated the emergence of wrinkles and residual stress during wound33

healing using an interfacial growth model and hyperelastic Varga energies for both wound and skin34

(Swain and Gupta, 2015). The present work advances on to include the possibility of cavitation, which35

is tantamount to rupturing, in the wound. In order to do so, we propose a novel two-dimensional36

(2D) hyperelastic constitutive model for the wound based on a recently developed three-dimensional37

(3D) hyperelastic strain energy (Xin-Chung and Chang-Jun, 2001). The Varga strain energy density,38

used previously for the wound, prohibits cavitation and hence cannot be taken suitable for predicting39

rupture. In fact, cavitation in 2D elastic membranes is restricted by special constitutive requirements40

(Steigmann, 1992; McMahon et al., 2010; Haughton, 1986). Our model for cavitation in membranes,41

as a problem of existence and uniqueness of stable bifurcated solutions, follows earlier work in 3D42

elastic solids (Ball, 1982; Horgan and Polignon, 1995) and 2D hyperelastic membranes (Steigmann,43

1992; Haughton, 2001, 1990; Haughton and McKay, 1995). The proposed framework can be used to44

understand the quality of scar formation, post healing, as a consequence of mechanical instabilities45

emerging from the nonlinear elastic nature of wound and skin. In doing so, it can form a basis for46

experimentally investigating the precise constitutive nature of the wound, hitherto unestablished in the47

literature. Our analytical solutions can also provide benchmark results for more sophisticated numerical48

simulations of elastic instabilities in thin films (Taylor et al., 2014, 2015; Lejeune et al., 2016b,a).49

In Section 2 we formulate the kinematical structure and the governing equations for the problem50

at hand. Additionally, we introduce a new 2D hyperelastic strain energy density for the wound and51

discuss its properties and physical relevance. The boundary value problems for the unwounded skin52

and the wound are solved in Section 3 to obtain analytical solutions for deformations during wound53

closure and residual stress distributions. We also discuss criteria for initiation of mechanical instabilities54
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in the form of wrinkling and cavitation. The obtained solutions are discussed in detail in Section 4,55

with an emphasis on understanding the effect of wrinkling and stretching of the unwounded skin on56

wound rupture and residual stress generation. We briefly discuss the possibility of cavitation at the57

intersecting boundary of wound and skin, before concluding our study in Section 5.58

2. Problem formulation and constitutive assumptions59

The purpose of this section is to develop a framework which can be used to pursue an analytical study60

of biomechanics of rupturing in a wound surrounded by wrinkled skin. We will formulate boundary61

value problems, to be solved in the next section, which yield residual stress distribution in wound-skin62

configuration and help us analyze the appearance as well as the effects of wrinkling and cavitation.63

Towards this end, we consider an instantaneous wound-skin configuration shown as Bt in Fig. 2, where64

a denotes the wound radius and b the outer radius of the skin. We model both wound and skin as 2D65

membranes, neglecting their thickness altogether. The deformation is assumed to be axisymmetric so66

that the wound-skin arrangement remains circular as wound diameter decreases during healing.67

2.1. Kinematics and governing equations68

We provide a quick review of kinematical relations and balance laws required for our further analysis;69

details can be seen in our recent work (Swain and Gupta, 2015). The deformations are measured with70

respect to a fixed reference configuration B0, see Fig. 2, where the wound and the skin regions are71

of radius A and B, respectively, such that a < A to ensure healing. The nature of residual stresses72

developed during healing is determined by unloading the wound-skin configuration in Bt to a zero73

stress state. This is achieved, in the present model, by cutting and separating the configuration Bt74

along the wound edge to obtain an intermediate relaxed configuration denoted as Bi, see Fig. 2. More75

quantitative details of this operation are provided later in the section. The assumed axisymmetry of76

interfacial growth is manifested in the axisymmetric gap between wound edge and the internal edge of77

the skin in Bi.78

The position vector in the reference configuration, X = Rer(Θ) ∈ B0 (with polar coordinates79

0 ≤ R ≤ B, and 0 ≤ Θ ≤ 2π), is related by a continuous bijective map to the position vector in the80

current configuration, x = rer(θ) ∈ Bt (with 0 ≤ r ≤ b, and 0 ≤ θ ≤ 2π), such that r = r(R) and81

θ = Θ. Here, er and eθ are unit basis vectors along radial and circumferential directions of the polar82

coordinate system. The corresponding deformation gradient is given by83

F = r′(R)er ⊗ er +
r

R
eθ ⊗ eθ, (1)84

where the superscript prime is used to denote the derivative with respect to R and ⊗ stands for85

the tensor dyadic product. The nature of healing kinematics is fixed by hypothesising a piecewise86

continuous linear map between X ∈ B0 and X ∈ Bi such that X = R(R)er(Θ), where R is given by87

kwR if 0 ≤ R ≤ A and ksR if A ≤ R ≤ B. The parameters ks and kw are morphoelastic constants88
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for growth of the skin and annihilation of wound, respectively; they are related to mass addition at89

the wound-skin interface necessary for wound healing process (Swain and Gupta, 2015). The resulting90

growth distortion tensor is clearly isotropic, see Fig. 2, with a form91

Fg = ki(er ⊗ er + eθ ⊗ eθ), (2)92

where ki should be replaced by kw and ks for 0 ≤ R ≤ A and A ≤ R ≤ B, respectively. The elastic93

distortion tensor Fe, satisfying the multiplicative decomposition F = FeFg (Rodriguez et al., 1994),94

can then be obtained as95

Fe =
r′(R)

ki
er ⊗ er +

r

kiR
eθ ⊗ eθ. (3)96

It is imminent from the above relation that elastic distortion Fe is incompatible at the wound edge unless97

kw = ks (Swain and Gupta, 2015). It is this incompatibility that is manifested in the axisymmetric98

annular gap between wound and skin regions in Bi. The incompatibility therefore represents the99

differential growth in the two domains. We require ks > kw to ensure that the two domains do100

not penetrate into each other. Most importantly, the incompatibility is a source for residual stress101

distribution in the skin and also has a bearing on the wrinkle formation in the unwounded skin adjacent102

to the wound edge (Swain and Gupta, 2015).103

The stress field in the wound-skin configuration satisfies equation of linear momentum balance104

which, for quasi-static deformations, zero body force, and axisymmetry of the problem, yields only one105

non-trivial equilibrium condition for stress (Haughton, 2001)106

dTrr
dr

+
(Trr − Tθθ)

r
= 0 for 0 ≤ R < A, A < R ≤ B (4)107

such that Trr is continuous at R = A, where Trr(R), etc. are components of the Cauchy stress with108

respect to the polar coordinate system.109

2.2. Constitutive response of skin110

The unwounded skin is assumed to behave like a Varga hyperelastic membrane exhibiting non-linear111

stress-strain response (Flynn et al., 2011). The anisotropic nature of skin is ignored for analytical112

simplicity whereas its viscoelasticity is neglected recognising the slow time scales involved in wound113

healing (Hall, 2008). It is justified to model skin as a membrane since the dermis is much softer than the114

epidermis allowing for skin to easily slide over the substrate (Cerda, 2005). The strain energy density115

(SED) of skin, as considered in the present work, is given by116

Ws(λ1, λ2) = 2µs
(
λ1 + λ2 + (λ1λ2)−1 − 3

)
, (5)117

where µs > 0 can be identified as the shear modulus of the membrane (with dimensions of force/unit length);118

λ1 and λ2 are principle stretches associated with elastic distortion. The SED in (5), for a Varga hy-119

perelastic membrane, supports wrinkling but prohibits cavitation (Steigmann, 1992; Haughton, 2001,120

1990; Haughton and McKay, 1995). It is therefore appropriate for the skin but not for the wound.121

4



2.3. Constitutive response of wound122

The wound is considered as a solid domain due to its granulating surface acting as a single contractile123

body (Broughton and Rohrich, 2005). We ignore the viscoelastic nature of the wound while modelling124

it as a hyperelastic membrane whose stress-strain response is less stiffer than skin due to its inferior125

properties. The SED function for wound is proposed as126

Ww(λ1, λ2) = C01(λ1 + λ2 − 2) + C02(λ−11 + λ−12 − 2) + C03(λ1λ2 − 1), (6)127

where C01, C02, and C03 are material constants whose physical nature will be discussed below. The 2D128

SED in (6) is inspired from a SED used to model cavitation in 3D compressible materials (Xin-Chung129

and Chang-Jun, 2001). The proposed energy density allows for cavitation in membranes, as shown in130

the following section. In rest of this section we analyze it further ensuring that it indeed represents a131

physically meaningful energy for hyperelastic membranes.132

The non-trivial components of the Cauchy stress tensor for an hyperelastic response are given by133

(Steigmann, 1992)134

Trr =
1

λ2

∂Ww

∂λ1
and Tθθ =

1

λ1

∂Ww

∂λ2
. (7)135

Similar expressions can be written for stresses in the skin region. The SED Ww and the derived136

components of Cauchy stress must vanish in the stress free configuration, i.e. when λ1 = λ2 = 1. The137

former of this requirement can be checked by direct substitution in (6). Regarding the latter, we first138

obtain the stress components using (7) as139

Trr =
1

λ2

(
C01 −

C02

λ21
+ C03λ2

)
and Tθθ =

1

λ1

(
C01 −

C02

λ22
+ C03λ1

)
. (8)140

Clearly, the requirement of stress free configuration is satisfied as long as C01 − C02 + C03 = 0. More141

insight on the nature of the material parameters is obtained by expanding the energy density Ww as a142

Taylor series in terms of the Green’s strain tensor E. The leading order terms can then be compared143

to the well known linear elastic constants. After retaining only linear and second order coefficients, the144

SED can be rewritten as145

Ww = (C03/2)(tr E)2 − (1/2)(C03 − 2C02) tr E2 +O(E3). (9)146

Comparing this with the strain energy density for a plane stress linear elastic problem furnishes C01 =147

µw(1− 2ν)/(1− ν), C02 = µw/(1− ν), and C03 = 2µwν/(1− ν), where µw is the shear modulus of the148

wound material with dimensions of force/unit length and ν is the Poisson’s ratio of the material.149

The principal stretches λ1 and λ2 are necessarily positive to prevent disappearance of material. We150

require energy Ww to be non-negative for any positive stretch. This is ensured by taking constants C01151

and C03 to be strictly positive. These restrictions yield µw > 0 and and 0 < ν < 1/2. The energy152

density in (6) then has a unique minima at λ1 = λ2 = 1. Moreover, the tension-extension inequalities,153

∂Trr/∂λ1 > 0 and ∂Tθθ/∂λ2 > 0, are satisfied as long as C02 > 0. The energy density also satisfies the154

Baker-Ericksen Inequality, (Trr − Tθθ)(λ1 − λ2) > 0, for positive C01. The Baker-Ericksen inequality is155
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a well established constitutive restriction for nonlinear elastic materials with important consequences156

for the stability and existence of solutions (Truesdell and Noll, 2004). We also note that Ww → ∞157

whenever principal stretches approach∞ or 0+. The stresses remain finite in the former limit, but tend158

to be unbounded for the latter. Hence, an infinite amount of stress is required to diminish material to159

zero volume.160

We illustrate the behavior of the SED function graphically in Figs. 3(a,b) as a 2D contour map161

and a 3D surface plot for a fixed Poisson’s ratio (ν = 0.3). The uniaxial and equi-biaxial stress-stretch162

responses are shown in Figs. 3(c,d), respectively, for various Poisson’s ratios. It can be noted that the163

SED has a single minima at (λ1 = 1, λ2 = 1) and the material shows some softening behavior at lower164

Poisson’s ratios under equi-biaxial stretching.165

3. Solutions for skin wrinkling and wound cavitation166

In this section, we construct analytical solutions for deformation and residual stress in skin-wound167

configuration. We will first consider the case of unwrinkled skin and then use tension field theory to168

derive solutions in the wrinkled region of the skin. Following these we will obtain the solution in the169

wound region allowing for the possibility of cavitation at the center of the wound. We will also show170

that, beyond a critical bifurcation point, the cavitation solution is always stable and would be preferred171

over the homogeneous solution without any cavitation.172

3.1. Solution for unwrinkled skin173

The stress fields in the skin can be computed using relations (7), but with SED given by (5), as174

T srr = 2
µs
λ2

(
1− 1

λ21λ2

)
and T sθθ = 2

µs
λ1

(
1− 1

λ1λ22

)
, (10)175

where the superscript ‘s’ is used to indicate their connection with skin. Substituting these in (4), with176

λ1 = r′/ks and λ2 = r/(ksR) from (3), we obtain a second order ordinary differential equation (ODE)177

r′′rR+ (r′)2R− r′r = 0, which has a straightforward solution r(R) =
√
C1R2 + C2, with constants C1178

and C2 to be determined from two boundary conditions. First, we consider r(B) = b to be known, which179

is equivalent to prescribing the circumferential stretch at the outer boundary. Second, we also assume180

r(A) = a = ζA to be given from the healing conditions of the wound, where ζ is the healing constant181

(Swain and Gupta, 2015). For a healing wound ζ < 1 and for an atrophic wound ζ > 1. The unknown182

constants can then be calculated as C1 = (b2 − a2)/(B2 −A2) and C2 = (a2B2 − b2A2)/(B2 −A2).183

They can be rewritten in terms of the circumferential stretch at the outer boundary, denoted by λ2B , and184

a dimensionless parameter α = B/A as C1 =
(
(λ2Bksα)2 − ζ2

)
/(α2 − 1) and C2 =

(
ζ2 − (λ2Bks)

2
)
α2A2/(α2 − 1).185

The constants are expressed in terms of four physical parameters, ζ, ks, λ2B , and α, whose prescription186

is necessary for the complete solution. The above solution is physically meaningful as long as the asso-187

ciated stress fields remain non-negative. Indeed, ideal membranes cannot support compressive stresses188

and instead wrinkle to accommodate the compression causing slackness. The solution which allows for189

partially wrinkled skin is discussed next.190
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3.2. Wrinkled skin and tension field theory191

We now look for a solution where the skin region, A ≤ R ≤ B, has been partially wrinkled in192

a domain, A ≤ R ≤ Rc, adjacent to the wound (see also Swain and Gupta (2015)). The radius Rc193

denotes the boundary between wrinkled and unwrinkled skin. The wrinkling will be circumferential in194

nature, as shown in Fig. 1(b), if the radial stress remains positive throughout and only the hoop stress,195

when calculated in Section 3.1, becomes compressive for A ≤ R ≤ Rc. Our simplistic model cannot196

reveal the wavelength of the wrinkling pattern due to vanishing bending rigidity of the membrane. The197

solution obtained in the previous section remains valid in the unwrinkled part of the skin, although198

with different expressions of C1 and C2. For circumferential wrinkling to appear, the hoop stress T sθθ199

must monotonically increase from the inner edge of the skin, where they take a compressive value,200

to the outer edge while changing its sign at R = Rc. The monotonicity of the hoop stress can be201

checked by calculating the gradient, using results in Section 3.1, (T sθθ)
′ = −2µsC2ks/(C1R

2r). Note202

that, since λ1 = C1R/rks and λ1 > 0, we require C1 > 0. As a result, for circumferential wrinkling203

to exist, we should have C2 < 0. Additionally, these constants should be such that Trr remains204

positive throughout. The radius Rc can be obtained by solving for R in Tθθ = 0, which yields a205

nonlinear algebraic equation C1

√
C1R2

c + C2 = k3sRc. Wrinkling can be avoided as long as Rc ≤ A or206

equivalently when k3s ≥ (b2 − a2)ζ/(B2 −A2).207

In order to find the solution in the wrinkled region, A ≤ R ≤ Rc, we use tension field theory as208

proposed by Pipkin and Steigmann (Pipkin, 1986; Steigmann, 1990). The essential idea is to regularise209

the original energy to obtain a relaxed energy which is compatible with the wrinkled solution. The210

‘natural width’ n(λ1) of the membrane is given by λ2 which can be solved in terms of λ1 using T sθθ = 0211

to obtain λ2 = 1/
√
λ1 (Pipkin, 1986; Haughton and McKay, 1995). The relaxed SED function, denoted212

by W ∗s , is defined as213

W ∗s (λ1) = Ws(λ1, n(λ1)) = 2µs

(
λ1 + 2/

√
λ1 − 3

)
, (11)214

where we have used superscript ∗ to indicate the tension field variables. The governing equation215

(4) simplifies to dT ∗rr/dr + T ∗rr/r = 0 yielding rT ∗rr = const., which in conjunction with (10)1 gives216

R(1 − λ−1.51 ) = const. This can be integrated to calculate the deformation in the wrinkled region as217

(Haughton and McKay, 1995; Swain and Gupta, 2015)218

r∗(R) =

∫ (
R

R− δ1

)2/3

ksdR+ δ2, (12)219

where δ1 and δ2 are constants. The four unknown constants, δ1, δ2 in the wrinkled solution and C1, C2220

in the unwrinkled solution, can be determined from two boundary conditions given by the continuity of221

deformation and radial stress at wrinkle boundary R = Rc apart from two other boundary conditions222

prescribing displacements at the inner and the outer edge of the skin domain, as in Section 3.1.223
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3.3. Solution allowing for cavitation in the wound224

The governing equation for deformation in the wound region can be obtained by substituting stresses225

from (8) into (4), and using λ1 = r′/kw and λ2 = r/(kwR), as226

2r2Rr′′ − r2r′ +R2(r′)3 = 0. (13)227

To solve the preceding second order ODE, we need two boundary conditions. Towards this end, we228

prescribe displacement at the wound edge r(A) = kwλA, where λ is the applied stretch transmitted229

through the skin (or equivalently through the wound edge stresses). The second boundary condition230

is given by r(0) = 0 when no cavity appears at the center of the wound domain, or r(0+) = γ > 0231

when a cavity (or void) appears at the center. In the latter scenario, the surface of the cavity must232

be traction free, i.e. Trr(0
+) = 0 (Steigmann, 1992). A solution with homogeneous deformation233

of the kind r = kwλR satisfies (13) and the boundary conditions without cavity. We are however234

interested in finding a solution which allows for cavity. To do so, we introduce β(R) = λ1/λ2 = Rr′/r235

and rewrite (13) as 2Rβ′ + β(β − 1)(β + 3) = 0. The first order ODE can be integrated to obtain236

R(β) = Dβ2/3(β + 3)−1/6/
√
β − 1 and r(β) = C

√
β + 3/

√
β − 1, where D and C are constants of237

integration, to be determined using R(βA) = A and r(βA) = kwλA, where βA = β(A). After solving238

for these constants we obtain239

R(β) = A

(
β

βA

)2/3(
βA + 3

β + 3

)1/6(
βA − 1

β − 1

)1/2

and (14)240

r(β) = kwλA

(
β + 3

βA + 3

)1/2(
βA − 1

β − 1

)1/2

. (15)241

The parameter β can be eliminated between these two expression to find the deformation r(R) in the242

wound. The constant βA will be determined below. Due to the positivity of the principal stretches,243

β > 0. Also, for finite r(R = 0+), β(0+) = 0. Hence, for the cavitation solution, 0 < β < 1, since244

otherwise β′ < 0 which leads to a contradictory result. This also necessitates 0 < βA < 1. At the245

center of the wound (15) yields246

γ = kwλA
√

3(1− βA)/
√
βA + 3. (16)247

We can study the cavitation phenomenon as a bifurcation problem. Indeed, there is a critical value248

of the stretch λ, controlled at the wound edge, at which the cavitation solution exists; the critical value,249

denoted as λc, will be calculated below. For λ < λc, only the homogeneous solution (without cavity)250

is possible and there is no solution which allows for a cavity at the center of the wound. On the other251

hand, for λ > λc it is possible to obtain another solution which allows for cavitation. We will identify252

λ = λc as the critical point for bifurcation. As we shall see later in the section, the cavitation solution253

is energetically stable and will therefore be preferred over the homogeneous solution beyond the critical254

point. In order to find λc, we begin by noting that γ = 0 at the critical point of bifurcation, which255

can be used to calculate the critical value of βA as βAc = 1. The critical stretch λc will be obtained256

using the stress free boundary condition at R = 0 (i.e. on the edge of cavity). First, using (14) and257
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(15), we write principle stretches as λ2 = λ(βA/β)2/3(β + 3)2/3(βA + 3)−2/3 and λ1 = βλ2, which are258

then substituted into the expression for radial stress in (8)1. The traction free boundary condition259

Trr(0) = 0, on using β = 0 at R=0, immediately yields −C02(3 + βA)2 + 9λ3β2
AC03 = 0. Recalling260

that C03 = 2νC02, we can solve this equation to obtain a formula for βA as βA = 3/
(

3
√

2νλ3 − 1
)

.261

Furthermore, using βAc = 1 gives the critical value of stretch, λc = 2(9ν)−1/3. Interestingly, the critical262

stretch depends only on the Poisson’s ratio. The derived relation for βA can be used in (16) to get an263

expression for the size of the cavity,264

γ = kwλA

√
1− 4/(3

√
2νλ3). (17)265

The variation in βA with respect to applied stretch for various Poisson’s ratios is shown in Fig. 4(a).266

The intersection of βA = 1 line with the plotted curves provide the critical stretch for the respective267

Poisson’s ratio. For any stretch applied beyond these points, βA diminishes non-linearly. In Fig. 4(b)268

we illustrate void growth with respect to the applied stretch. Clearly, the growth, as well as the critical269

stretch at which growth initiates, varies with Poisson’s ratio of the wound material.270

Finally, we verify whether cavitation is energetically stable for edge stretch magnitudes beyond the271

critical value. The total stored energy of the axisymmetrically deforming circular wound is given by E =272 ∫ A
0

2πWwRdR. Its evaluation is greatly simplified by noting an identity, 2RWw =
(
R2(Ww − (λ1 − λ2)∂Ww/∂λ1)

)′
,273

which can be verified using (3), (4), and (7). As a result, the total energy reduces to E = πA2(Ww −274

(λ1 − λ2)∂Ww/∂λ1), where all the fields are evaluated at R = A. Using the energy density Ww as pos-275

tulated in (6), we first calculate the total energy for the homogeneous solution, i.e. when λ1 = λ2 = λ,276

as Ehom = πA2(λ − 1)2(2C02/λ + C03). Analogously, we can obtain the total energy for the non-277

homogenous cavitation solution, where at the wound edge λ1 = βAλ and λ2 = λ, as278

Enonhom = πA2

(
(λ− 1)2C03 + C02

(
2(λ− 2) +

2βA + β2
A − 1

λβ2
A

))
. (18)279

The difference Ehom − Enonhom = πA2C02(βA − 1)2/λβ2
A is always positive since λ > 0 and C02 > 0.280

Therefore the cavitation solution is energetically favourable over the homogeneous solution.281

4. Discussion282

We are broadly interested in three phenomena during rupture of a cutaneous wound: wrinkle283

formation in the skin adjacent to the wound, emergence of residual stresses in the skin due to wound284

healing and wound edge incompatibility, and void formation in the wound as a result of cavitation in285

the wound membrane. The hyperelastic membrane models for skin and wound, as proposed in the286

previous section, allow for these occurrences. We will now discuss in detail the physical nature of our287

model as well as the solutions, and study their dependence on various parameters. To begin with, we288

plot (in Fig. 5) radial and hoop stresses derived from the Varga model of skin given in (5). We fix289

α = B/A = 3 and obtain stress distributions for varying incompatibility parameter ks, healing constant290

ζ, and applied stretch λ2B . The skin domain is stress free when all the parameters are unity. For all291
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other considered values, the circumferential stress takes negative values in a finite region, indicating the292

emergence of wrinkling. The stress fields in the wrinkled region need to be modified using tension field293

theory as shown in a previous section. Clearly, deviation from unity in the value of ks, ζ, or λ2B leads294

to residual stresses, more so when the deviation is in more than one parameter. Most importantly,295

these results show how the stress fields in the skin could potentially change as a result of wound healing296

(Swain and Gupta, 2015). This is expected since, while healing is in progress, the cellular processes at297

the skin edge exert internal forces which are primarily responsible for such changes. Moreover, when298

applied stretch is considered (blue lines), the magnitude of residual stresses is the highest whereas the299

wrinkling radius minimum. It should be noted that we have ignored the natural pre-tension of the300

skin while plotting these stresses, which should otherwise be superimposed with the obtained residual301

stresses to find the total stress distribution. In the following subsections we further elaborate the role302

of various parameters on wrinkling, wound edge stresses, rupture of wound, and critical stretch for void303

formation.304

4.1. Role of applied stretch at the outer edge of the skin305

The stretching of skin can occur due to normal motion of the body (of various joints, muscles, and306

limb), change in postures, or even due to respiration and neck movements. It could be severe if skin307

rubs along with external objects or if the body experiences sudden motion as in sports. The severity308

of stretching is captured by the variable λ2B in our model. The effects of stretching on wrinkling,309

stress distribution, and cavitation are summarized in Fig. 6 and Table 1(a). The dashed lines in Fig. 6310

are the tension field solutions while the solid lines are obtained without incorporating tension field.311

Expectedly, wrinkling decreases the magnitude of radial stresses due to the lateral slackening. Our312

results also show that the wrinkled region diminishes with increased radial stretching. This is due to313

increased tensile stresses in the skin owing to higher boundary stretching. The stresses at the wound314

edge are also proportional to the applied stretch. An increase in applied stretch may therefore lead315

to sudden void formation and subsequent rupturing in wounds whose shear modulus is less than 0.9316

times the modulus of skin. In other words, severe stretching will always lead to wound rupture. Lower317

values of stretching however can rupture wounds only up to specific Poisson’s ratios, as shown in Table318

1(a). The critical stretch behavior in Table 1(a) shows that even small amount of stretching inside the319

wound is sufficient for rupture whenever the externally applied stretches are large.320

4.2. Role of the location of applied stretch321

The applied stretch is provided at the outer edge of the skin whose location is fixed by the parameter322

α for a given A. The considered location may vary depending on the physical position of the wound323

on the body, for example wounds on knee or elbow joints are subjected to local stretching whereas324

wounds on chest and abdominal joints are exposed to only far field stretching. Moreover, sports related325

trauma in the wound can occur due to arbitrary contact of skin with external objects thereby inducing326

in-plane stretching. The effects of α on wrinkle characteristics, stress distribution, and cavitation are327
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summarized in Fig. 7 and Table 1(b). A localized stretching results in smaller wrinkles due to increased328

stresses in the skin and at the wound edge. Moreover, localized stretching can rupture all wounds with329

shear moduli 0.7 times less than that of skin. When the location of applied stretch moves away from330

the wound the rupturing becomes restricted to specific Poisson’s ratios. The critical stretch required331

for cavitation increases with an increase in the radius of the outer edge of the skin.332

4.3. Role of healing constant333

The parameter ζ represents the nature of wound healing; ζ < 1 implies that the wound is undergoing334

healing and ζ > 1 denotes an atrophic condition of the wound which could be due to nutritional335

deficiency, hygiene, or infection. Smaller values of ζ (below unity) indicate faster healing, for example336

ζ = 0.95 (change in radius is 5%) implies faster contraction than ζ = 0.99 (change in radius is 1%). The337

healing of the wound can be hastened with the help of appropriate wound treatment and proper hygiene.338

The effects of healing condition on wrinkling in the skin, residual stresses, and rupture behavior of the339

wound are reported in Fig. 8 and Table 1(c). It is seen that the wounds which heal faster create larger340

wrinkles around the wound. This is due to relatively larger stresses in the skin and at the wound edge.341

The observed wrinkling behavior agrees well with the existing literature (Cerda, 2005; Geminard et al.,342

2004; Swain and Gupta, 2015; Flynn and McCormack, 2008). With faster healing, say ζ = 0.95, a wider343

range of wounds with Poisson’s ratios upto 0.172 can be ruptured. However, when the healing is slow, or344

the wound is in atrophic condition, the cavitation can occur in wounds only for a very restricted range345

of material parameters. Clearly, the wounds in atrophy need larger stretching to rupture. Moreover,346

the critical stretch required for rupturing increases with dilapidated healing condition of the wound.347

4.4. Role of incompatibility at the wound edge348

The incompatibility at the wound edge controls the morphoelastic behavior of cutaneous wound349

closure and is directly related to generation of residual stresses in the wound-skin arrangement. In our350

model, the incompatibility is controlled by the difference ks − kw. In the present discussion we report351

the effect of ks variation on various aspect of wound healing. The parameter ks represents the cellular352

action near the wound edge on the skin side leading the skin to grow towards the wound center to353

achieve healing (Swain and Gupta, 2015). A large value of ks represents higher level of cell production354

in the skin side of the wound edge. The wrinkling behavior, stresses, and rupture behavior for various355

ks values can be seen in Fig. 9 and Table 1(d). The wrinkling radius increases marginally with an356

increase in ks, leading to higher stresses. See also Fig. 5, where it is clear that ks influences both357

wrinkling behavior and stresses as a result of inhomogeneous expansion. A sufficiently high value of358

ks can rupture all wounds with shear modulus less than 0.7 times the skin modulus due to high values359

of wound edge stress. For smaller ks values wound rupture is possible only with limited constitutive360

conditions. The critical stretch required for void formation decreases with ks.361
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Parameter Parameter Important Parameters in Skin and Wound

Values Wrinkle Wound edge Poisson’s Critical

radius Rc/A Stress Trr/µs ratio ν stretch λc

(a) Role of applied stretch at the outer edge of skin

(B = 3A, ζ = 0.95, ks = 1.1, and µw = 0.7µs)

λ2B 1.01 1.41 0.448 0.172 1.729

1.02 1.24 0.545 0.308 1.423

1.05 1.02 0.790 µw/µs ≤ 0.9

(b) Role of the location of the applied stretch

(λ2B = 1.01, ζ = 0.95, ks = 1.1, and µw = 0.7µs)

α = B/A 2 1.10 0.673 µw/µs ≤ 0.7

3 1.41 0.448 0.172 1.729

4 1.62 0.370 0.101 2.065

(c) Role of the healing constant

(B = 3A, λ2B = 1.01, ks = 1.1, and µw = 0.7µs)

ζ 0.95 1.41 0.448 0.172 1.729

0.99 1.33 0.360 0.094 2.113

1.01 1.28 0.315 0.065 2.389

(d) Role of the wound edge incompatibility

(B = 3A, λ2B = 1.01, ζ = 0.9, and µw = 0.7µs)

ks 1.05 1.42 0.463 0.189 1.676

1.10 1.48 0.552 0.321 1.404

1.15 1.52 0.631 µw/µs ≤ 0.7

(e) Role of the elasticity of the wound

(B = 3A, λ2B = 1.01, ζ = 0.95, and ks = 1.1)

µw/µs 0.65 1.41 0.448 0.212 1.611

0.70 1.41 0.448 0.172 1.729

0.75 1.41 0.448 0.142 1.844

Table 1: The effect of different parameters on wrinkling radius Rc/A, wound edge radial stresses Trr/µs, critical stretch

λc , and maximum allowable wound Poisson’s ratio ν.

4.5. Role of elasticity of the wound362

The elastic characteristic of the wound can be improved by means of medical treatment. In any363

case, the ultimate tensile strength of a wound remains much inferior than the skin until full healing364

is achieved (Ramsastry, 2005; Gál et al., 2006). The effect of wound shear modulus on the rupture365

characteristics is shown in Table 1(e). It is clear that both wrinkling behaviour and stress distribution366
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remain invariant for all the cases studied. A variation in relative stiffness is therefore seen to effect367

only the rupturing of the wound. As shown in the table, an improvement in wound properties can368

restrict rupturing for a wide range of Poisson’s ratio. Wounds with worse properties will of course369

rupture easily for a large class of wounds. The critical stretch required for void formation increases on370

improving the wound elasticity. Hence, stiffer wounds may not allow for rapid rupture.371

4.6. Possibility of cavitation at the wound-skin interface372

In Section 3.3, and the subsequent discussion, the cavitation in the circular wound membrane has373

been assumed to take place at the center. This leads to an axisymmetrical problem with a straightfor-374

ward analytical solution. Another possibility is to look for solutions with cavitation at the interface of375

wound and skin. This would however result in a non-axisymmetric problem without analytical solutions.376

In this section, we nevertheless visit this scenario under some simplifying assumptions while restricting377

ourselves to only energy based arguments. For our analysis, we consider a circular disc of radius A, such378

that one half of the disc (0 ≤ R ≤ A, 0 ≤ θ < π) is occupied by the wound membrane and the other half379

(0 ≤ R ≤ A, π ≤ θ < 2π) by the skin membrane. We look for the possibility of cavitation at the center380

of this disc at the interface of wound and skin membranes. The solution to the resulting problem is as-381

sumed to remain axisymmetric. The total stored energy of the disc containing the wound-skin interface382

can be evaluated using E =
∫ A
0
π(Ww+Ws)RdR which, following the procedure used in Section 3.3, can383

be written as E = (πR2
o/2) ((Ww +Ws)− (λ1 − λ2)∂(Ww +Ws)/∂λ1), where all the fields are evalu-384

ated at R = A. As before, the homogeneous solution is given by λ1 = λ2 = λ and the non-homogeneous385

cavitation solution by λ1 = βAλ2 = βAλ. The difference in stored energies due to homogeneous and non-386

homogeneous solution can then be estimated as ∆E = (πR2
o/2)(C02λ + 2µs)(β − 1)2/(βλ)2. Clearly,387

the non-homogeneous solution with the wound-skin interface is stable and has a lower energy than the388

homogeneous solution. However, since Varga membrane does not support cavitation, the cavitation389

will occur only in the wound side of the disc.390

5. Concluding remarks391

We have revisited the problem of cutaneous wound healing by incorporating wound rupture in a392

recently developed framework of interfacial biomechanical growth (Swain and Gupta, 2015). We pro-393

posed a novel hyperelastic strain energy to model the 2D wound membrane which allows for cavitation,394

unlike previously employed Varga membranes. The resulting framework predicted simultaneous oc-395

currence of ruptured wound and wrinkled skin in a region adjacent to the wound edge. The relevant396

boundary value problems were solved analytically and closed form solutions obtained for deformation397

and stresses in skin-wound configuration. Both wrinkling and cavitation emerged as stable solutions to398

the bifurcation problems in nonlinear elasticity of 2D membranes. The present work can be advanced in399

several directions. Most importantly, experimental investigations on the constitutive nature of wound400

membrane can provide data for verification of the proposed hyperelastic model. On the other hand,401
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precise experiments for measuring the residual stress distribution in the skin during wound healing402

can be used to fit unknown parameters in our model making it useful for practical biomedical appli-403

cations. The theoretical framework of the model can also be improved, although at the cost of losing404

analytical solvability, by including membrane curvature, non-circular wounds, finite bending rigidity,405

and viscoelasticity, among other considerations.406
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Figure 1: (a) Photograph of a ruptured wound near the knee joint surrounded by wrinkled skin. (b) Idealized represen-

tation of a ruptured wound as considered in the present work with cavitation at the center of the wound while being

surrounded by an axisymmetric distribution of wrinkling in the unwounded skin.
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Figure 2: Kinematics of would healing, where B0 is the reference configuration with Ω1 (wound) and Ω2 (skin), Bi is

the intermediate stress free configuration with Γ1 (wound) and Γ2 (skin), and Bt is the current configuration with ω1

(wound) and ω2 (skin). Figure adapted from (Swain and Gupta, 2015).
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Figure 3: (a) Contours of the normalized SED function, Ww/µw, in λ1−λ2 plane with ν = 0.3, (b) the same Ww/µw of (a)

as a 3D surface plot, (c) the uniaxial stress-deformation behavior for various ν, and (d) the equi-biaxial stress-deformation

behavior at various ν. The Cauchy stresses are normalized with respect to the shear modulus µw.
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Figure 4: (a) The variation of stretch ratio β = λ1/λ2 with applied stretch for different ν. (b) The variation of normalized

void radius γ/kwA with applied stretch for different ν. It is only after a critical value of applied stretch that voids begin

to nucleate and eventually grow into a cavity of finite size.
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Figure 5: The normalized stresses ‘Tii/µs’ are plotted for various cases of the wound-skin arrangement, where i = r, θ

for radial and circumferential stresses represented as ‘Rad’ and ‘Hoop’ in the legends. The green lines indicate stresses

without any stretching, healing or incompatibility, whereas black lines show the effect of incompatibility alone, red lines

show the effect of incompatibility and healing, and blue lines show the effect of incompatibility, healing, and stretching

together. We fix α = B/A = 3.
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Figure 6: Normalized stresses for various applied stretches (λ2B = 1.01, 1.02, and 1.05) at the outer skin edge, with

α = 3, ζ = 0.95, ks = 1.1, and µw = 0.7µs. The tension field (TF) solutions are shown as dashed lines.
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Figure 7: Normalized stresses for various positions of the applied stretch, with λ2B = 1.01, ζ = 0.95, ks = 1.1, and

µw = 0.7µs. The tension field (TF) solutions are shown as dashed lines.
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Figure 8: Normalized stresses plotted for various healing rates, where ζ = 0.95, 0.99, and 1.01 represent fast healing, slow

healing, and atrophy, respectively. Here, α = 3, λ2B = 1.01, ks = 1.1, and µw = 0.7µs. The tension field (TF) solutions

are shown as dashed lines.
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Figure 9: Normalized stresses plotted for various values of incompatibility constant (ks = 1.05 (less), 1.1 (moderate), and

1.15 (high). Here, α = 3, λ2B = 1.01, ζ = 0.9, and µw = 0.7µs. The tension field (TF) solutions are shown as dashed

lines.
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