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A general theory of thermodynamically consistent
biomechanical–biochemical growth in a body,
considering mass addition in the bulk and at an
incoherent interface, is developed. The incoherency
arises due to incompatibility of growth and elastic
distortion tensors at the interface. The incoherent
interface therefore acts as an additional source of
internal stress besides allowing for rich growth
kinematics. All the biochemicals in the model
are essentially represented in terms of nutrient
concentration fields, in the bulk and at the interface.
A nutrient balance law is postulated which, combined
with mechanical balances and kinetic laws, yields
an initial-boundary-value problem coupling the
evolution of bulk and interfacial growth, on the
one hand, and the evolution of growth and nutrient
concentration on the other. The problem is solved,
and discussed in detail, for two distinct examples:
annual ring formation during tree growth and healing
of cutaneous wounds in animals.

1. Introduction
Biological growth necessarily involves mass addition in
bodies leading to microstructural rearrangements and
internal stress distributions [1,2]. It can be classified as
either volumetric, surface or interfacial based on the
nature of mass exchange with the external environment.
Whereas mass is added in the bulk material during
volumetric growth [3–5] (e.g. in soft tumorous and
arterial tissues), it accretes onto the free surface of the
body during surface growth [6–8] (e.g. in hard horn and
bone tissues). On the other hand, mass addition can
also happen at a material or a non-material interface
within the body [9–11], as is the case with ring formation
in trees, healing of cutaneous animal wounds, growth
of animal nails, etc. In fact, interfacial growth models
provide a viable framework for studying problems in
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surface growth, e.g. by considering the external source to be the bulk body on one side of the
interface [8] or by assuming the interface to be between a bulk substrate and a growing two-
dimensional film [12,13]. In this paper, we develop a general three-dimensional finite deformation
thermodynamically consistent theory of biomechanical–biochemical growth in a body where
mass is being added both in the bulk and at an incoherent interface. The general theory is
discussed in detail for two problems: ring formation during tree growth and cutaneous wound
healing in animals. Whereas the former is dealt with assuming a linearized strain kinematics,
the latter is solved using a finite deformation framework. The considerations of incoherency at
the interface and of coupled biomechanical–biochemical bulk–interfacial growth are the main
novelties of our work.

We call an interface incoherent whenever the jump in elastic distortion tensor across it is
incompatible, i.e. not restricted to be of a rank-one form [14,15]. Such jumps become sources of
residual stress, in addition to those arising due to incompatible elastic strain field in the bulk
of the body. They also lead to richer growth kinematics, because the body on one side of the
interface can grow without any resistance from the other side. Such a situation is commonly seen
in the shrink fit problems of solid mechanics [16]. While a general theory of growth in bodies
with incoherent interfaces is lacking in the literature, several specific applications have appeared
recently. These include the role of the incoherent skin–wound interface in the wound healing
problems leading to instability of wound shape [17], skin wrinkling [18] and cavitating wound
[19]. An incoherent interface also led to circumferential buckling in growing bilayer cylindrical
tubes [16]. The interface between a growing thin film over a growing substrate, as considered
recently by Kuhl and co-workers [12,13], is also incoherent.

The second aspect of our theory is to extend the work by Ambrosi & Guillou [20] (see
also [21,22]) to include biochemistry in growing bodies with interfaces. Towards this end,
we postulate a global nutrient balance law and derive local equations for the evolution of
nutrient concentration fields, both in the bulk and at the interface, driven by the nutrient flux
as well as by the growth kinetics. Reciprocally, the growth evolution is affected by both the
concentration evolution and the elasticity of the body. Such a coupling between biomechanics
and biochemistry is essential for a realistic modelling of biological growth processes. Another
coupling incorporated in our model is that between bulk and interfacial growth. The latter
provides boundary data for the bulk growth and, in turn, is affected by the bulk deformation and
stress fields.

As examples of our theory, we first revisit the classical problem of tree growth due to annual
ring formation [23,24]. We depart from the earlier works by considering a thermodynamically
consistent interfacial growth framework and incorporating nutrient biochemistry. Moreover,
unlike previous models, we include elasticity of the bark and a non-uniform ring size distribution
in the trunk. Our approach provides a straightforward way to calculate the growth stress and
nutrient concentration distributions in tree trunks. Interestingly, we use bark elasticity to correlate
the crack patterns on the bark with the growth strains therein. As the second example, we
calculate the nutrient concentration field during the cutaneous wound healing process. This is
done so as to achieve a better understanding of the nutrient chemistry in the problem, which can
lead to efficient wound management and scar control. The biomechanical aspects of this problem
were investigated recently by the present authors [18,19].

The preliminaries for studying mechanics of incoherent interfaces are developed in §2,
following earlier work by one of the authors [15,25,26]. In §3, we obtain the complete set of
governing equations for the determination of deformation, stress and nutrient concentration
fields. These include the balance laws of mass, nutrient and momentum, and the kinetic relations
for interface migration, growth and nutrient flux, both in the bulk and at the interface. The kinetic
relations are consistent with the second law of thermodynamics. We also digress briefly to discuss
growth of an elastic thin film over a growing elastic substrate. Analytically tractable models of
tree growth and cutaneous wound healing are considered in §§4 and 5, respectively, and the
proposed governing equations solved and discussed to illustrate the efficacy of our framework.
We conclude our work in §6.
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2. Preliminaries
Let R be the set of real numbers, R+ be the set of positive real numbers, V be the translation
space (set of vectors) of a real three-dimensional Euclidean point space E and Lin be the set of
second-order tensors consisting of all linear transformations from V to V . The set of invertible,
symmetric, symmetric positive-definite and skew tensors are represented by InvLin, Sym, Sym+
and Skw, respectively. The determinant, transpose, inverse, and cofactor of A ∈ Lin are denoted
by JA, AT, A−1 and A∗, respectively. The identity tensor in Lin is represented by 1. The Euclidean
inner-product and the Euclidean norm in Lin are defined as A · B = tr(ABT) and |A|2 = A · A,
respectively, where B ∈ Lin and tr(·) is the trace operator. We express the symmetric and skew-
symmetric part of A as sym(A) and skw(A), respectively. The derivative of a continuously
differentiable scalar-valued function of tensors G(A) is denoted as ∂AG ∈ Lin, defined by G(A +
B) = G(A) + ∂AG · B + o(|B|), where o(|B|)/|B| → 0 when |B| → 0. Similar definitions hold for
vector- and tensor-valued differentiable functions of scalars, vectors and tensors.

(a) Deformation kinematics
Let Bt ⊂ E denote the current configuration of a growing body and let B0 ⊂ E be an arbitrary
reference configuration such that there exists a bijective map χ between B0 and Bt. Assume Bt to
be simply connected. The position vector x ∈Bt is uniquely defined in terms of a position vector
in the reference configuration X ∈B0, and time t ∈R, as x = χ(X, t). The mapping χ is assumed to
be continuous but piecewise differentiable over B0 and continuously differentiable with respect
to t. The particle velocity and the deformation gradient are given by v = χ̇ ∈ V and F = Grad χ ∈
InvLin, respectively, where the superposed dot represents the material time derivative and Grad
the gradient operator with respect to X. The latter definition holds whenever χ is differentiable
at X. Both F and v are assumed to be piecewise continuously differentiable over B0.

We consider a singular surface in the interior of B0 (figure 1), I0 = {X ∈B0;φ(X, t) = 0},
where φ ∈R is a continuously differentiable level set function. The unit normal N and the
normal velocity U, associated with I0, are defined as N = Gradφ/|Gradφ|, and U = −φ̇/|Gradφ|,
respectively. Various bulk fields, such as deformation gradient and stress, are allowed to be
discontinuous in B0 only across I0. They are otherwise assumed to be smooth in B0/I0. The
projection tensor 1= 1 − N ⊗ N ∈ Sym projects vectors onto the tangent space of the singular
surface I0. The jump and average of a piecewise continuous bulk field ψ ∈R across I0 are given
by [[ψ]] =ψ+ − ψ− and 〈ψ〉 = (ψ+ + ψ−)/2, respectively, where ψ+ is the limiting value of ψ
as it approaches I0 from the bulk side into which N points and ψ− is the limiting value when
approached from the other side of the interface. The interfacial fields g ∈R, v ∈ V and G ∈ Lin,
defined on I0, are differentiable at X ∈ I0 if they have extensions g ∈R, v ∈ V , and G ∈ Lin to
a neighbourhood of X in B0, which are differentiable at X. The surface gradients of g, v and
G are then defined by GradSg= 1(Grad g), GradSv= (Grad v)1 and GradS

G = (Grad G)1. The
corresponding surface divergences are DivSv= tr(GradSv) and k · DivS

G = DivS(GTk), where
k ∈ V is fixed. The surface Laplacian of g is given by �Sg= DivS(GradSg). The curvature tensor
L ∈ Sym and the mean curvature κ ∈R associated with I0 are defined as L = −GradS

N and κ =
tr L, respectively. The normal time derivative of an interfacial field g, continuously differentiable
over I0, represents the rate of change of g as observed by an observer sitting on the moving
interface I0. It is defined in terms of its extension g as

◦
g= ġ + U(Grad g) · N. (2.1)

Using this definition, we can immediately deduce
◦
N = −GradSU. The surface deformation

gradient and the normal material velocity associated with I0, such that [[χ]] = 0 for all X ∈ I0,
are given by Gupta & Steigmann [15]

F = GradSχ = F±1 and v= ◦
χ = 〈v〉 + U〈F〉N, (2.2)

respectively. Clearly, JF = 0, FN = 0 and F1= F. Also, as is well known, [[F]]1= 0 and [[v]] +
U[[F]]N = 0. The velocity v is the intrinsic material velocity of the particle points which coincide
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Figure 1. The reference, current and stress-free configurations. The latter is obtained from the current configuration via elastic
relaxation. The singular interface is incoherent yielding distinct normalsNγ andN

η in the relaxed configuration, as mapped
from the same normalN (orn) in the reference (or current) configuration. (Online version in colour.)

with the interface at time t. The surface gradient of v is related to the normal time derivative of F

as GradSv= ◦
F1− UFL [15]. The ratio of infinitesimal surface areas (over the singular surface) in

the current and the reference configuration is given by j = |F∗
N|.

(b) Growth kinematics
Central to our biomechanical theory of growth is the multiplicative decomposition of the
deformation gradient [5],

F = HG in B0/I0, (2.3)

where H ∈ InvLin is the elastic distortion tensor and G ∈ InvLin is the growth tensor (figure 1). The
elastic distortion H represents in effect an elastic unloading of the body in the grown configuration
Bt to a stress-free configuration assuming that the stress is purely elastic in origin. The stress-free
configuration will not evolve unless the body grows. The tensor G, which connects the stress-
free configuration to the fixed reference configuration B0, hence represents the state of growth.
The nature of the stress-free configuration, and hence of the elastic and growth distortion tensors,
is governed by the choice of elastic response that is prescribed for the body. For instance, it is
unique, modulo rigid body transformations, only for convex elastic energies [27]. Owing to its
construction, the stress-free configuration is, in general, a disjoint set of disconnected domains in
the Euclidean space. It can, however, be interpreted as a connected set in a non-Euclidean space
which admits a non-metric affine connection [28].

The multiplicative decomposition at the interface can be obtained by projecting the limiting
values of (2.3), as the interface is approached, onto the interface I0. We define the surface
distortion tensors as H

γ = H+1γ , H
η = H−1η, G

γ = G+1 and G
η = G−1, where the superscripts

γ and η denote the two distinct surfaces in the stress-free configuration both related to the single
interface in B0 or Bt. The relaxation of the interface into two distinct surfaces is a consequence
of the incoherency of the interface [15,25]. For a coherent interface, H

γ = H
η, or equivalently
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G
γ = G

η; the jumps in H and G are then necessarily rank-one. In the preceding definitions,
we have used the projection tensors 1γ = 1 − N

γ ⊗ N
γ and 1η = 1 − N

η ⊗ N
η, where N

γ ∈ V and
N
η ∈ V are unit normals associated with the two surfaces in the relaxed configuration such that

N
α = (G±)−T

N

|(G±)−TN| , (2.4)

with superscript + appearing with α = γ and − with α= η. The normals N
γ and N

η coincide for
coherent interfaces. The multiplicative decomposition on the incoherent interface, therefore, is of
the form

F = H
α
G
α on I0, (2.5)

where α ∈ {γ , η}. There exist unique pseudo-inverse tensors (Hα)−1 and (Gα)−1 such that
(Hα)−1

H
α = 1α and (Gα)−1

G
α = 1. Here and elsewhere, no summation is implied for repeated

superscript α unless stated otherwise. The interfacial jacobians jα = |(G±)∗N| measure the ratio
of infinitesimal areas in the relaxed configuration with respect to the reference configuration. We
note the following results for later application:

(Gα)∗ = jα(Nα ⊗ N), ∂Gα jα = jα(Gα)−T, ∂Nα jα = 0,
◦
j
α = jα

◦
G
α

(Gα)−1 · 1α , (2.6)

for each α ∈ {γ , η}. Similar relations hold for F and H.

(c) Integral theorems
We collect several integral theorems which will be useful in the following section to derive
localized relations from global balance laws and dissipation inequality. Consider an arbitrary
simply connected region Ω ⊂B0 such that S =Ω ∩ I0 is the interface contained within Ω . The
boundary ∂S of S is a subset of the boundary ∂Ω of Ω . For a piecewise differentiable field a ∈ V ,
defined in B0, the divergence theorem requires∫

Ω

Diva dV =
∫
∂Ω

a · N dA −
∫

S
[[a]] · N dA, (2.7)

where dV and dA denote the infinitesimal volume and area measures in B0, respectively. The field
N ∈ V is the unit normal to ∂Ω . Let ν ∈ V be the outwards unit normal to the closed curve ∂S such
that N · ν = 0, i.e. ν is tangential to S. For a continuously differentiable field v ∈ V , defined over
I0, such that v · N = 0, the surface divergence theorem yields [26]∫

S
DivSvdA =

∫
∂S
v · ν dL, (2.8)

where dL is the infinitesimal length measure over I0. The above results can be suitably modified
for scalar and tensor fields.

Let f ∈R be a piecewise continuous field in B0 and let g ∈R be a continuously differentiable
field over I0. The following transport relations hold [26]:

d
dt

∫
Ω

f dV =
∫
Ω

ḟ dV −
∫

S
[[f ]]UdA

and
d
dt

∫
S

g dA =
∫

S
(

◦
g − gκU) dA +

∫
∂S

gW dL,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.9)

where W ∈R is the velocity of edge ∂S along ν. These transport theorems can be suitably modified
for vector and tensor fields.

3. Balance laws and dissipation
In this section, we state the global balance laws associated with mass, nutrient and momentum,
and derive their local counterparts in the bulk, away from the interface and on the interface. We
also state the global form of the dissipation inequality and, after making constitutive assumptions
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on the nature of bulk and interfacial energies, arrive at local dissipation inequalities in the bulk
and on the interface. The local inequalities are used to derive simple kinetic relations for the
evolution of growth and interface migration. In particular, we emphasize the coupling between
biochemistry and biomechanics in our growth model. Finally, as a brief digression, we use our
framework to discuss the growth of a thin film over a growing substrate.

(a) Mass balance
Considering sources of mass in the bulk ΠB ∈R (per unit reference volume) and on the interface
ΠS ∈R (per unit reference area), the global mass balance for an arbitrary region Ω ⊂B0 can be
expressed as

d
dt

[∫
Ω

ρ0 dV +
∫

S
δ0 dA

]
=

∫
Ω

ΠB dV +
∫

S
ΠS dA +

∫
∂S
δ0W dL, (3.1)

where ρ0 ∈R+ is the bulk mass per unit reference volume and δ0 ∈R+ is the interfacial mass
per unit reference area. The latter should be understood as an excess thermodynamic field, in the
manner of Gibbs, for the non-material interface S. The sources of mass as diffusive fluxes, across
the boundaries of both the bulk and the interface, are ignored. This is reasonable because we
will be working with only simple elastic solids and their incorporation would otherwise require
a higher-gradient constitutive theory [4]. The last term in (3.1) represents the mass flow across
∂S due to a part of the interface S entering/leaving the fixed domain Ω . Using the transport
theorems (2.9), and then localizing the resulting integral equation, we obtain the local mass
balance equations

ρ̇0 =ΠB in B0/I0

and (
◦
δ0 − δ0κU) = [[ρ0]]U +ΠS on I0.

⎫⎬
⎭ (3.2)

The bulk mass source ΠB can be related to the evolution of growth distortion tensor G. Indeed,
assuming that the bulk mass density, per unit volume of the relaxed configuration, remains
unchanged for a fixed material point, i.e. ρ̇i = 0, where ρ0 = JGρi, we obtain ρ0 tr(ĠG−1) =ΠB
[29,30]. Under elastic incompressibility (JH = 1) this is equivalent to assuming ρ̇ = 0, where ρ is
the bulk mass density per unit volume of the current configuration such that ρ0 = JFρ [5]. On the
other hand, the interfacial mass source ΠS is related to both the areal evolution of growth tensor
and the flux of bulk mass across the moving interface. To show this we assume, analogous to
the bulk assumption, that the interfacial mass density δαi = δ0(jα)−1, per unit area of the surface

α ∈ {γ , η} in the relaxed configuration, remains conserved, i.e.
◦
δ
α

i − δαi κU = [[ρi]]U. It is only when
the interface is stationary, or when it is a material surface (U = 0), that these equations reduce to
δ̇αi = 0, an assumption previously made by Ciarletta et al. [9]. The required relation can be readily
obtained, by combining the assumed conservation law with (3.2)2 and (2.6), as

δ0
◦
G
α

(Gα)−1 · 1α + (jα[[ρi]] − [[ρ0]])U =ΠS. (3.3)

If the interface is stationary, or if it is a material surface, then δ0Ġ
α(Gα)−1 · 1α =ΠS, a relationship

similar to its bulk counterpart. For an elastically incompressible material, ρi can be replaced
by ρ in (3.3). On the other hand, for an interface with no excess mass distribution, i.e. δ0 = 0,
−[[ρ0]]U =ΠS; the interfacial mass source then necessarily requires a density variation across a
moving interface.

(b) Nutrient balance
We represent all the biochemical nutrient activity in our body in terms of two nutrient
concentration fields: C ∈R+ (per unit reference volume) in the bulk and C ∈R+ (per unit
reference area) at the interface. The flux of nutrients is denoted by M ∈ V in the bulk and M ∈ V at
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the interface. We write the global nutrient balance law for an arbitrary region Ω ⊂B0 in the form

d
dt

[∫
Ω

C dV +
∫

S
C dA

]
+

∫
∂Ω

M · N dA +
∫
∂S

M · ν dL

=
∫
Ω

E0 · ĠG−1 dV +
∫

S

∑
α∈{γ ,η}

E
α
0 · ◦

G
α

(Gα)−1 dA +
∫
∂S

CW dL, (3.4)

where the first term on the right-hand side of the equality is the bulk source of nutrient
concentration arising from the evolving growth tensor; E0 ∈ Lin characterizes the anisotropy in
the absorption rate of the nutrients [20]. The second integral has analogous source terms for
the interface characterized by E

γ

0 ∈ Lin and E
η

0 ∈ Lin. The form of the nutrient source terms is
motivated from the dissipation rates appearing in the local dissipation inequalities derived in
§3d. The last term in (3.4) represents nutrient flow across ∂S due to a part of the interface S
entering/leaving the fixed domainΩ . The global balance in (3.4) can be localized, using transport
and divergence theorems from §2c, to obtain

Ċ + DivM = E0 · ĠG−1 in B0/I0

and (
◦
C − κCU) + DivS

M − [[C]]U + [[M]] · N =
∑

α∈{γ ,η}
E
α
0 · ◦

G
α

(Gα)−1 on I0.

⎫⎪⎬
⎪⎭ (3.5)

The nutrient balance laws relate biochemistry of the nutrients to biological growth [20–22]. The
right-hand sides of the above equations couple nutrient concentration evolution to the growth
evolution which are in turn governed by kinetic laws such as those obtained in §3d. The interfacial
concentration evolution is also influenced by the migration of the interface, which is governed by
a kinetic law derived in §3d. The balance law (3.5)1 was first obtained by Ambrosi & Guillou [20].

(c) Momentum balance
Let P ∈ Lin and P ∈ Lin denote the bulk and the interfacial first Piola–Kirchhoff stress, respectively,
such that PN = 0. For Ω ⊂B0, the linear momentum balance requires

∫
∂Ω

PN dA +
∫
∂S

Pν dL = 0, (3.6)

where both inertia and body force contributions have been neglected. Using the divergence
theorems from §2c and localizing, the global balance reduces to [15]

DivP = 0 in B0/I0 and DivS
P + [[P]]N = 0 on I0. (3.7)

On the other hand, in the absence of bulk and interfacial couples, the angular momentum balance
requires [15]

PFT = FPT in B0/I0 and PF
T = FP

T on I0. (3.8)

(d) Dissipation inequality and kinetic laws
Under isothermal conditions, the second law of thermodynamics requires that the rate of change
of the total free energy must be less than or equal to the mechanical power input. DenotingΨB ∈R
and ΨS ∈R as the bulk free energy (per unit reference volume) and the excess interfacial free
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energy (per unit reference area), respectively, we write the mechanical version of the second law
of thermodynamics, neglecting inertia and body forces, for Ω ⊂B0 as

d
dt

(∫
Ω

ΨB dV +
∫

S
ΨS dA

)
︸ ︷︷ ︸
rate of change of total free energy

≤
∫
∂Ω

PN · v dA +
∫
∂S

Pν · vdL︸ ︷︷ ︸
mechanical power input

−
∫
∂Ω

μM · N dA −
∫
∂S
μM · ν dL︸ ︷︷ ︸

power due to nutrient flux

+
∫
∂S

C ·wdL +
∫
∂S

Pν · vext dL −
∫
∂S
μCW dL.︸ ︷︷ ︸

non−standard power

(3.9)

In writing the above relation, owing to chemical equilibrium, we have assumed the interfacial
chemical potential to be identical with either of the limiting values of the bulk chemical
potential μ. The first two integrals on the right-hand side of the inequality in (3.9) are power
inputs due to bulk and interfacial tractions acting on ∂Ω and ∂S, respectively. The third and
fourth integrals are entropic contributions due to nutrient fluxes. An alternative viewpoint is
to consider the entropies directly associated with the incoming mass [4,9]. Following Ambrosi &
Guillou [20], we choose to work with the nutrients because we view growth to be an outcome of
biochemical synthesis. The last three integrals are non-standard. The first of these is to account for
excess entropy generation due to a part of the interface S entering/leaving the fixed domain Ω
[25,26], where w ∈ V is the intrinsic velocity of the edge ∂S, such that w= UN + Wν. The second
one provides a correction to the mechanical power due to interfacial traction. Indeed, the intrinsic
material velocity v shifts the observer, sitting at a point on the interface, away from ∂Ω , while the
extrinsic material velocity on ∂S, vext = WFν, brings her back to the edge on ∂Ω [25]. The third
integral represents the excess entropy contribution from the nutrient flux as a part of the interface
S enters/leaves the fixed domain Ω ; see the last term in (3.4). The exact form of the non-standard
force C ∈ V depends on the constitutive form of the interfacial energy, interfacial stress and the
dissipative fluxes. Towards this end, we assume the free energy densities to depend on elastic
distortion and nutrient concentration:

ΨB = JGΨ̃B(H, C) and ΨS = jγ Ψ̃S(Hγ , Hη, C), (3.10)

where Ψ̃B is the free energy per unit volume of the bulk in the stress-free configuration and Ψ̃S is
the free energy per unit area of the γ -surface in the relaxed configuration [15].

The global relation in (3.9) can be localized with the help of divergence and transport theorems
from §2c, and further simplified using the local balance laws derived in the preceding sections.
Localizing in the bulk, away from the interface, we use the standard arguments to obtain the
constitutive relations

P = JG∂HΨ̃BG−T and μ= JG∂CΨ̃B in B0/I0, (3.11)

and the local dissipation inequality [20]

(Ẽ + μE0) · ĠG−1 + Gradμ · M ≤ 0 in B0/I0, (3.12)

where Ẽ = JG(Ψ̃B1 − HT∂HΨ̃B) is the elastic Eshelby tensor in the bulk [27]. The local relations on
the interface can be obtained by taking note of the following identities:

[[PTv]] · N = −U[[FTP]]N · N − DivS
P · v, (3.13)

DivS(PTv) = DivS
P · v + P · ◦

F − UF
T
P · L (3.14)

and
◦
Ψ S =ΨS tr(

◦
G
γ

(Gγ )−1) + jγ

⎛
⎝ ∑
α∈{γ ,η}

∂Hα Ψ̃S · ◦
H
α

⎞
⎠+ jγ ∂CΨ̃S · ◦

C. (3.15)
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Using standard arguments [15], we can obtain the constitutive relations

P = jγ
∑

α∈{γ ,η}
∂Hα Ψ̃S(Gα)−T and μ= jγ ∂CΨ̃S on I0, (3.16)

and the dissipation inequality∑
α∈{γ ,η}

(Ẽα + μE
α
0 ) · ◦

G
α

(Gα)−1 − fU + GradSμ · M ≤ 0 on I0, (3.17)

where Ẽ
γ = jγ (Ψ̃S1− (Hγ )T∂Hγ Ψ̃S) and Ẽ

η = −jγ (Hη)T∂Hη Ψ̃S are the elastic interfacial Eshelby
tensors, and f is the driving force for the normal motion of the interface, given by Gupta &
Steigmann [15]

f = N · [[E]]N + E · L. (3.18)

Here, E = (ΨB + μC)1 − FTP and E = (ΨS + μC)1− F
T
P are bulk and interfacial Eshelby tensors,

respectively; note the difference between these Eshelby tensors with their elastic counterparts
defined above. Finally, collecting all the leftover terms within the line integral over ∂S, and
requiring that there is no excess entropy production at the edge, we obtain a constitutive
representation for C:

C = Eν. (3.19)

It represents the configurational force at the edge ∂S of the interface as it propagates through the
body. It should be noticed that if ∂S represents an actual physical edge or a corner, for instance a
kink in the interface, and not just an arbitrary domain, as considered above, then the non-standard
power terms would no longer be needed in (3.9).

The bulk dissipation inequality (3.12) is identically satisfied if the following decoupled kinetic
laws are assumed [20]:

ĠG−1 = −g(C)(Ẽ + μE0) and M = −K0Gradμ in B0/I0, (3.20)

where g ∈R+ and K0 ∈ Lin is positive-definite. For positive mass addition tr(Ẽ + μE0)< 0, and
vice versa. Similarly, the interfacial dissipation inequality (3.17) is identically satisfied if the
following decoupled kinetic laws are assumed on the interface:

◦
G
γ

(Gγ )−1 = −h1(C)(Ẽγ + μE
γ

0 ),
◦
G
η
(Gη)−1 = −h2(C)(Ẽη + μE

η

0),

U = Mf and M = −K0 GradSμ on I0,

⎫⎬
⎭ (3.21)

where h1 ∈R+, h2 ∈R+, M ∈R+ and K0 ∈ Lin is positive-definite. It is clear from the growth
evolution laws in the above kinetic relations that growth is possible as a result of both mechanical
stresses, through the dependence on Eshelby tensors, and due to nutrient fluxes. Reciprocally, it is
evident from (3.5), after substitutions from the above kinetic laws, that the nutrient concentration
evolution is governed by stresses, nutrient fluxes and interface migration. The complete initial-
boundary-value problem, for determining the deformation, growth and concentration fields,
consists of equations (3.5), (3.7), (3.8), (3.11), (3.16), (3.20) and (3.21), supplemented by initial
conditions for concentration and growth distortion fields, and appropriate boundary data.

(e) Growing thin film over a growing substrate
Our framework can be used, with minor modifications, to develop a theory of growing elastic
films bonded to growing elastic substrates. Such a formulation has been recently proposed by
Kuhl and co-workers [12,13] to model a variety of surface growth phenomena in biological
systems. Our intent in the following, as a brief digression, is to recover their results while
extending them to include biochemistry, more general kinetic laws and boundary conditions at
the film edge. The interface of the preceding discussion now exists between a three-dimensional
bulk solid and a two-dimensional thin film (figure 2). For simplicity, we will assume the interface
energy, interfacial stress and interfacial mass density to vanish identically. Let the thin film
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N

n D0

F0

Figure 2. A growing thin filmF0, bounded by a closed curveD0, over a growing substrate. (Online version in colour.)

domain be denoted by F0 in the reference configuration. Its motion coincides with that of the
bulk domain restricted to the interface. The surface deformation gradient field over F0 is defined
as F̂ = Gradf χ , where Gradf represents the surface gradient. We have F̂ = F−1, where F− is
the limiting value of the deformation gradient in the bulk as it approaches the interface, due
to coherency of the total deformation; 1= 1 − N ⊗ N is the projection tensor associated with
F0, where N ∈ V is the unit normal field on F0. The surface deformation gradient admits a
multiplicative decomposition, analogous to the bulk, as F̂ = ĤĜ, where Ĥ ∈ Lin and Ĝ ∈ Lin are,
respectively, elastic and growth distortion tensor fields over F0. The interface between the bulk
substrate and the thin film is, in general, incoherent and therefore neither Ĥ nor Ĝ are projections
of their bulk counterparts.

The local governing equations for the substrate remain the same as those derived for the bulk

in the preceding sections. The local mass balance for the film requires ˙̂
δ =Πf, where δ̂ ∈R+ is mass

per unit reference area of the thin film andΠf ∈R is the corresponding mass source. Furthermore,
if Ĉ ∈R+ is the nutrient concentration (per unit reference area) and M̂ ∈ V is the nutrient flux field

over F0, the nutrient balance for the thin film is of the form (Ĉ)̇ + Divf M̂ − M · N = Ê0 · (Ĝ)̇Ĝ
−1

,

where Ê0 ∈ Lin characterizes the anisotropy in the nutrient absorption rate and Ĝ
−1

is the
pseudo-inverse of Ĝ. The momentum balances in the thin film region require Divf P̂ − PN = 0
and P̂F̂T = F̂P̂T, where P̂ ∈ Lin is the surface first Piola–Kirchhoff stress on F0. We consider,
treating F0 as an hyperelastic membrane, the free energy density (per unit area of the stress-
free configuration) of the film as Ψ̂ (Ĥ, Ĉ). It is then straightforward to employ the dissipation
inequality for the material points occupying F0 to obtain, on the one hand, P̂ = ĵ∂ĤΨ̂ Ĝ−T and
μ= ĵ∂ĈΨ̂ and, on the other, (Ê + μÊ0) · (Ĝ)̇Ĝ−1 + Gradfμ · M̂ ≤ 0, such that ĵ ∈R+ is the ratio
of infinitesimal areas of the film in the stress-free configuration with respect to the reference
configuration and Ê = ĵ(Ψ̂1− ĤT∂ĤΨ̂ ) is the elastic surface Eshelby tensor; compare these with
(3.11)–(3.12) and (3.16)–(3.17). The kinetic laws which satisfy the inequality are

(Ĝ)̇Ĝ−1 = −ĥ(Ĉ)(Ê + μÊ0) and M̂ = −K̂ Gradfμ in F0, (3.22)

where ĥ ∈R+ and K̂ ∈ Lin is positive-definite. These can be substituted back into the equations
of nutrient mass balance to deduce the evolution equations for nutrient concentration over the
thin film. These equations also act as the boundary conditions for the differential equations
which govern the nutrient concentration in the substrate. Additionally, the following boundary
conditions at the film edge D0 (figure 2), in terms of a prescribed nutrient flux m̂ ∈R and traction
t̂ ∈ V , need to be satisfied:

M̂ · ν = m̂, and P̂ν − lim
ε→0

∮
Cε

PN dL = t̂, on D0, (3.23)

where Cε is the boundary of a small semicircular disc of radius ε centred at a point on D0 [25,26].
In writing (3.23)1, we assume the bulk concentration field C to remain bounded at the film edge.
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The film edge will not contribute to dissipation as long as there is no intrinsic nutrient flux, stress
or energy associated with it.

4. Tree growth due to ring formation
Trees increase their girth by forming a new ring of wood over the existing trunk [31]. The
deposition of wood takes place in a thin layer of xylem and phloem cells, known as vascular
cambium, between the still-developing ring and the bark [32]. Our interest is to model the
emergence of growth stresses and the nutrient concentration field in trees due to mass addition
in this thin layer. The growth stresses are different from the stresses which are generated in
response to mechanical loading (e.g. due to wind) or those which appear due to sharp changes
in the moisture content of the tree [23]. The cell swelling is understood to induce compressive
growth stresses along the periphery of the trunk, whereas the longitudinal shortening develops
tensile growth stresses along the length of the trunk [33]. The stresses generated in a new layer
cumulatively bring about stress gradients in the overall structure such that the longitudinal
stresses are tensile on the outer surface of the trunk and compressive at the centre, while the
circumferential and radial stresses are compressive on the outside and tensile at the centre
[23,31,34]. On the other hand, the nutrient activity is restricted to a small neighbourhood of the
vascular cambium interface including the recently formed ring and a portion of the bark [32]. The
nutrient concentration is maximum at the interface and decreases steadily into the ring and the
bark domains.

The growth stresses have been calculated previously [23,24] by combinining bulk growth
with an incremental approach, where elasticity of the bark, non-uniformity in the ring sizes and
nutrient fields were all neglected. The growth strains were estimated either by relieving stresses
from the outermost ring at each increment [23] or using the microstructure data [24]. The latter
method was in fact devised to replace the former which did not yield actual growth strains in the
inner rings of the tree. We revisit the problem in the framework of incoherent interfacial growth
with nutrient-driven mass addition at the vascular cambium interface. Moreover, we provide a
novel way to estimate the growth strain field in the trunk by exploiting the non-uniform ring
size distribution and using the available experimental data for the growth strains in the bark and
the latest ring. Biologically, the growth strains are directly dependent on the amount of lignin
and cellulose deposited in the cells during wood formation [35], and should therefore be directly
related to the relative size, or equivalently the mass (assuming a constant density for the wood),
of the growing ring.

(a) The model
We consider two interfaces in our model of tree growth: an interface I1 between the tree trunk
domain (denoted by B1) and the recently formed ring (denoted by B2), and an interface I2
between B2 and the bark (denoted by B3) (figure 3). The combined configuration of the tree
trunk, which includes both the pith and the matured rings, the latest ring and the bark forms a
long cylinder with a circular cross section such that axisymmetry is maintained throughout. The
two interfaces are oriented such that the associated normals point outwards towards the bark.
The mass addition, which takes place only at the vascular cambium interface I2, is responsible
for both the formation of the new ring and the increase in girth of the bark. Accordingly, we
decompose the mass source ΠS into a component Πη

S , responsible for ring formation, and Π
γ

S ,
which contributes to bark growth. The nutrient flux is also assumed to exist only at I2.

Following earlier treatments [23,24], we work with linearized strain kinematics such that
F ≈ 1 + f , H ≈ 1 + h and G ≈ 1 + g, all small to the same order. The multiplicative decomposition
of the deformation gradient is hence replaced by the additive decomposition f = g + h. The
growth distortion field in the trunk domain is taken of the form g1(r, t) = k1r(r, t)er ⊗ er +
k1θ (r, t)eθ ⊗ eθ + k1z(r, t)ez ⊗ ez, where r ∈R+ is the radial coordinate. On the other hand,
the growth distortions in the newly formed ring and the bark are assumed to be spatially
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(B 1)

Figure 3. The tree growth model with three bulk domains separated by two interfaces. The axial direction ez is normal to the
plane of the paper. (Online version in colour.)

uniform as g2(t) = k2r(t)er ⊗ er + k2θ (t)eθ ⊗ eθ + k2z(t)ez ⊗ ez and g3(t) = k3r(t)er ⊗ er + k3θ (t)eθ ⊗
eθ + k3z(t)ez ⊗ ez, respectively. Using relations from §3a, we immediately obtain k̇Ir + k̇Iθ + k̇Iz = 0
for no mass addition in the bulk, where I = 1, 2 and 3, and δ0(k̇2θ + k̇2z + k̇3θ + k̇3z) =Π

η

S +Π
γ

S
on I2. In deriving the latter, we have ignored the normal speed of the interface considering it to
be much slower than the growth rate process. The interfacial equations are identically satisfied
if we assume k̇2θ + k̇2z =Πη/δ0 and k̇3θ + k̇3z =Πγ /δ0. To simplify further, we take k2r = k2θ and
k3r = k3θ [23]. As a result, growth distortions in the ring and the bark regions are completely
determined in terms of the interfacial mass source. The growth distortions in the trunk, on the
other hand, will be obtained in §4b using the ring size distribution in the matured trunk.

The residual stresses in a growing body are generated due to the elastic deformations, which
appear in order to yield a connected body in the grown configuration. For an analytically
tractable framework, we assume bulk elastic strain energies to be decoupled from bulk chemical
energies, assume interfacial elastic energies to be negligible for both the interfaces and consider
a linearized stress–strain constitutive form with orthotropic elastic constants. Moreover, we
consider a displacement field of the form u = u(r)er + w(z)ez and limit our attention to a fixed
time instance. The non-trivial stress–strain relationships, in terms of cylindrical coordinates, are

σrr = Crr(u′(r) − kr) + Crθ

(u
r

− kθ
)

+ Crz(w′(z) − kz),

σθθ = Cθr(u′(r) − kr) + Cθθ
(u

r
− kθ

)
+ Cθz(w′(z) − kz)

and σzz = Czr(u′(r) − kr) + Czθ

(u
r

− kθ
)

+ Czz(w′(z) − kz),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.1)

where the orthotropic elastic constants are such that Crθ = Cθr, Crz = Czr and Czθ = Cθz; the
superscript prime denotes the derivative of the function with respect to its argument. The
governing equations for displacements can be obtained by substituting these relations into the
equilibrium equations. The boundary conditions include traction-free outer surface of the bark,
continuity of the radial stress and the displacement vector at the trunk–ring and the ring–bark
interface, finiteness of the radial displacement at the centre of the trunk, and zero net force
arising out of longitudinal residual stress distribution in the trunk, ring and bark. The problem is
analytically solved by fitting the trunk growth distortion field into a quadratic function of r.

(b) Results and discussion
Assuming a uniform mass density of the wood, and using a calibration factor, we can convert the
mass in each of the matured ring to a corresponding value of growth strain. Towards this end, we
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Figure 4. (a) Cross section of a typical pine tree trunk showing non-uniform distribution of rings. (b) The variation of the
estimated growth strain field in the cross section of the tree trunk. (Online version in colour.)

take the size distribution of the matured rings from a typical cross section of a pine tree, shown in
figure 4a. The strain in the outermost matured ring is estimated from the experimentally available
value of the strain in the latest ring under analysis. A smooth curve is then fitted to obtain
a non-uniform distribution of radial growth strain in the trunk domain (figure 4b). We obtain
k1r(r) = 0.00009706r2 − 0.00003390r − 0.00193682. For the tangential and the axial growth strains
we assume k1θ = k1r and k1z = −k1θ /2 [23,24]. The obtained distribution is in agreement with the
trunk and plank stripping results of Archer and co-workers [23,36]. The uniform growth strains
in the latest ring and the bark are taken as k2r = k2θ = 0.002, k2z = −k2θ /2 and k3r = k3θ = −0.0002,
k3z = −0.0009, respectively [23,24]. The value of the growth strains in the latest ring indicates that
it has grown circumferentially, creating an overlap, and shortened axially from a hypothetical
reference state of our model. Therefore, to obtain the connected final configuration of the body,
we need compressive elastic strains in the θ -direction and tensile elastic strains in the z-direction.
Similar interpretations can be provided for growth strains in the trunk and the bark domains.
The outer radius of the tree trunk is taken as 6.121 cm for our calculations; the pith is assumed
to be absent altogether. The thickness of the latest ring is taken as 0.053 cm and of the bark
as 0.25 cm. The orthotropic elastic constants for trunk, ring and bark domains are taken to be
identical as Crr = 1560 MPa, Cθθ = 890 MPa, Czz = 12300 MPa, Crθ = 620 MPa, Cθz = 650 MPa and
Crz = 890 MPa [24].

(i) Growth stresses

The growth stresses obtained for the considered parametric values are shown in figure 5a. The
qualitative behaviour of stress fields in the trunk as well as the outermost ring domain is in good
agreement with the existing literature [23,24]. As expected, the radial stress in the outermost
ring as well as in the bark remains vanishingly small. The circumferential stress is sharply
discontinuous at both the interfaces. Similarly, there is a sudden jump in the magnitude of the
axial stress across the trunk–ring interface and again a smaller jump at the ring–bark interface. We
repeated our calculation by varying the stiffness of the bark. Interestingly, decreasing the stiffness
even by four times showed no significant influence on the stress values in the outer trunk and
the latest ring region; the stresses in the bark, of course, vary significantly, as demonstrated in
table 1a. This can be understood by noting that due to force equilibrium in the axial direction,
large stresses in the bark are compensated by smaller stresses in the trunk. The change in bark
stiffness inversely affects the stress close to the centre of the trunk. A decrease in bark stiffness
hence makes it favourable for centre cracking of the trunk, or in other words, a bark of sufficiently
high stiffness would produce high-quality timber.
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Figure 5. (a) Stress distribution in the pine tree trunk. (b) The distribution of nutrient concentration and nutrient flux in the
ring and bark domains; n= 108 cells. (Online version in colour.)

Table 1. Variation of the stress state in the bark with varying (a) stiffness and (b) bark growth strains.

bark stresses in MPa

parameters radial circumferential axial

(a) variation in bark stiffness (k3θ = k3r = −0.0002, k3z = −0.0009)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(i) (Cij)bark = 2 (Cij)trunk 0 0.417 20.474
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) (Cij)bark = 0.5 (Cij)trunk 0 0.108 5.713
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) variation in bark growth strains, (Cij)bark = (Cij)trunk
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) k3θ = k3r = −0.0002, k3z = −0.0009 0 0.213 10.999
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iv) k3θ = k3r = −0.0002, k3z = 0.0009 0 −0.284 −8.637
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(v) k3θ = k3r = −0.0009, k3z = −0.0009 0 0.633 11.192
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(vi) k3θ = k3r = 0.0009, k3z = −0.0009 0 −0.447 10.697
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(vii) k3θ = k3r = −0.009, k3z = 0.0002 0 0.329 −0.808


(ii) Nutrient concentration during tree growth

The transportation of the nutrients, through the vascular cambium layer I2, assists in the
proliferation of xylem and phloem cells in the recently formed ring B2 and in some portion of
the bark B3, respectively. Considering the steady state of the nutrient chemistry and a quasi-static
deposition of the wood cells, i.e. Ċ = 0,

◦
C = 0, U = 0, we obtain the nutrient concentration field as a

consequence of the growth and diffusion processes. The solution is meaningful at a time instance
just before the maturation of the latest ring. We assume the bulk concentration field to be such that
it vanishes in B1 and varies only radially in B2 and B3. The interface concentration is assumed to
vanish over I1 and constant over I2. The nutrient flux is assumed to be zero in B1 and over I1. The
free energy density of the bulk regions are additively composed of a quadratic strain energy and a
quadratic chemical energy term, such that μ= αaC (to the leading order in strain), where αa = α2
in B2 and αa = α3 in B3. The free energy density of the interface I2 consists only of a quadratic
chemical energy term such that μ= βC (to the leading order in strain). There is no mass addition
in the bulk, leading to tr(ĠG−1) = 0 or, equivalently, tr(Ẽ + μE0) = 0. This is identically satisfied
if we assume μE0 = −tr(Ẽ)er ⊗ er. Chemical equilibrium at I2 requires the limiting values of the
bulk chemical potential, from either side of the interface, to be equal to the interfacial chemical
potential; as a result, α3C+ = α2C− and α2C− = βC. Finally, for analytical simplicity and purposes
of computation, we choose K0 = 1 n2/J-cm-s, g(C) = C, α2 = 20 Jcm3/n2, α3 = 40 Jcm3/n2, E0 = −1
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Figure 6. Crack patterns on the outer bark of various Indian trees (a) Delonix Regia (gulmohar); (b) Azadirachta Indica (neem);
(c) Magnifera Indica (mango); (d) and (e) are both Terminalia Catappa (almond) trees, locatedwithin 3 m of each other, with (e)
being the younger tree. The single crack along the circumference in (c) is due to tying of a plastic rope over the tree for 3 years.
(Online version in colour.)

n/cm2, K0 = 1 n2/J-s, β = 0.01 Jcm2/n2 and h1(C) = h2(C) = 100C, where n denotes 108 cells.
Under these conditions, the nutrient balance equations (3.5), with substitutions from kinetic laws
(3.20) and (3.21), reduce to (upto leading order in strain)

α2
a

(
C′′(r) + 1

r
C′(r)

)
= (trẼ)(Ẽθθ + Ẽzz) in {B2 ∪ B3}/I2 (4.2)

and

(α3C′(r)+ − α2C′(r)−) = 100α2
2C−

β2 (−α2(C−)2 + 4βC−) on I2, (4.3)

where Ẽθθ and Ẽzz are, respectively, the circumferential and axial components of the Eshelby
tensor. Equation (4.2) is a second-order differential equation to be solved within the ring and
bark domains. For boundary conditions, we assume the concentration to be zero both at the inner
radius of the ring and at a radial distance of 0.01 cm from I2 into the bark; the concentration is
assumed to remain zero in the rest of the bark. In addition, there are two interfacial conditions
at I2 given by the continuity of the chemical potential and the interfacial nutrient balance (4.3).
The results are shown in figure 5b, where stresses from figure 5a have been used. As expected,
the concentration is maximum at the vascular cambium interface and that it spreads more into
the ring region than the bark. The latter is a representation of a larger spread of xylem cells in
comparison to phloem cells, in agreement with the observations on radial growth of trees [32].
The piecewise near-constant behaviour of the chemical potential gradient, on the other hand,
indicates that the ring formation is in its final stage.

(iii) Cracking pattern in the bark

The outer bark in different trees cracks differently, as is shown for four common Indian trees in
figure 6. In fact the bark in some trees does not crack, and in most of the trees the cracking depends
on the age of the tree. We can use the visible crack pattern to infer qualitative details about the
nature of growth strains and elastic moduli associated with the bark. Indeed, the stress value
in the bark, which varies with growth strains and stiffness, can be correlated with the cracking
pattern. In table 1a, we report the variation in bark stresses for different bark stiffness values,
while fixing all the other parameters as given in the beginning of §4b. These should be compared
with the result in row (iii) of table 1b, which corresponds to the case of equal elastic moduli in the
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bark and trunk regions. Both axial and circumferential stresses are higher for barks with increased
stiffness. The severity of cracking in figure 6d, compared to that in figure 6e, can therefore be
explained if we assume the bark stiffness to increase with the tree getting older. In table 1b, the
bark stresses are compared for different combinations of growth strains in the bark region. Other
parameters are kept fixed according to the values provided in the beginning of §4b. The first
thing to note is that, whenever the bark growth strains are all compressive in nature (e.g. rows
(iii) and (v)), tensile stresses are generated in both circumferential and axial directions. In fact,
larger compressive strains lead to increased axial and circumferential tensile stresses. We can infer
from the cracking patterns in figure 6d,e that the bark growth strains therein are compressive in
nature. Secondly, for sufficiently high axial tensile growth strains, in addition to sufficiently low
compressive circumferential strains, we are led to purely compressive stress states in the tree
bark; compare rows (iv) and (vii). Accordingly, we can correlate the absence of cracking in 6a to
such a situation. Thirdly, positive circumferential growth strains, combined with negative axial
strains (e.g. row (vi)), can lead to a tensile axial stress but a compressive circumferential stress.
This correlates to the formation of only transverse cracks in the bark. Finally, a case for only
axial cracking in the bark, as for trees in figure 6b,c, can be made if one considers sufficiently
high compressive circumferential growth strains coupled with low tensile axial growth strains
(e.g. row (vii)).

5. Nutrient concentration during cutaneous wound healing
We have recently proposed a biomechanical growth model for the proliferation stage of cutaneous
wound healing while emphasizing the residual stress generation and the emergence of wrinkling
and cavitation instabilities [18,19]. In this section, we will use an unwrinkled stress solution from
our previous work to solve the nutrient balance equations and obtain the steady-state nutrient
concentration field in the skin–wound bulk region and at the wound edge. A mass source is
considered at the incoherent interface I0 between the circular wound domain and the infinite
annular skin domain (figure 7a), so as to compensate for the density difference between the
wound and the skin. Both the domains are modelled as isotropic hyperelastic Varga membranes.
The stress-free configuration is obtained by making a single cut along the wound edge and
relaxing the existing far field tension in the skin.

The problem is considered to be axisymmetric, yielding a deformation gradient of the form F =
r′(R)er ⊗ er + (r(R)/R)eθ ⊗ eθ + (h(R)/H)ez ⊗ ez, where r and R are, respectively, the deformed and
the reference radial coordinate, H is the uniform thickness of the reference membrane, and h is the
thickness of the deformed membrane. The growth deformation is taken to be piecewise uniform,
G = ka(er ⊗ er + eθ ⊗ eθ ) + ez ⊗ ez, where ka = k1 for the wound region and ka = k2 for the skin
region. The wound–skin interface is incoherent if k1 �= k2; in fact, we require k2 > k1 for a healing
wound [18]. The evolution of the parameters ka will be driven both by biochemistry and elastic
stresses as is evident from the kinetic laws in (3.20)1. Rather than solving the fully coupled system
of equations for deformation and concentration, we will restrict ourselves to obtain a steady-
state decoupled solution for the concentration, via equations (3.5), using a known unwrinkled
deformation solution from Swain & Gupta [18, §2.4]. Accordingly, we will consider Ċ = 0,

◦
C = 0,

U = 0, and assume the deformation r and the stress fields to be known.
There is no mass addition except at the wound edge. Therefore, tr(ĠG−1) = 0 away from

the interface. In accordance with the kinetic relation (3.20)1, the tensor E0, which controls the
source of nutrient concentration, should satisfy tr(Ẽ + μE0) = 0. We take it to be such that
μE0 = −(tr Ẽ)er ⊗ er. The steady-state form of the nutrient balance law (3.5)1, with substitutions
from (3.20) and choosing K0 = K01, then reduces to μK0�μ= g(C)(trẼ)(Ẽθθ + Ẽzz), where � is the
Laplacian operator. The free energy densities, per unit volume of the stress-free configuration, of
the wound and the skin membrane are additively composed of a Varga strain energy [18] and a
term with quadratic dependence on the concentration field. The chemical potential in the bulk is
therefore given by μ(R) = JGαaC(R), where the material constant αa is equal to α1 in the wound
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Figure 7. (a) The wound–skin configurations. (b) The variation of nutrient concentration and flux in the wound–skin domain;
n= 1015 cells. (Online version in colour.)

and to α2 in the skin. The nutrient balance equation consequently takes the form

K0α
2
a k4

aC
(

C′′(R) + 1
R

C′(R)
)

= g(C)(tr Ẽ)(Ẽθθ + Ẽzz) in B0/I0, (5.1)

both within the wound and the skin domain (a = 1 and a = 2, respectively). Additionally, chemical
equilibrium at the interface requires μ+ =μ−, where the superscripts denote the limiting values
of the field at the wound–skin interface with unit normal to the surface pointing into the skin
domain. As a result,

k2
1α1C− = k2

2α2C+ on I0. (5.2)

We neglect elastic contributions in the wound–skin interfacial free energy density, per unit
area of the stress-free configuration, taking it to be of the form Ψ̃S = (β/2)C2, where β is a material
constant. The kinetic relations (3.21)1 and (3.21)2 hence reduce to

◦
G
γ

(Gγ )−1 = −h2(C)(jγ Ψ̃S1+
μE

γ

0 ) and
◦
G
η
(Gη)−1 = −h1(C)(μE

η

0), respectively. Substituting these into the nutrient balance

equation (3.5)2, with
◦
C = 0, U = 0 (steady state) and M = 0 (no intrinsic flux), we obtain

K0[[Gradμ]] · er = −∑α∈{γ ,η} E
α
0 · ◦

G
α

(Gα)−1. The chemical potential for the interface is equal to the
limiting values of the bulk potential, hence k2βC = α1k2

1C−. Additionally, if we assume E
α
0 = −1

n/m2 (n = 1015 cells) and h1 = h2, then the interfacial nutrient balance yields

K0(α2k2
2C′(R)+ − α1k2

1C′(R)−) = h̃(C−)

(
−α

2
1k4

1
k2β

(C−)2 + 4α1k2
1C−

)
on I0, (5.3)

where h̃(C−) = h1(C).
The complete boundary-value problem requires solving the nonlinear second-order

differential equation (5.1) in the wound and the skin domains. The two boundary conditions
require the concentration gradient C′(R) to vanish both at the wound centre (R = 0) and far
away from the wound edge in the skin, say at R = 10A, where A is the reference wound
radius. In addition, we have two conditions at the interface given by the chemical equilibrium
condition (5.2) and the interfacial nutrient balance (5.3). For computational purposes, we consider
K0 = 1 n2/kJ-m-s, α1 = α2 = 1 kJm3/n2, g(C) = C2, h̃(C−) = (k2

1C−/k2)2 and β = 0.01 kJm2/n2. The
deformation and stress solutions are obtained following Swain & Gupta [18, §2.4], where the
prestress Ts∞ at the outer boundary of the skin region is taken as 0.477634 kPa, skin stiffness
as 8 kPa, wound stiffness as 5.6 kPa, k1 = 0.9602, k2 = 1.01 and the healing constant as 0.99. The
problem is solved numerically using an iterative procedure with results summarized in figure 7b.
That the nutrient concentration is larger on the wound side of the interface is indicative of the
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active cellular activities therein. The chemical potential gradients are sharp near the wound edge,
implying that these results are a snapshot of an initial instant in the process of wound healing.

6. Conclusion
We have developed a framework for studying biological growth in bodies with incoherent
interfaces. The main contributions of our work include incorporating the incoherency into
interfacial growth models and to couple the nutrient concentration evolution with the growth
evolution, both in the bulk and at the interface. The incoherency of the interface leads to
internal stress in the body and allows for growth distortions to evolve across the interface
without necessarily being compatible. The nutrient concentration balance laws and the growth
kinetic laws, in addition to the momentum balances and the constitutive relations, form the
complete set of governing equations to be solved for displacement, stress and concentration. This
was illustrated through simplified models of tree growth and wound healing, where valuable
insights were obtained into the biomechanical and biochemical aspects of these problems. Suitable
numerical strategies would have to be devised to deal with more sophisticated problems.
Additionally, the proposed model would have to find other applications in surface and interfacial
growth, for instance in problems of nail and bone growth. Our interface growth model can also be
explored to provide meaningful boundary conditions for a higher-gradient bulk growth theory.
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