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Abstract

On Plastic Flow in Solids with Interfaces

by

Anurag Gupta

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor David J. Steigmann, Chair

The aim of this thesis is two fold. First, we construct a framework for a general

theory of anisotropic thermoplasticity, which encompasses previously established models

and several seemingly independent lines of research. The theory is based on the two laws of

thermodynamics and basic invariance requirements. Invariance is imposed under arbitrary

changes in the reference configuration, frame indifference, and material symmetry. The in-

terplay between constitutive assumptions and kinematics is, in particular, emphasized. The

classical models of plastic flow are deduced under additional assumptions and a few explicit

results are obtained for materials with cubic symmetry. Second, we study interfaces in a

plastically deforming solid. The interfaces are assumed to be in the form of waves (shock

waves and acceleration waves), grain boundaries, and phase boundaries. The concept of

surface dislocations is rigorously established and the governing equations for the dynamics

of shock waves and acceleration waves are obtained. In addition, simple examples demon-
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strating the behavior of these plastic waves are considered. Finally a theory, where the

interface itself contributes energetically, is constructed. The resulting formulation provides

us with a basis to study the coupling between grain boundary migration and accompanying

plastic flow.

Professor David J. Steigmann
Dissertation Committee Chair
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I am standing at the threshold about to enter a room. It is a complicated
business. In the first place I must shove against an atmosphere pressing with a
force of fourteen pounds on every square inch of my body. I must make sure of
landing on a plank traveling at twenty miles a second round the sun - a fraction
of a second too early or too late, the plank would be miles away. I must do
this whilst hanging from a round planet head outward into space, and with a
wind of aether blowing at no one knows how many miles a second through every
interstice of my body. The plank has no solidity of substance. To step on it is
like stepping on a swarm of flies. Shall I not slip through? No, if I make the
venture one of the flies hits me and gives a boost up again; I fall again and am
knocked upwards by another fly; and so on. I may hope that the net result will
be that I remain about steady; but if unfortunately I should slip through the
floor or be boosted too violently up to the ceiling, the occurrence would be, not
a violation of the laws of Nature, but a rare coincidence. These are some of
the minor difficulties. I ought really to look at the problem four-dimensionally
as concerning the intersection of my world-line with that of the plank. Then
again it is necessary to determine in which direction the entropy of the world
is increasing in order to make sure that my passage over the threshold is an
entrance, not an exit.

Verily, it is easier for a camel to pass through the eye of a needle than for a
scientific man to pass through a door. And whether the door be barn door or
church door it might be wiser that he should consent to be an ordinary man
and walk in rather than wait till all the difficulties involved in a really scientific
ingress are resolved.

A. S. Eddington. In The Nature of the Physical World, Cambridge, page 342, 1932.
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Chapter 1

Introduction

A solid body is said to deform plastically if it undergoes permanent structural

changes during the deformation process. The solid acquires a permanent change in its

structure if, on restoring the external environment (under which the deformation process

has taken place) to the initial configuration, the solid fails to restore to the initial structure.

The quantifiers for such structural changes can be the shape of the body (at a macroscopic

level of observation) or a rearrangement of defects (at a microscopic level of observation).

Unlike elasticity, plasticity is fundamentally a microscopic phenomenon. An elastic process

brings about no permanent changes in the structure of the solid, thereby allowing the body

to deform without any change in its microstructure. On the other hand, a plastic process

necessarily involves a change in the microstructure of the body. To construct a continuum

theory of plasticity would therefore require identifying the appropriate microstructural rear-

rangements and introducing suitable parameters for their representation. Before discussing

the general theory, it will be helpful to understand the phenomenon of plasticity through a
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simple one dimensional example.

1.1 Plasticity: the phenomenon

To illustrate the phenomenon of plasticity we consider a simple example of stretch-

ing a metal wire (with cylindrical cross-section) under an isothermal environment. A rep-

resentative element of the wire is selected and the following two quantities are measured:

the force per unit cross-sectional area (stress) and the change in length of the element with

respect to some fixed reference state (strain). Two typical stress-strain plots thus obtained

are shown in Figure 1.1.

Below a certain critical value of stress and strain, the element under observation

returns to its original state of stress and strain upon removal of the external mechanism for

stretching. The collection of all such stress/strain values forms the elastic range associated

with the material. The deformation remains elastic as long as the stress/strain values

are restricted to the elastic range. For values beyond the elastic range, the element will

undergo permanent structural changes. The boundary of the elastic range signifies the

onset of plastic deformation and therefore can be appropriately termed as the yield limit

for the transition from an elastic to a plastic deformation process. It should however be

noted that for most materials an accurate measurement of the yield limit is difficult because

of the gradual nature of the transition from elastic to plastic behavior. It then becomes

a matter of convention to choose an appropriate yield limit for such materials. Based on

the nature of the yield limit, we distinguish between two models of plastic flow. The first

model is known as perfect plasticity (or the ideal plastic flow), wherein the yield limit for
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(i) Perfect Plasticity. (ii) Plastic flow with strain hardening.

Figure 1.1: Simple stress–strain curves. (After Bridgman [22]).

stress is assumed to remain constant (Figure 1.1(i)). The second model, however, allows

the yield stress to vary with the structural changes in the body (Figure 1.1(ii)). Before we

go on to discuss these two models, note from Figure 1.1 that for a zero strain, the stress

does not necessarily vanish. This can be attributed to the presence of microstructure in the

form of defects in the unstrained state, which induces internal stresses so as to maintain an

equilibrium configuration of defects in the element.

Let us first assume perfectly plastic behavior for the wire with a stress-strain curve

of the form shown in Figure 1.1(i). Stretching the wire beyond the unstrained state using

a tensile loading, the deformation process remains elastic until the stress in the element

reaches the constant critical value (corresponding to the horizontal line in Figure 1.1(i)).

The element (of the wire) under consideration will deform plastically as long as its stress

state is maintained at the critical level, and will keep doing so till the onset of fracture

(which can be understood as the catastrophic separation of the body into distinct parts

[22]). If the wire is unloaded from the plastic state, it does so elastically. On loading the

wire again, it will start to flow plastically on reaching the constant yield limit for stress.
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The rate of plastic flow under constant yield stress depends on the load imposed at the

boundary of the wire, as well as other physical properties of the wire. If, however, we try to

load the wire such as to raise the stress in the element above the critical value, the element

responds by an indefinite yielding. Such a plastic flow can no more be controlled via the

force applied at the end of the wire, but is now dependent on the velocity with which the

wire is stretched. This behavior is analogous to the free mobility of an ideal liquid.

In our actual experience, however, we find that we can indeed control the plastic

flow via forces which bring the stress state to much higher levels than the initial yield stress.

Moreover, most importantly in metals, we observe the phenomenon of hardening, where

the solid tends to yield at higher and higher values of stress as a result of the change in its

structure. Metals can be treated (e.g. cold worked) to bring desired structural changes, and

can consequently be hardened (or softened) according to their industrial use. For example,

the yield stress for pure aluminium and pure copper crystals can be increased a hundred fold

by cold working [38]. The applicability of perfect plasticity is therefore limited to situations

where strain hardening is absent. Such is indeed the case in experiments involving very high

shear strains with high hydrostatic pressure (Chapter 16 in [22]) or when the deformations

are very small [145].

This motivates us to consider the second model of plastic flow (Figure 1.1(ii)),

where the yield limit for stress is no more constant, but is an increasing function of strain.

Assume that we can impose any combination of stress and strain on the wire element. The

response can then be divided into two parts of the stress–strain plane: a region of elastic

states, and a region of plastic states, as shown in Figure 1.1(ii). A point in the elastic region
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represents a steady elastic state and any deformation process from one point to another in

the elastic region is an elastic process. A point in the plastic region, on the other hand, is

unsteady and yields with a finite rate until it reaches a state at the boundary of plastic and

elastic regions. This boundary is referred to as the strain hardening curve. To elaborate,

let the wire be loaded beyond the zero strain state. At this point, the stress in the element

might not be zero because of the internal stresses resulting from the microstructure. As

the wire is loaded in tension, the stress and the strain values are measured (at the element)

and are plotted as a curve in a stress–strain plane. The measurements are taken only after

a steady value of stress/strain is reached. A typical curve thus obtained is shown in Figure

1.1(ii). For small increments of stress and strain, the response is elastic. Beyond a certain

critical load, the wire starts to deform plastically. As the load is increased, the stress/strain

state in the element might correspond to a point in the plastic region of the stress-strain

plane. For a fixed load, the element will start to flow plastically for a finite time (unlike

perfect plasticity) until it reaches the strain hardening curve. The rate of plastic flow will

be, in general, a function of the state variables and the history of the state variables for the

element. The magnitude of the rate will vary according to the distance of the state from the

hardening curve. It will be slower near the hardening curve, but can become catastrophic

when the initial imposed state is far from the hardening curve [22]. Once the element

reaches a steady state on the hardening curve, we can unload the wire to bring the state

of the element to the elastic region. On loading again, the element will now begin to yield

at the state from which it was unloaded, where the stress value is higher than the stress

at which yield first occurred. If the load is increased slowly from a state on the hardening
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curve, the evolving states remain on the curve and we call this a rate–independent response

of plastic flow. If however, the load is increased rapidly (or even moderately), the state

might reach the plastic region, where the evolution of plastic flow is significantly different

than that of the rate–independent flow. We call this response, the rate–dependent plastic

flow. Therefore, during the plastic flow, the state remains on the yield surface (i.e. the

strain hardening curve) for rate–independent plasticity, but can go beyond the yield surface

into the plastic region for rate–dependent plasticity.

For a quantitative understanding of hardening, it would be necessary first to specify

the fundamental mechanisms underlying plastic flow. As early as 1934, in their independent

studies on plastic flow in metals, Orowan [136], Polanyi [144], and Taylor [162] conjectured

dislocations to be the carriers of plastic flow. Since then, owing to much advancement in the

experimental techniques of microscopy, it has become possible to observe dislocations and

thereupon verify this conjecture [38, 3, 4]. A dislocation can be defined as a line defect of

geometric nature, such that the integral of the gradient of displacement field along any closed

curve around the defect line is non–zero. Along the dislocation line, the atomic structure

deviates considerably from an otherwise perfect (i.e. without defect) solid. In ordered

solids, for example crystals, the presence of dislocations disrupts the periodic nature of the

lattice. The discovery of dislocations was initiated by the observation that metals start to

deform plastically at much lower loads than they would for a perfect lattice structure. The

stress required to move a dislocation is less than that required to move a row of atoms in

a perfect lattice. Moreover, dislocations occur naturally in most crystals and only under

special circumstances (e.g. high temperature) a crystal free of dislocations can be obtained.
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(i) Two dislocations unable
to pass each other.

(ii) Dislocation motion hindered
by a dislocation wall.

Figure 1.2: Mechanisms of hardening. (Figure (i) after Cottrell [38]).

The properties of a single dislocation in an elastic medium are well established and so are its

interactions with other defects. The importance of dislocations have made them an active

area of research in condense matter physics and many excellent expositions are available on

the subject, see for e.g. Cottrell [38], Nabarro [122], Lardner [99], Teodosiu [164], Hirth &

Lothe [76], and Weertman & Weertman [174].

It is then natural to expect that hardening is controlled by nucleation and mobility

of dislocations, wherein the central role is played by the obstacles to the dislocations carrying

plastic flow. Moving dislocations can face obstacles in the form of point defects (precipitates,

vacancies), line defects (other dislocations, Figure 1.2(i)), and surfaces (grain boundaries,

Figure 1.2(ii), phase boundaries, rigid walls) [118, 38, 123, 4]. The hinderance is usually

caused by the stress fields associated with obstacles which interact with the stress field of

moving dislocations such that the net stress is in equilibrium. In such situations, additional

stresses would then be needed to resume the motion of dislocations. Hardening depends on

the group behavior of the microstructure and is therefore highly non–local in its character.

On the other hand, the yield strength is further modified as more dislocations are nucleated.
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Typical nucleation sites include sharp corners, crack tips, grain boundaries, and even the

dislocation itself, which can nucleate more dislocations by acting as a Frank–Read source

[38, 4].

1.2 Plasticity as a thermodynamically irreversible process

Plasticity, by virtue of inducing permanent structural changes, is a thermodynam-

ically irreversible process. The methods of irreversible thermodynamics should therefore

provide the basic framework for formulating a rational theory of plastic flow. In this sec-

tion, we will motivate the fundamental ideas from thermodynamics, which are used in our

theory of plasticity.

Divide the body into small material elements (a discussion on the size of these ele-

ments in given below), each of which is characterized by a collection of variables representing

the thermodynamic state. In a continuum theory, every material element corresponds to

a material point in the body. A material element is said to be in equilibrium if it forever

remains in the same thermodynamic state under no external influence. A material element

undergoes an irreversible process if the effects of the process cannot be reversed without

bringing finite changes in the environment of the element. A complete description of the

body, on the other hand, depends not only on the determination of states for each material

element, but also on the interactions among the elements. Therefore, equilibrium of mate-

rial elements (local equilibrium) does not necessarily imply equilibrium of the body (global

equilibrium). Following theories of classical irreversible thermodynamics (see for e.g., Pri-

gogine [146] and de Groot & Mazur [64]), we assume that the body always remains in local
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equilibrium but not necessarily in global equilibrium. The size of material elements, should

thus be such that it contains enough molecules for microscopic fluctuations to be negligi-

ble. It however, should be sufficiently small so as to capture the pertinent microstructural

features of the body. With the assumption of local equilibrium, we can posit the existence

of thermodynamic state variables such as temperature and entropy for each material ele-

ment. In an out–of–equilibrium situation, it is not always possible to give a meaningful

interpretation to these quantities [57, 33].

To begin with, a choice of state variables needs to be established. Next, the

two laws of thermodynamics should be written in an appropriate form. As stated above,

the behavior of the body depends not only on the state of individual material elements

but also on the interaction of the body with the environment and the interaction among

material elements. Therefore, the laws of thermodynamics should be written in an integral

form for arbitrary parts of the body and subsequently localized to obtain local relations at

various material elements. The first law of thermodynamics is a statement about balance of

energy, while the second law of thermodynamics imposes the net internal entropy generation

(dissipation) to be non-negative [146].

Bridgman [20] highlighted, with much correctness, that during plastic flow, the

body is “completely surrounded by irreversibility”. However, in classical thermodynamics

the laws are written for reversible processes and the concept of entropy is defined only as

a difference between a final and an initial state which can be connected by some reversible

process [142]. We avoid these problems by formulating the thermodynamic theory following

Prigogine [146], as outlined above. Of course, for situations where microstructural fluctua-
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tions might play an important role (for e.g. nucleation) and can not be neglected, we would

have to either expand the space of state variables or to employ methods of statistical me-

chanics (much work has been done recently to study the dynamics of dislocations using the

concepts of statistical mechanics, see for example [72, 123]). Our theory should therefore

aim at resolving the microstructure only to the extent till we can support the hypothesis of

local equilibrium.

The choice of state variables is of central importance to the development of the

theory. The variables which qualify for describing the thermodynamic state should be

observable, but not necessarily controllable. Observability of the variables is essential for

any experimental verification of the premises and the results of the theory. A variable is

controllable if there exists an external mechanism to independently control its value. For

example, we can control the stretch of a wire by applying a suitable force. There are, on

the other hand, variables which can not be controlled without affecting other variables. An

example is furnished by the position of a single dislocation line in a solid, which can not

be varied without affecting either the local strain field or the temperature field. Moreover,

there does not exist a control mechanism which can be employed to vary the position of the

dislocation line.

Finally, it is important to note that in most cases, the second law of thermody-

namics proves to be insufficient for the determination of the evolution law for dissipative

variables. It then becomes necessary to introduce additional postulates, such as principle

of maximum entropy, which are then used to determine the evolution laws. The validity

of such additional postulates should be experimentally verifiable, at least for the class of
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materials for which they are used.

1.3 Continuum theories of plasticity

Historically, it was the interest in ascertaining the strength of materials, which led

to the development of plasticity theory. The first known scientific studies, which date back to

as early as the beginning of the nineteenth century [75], were to obtain the criteria for plastic

yielding in soils and metals. Due to the microstructural nature of plastic deformation, a

mathematical theory of plasticity has always depended on the state of experimental progress

to observe (and measure) the phenomenon of plastic flow.

By the mid–twentieth century, an experimentally substantiated theory for rate–

independent incompressible plastic flow in isotropic metals at ordinary temperatures was

established. The main components of this theory were a yield criteria and a relation between

stress and rate of plastic strain. One of the most successful yield criteria was proposed by

von Mises, according to which the yield begins when a certain quadratic function of stress

reaches a critical constant value. Extension of the von Mises criteria for anisotropic solids

was first considered by Hill [75], and has been recently studied by Cazacu & Barlat [28].

To include the hardening effects, the criterion was generalized in the works of Taylor &

Quinney, Schmidt, and Odquist [75], by replacing the constant critical value with a function

of some hardening parameter. The hardening parameters were chosen to provide a suitable

measure of the strain history and were usually represented by quantities like plastic work

and plastic distortion [75]. On the other hand, Saint-Venant, Lévy, Prandtl, and Reuss

[75, 82] proposed plastic flow rules which expressed the proportionality of deviatoric stress
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and deviatoric rate of plastic strain. The plastic flow rule combined with the yield criteria,

the equilibrium condition for stress, and the boundary conditions, were sufficient to solve a

boundary value problem of macroscopic plastic flow [75, 22, 145, 165, 82].

A rate–dependent generalization was provided independently by Sokolovsky and

Malvern, and advanced by Perzyna [140, 141]. The rate–dependent theory was motivated

by the observation of higher yield values for high loading rates, and was found to be more

suitable in the dynamic studies of plasticity [27, 132]. As noted earlier, the rate–dependent

plastic flow does not restrict the stress state to lie on the yield surface, but allows it to go

beyond it into an unsteady plastic regime. The nature of flow rules for a rate–dependent

response is therefore significantly different from rate–independent response, as they would

now have to include appropriate time scales for the relaxation of plastic deformation.

The next few decades after the mid–twentieth century saw two important advance-

ments to rigorously establish a mathematical theory of plasticity. The two developments,

which remained mostly independent, were concerning the geometric and the thermodynamic

nature of plastic flow. It was clear by this time that dislocations were the fundamental ob-

jects responsible for plasticity. Due to their high density, they were considered not as

discrete objects but as continuously spread over the body. A geometric theory of the body

with a continuous distribution of dislocations was first formulated by Kondo [88] and Bilby

[14]. Subsequent advancements were made by Kröner [93], Noll [129], and Edelen [83]. In

these theories, the dislocation distribution is characterized by an affine connection (torsion)

and a metric associated with the body manifold. The physical nature of a distribution of

dislocations can be understood from the following thought example: Consider the body
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as given to the experimentalist and divide it into several small parts, so as to relax the

stress in each sub–part of the body. It might be necessary to cut the parts infinitesimally

small. If these parts do not fit together (without forming holes etc.), we say that the body

is dislocated (or inhomogeneous, according to Noll [129]).

Parallel to these geometric developments, were attempts to formulate a thermo-

dynamic theory of plasticity. On one hand, starting from the papers of Eckart [44] and

Bridgman [20], it became increasingly evident that a general theory of plasticity had to

rest on the fundamental laws of thermodynamics. The first such theories were presented

by Kestin [84, 86] and Green & Naghdi [61, 124], both of which introduced plastic strain

as the internal variable whose evolution contributes to the dissipation. And on the other

hand, postulates of maximum dissipation were provided by Drucker [43] and Ilyushin [80],

which not only established plastic flow rules for rate–independent materials but also pro-

vided restrictions on the nature of the yield surface. The postulate of maximum plastic

dissipation is a stronger inequality than the second law of thermodynamics [112], which in

itself is insufficient to establish a plastic flow rule.

The last two decades of the twentieth century (extending to the present) saw

significant advances in computational and experimental techniques. As a result, it was no

longer required to solve the complete problem analytically, nor it was needed to restrict

the variables to the coarse scale of observations. Large scale computations could now be

done where using the properties of single dislocations, dynamics of millions of interacting

dislocations were simulated [24]. On the other hand, several new micro–scale experiments

emphasized the emergence of size effects and novel mechanisms for strain hardening [4].
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It thus became imperative for a continuum theory of plasticity to expand its horizon so

as to be able to predict a wide class of phenomena, although maintaining computational

feasibility and experimental verifiability. New attempts were made to pose the boundary

value problem for plastic flow, either by prescribing independent laws for the evolution of

dislocation density [1] or by enriching the basic continuum theory to include gradient effects

[52, 68].

The aim of this thesis is two fold. First, we construct a framework for a general

theory of anisotropic thermoplasticity, with an aim to encompass previously established

models and several seemingly independent lines of research. The theory is based on the two

laws of thermodynamics and basic invariance requirements. Invariance is imposed under

arbitrary changes in the reference configuration, frame indifference, and material symme-

try. The interplay between constitutive assumptions and the kinematics is, in particular,

emphasized. The classical models of plastic flow are deduced under additional assumptions

and a few explicit results are obtained for materials with cubic symmetry. Second, we study

interfaces in a plastically deforming solid. The interfaces are assumed to be in the form of

waves (shock waves and acceleration waves), grain boundaries, and phase boundaries. The

concept of surface dislocations is rigorously established and the governing equations for the

dynamics of shock waves and acceleration waves are obtained. In addition, simple exam-

ples demonstrating the behavior of these plastic waves are considered. Finally a theory,

where the interface itself contributes energetically, is constructed. The resulting formula-

tion provides us with a basis to study the coupling between grain boundary migration and

accompanying plastic flow.
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The future too looks increasingly vibrant for the development of plastic flow theo-

ries. The phenomenon offers a physical setup to study the dynamics of matter across several

time and length scales. The concepts of condensed matter physics, non–linear thermody-

namics, and continuum mechanics have to be combined to formulate a well–founded theory

of plasticity with an aim to understand both the micro–scale and the macro–scale behavior

of solids, with deformation processes occurring for a wide range of time durations (from

instantaneous pattern formation to creep).

1.4 Overview of the thesis

In Chapter 2, we provide a brief but rigorous introduction to continuum mechanics

and thermodynamics with an aim to make this thesis self contained. The chapter begins by

introducing fundamental concepts of the body, its deformation, and its motion. Many rele-

vant results from linear algebra and mathematical analysis are stated and proved. For the

study of interfaces, we introduce the notion of a singular surface in the body. Singular sur-

faces are two dimensional surfaces in the three dimensional body, across which kinematical

fields (like deformation, motion, and possibly their gradients) suffer jump discontinuities.

Such discontinuities are used to model waves, grain boundaries, and phase boundaries. In

the second part of Chapter 2, we formulate the basic laws of continuum thermodynamics.

As a necessary preliminary, we discuss various integral theorems, which are used to extract

localized equations from their integral counterparts. The balance of mass, momentum, and

energy are stated first in a global form for arbitrary parts of the body. From these global

equations, local relations of the balance laws are obtained, to be satisfied by material points



16

away from the singular surface and on the singular surface. The chapter ends with the sec-

ond law of thermodynamics, which postulates the non–negativity of the internal entropy for

arbitrary parts of the body. Local inequalities are derived to be satisfied by the dissipation

at material points away from and on the singular surface.

In Chapter 3, we lay down the framework for a thermodynamic theory of anisotropic

plastic flow with finite deformations. The permanent changes are assumed to be brought

via motion of dislocations and singular surfaces. We begin by examining the basis of the

idea of a local stress-free state, and an associated manifold of intermediate configurations.

This is grounded in the notion of an equilibrium unloading process together with appro-

priate constitutive hypotheses on the elastic response. Next, the constituent elastic and

plastic deformations are discussed. Stokes’ theorem is used to describe the concepts of in-

compatibility and the associated dislocation density. The notion of geometrically necessary

and statistically stored dislocation densities is also clarified. One of the central results in

this chapter is to obtain the restrictions on a constitutive function to be independent of

compatible changes in the reference configuration. The basis for such an invariance is the

fact that our choice of a reference configuration is arbitrary and therefore should not have

any influence on the material response. The basic thermodynamic framework is then dis-

cussed, where the elasticity of the body is described and the dissipation associated with the

plastic evolution is expressed in terms of Eshelby’s tensor. Material symmetry restrictions

on the elastic response and on constitutive equations for yield and plastic flow are subse-

quently discussed. Finally, we use various invariance requirements to obtain a general form

of the flow rule and the yield criteria. The latitude afforded by the constitutive character



17

of the plastic deformation is used to dispose of a long–standing controversy surrounding

plastic spin. The chapter concludes with detailed remarks on work hardening, size effects,

symmetry groups, and Bauschinger effect.

The aim of Chapter 4 is to revisit the theory developed in Chapter 3 under as-

sumptions on the nature of elastic strain. We start with a postulate of Ilyushin, according

to which the plastic work is always non–negative for a process with coinciding initial and

final deformation gradient fields. This postulate furnishes a sufficient condition for obtain-

ing associated flow rules and a convex yield surface. Next, we assume the elastic strain to

be infinitesimally small, but still allowing for finite rotations and finite plastic strain. After

reducing our general theory in the light of this assumption, we discuss, in detail, the nature

of associated flow rules in the absence and presence of hardening. Finally, we concern our-

selves with elastically rigid and perfectly plastic solids. For elastically rigid solids, the elastic

strain is assumed to vanish completely, thereby reducing the elastic distortion to a rotation.

The stress is indeterminate in such a situation (since there is no strain energy), but it can

be understood as the Lagrange multiplier associated with the constraint of imposing the

elastic distortion to be a rotation. The assumption of perfectly plastic behavior requires

absence of any hardening in the model. Therefore, we consider the flow rules and yield

criterion to be independent of dislocation density. The theory of elastically rigid perfectly

plastic bodies is fundamentally different from what we have modeled so far, as the notion

of stress is no longer constitutive and derived from an energy, but is rather of the nature of

a Lagrange multiplier.

Chapter 5 is divided into two parts. The first part deals with the general theory
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of surface dislocation density and the second part is concerned with the theory of adiabatic

plastic waves. The concept of surface dislocation density arises from a discontinuous plastic

distortion or a discontinuous elastic distortion, both of which lack the usual rank one jump

condition in the presence of surface dislocations. We obtain compatibility conditions to

be satisfied at a surface dislocation node, which is the line at which several dislocated

surfaces intersect. A measure of surface dislocation density, which is invariant with respect

to compatible changes in the reference configuration, is obtained. Finally, the jump in bulk

dislocation density is related to the surface dislocation density. For a moving surface, the

jump is given completely in terms of the jump in plastic distortion rate and the surface

dislocation density. In particular, a statement of the conservation of dislocation density

at the surface, according to which, the normal component of the jump in bulk dislocation

density is equal to the surface divergence of the surface dislocation density.

In the second part of Chapter 5, we develop a theory of shock waves and accel-

erations waves in a plastically deforming medium. A wave is understood to be a moving

singular surface, across which fields and their derivatives might suffer jump discontinuities.

Shock waves are singular surfaces across which the thermodynamic state variables are dis-

continuous and acceleration waves are singular surfaces across which the thermodynamic

state variables are continuous but their first derivatives are discontinuous. We begin by

obtaining some general results for elastic shock waves. In particular we show that the jump

in entropy is of the third order in the jump in deformation gradient, and the change in

entropy is of the same sign as of the change in shock speed. Next, we investigate on how

these results of elastic shocks modify due to the presence of plastic flow at the shock surface.
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We find that the jump in entropy, for a fixed plastic flow, is of the first order in the jump

in deformation gradient. As a simple example of plastic shock waves, we consider the shock

as a dislocation wall, i.e. a surface with continuous distribution of dislocations. We obtain

simple equations, which for given material parameters can be used to determine the dislo-

cation density distribution at the shock as well as the shock speed. Results are obtained

for both isotropic and cubic material symmetry. We then move on to discuss adiabatic ac-

celeration waves in elastic–plastic solids. The form of governing equations for acceleration

waves make them much more analytically tractable than shock waves. A general theory of

elastic–plastic acceleration waves is formulated and the role of dislocation distribution near

the wave is emphasized. Some classical results on the form of elastic acoustic tensor for

isotropic and cubic material symmetry are derived. As examples, plastic acceleration waves

with rate–independent behavior are discussed with and without hardening.

The final chapter is primarily concerned with two results. The first is to obtain the

restrictions on constitutive functions, defined on the interface, on using their invariance un-

der compatible changes in the reference configuration. Such an invariance is to be naturally

expected of the constitutive functions, which should not depend on our choice of a reference

configuration. As an interesting conclusion, we show that constitutive functions can depend

on plastic distortion only through the true surface dislocation density. The second result

is to reformulate the thermodynamics of plastic flow, but with the addition of interfacial

stresses and interfacial energy, thus endowing an independent constitutive structure to the

interface. The resulting theory provides, for example, the basic framework for studying the

problem of accompanying plastic deformation during grain/phase boundary migration.
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Chapter 2

Continuum Mechanics1

The purpose of this chapter is to present a review of pertinent concepts from

continuum mechanics which will be used in rest of the thesis. This also serves our aim

to make this work self contained. The chapter is divided into two parts. The first part

deals with fundamental notions associated with the kinematics of a continuous body. In

particular, singular surfaces, across which kinematical variables (such as velocity and defor-

mation gradient) may be discontinuous, are discussed in sufficient detail. The second part

of this chapter introduces universal balance laws which govern the mechanics of continuous

bodies. Local statements of the balance laws concerning mass, momentum and energy are

obtained at points away from the singular surface and also at points on the singular surface.

In Remark 2.2.4 we use classical invariance properties to derive the balance of mass and

momentum from the balance of energy. The chapter concludes with the section on the sec-

ond law of thermodynamics and its consequences for irreversible processes in a continuous
1A modified version of this chapter has been submitted for publication in a forthcoming Encyclopedia

[65].
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media.

For further reading, the interested reader is referred to many excellent expositions

available on the subject. A few, which guided most of the content of this chapter, are by

Truesdell [171, 170], Noll [131], Chadwick [32], Gurtin [67] and Šilhavý [156].

The following notation is adopted in which V is the translation (vector) space of

a real three-dimensional Euclidean point space E :

Lin: the linear space of linear transformations (tensors) from V to V.

InvLin: the group of invertible tensors.

Sym = {A ∈ Lin : A = AT }, where superscript T denotes the transpose: linear

space of symmetric tensors; also, the linear operation of symmetrization on Lin.

Sym+ = {A ∈ Sym : u ·Au > 0} for u �= 0,u ∈ V: the positive-definite tensors.

Skw = {A ∈ Lin : AT = −A}: the linear space of skew tensors; also, the linear

operation of skew-symmetrization on Lin.

Orth = {A ∈ InvLin : AT = A−1}, where A−1 is the inverse of A: the group of

orthogonal tensors.

Orth+ = {A ∈ Orth : JA = 1}: the group of rotations.

Here and in the following chapters, both indicial notation as well as bold notation

is used to represent vector and tensor fields. The components in the indicial notation

are written with respect to the Cartesian coordinate system. Indices denoted with roman

alphabets vary from one to three but those denoted with Greek alphabets vary from one to

two. Einstein’s summation convention is assumed unless an exception is explicitly stated.

Let eijk be the three dimensional permutation symbol, i.e. eijk = 1 or eijk = −1 when
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(i, j, k) is an even or odd permutation of (1, 2, 3), respectively, and eijk = 0 otherwise.

The determinant and cofactor of A are denoted by JA and A∗, respectively, where

A∗ = JAA−T if A ∈ InvLin. It follows easily that (AB)∗ = A∗B∗. Further, Lin is

equipped with the Euclidean inner product and norm defined by A · B = tr(ABT ) and

|A|2 = A · A, respectively, where tr(·) is the trace operator. We make frequent use of

relations like A·BC = ACT ·B = CT ·ATB and AB ·CD = ABDT ·C, etc., which follow

easily from tr A = trAT and tr(AB) = tr(BA). It is well known that Lin = Sym⊕ Skw,

the direct sum of Sym and Skw. The tensor product a ⊗ b of vectors {a,b} ∈ V is defined

by (a ⊗ b)v = (b · v)a for all v in V, where b · v is the standard inner product of vectors.

A fourth order tensor is a linear transformation A : Lin → Lin. Its operation on

a second order tensor is represented by A = A[B] for {A,B} ∈ Lin. In terms of indices,

this is written as Aij = AijklBkl. A fourth order unit tensor I is defined as I[A] = A for

every A ∈ Lin. In components, Iijkl = δikδjl. A tensor product A ⊗ B of two second

order tensors is a fourth order tensor defined by (A ⊗ B)[C] = (C · B)A, for C ∈ Lin.

The major transpose of a fourth order tensor A is a fourth order tensor AT defined by

AT[B] · A = B · A[A]. Moreover, A has a major symmetry if AT = A, or in indices

Aijkl = Aklij. It has a minor symmetry of the first kind, if it is symmetric with respect to

first two indices, i.e. if (A[B])T = A[B], for B ∈ Lin. The tensor A has a minor symmetry

of a second kind, if it is symmetric with respect to last two indices, i.e. if A[BT ] = A[B].

A fourth order tensor A is invertible if there exists another fourth order tensor B such that

AB = I, or in components AijklBklmn = Iijmn. The tensor B is then called the inverse of A

and is denoted by A−1.
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2.1 Kinematics

In this section we begin by introducing the notion of a body, its configurations

and its motion. Derivatives of scalar, vector and tensor fields are then defined, followed by

a discussion on the deformation gradient and its various properties. Finally, we introduce

the kinematics associated with a two dimensional surface. Such a surface is called singular

if any of the kinematic variable (or its higher order derivative) is discontinuous across it.

Compatibility conditions, which relate the values of the discontinuous kinematic variable

across the surface, are also obtained.

2.1.1 Body, configurations and motion

The geometrical structure of a physical body is independent of a frame of reference,

and therefore the body (in continuum mechanics) is usually taken to be a three dimensional

differential manifold. We denote such a manifold by B and call its elements material points.

At every material point X ∈ B we have an associated tangent space TX which is a three

dimensional vector space representing a neighborhood of X. On the other hand, the body is

observed and tested in a (three dimensional) Euclidean frame of reference E , which requires

us to endow the body B with a class C of bijective mappings, χ : B → Eχ (the subscript

χ is used to indicate the mapping employed). We call these mappings the configurations

of the body B. The spatial position χ(X) ∈ Eχ denotes the place which a material point

X ∈ B occupies in Eχ. The translation space of Eχ is a three dimensional inner product

space, and is denoted by Vχ.

We introduce a fixed reference configuration, relative to which the notions of dis-
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placement and strain can be defined. Let κ ∈ C be a reference configuration. The config-

uration κ need not be a configuration occupied by B at any time and therefore κ can be

arbitrary as long as it belongs to C.

The motion of a body B is defined as a one-parameter family of configurations,

χt : B × R → Eχ. Such a motion assigns a place x ∈ Eχ to the material point X ∈ B at

time t. We write this as

x = χt(X) ≡ χ(X, t). (2.1)

The reference configuration κ assigns a place X ∈ Eκ to X, so we can express x as a function

of X,

x = χ(κ−1(X), t) ≡ χκ(X, t), (2.2)

where χκ : Eκ × R → Eχ denotes a mapping from the reference configuration to the config-

uration of the body at time t.

The displacement u : B × R → V (V can be identified with either Vχ or Vκ) of a

material point X with respect to the reference configuration κ at time t is defined as

u(X, t) = χ(X, t) − κ(X). (2.3)

The particle velocity v : B × R → Vχ and the particle acceleration a : B × R → Vχ are

defined as

v(X, t) =
∂

∂t
χ(X, t) (2.4)

and

a(X, t) =
∂2

∂t2
χ(X, t), (2.5)

respectively. Displacement, particle velocity and particle acceleration can all be alterna-

tively expressed as functions on κ(B) by using the inverse κ−1 : Eκ → B. Such functions
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exist in a one-to-one relation with the functions expressed in the equations above. We write

û(X, t) ≡ u(κ−1(X), t)

v̂(X, t) ≡ v(κ−1(X), t) (2.6)

â(X, t) ≡ a(κ−1(X), t).

We can similarly write these functions as

ũ(x, t) ≡ u(χ−1
t (x), t)

ṽ(x, t) ≡ v(χ−1
t (x), t) (2.7)

ã(x, t) ≡ a(χ−1
t (x), t).

We define the material time derivative as the derivative of a function with respect

to time for a fixed material point. For an arbitrary scalar function f : B × R → R, we

denote its material time derivative as ḟ . Thus,

ḟ =
∂

∂t
f(X, t) |X . (2.8)

If f is instead given in terms of x, i.e. if f = f̃(χ(X, t), t), we write

ḟ =
∂

∂t
f̃(x, t) |x +(grad f̃) · v, (2.9)

where ∂
∂t f̃(x, t) |x is the spatial time derivative (at a fixed x) and grad f̃ is the spatial

gradient (gradient is defined below). Therefore, if the particle velocity is a function of

spatial position x, then the particle acceleration is ã = ∂
∂t ṽ(x, t) |x +Lv, where L = grad ṽ

is the spatial velocity gradient.
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2.1.2 Derivatives

By fields we mean scalar, vector and tensor valued functions defined on position

(x or X) and time (t). In the following we are mainly concerned with the derivatives with

respect to the position and therefore dependence of fields on time is suppressed.

A scalar-valued field φ(X) : Eκ → R is differentiable at X0 ∈ U(X0), where

U(X0) ⊂ Eκ is an open neighborhood of X0, if there exists a unique c ∈ Vκ such that

φ(X) = φ(X0) + c(X0) · (X− X0) + o(|X − X0|), (2.10)

where o(ε)
ε → 0 as ε → 0. We call c(X0) = ∇φ|X0 (or ∇φ(X0)) the gradient of φ at

X0. Consider a curve X(u) in Eκ parameterized by u ∈ R. Let ψ(u) = φ(X(u)) and

X1 = X(u1), X0 = X(u0) for {u1, u0} ∈ R. Then from (2.10),

ψ(u1) − ψ(u0) = ∇φ(X0) · (X1 − X0) + o(|X1 − X0|). (2.11)

Moreover X1 − X0 = X′(u0)(u1 − u0) + o(|u1 − u0|), where X′(u0) is the derivative of X

with respect to u at u = u0. Therefore, |X1 −X0| = O(|u1 − u0|) and consequently we can

rewrite (2.11)

ψ(u1) − ψ(u0)
u1 − u0

= ∇φ(X0) ·X′(u0) +
o(|u1 − u0|)
u1 − u0

. (2.12)

For u1 → u0 we obtain the chain rule, ψ′(u0) = ∇φ(X(u0)) · X′(u0), which can also be

expressed as dφ
du = ∇φ(X) · dXdu or

dφ(X) = ∇φ(X) · dX. (2.13)

A vector-valued field v(X) : Eκ → V is differentiable at X0 ∈ U(X0) if there exists

a unique tensor l : Vκ → V such that

v(X) = v(X0) + l(X0)(X −X0) + r, (2.14)
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where |r| = o(|X−X0|). We call l(X0) = ∇v|X0 (or ∇v(X0)) the gradient of v at X0. The

chain rule in this case can be obtained following the procedure preceding (2.13):

dv(X) = (∇v)dX. (2.15)

The divergence of a vector field is a scalar defined by

Div v = tr(∇v). (2.16)

The curl of a vector field is a vector defined by

(Curlv) · c = Div(v × c) (2.17)

for any fixed c ∈ V.

Differentiability of a tensor-valued function is defined in a similar manner. In

particular, for a tensor A(X) : Eκ → Lin, where Lin denotes the set of all linear maps from

V to V (the set of all second order tensors), we write

dA(X) = (∇A)dX. (2.18)

The divergence of A is the vector defined by

(Div A) · c = Div(AT c) (2.19)

for any fixed c ∈ V. The superscript T denotes the transpose. The curl of A is the tensor

defined by

(CurlA)c = Curl(ATc) (2.20)

for any fixed c ∈ V.



28

Finally, if the fields are expressed as functions of x rather than X, the various

definitions above remain valid. In this case we denote the gradient, divergence and curl

operators by grad, div and curl, respectively.

2.1.3 Deformation gradient

If the mapping χκ(X, t) is differentiable with respect to X, then we define the

deformation gradient by

F = ∇χκ. (2.21)

Since χκ(X, t) is invertible for each X ∈ Eκ, the deformation gradient F belongs to a family

of invertible linear maps from the translation space of Eκ to the translation space of Eχ,

i.e. F ∈ InvLin. This follows from the inverse function theorem ([152], page 221). For

{X,Y} ∈ Eκ equation (2.14) becomes

χκ(Y, t) = χκ(X, t) + F(X, t)(Y − X) + r (2.22)

and the chain rule (2.15) takes the form (for fixed t)

dx = FdX, (2.23)

where the differentials dX and dx belong to the translation spaces Vκ at X and Vχ at x,

respectively.

We now obtain relationships for transforming infinitesimal area and volume ele-

ments. Let dX1 ∈ Vκ and dX2 ∈ Vκ be two linearly independent infinitesimal line elements

at X. An infinitesimal area element can be constructed using these line elements, with area

given by daκ = |dX1 × dX2| and the associated direction given by the unit normal nκ such
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that nκdaκ = dX1×dX2. In the configuration χt the line elements dX1 and dX2 are trans-

formed into line elements dx1 ∈ Vχ and dx2 ∈ Vχ, respectively at x = χκ(X, t). We obtain,

using relation (2.23), dx1 = FdX1 and dx2 = FdX2. The area element constructed using

these line elements has area da = |dx1×dx2| with unit normal n given by nda = dx1×dx2.

Therefore,

nda = FdX1 ×FdX2

= F∗(dX1 × dX2)

= F∗nκdaκ. (2.24)

As F ∈ InvLin, we have

F∗ = JFF−T . (2.25)

Consider a third line element dX3 ∈ Vκ at X such that the set {dX1, dX2, dX3} is linearly

independent and positively oriented. The infinitesimal volume element associated with the

reference configuration is then given by dvκ = dX1 · dX2 × dX3. In configuration χt the

volume element at x = χκ(X, t) is dv = dx1 · dx2 × dx3 with dx3 = FdX3. Therefore,

dv = FdX1 ·FdX2 × FdX3

= FdX1 ·F∗(dX2 × dX3)

= JF dvκ (2.26)

and accordingly, if κ is a configuration that could be attained in the course of the motion

of B, we require JF > 0 to ensure that a volume in κ corresponds to a volume in χ.

Material curves Consider a curve C ⊂ Eκ and parameterize it with a real number s ∈ R

such that C : R → Eκ. We call C a material curve. Its placement in the configuration χ is
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denoted by c and we use s to parameterize it such that c : R → Eχ. Using the definition of

the deformation gradient and assuming the mappings C and c to be differentiable, we write

x′(s) = FX′(s). (2.27)

If s is the arc-length on C, then the vector X′(s) defines a unit tangent vector (denoted

M) to the curve C at arc-length station s. Let x′(s) = μm with |m| = 1 and μ = |x′(s)|.

Substituting these in (2.27), we obtain

μm = FM. (2.28)

Since F ∈ InvLin, FM �= 0 and therefore μ > 0. We call μ(s, t) the local stretch of C. It

follows from (2.28) that

μ2 = |μm|2 = FM ·FM = M ·CM, (2.29)

where C = FTF : Vκ → Vκ is the Right Cauchy Green tensor. The tensor C is symmetric

and positive definite, i.e. C ∈ Sym+. Indeed, CT = (FTF)T = FTF = C and for arbitrary

a ∈ Vκ, a · Ca = Fa · Fa = |Fa|2 > 0, as JF �= 0. Similarly, if we rewrite (2.28) as

μ−1M = F−1m, we can arrive at the (symmetric and positive definite) Left Cauchy Green

tensor B = FFT : Vχ → Vχ such that μ−2 = m · B−1m. We can use C to calculate the

deformed length of a material curve and the deformed angle between two material curves.

Given an infinitesimal element of the material curve dX = Mds, its deformed length is

|dx| =
√

FM · FMds = μds and therefore the deformed length of a material curve with

reference arc-length s1 − s0 is

lc(t) =
∫ s1

s0

μ(s, t)ds. (2.30)
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Consider two material curves intersecting at X with associated unit tangent vectors M1

and M2, respectively. Let μ1 and μ2 be the local stretches corresponding to the two curves

and let θ be the angle between the tangent vectors of the deformed curve at x. We then

write, μ1μ2 cos θ = FM1 · FM2 = M1 · CM2 and, on using (2.29), obtain

cos θ =
M1 ·CM2√

(M1 · CM1)(M2 ·CM2)
. (2.31)

Finally, we introduce two definitions of extensional strain: The first, denoted eC

and defined by eC = 1
2(C − 1), yields 1

2(μ2 − 1) = M · eCM, where 1 ∈ Lin is the identity

transformation. Therefore, eC : Vκ → Vκ characterizes the relative local stretch with

respect to the reference configuration. It is known as the relative Lagrange strain or the

Green-St.Venant strain. Alternatively, to characterize local stretch relative to the current

configuration, we define eB = 1
2(1 − B−1), and obtain 1

2(1 − μ−2) = 1
2m · (1 − B−1)m.

The tensor eB : Vχ → Vχ is called the relative Eulerian strain or the Almansi-Hamel strain

tensor. The two strain tensors are related by eC = FTeBF.

Using equations (2.3) and (2.21), we can obtain the deformation gradient from the

displacement field, F = 1 + ∇u. For small deformations |∇u| � 1 and consequently μ ≈ 1

and eC ≈ 1
2(∇u +∇uT ) (≈ denotes the small deformation approximation). The two strain

measures are asymptotically coincident in this approximation.

Principal stretches We would now like to identify the material curves along which the

local stretch assumes extreme values and obtain these extremals from C. Define f(M) = M·

CM at fixed C. We therefore have f(M) > 0 (from (2.29)), for M ∈ S = {v ∈ Vκ : |v| = 1}.

Since f(M) is a continuous function, defined on a compact set, a theorem in analysis ([152],
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page 89) yields the existence of M1 ∈ S and M2 ∈ S such that f(M1) = min
M∈S

f(M) ≡ λ2
1

and f(M2) = max
M∈S

f(M) ≡ λ2
2, respectively. Our aim is to compute λ2

1 and λ2
2 for a given

C. These are extremal values of f(M) and thus render f(M) stationary, i.e. df(M) = 0,

or CM · dM = 0 for M ∈ {M1,M2}. Furthermore, the identity M · M = 1 implies

M · dM = 0 and therefore dM ⊥ M at each M ∈ S. Since S is a two dimensional

manifold with dM belonging to its tangent space, the vector M represents the unit vector

normal to S at M ∈ S. As a result of these arguments, for some μ1, μ2 ∈ R we can

write, CM1 = μ1M1 and CM2 = μ2M2. Evidently, μ1 and μ2 are equal to λ2
1 and λ2

2,

respectively (μ1 = M1 · CM1 = f(M1) = λ2
1, etc.), the largest and smallest eigenvalues of

C, respectively, and thus,

CM1 = λ2
1M1, CM2 = λ2

2M2. (2.32)

In general, for λ ∈ R and M ∈ S, we can solve the eigenvalue problem CM = λ2M

to obtain three real values for λ2. If {EA} is an orthonormal basis for Vκ and if we set

CAB = EA ·CEB, then we can conclude that the eigenvalues bound the diagonal entries of

the matrix {CAB}; i.e.

λ2
1 ≤ min{C11, C22, C33} ≤ max{C11, C22, C33} ≤ λ2

2. (2.33)

Three theorems for tensors According to the spectral theorem, for A ∈ Sym, there

exists an orthonormal basis {ui} ∈ V (i = 1, 2, 3) and numbers λi ∈ R such that

A =
3∑
i=1

λiui ⊗ ui. (2.34)

The numbers λi are the principal values associated with the tensor A and can be obtained

as the roots of the characteristic equation det(A − λ1) = 0 with λ ∈ R.
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According to the square root theorem, for every A ∈ Sym+, there exists a unique

tensor G ∈ Sym+ such that A = G2.

According to the Polar decomposition theorem, every F ∈ InvLin can be uniquely

decomposed in terms of tensors {U,V} ∈ Sym+ and a rotation R ∈ Orth+ such that

F = RU = VR. (2.35)

A proof of these theorems can be found in [65] among other places.

Principal invariants The characteristic equation for A ∈ Lin is

0 = det(A − λ1) = −λ3 + λ2I1(A) − λI2(A) + I3(A), (2.36)

where

I1(A) = trA

I2(A) = trA∗ =
1
2
[(tr A)2 − trA2] (2.37)

I3(A) = detA

are the principal invariants of A. A physically meaningful interpretation of these invariants

can be given by identifying A with U ∈ Sym+ which appears in the polar decomposition

(2.35) of the deformation gradient. In terms of the eigenvalues of U (denoted by λi > 0), we

obtain from (2.37), I1(U) = λ1 +λ2 +λ3, I2(U) = λ1λ2 +λ1λ3 +λ2λ3 and I3(U) = λ1λ2λ3.

Therefore, if the edges of a unit cube are aligned with the eigenvectors of U, then I1(U)

is the sum of the lengths of three mutually orthogonal edges after deformation, I2(U) is

the sum of the areas of three mutually orthogonal sides after deformation, and I3(U) is the

deformed volume.
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According to the Cayley-Hamilton theorem, A satisfies its own characteristic equa-

tion, i.e.

−A3 + I1(A)A2 − I2(A)A + I3(A) = 0. (2.38)

We now prove this theorem. Let D = ((A−λ1)∗)T , where λ ∈ R is such that det(A−λ1) �= 0

but otherwise arbitrary. Since A − λ1 is invertible, we have D = det(A − λ1)(A − λ1)−1

or D(A − λ1) = det(A − λ1)1. The right hand side of this relation is cubic in λ and

the term A − λ1 is linear in λ. Therefore D has to be quadratic in λ (by a theorem on

factorization of polynomials). Let D = D0 + D1λ+ D2λ
2 for some D0, D1 and D2. Then

(D0+D1λ+D2λ
2)(A−λ1) = det(A−λ1)1 = (−λ3+λ2I1−λI2+I3)1. Matching coefficients

of various powers of λ between the first and the last term and eliminating D0, D1 and D2

from these, we get the required relation (2.38). The coefficients of all the powers of λ have

to vanish since otherwise we would obtain a polynomial (of order 3) in λ, which could then

be solved to obtain roots for λ, contradicting the premise that λ ∈ R is arbitrary.

Velocity gradient We can use the chain rule for differentiation to write the gradient of

the velocity field with respect to X as

∇v̂(X, t) = LF, (2.39)

where L = grad ṽ : Vχ → Vχ is the spatial velocity gradient. Under sufficient continuity of

the motion we have ∇v̂ = Ḟ and therefore L = ḞF−1. We can decompose L into D ∈ Sym

(rate of deformation tensor) and W ∈ Skw (vorticity tensor). The material time derivative

of the right and the left Cauchy-Green tensor can be obtained as

Ċ = 2FTDF, Ḃ = LB + BLT . (2.40)
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Indeed, Ċ = ḞTF + FT Ḟ = FTLTF + FTLF and Ḃ = ḞFT + FḞT = LFFT + FFTLT .

For a fixed material curve with unit tangent vector M recall relation (2.28), i.e.

μm = FM. As a result

μ̇

μ
= m ·Dm, (2.41)

where we have used Ṁ = 0, m · ṁ = 0 (which follows from m · m = 1) and m · Wm = 0

(since m · Wm = WTm · m = −Wm · m). We also obtain μṁ = μLm − μ̇m, which on

using (2.41) and the decomposition of L into symmetric and skew parts, reduces to

ṁ = Dm − (m · Dm)m + Wm. (2.42)

If m should coincide with a principal vector of D with principal value γ, then Dm = γm.

The relations (2.41) and (2.42) in this case give γ = μ̇
μ = (ln μ)̇ and ṁ = Wm, respectively.

Therefore, when the unit tangent m to the deformed material curve instantaneously aligns

with a principal vector of D, the corresponding principal value of D is the rate of the

natural logarithm of the stretch associated with the material curve. Moreover, the vorticity

tensor W then characterizes the spin of the material element instantaneously aligned with

a principal vector.

Associated with W ∈ Skw there exists a vector w ∈ Vχ (the axial vector of W)

such that, Wa = w × a for all a ∈ Vχ. This fact can be proved by first obtaining the

canonical form for a skew tensor. The characteristic equation for W has three roots and

therefore at least one of them is real (complex roots occur in a pair). Let this real eigenvalue

be λ and let f ∈ Vχ be the corresponding eigenvector. Then Wf = λf . But this implies

λ = Wf · f = 0 and so Wf = 0. Choose {g,h} ∈ Vχ such that {f ,g,h} forms a right
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handed orthonormal basis for Vχ. The canonical form for W is then given by

W = ω(h⊗ g − g ⊗ h), (2.43)

where ω = h · Wg. The canonical form (2.43) can been proved by remembering that

WT = −W, Wf = 0 and a · Wa = 0 for all a ∈ Vχ. Then W = WI = W(f ⊗ f + g ⊗

g + h ⊗ h) = Wg ⊗ g + Wh ⊗ h. Note that Wg = ωh, since Wg · f = −g · Wf = 0 and

Wg · g = 0. Similarly Wh = −ωg. This completes the proof.

Let w = ωf . Then on using (2.43) for arbitrary a, we obtain Wa = ω((g · a)h −

(h · a)g) = ω((g · a)(f × g) − (h · a)(h× f)) = ωf × ((f · a)f + (g · a)g + (h · a)h) = w × a.

If W is the skew part of the spatial velocity gradient, then the axial vector w is

given in terms of the velocity field v by

w =
1
2

curl ṽ. (2.44)

The vector w is also called the vorticity vector. This relation can be proved by considering

two constant but otherwise arbitrary vectors g and h. Therefore 2Wg · h = ((grad ṽ) −

(grad ṽ)T )g ·h = div((ṽ ·h)g− (ṽ ·g)h) = div(ṽ× (g×h)) = curl ṽ ·g×h = (curl ṽ×g) ·h.

Using the arbitrariness of h and the relation Wg = w × g we obtain equation (2.44).

Finally, we interpret the off-diagonal terms of D on an orthogonal basis. Consider

two intersecting material curves with tangent vectors M1 and M2 at the point of intersec-

tion. In the current configuration, they map to m1 and m2 with local stretches μ1 and

μ2, respectively. Let cos θ = m1 · m2. Then, (sin θ)θ̇ = (m1 · Dm1 + m2 · Dm2)(m1 ·

m2) − 2m1 ·Dm2, where relation (2.42) has been used. If sin θ = 1 (i.e. m1 ·m2 = 0), we

have θ̇ = −2m1 · Dm2. Therefore the off-diagonal terms of D on an orthogonal basis are
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proportional to the rate of change of the angle between tangents to the deformed material

curves instantaneously aligned with the orthogonal elements of the basis.

2.1.4 Singular surfaces

By a singular surface, we refer to a surface in the body across which jump discon-

tinuities are allowed for various fields (and their derivatives) which otherwise are continuous

in the body. The jump of a field (say Ψ) across a singular surface is denoted by

�Ψ� = Ψ+ − Ψ−, (2.45)

where Ψ+ and Ψ− are the limit values of Ψ as it approaches the singular surface from either

side. The ‘+’ side is taken to be the one into which the normal to the surface points. Let

Φ be another piecewise continuous field. The following relation, which can be verified by

direct substitution using (2.45), will find much use in our later developments

�ΦΨ� = �Φ�〈Ψ〉+ 〈Φ〉�Ψ�, (2.46)

where

〈Ψ〉 =
Ψ+ + Ψ−

2
. (2.47)

A two dimensional surface which evolves in time is given by

St = {X ∈ κ(B) : φ(X, t) = 0}, (2.48)

where φ : κ(B) × R → R is a continuously differentiable function. The referential normal

to the surface and the referential normal velocity are defined by

N(X, t) =
∇φ
|∇φ| and

U(X, t) = − φ̇

|∇φ| , (2.49)
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respectively. The second of these definitions is motivated towards the end of this section.

An immediate consequence of these definitions is

Ṅ = −(1− N ⊗ N)∇U − U(∇N)N. (2.50)

Indeed, we have from (2.49)1

Ṅ =
∇φ̇
|∇φ| −

∇φ
|∇φ|2

(
∇φ
|∇φ| · ∇φ̇

)
=

∇φ̇
|∇φ| (1− N ⊗ N) and (2.51)

∇N =
∇2φ

|∇φ| −
∇φ
|∇φ|2 ⊗

(
∇2φ

∇φ
|∇φ|

)
=

∇2φ

|∇φ| −N ⊗ (∇2φ)N
|∇φ| . (2.52)

On the other hand, (2.49)2 yields

∇U = − ∇φ̇
|∇φ| +

φ̇

|∇φ|2
(
∇2φ

∇φ
|∇φ|

)
= − ∇φ̇

|∇φ| − U
(∇2φ)N
|∇φ| , (2.53)

where ∇2φ = ∇(∇φ) ∈ Sym. Combining these relations we obtain (2.50). The tensor

1 − N ⊗ N is the orthogonal projection onto Vκ and is denoted by P. It is easy to check

that P
T = P and PP = P.

Derivatives We now define surface derivatives for scalar, vector and tensor valued func-

tions which are defined on the surface St. Let f denote a scalar, vector or tensor valued

function on St. The function f is differentiable at X ∈ St if f has an extension f to a

neighborhood N of X, which is differentiable at X in the classical sense (see subsection

2.1.2) and is equal to f for X ∈ St. The surface gradient of f at X ∈ St is then defined by

∇Sf(X) = ∇f(X)P(X). (2.54)

Let v : St → V and A : St → Lin be respectively, vector and tensor valued functions on

the surface St. We define the surface divergence as a scalar field DivS v and a vector field
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DivS A by

DivS v = tr(∇Sv)

c · DivS A = DivS(ATc) (2.55)

for any fixed c ∈ V. Moreover, we call v tangential if Pv = v and A superficial if AP = A.

We define the curvature tensor L by2

L = −∇SN, (2.56)

or L = −∇N(1 −N ⊗ N). Therefore

tr L = −Div N + (∇N)N ·N = −Div N, (2.57)

where we have used (∇N)TN = 0, which follows from N ·N = 1. Since ∇SNP = ∇NPP =

∇NP = ∇SN, the curvature tensor is superficial. Furthermore, using (2.52) we have

L = −∇N(1− N ⊗ N)

= −
(
∇2φ

|∇φ| − N ⊗ (∇2φ)N
|∇φ|

)
(1 −N ⊗N)

=
−1
|∇φ|{∇

2φ− N ⊗ (∇2φ)N − (∇2φ)N ⊗ N +
(
(∇2φ)N ·N

)
N ⊗ N}

and consequently we infer that L = LT and LN = 0. Therefore, N is a principal direction

of L with the corresponding principal value being zero. Since L is symmetric, the spectral

theorem implies that it has three real eigenvalues with mutually orthogonal eigenvectors.

We have already obtained zero as an eigenvalue (with N as the eigenvector). Let the other
2The normal N and its extension to a neighborhood of St are both denoted by the same symbol. See

Remark 2.1.1.
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eigenvalues be κ1 and κ2, whose corresponding eigenvectors lie in the plane normal to N.

The mean and the Gaussian curvature associated with the surface are then defined as

H =
1
2
(κ1 + κ2), and K = κ1κ2, (2.58)

respectively.

A function ϕ : (t − ε, t + ε) → Eκ, ε > 0, is said to be a normal curve through

X ∈ St at time t if for each τ ∈ (t− ε, t+ ε),

ϕ′(τ) = U(ϕ(τ), τ)N(ϕ(τ), τ). (2.59)

The function ϕ(τ) is therefore the position parameterized by τ . We define the normal time

derivative of a function on St by

v̊(X, t) =
dv(ϕ(τ), τ)

dτ

∣∣∣
τ=t

. (2.60)

The relation (2.50) can therefore be written as N̊ = −∇SU .

Remark 2.1.1. We will assume that an extension of a surface field to a neighborhood of

the surface exists, and will abuse the notation to use the same symbol for the field and its

extension.

Compatibility conditions Central to the discussion on the kinematics of singular sur-

faces are the compatibility conditions which relate the deformation gradient and the velocity

field across the singular surface. Consider a closed material curve C ⊂ Eκ such that it in-

tersects the singular surface St at two points, say p1 and p2. Let AC be the area bounded

by C and let Γ = AC ∩ St be the line of intersection of this area with the singular surface.

We parameterize Γ by arc-length u such that the curve Γ extends from p2 to p1.
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In general we can write

b =
∮
C

FdX, (2.61)

where a non-zero b ∈ Eχ arises when F is incompatible (we assume for now that F is

not expressible as a gradient). In dislocation theory b is referred to as the Burgers vector

associated with the closed curve C. The integration in the above relation is well defined

since we assume F to be singular only over a set of zero Lebesgue measure (a finite number

of points on a continuous line constitute such a set). According to Stokes’ theorem with a

singular surface,

b =
∮
C

FdX =
∫
AC

(CurlF)TNAdA−
∫

Γ
�F�dX, (2.62)

where NA is the unit normal associated with the area AC . A proof of this theorem is given

in subsection 2.2.1 (cf. (2.102)). We discuss two consequences of the above relation:

(i) Let b = 0. Then, CurlF = 0 in κ(B) \ St. We can show this by choosing a C

such that Γ = ∅. The arbitrariness of AC (and thus of NA) and the localization theorem

for surface integrals (see subsection 2.2.1) then imply CurlF = 0 for all X ∈ κ(B) \ St.

Equation (2.62) now reduces to

0 =
∫

Γ
�F�dX. (2.63)

Use the parametrization of Γ to write dX = sdu, where s ∈ TSt(X) is a unit vector in the

tangent plane TSt(X) to St at X. The curve C can be arbitrarily chosen and therefore Γ is

arbitrary. Use the arbitrariness of Γ to localize (2.63), and obtain

�F�s = 0 (2.64)
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for all s ∈ TSt(X). Thus, there exists a vector k ∈ Vχ such that

�F� = k⊗ N (2.65)

on St, which is Hadamard’s compatibility condition for the deformation gradient.

(ii) Let CurlF = 0 in κ(B) \ St. Therefore there exists a vector field χκ such

that F = ∇χκ away from St. Note that χκ might still suffer a jump across St. Let

C+ ∪ C− = C, where C+ and C− are two disjoint parts of C which lie on the ‘+’ and ‘−’

side of St, respectively. The ‘+’ side is the one into which the normal N points. Therefore,

∮
C

FdX =
∫
C+

FdX +
∫
C−

FdX

= χ+
2 − χ+

1 + χ−
1 − χ−

2

= �χκ�2 − �χκ�1 = −
∫

Γ
�χκ�′(u)du, (2.66)

where χ+
2 = χ+

κ (p2) etc. The negative sign in the last term above arises due to the

orientation of Γ, which extends from p2 to p1. On the other hand we have in this case,

from (2.62), ∮
C

FdX = −
∫

Γ
�F�dX. (2.67)

Since �χκ�′(u) = ∇�χκ�s = ∇S�χκ�s (as Ps = s), we obtain, on comparing equations (2.66)

and (2.67) and using the arbitrariness of Γ

�F�s = ∇S�χκ�s (2.68)

for all s ∈ TSt(X). Thus, there exists a vector k ∈ Eχ such that

�F� = k⊗ N + ∇S�χκ� (2.69)
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on St, which is the modified compatibility condition for the deformation gradient in the

case when χκ suffers a jump on the singular surface. If �χκ� = const. then equation (2.69)

reduces to Hadamard’s compatibility condition (2.65).

To obtain the compatibility condition for the velocity field, we apply the definition

of the normal time derivative (cf. (2.59), (2.60)) on fields χ+
κ and χ−

κ . We obtain

(χ+
κ )̊ =

dχκ(ϕ(τ), τ)
dτ

∣∣∣
τ=t+

= UF+N + v+ (2.70)

and

(χ−
κ )̊ =

dχκ(ϕ(τ), τ)
dτ

∣∣∣
τ=t−

= UF−N + v−, (2.71)

where τ ∈ (t, t+ ε) in (2.70) and τ ∈ (t− ε, t) in (2.71). Subtracting these relations we get

the compatibility condition for the velocity field,

�v� + U�F�N = �χκ�̊. (2.72)

For �χκ� = const. (including the case when χκ is continuous, i.e. �χκ� = 0) this condition

reduces to

�v� + U�F�N = 0 (2.73)

or equivalently

U�F� = −�v� ⊗ N. (2.74)

Surface deformation gradient For a continuous motion across the surface St, we have

�χκ(X, t)� = 0 for X ∈ St, and in this case we can define the surface deformation gradient

F and the surface normal velocity v by

F = ∇Sχκ, v = χ̊κ. (2.75)
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It is then easy to check that

F = F±
P, v = v̂± + UF±N, (2.76)

where on the right hand side above, ± indicates that either + or − can be used, a fact

which can be verified using the compatibility conditions (2.65) and (2.73).

The tensor F as defined above satisfies detF = 0 and F∗ �= 0. That det F = 0 can

be verified using (2.76)1 and det P = 0. The cofactor F∗ of F is defined by F∗(a × b) =

Fa × Fb for arbitrary vectors {a,b} ∈ Vκ. Let {t1, t2} ∈ TSt(X) be two unit vectors in the

tangent plane to St at X ∈ St, such that {t1, t2,N} form an orthonormal basis at X. Then,

F∗N = F∗(t1 × t2) = Ft1 × Ft2

= F±t1 × F±t2

= (F±)∗N, (2.77)

where in the second equality, relation (2.76)1 has been used. Furthermore, it is straightfor-

ward to check that F∗tα = 0 (α = 1, 2), since FN = 0. Therefore F∗ remains non-zero as

long as (F±)∗N does not vanish. Note that |F∗N| is equal to the ratio of the infinitesimal

areas (on the singular surface) in the current and the reference configuration. This follows

immediately from equations (2.24) and (2.77).

Surface parametrization Consider X ∈ Eκ in a neighborhood of St. We can then find

a point X̂ ∈ St such that

X = X̂ + ζN, (2.78)

where ζ(t) ∈ R is a scalar. We parameterize the surface St by using a local coordinate system

(ξ1, ξ2), where {ξ1, ξ2} ∈ R. In terms of the new variables, X = X(ξ1, ξ2, ζ), X̂ = X̂(ξ1, ξ2, t)
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and N = N̂(ξ1, ξ2, t). Let X̂,α = ξα for α = 1, 2. We assume that the parametrization is

such that the triad {ξ1, ξ2,N} forms an orthonormal basis at X̂. In a sufficiently small

neighborhood of X = X(ξ1, ξ2, ζ) it is possible to invert this to obtain ξ ≡ (ξ1, ξ2, ζ) = ξ(X).

Use (2.78) to obtain the differential of X,

dX = (ξα + ζN,α)dξα + Ndζ. (2.79)

If we identify with ξ1 and ξ2, the principal directions of L (recall that N is the third

principal direction, cf. (2.56) and the paragraph preceding (2.58)), we have N,α = −καξα

(no summation implied over α), where κα are the principal curvatures associated with the

surface. Therefore, if A is the gradient of the map taking ξ to X then dX = Adξ and it

follows from (2.79) that

A = ξ11(1 − κ1ζ)ξ1 ⊗ ξ1 + ξ22(1 − κ2ζ)ξ2 ⊗ ξ2 + N ⊗ N, (2.80)

where ξαα = ξα · ξα (no summation). Let ξ = ξ11ξ22. Thus

jA ≡ detA = ξ(1 − 2ζH + ζ2K), (2.81)

where H and K are defined in (2.58).

Taking the differential of the function φ, dφ = ∇φ · dX + φ̇dt, and substituting in

it the expression for dX from (2.79) for a point near the surface, we obtain

dφ = ∇φ · ((ξα + ζN,α)dξα + Ndζ) + φ̇dt. (2.82)

On the surface, we have ζ = 0 and dφ = 0. Consequently we obtain

0 = ∇φ · ξαdξα + ∇φ · Ndζ + φ̇dt

= ∇φ · ξαdξα + ∇φ · Nζ̇dt+ φ̇dt (2.83)
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on St, and noting the independence of dξα and dt, we recover relations (2.49) along with

the identification of ζ̇ with U .

Singular surface in the current configuration The image of the singular surface St

in the current configuration is give by

st = χκ(St, t) = {x ∈ χ(B) : ψ(x, t) = 0}, where

ψ(χκ(X, t), t) = φ(X, t). (2.84)

The scalar function ψ : χ(B) × R → R is assumed to be continuously differentiable with

respect to its arguments. The normal to the surface st and the spatial normal velocity are

defined by (cf. (2.49))

n =
gradψ
| gradψ| , and

u = − 1
| gradψ|

∂ψ

∂t
, (2.85)

respectively, where ∂ψ
∂t is the spatial time derivative of ψ at a fixed x. Differentiate (2.84)2

to obtain

∇φ = (F±)T gradψ, and

φ̇ = gradψ · v± +
∂ψ

∂t
. (2.86)

The following relations can then be obtained on combining (2.49), (2.85) and (2.86):

n =
(F±)−TN
|(F±)−TN| , and

u = n · v± +
U

|(F±)−TN| . (2.87)
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2.2 Balance laws and dissipation

Central to any theory of a continuous media are various integral theorems, which

provide a mathematical framework for the interactions among various sub-bodies within

the body and also for their interaction with the external environment. They also provide

us means to express the global response of the body in terms of local relations. The

theorems, stated (and proved) in the first subsection below, include localization theorems,

divergence/Stokes’ theorems, and transport theorems. In particular, we discuss them for

fields which are piecewise smooth. In the next subsection we state the balance of mass,

momentum and energy, first in an integral (global) form and then as differential equations

away from the singular surface and jump conditions at the singular surface. The subsection

is closed with a long remark on the interdependence of these balance laws. We end this

section with the second law of thermodynamics. A brief motivation is first provided for

taking Clausius-Duhem inequality as our starting point and then we go on to derive various

consequences of this inequality pertinent to the discussion at hand.

2.2.1 Integral theorems

In this subsection we state and prove the localization theorem, the divergence

theorem, the Stokes’ theorem, and the transport theorem for volume and surface integrals.

We have employed only elementary concepts from differential geometry in proving these

theorems (see also the recent paper by Fosdick and Tang [53]). A more technical discussion

can be accessed from the standard texts on differential geometry (for example, the book by

Lee [104]).
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Localization theorem for volume integrals Let φ be a continuous function defined

on an open set R ⊂ E . If for all closed sets π ⊂ R

∫
π
φdV = 0, (2.88)

then φ(u) = 0 for all u ∈ R. To prove this, we start by defining

Iε =
∣∣∣∣φ(u0) −

1
Vε

∫
sε

φ(u)dV
∣∣∣∣ =
∣∣∣∣ 1
Vε

∫
sε

(φ(u0) − φ(u))dV
∣∣∣∣ , (2.89)

where sε is a sphere of radius ε and volume Vε centered at u0 ∈ R. A theorem in analysis

([152], page 317) yields,

Iε ≤ 1
Vε

∫
sε

|φ(u0) − φ(u)|dV

≤ 1
Vε

∫
sε

sup
u∈sε

|φ(u0) − φ(u)|dV

= max
u∈sε

|φ(u0) − φ(u)|, (2.90)

where in (2.90)2, sup can be replaced by max due to continuity and compactness of sε.

Since φ(u) is continuous, we get Iε → 0 as ε→ 0. It then follows from equation (2.89),

φ(u0) = lim
ε→0

1
Vε

∫
sε

φ(u)dV = 0, (2.91)

where the last equality is a consequence of (2.88). The point u0 can be chosen arbitrarily,

and thus we can conclude that φ(u) = 0 for all u ∈ R.

Localization theorem for surface integrals Let ϕ be a continuous function defined

on a surface F ⊂ E . If for all surfaces ς ⊂ F
∫
ς
φdA = 0, (2.92)

then ϕ(u) = 0 for all u ∈ F . This can be proved using arguments similar to those used

above.
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Divergence theorem for smooth fields Let f , p and P be respectively, scalar, vec-

tor and tensor fields defined on κ(B) × (t1, t2). Assume these fields to be continuously

differentiable over κ(B). Then for any part Ω ⊂ κ(B) and at any time t ∈ (t1, t2)

∫
Ω
(∇f)dV =

∮
∂Ω
fNdA, (2.93)∫

Ω
(Div p)dV =

∮
∂Ω

p ·NdA, (2.94)∫
Ω
(Div P)dV =

∮
∂Ω

PNdA, (2.95)

where N ∈ Vκ is the outward unit normal to the boundary ∂Ω of Ω. For a proof of (2.94)

see ([152], page 288). Equation (2.93) is obtained from (2.94) for a scalar p. A proof for

(2.95) also follows from (2.94). Indeed, for an arbitrary constant a ∈ Vκ,

a ·
∮
∂Ω

PNdA =
∮
∂Ω

(PTa) · NdA =
∫

Ω
(Div PTa)dV =

∫
Ω
(Div P) · adV, (2.96)

where in the last equality, the definition of the Div operator has been used (cf. (2.19)).

Since a is arbitrary, we get the desired result.

Divergence theorem for piecewise smooth fields Assume p to be piecewise contin-

uously differentiable over κ(B), being discontinuous across the singular surface St (with

normal Ns and speed U) and smooth everywhere else. Then for a domain Ω such that

S = Ω ∩ St �= ∅, ∮
∂Ω

p · NdA =
∫

Ω
(Div p)dV +

∫
S
�p� · NsdA. (2.97)

Similar statements hold for scalar and tensor fields. We now prove (2.97). Let Ω± ⊂ Ω be

such that Ω+ ∪ Ω− = Ω and Ω+ ∩ Ω− = S. The normal to the surface S is oriented such
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that it points into Ω+. Since p is smooth within Ω+ and Ω−, we can use (2.94) to write

∫
Ω+

(Div p)dV =
∫
∂Ω+\S

p · NdA−
∫
S
p+ ·NsdA,∫

Ω−
(Div p)dV =

∫
∂Ω−\S

p · NdA+
∫
S
p− · NsdA,

where p± are the limiting values of p as it approaches S from the interior of Ω±. The

relation (2.97) is obtained by adding these two equations.

If q is a vector field defined on χ(B) × (t1, t2) and piecewise continuously differ-

entiable over χ(B), being discontinuous across the singular surface st (with normal ns and

speed u). Then for ω ⊂ χ(B) such that s = ω ∩ st �= ∅,
∮
∂ω

q · nda =
∫
ω
(div q)dv +

∫
s
�q� · nsda. (2.98)

The proof for (2.98) is similar to that of (2.97).

Stokes’ theorem for smooth fields Let p and P be respectively, vector and tensor

fields defined on κ(B) × (t1, t2). Assume these fields to be continuously differentiable over

κ(B). Then for any surface F ⊂ κ(B) with normal N and boundary ∂F
∫
F

(Curlp) ·NdA =
∮
∂F

p · dX, (2.99)∫
F

(CurlP)TNdA =
∮
∂F

PdX. (2.100)

A proof for (2.99) can be obtained from ([152], page 287). To verify (2.100), we use (2.99).

Indeed, for an arbitrary constant vector a ∈ Vκ,

a ·
∫
F

(CurlP)TNdA =
∫
F

(CurlPTa) · NdA = a ·
∮
∂F

PdX, (2.101)

where in the first equality, the definition of the Curl of a tensor field (cf. (2.20)) is used.

The desired result follows upon using the arbitrariness of a.



51

Stokes’ theorem for piecewise smooth fields Consider p to be piecewise continuously

differentiable over κ(B). Assume p to be discontinuous across the singular surface St and

smooth everywhere else. Let Γ = F ∩ St be the curve of intersection. Then

∫
F

(Curlp) · NdA =
∮
∂F

p · dX +
∫

Γ
�p� · dX. (2.102)

To verify this relation start by considering two subsurfaces F± ⊂ F such that F+∪F− = F

and F+ ∩ F− = Γ. Since p is smooth in regions F±, we can write using (2.99)

∫
F+

(Curlp) · NdA =
∫
∂F+\Γ

p · dX +
∫

Γ
p+ · dX,∫

F−
(Curlp) · NdA =

∫
∂F−\Γ

p · dX −
∫

Γ
p− · dX.

Adding these two relations we get (2.102). Similarly, we obtain for a piecewise continuously

differentiable tensor field P:

∫
F

(CurlP)TNdA =
∮
∂F

PdX +
∫

Γ
�P�dX. (2.103)

If q is a piecewise continuously differentiable vector field defined on χ(B)×(t1, t2),

being discontinuous across the singular surface st. Consider a surface F ⊂ χ(B) with normal

n and let γ = F ∩ st. Then

∫
F
(curlq) · nda =

∮
∂F

q · dx +
∫
γ
�q� · dx. (2.104)

The proof for (2.104) is similar to that of (2.102).

Remark 2.2.1. (Surface divergence theorem) Consider a vector field p continuously differ-

entiable over the surface S ⊂ κ(B) (with unit normal N and mean curvature H) for a fixed

time interval (t1, t2). Then

∮
∂S

p · νdL =
∫
S
(DivS p + 2Hp · N)dA, (2.105)
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where ν is the outer unit normal to ∂S such that (N,ν, t) form a positively-oriented or-

thogonal triad at ∂S with t being the tangent vector along ∂S. Moreover, if p is tangential,

i.e. Pp = p, then p ·N = 0 and (2.105) reduces to

∮
∂S

p · νdL =
∫
S

DivS pdA. (2.106)

We now prove (2.105). By definition ν = t × N and therefore we can use Stokes’ theorem

to rewrite the term on the left hand side of equation (2.105) as

∮
∂S

p · νdL =
∮
∂S

p · (t × N)dL

=
∮
∂S

(N × p) · tdL

=
∫
S

Curl(N × p) · NdA. (2.107)

Use the identity Curl(N × p) = Div(N ⊗ p − p ⊗ N) to get

Curl(N × p) ·N = (∇N)TN · p − (p ·N)Div N + ∇p · P. (2.108)

But (∇N)TN = 0 (follows from N ·N = 1) and ∇p · P = tr(∇pP) = DivS p. Furthermore,

it follows from (2.57) and (2.58) that Div N = −2H. Therefore we can rewrite (2.108) to

get

Curl(N × p) ·N = 2H(p · N) + DivS p. (2.109)

Substituting this into (2.107) yields (2.105).

Transport theorem for volume integrals with smooth fields Let P and Q denote a

scalar, vector or tensor field continuously differentiable on κ(B)×(t1, t2) and χ(B)×(t1, t2),
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respectively. Then for arbitrary parts Ω ⊂ κ(B), ω ⊂ χ(B) and at any time t ∈ (t1, t2)

d

dt

∫
Ω
PdV =

∫
Ω
Ṗ dV, (2.110)

d

dt

∫
ω
Qdv =

∫
ω

∂Q

∂t
dv +

∫
∂ω
Q(v · n)da. (2.111)

Since Ω is fixed with respect to time and P is smooth over Ω, the time derivative and the

volume integral in the left hand side of (2.110) can commute to give the right hand side of

the equation. Equation (2.111) can be proved by first transforming the volume ω to a fixed

reference volume, say Ω. We get

d

dt

∫
ω
Qdv =

d

dt

∫
Ω
QJdV

=
∫
ω
Q̇dv +

∫
ω
Q(divv)dv, (2.112)

where J is the jacobian associated with the mapping which transforms Ω to ω and J̇ =

J(div v). Equation (2.111) follows from (2.112) upon recalling the definition of the material

time derivative (cf. (2.9)) and using the divergence theorem.

Transport theorem for volume integrals with piecewise smooth fields Let Ω be

such that S = Ω ∩ St �= ∅. Then for a P which is discontinuous across St but smooth

everywhere else,

d

dt

∫
Ω
PdV =

∫
Ω
Ṗ dV −

∫
S
U�P �dA. (2.113)

We now prove this relation. Recall surface parametrization from the end of subsection 2.1.4.

In a small neighborhood, say ΩS , of the singular surface S we parameterize the domain by

coordinates {ξ1, ξ2, ζ} such that for X ∈ ΩS we can write X = X̂(ξ1, ξ2, t)+ ζ(t)N(ξ1, ξ2, t),

where X̂ ∈ S and {ξ1, ξ2} are convected. Let −ς < ζ(t) < ς, where ς ∈ R
+ is constant. The



54

position of the singular surface is indicated by ζ = 0 and it is assumed that the surface S

remains inside ΩS during the instantaneous motion. Obtain

d

dt

∫
Ω
PdV =

d

dt

∫
Ω\ΩS

PdV +
d

dt

∫
ΩS
PdV

=
∫

Ω\ΩS
Ṗ dV +

∫
(ξ1,ξ2)

d

dt

(∫ ς

−ς
PjAdζ

)
dAξ,

=
∫

Ω\ΩS
Ṗ dV +

∫
(ξ1,ξ2)

{
d

dt

(∫ ζ1(t)

−ς
PjAdζ +

∫ ς

ζ2(t)
PjAdζ

)}
ζ1,ζ2=0

dAξ,

where jA is the jacobian related to the change of coordinates. On the singular surface,

ζ1 = ζ2 = 0, ζ̇1 = ζ̇2 = U , jA = ξ (cf. (2.81)) and dA = ξdAξ, where ξ is the surface

jacobian. Taking the limit |ς| → 0 we obtain the desired result. The infinitesimal area of

the surface in terms of the new coordinates can be obtained by using Nanson’s formula,

NdA = jAA−T N̂dAξ , where N̂ = N and A is the gradient of the map from the new

coordinates to X. For the considered transformation this formula reduces to dA = jAdAξ

(cf. (2.80)).

Let ω be such that s = ω ∩ st �= ∅. Then for a Q which is discontinuous across st

but smooth everywhere else,

d

dt

∫
ω
Qdv =

∫
ω

(
∂Q

∂t
+ div(Qv)

)
dv −

∫
s
(u�Q� − �Qv� · n)da, (2.114)

where u = U |(F±)Tn| + n · v± is the spatial speed of the singular surface st. This relation

can be proved by first transforming ω to Ω and then using (2.113). We get

d

dt

∫
ω
Qdv =

∫
Ω
(JQ)̇dV −

∫
S
U�JQ�dA. (2.115)

The term U�JQ� can be expanded as

U�JQ� = (Q+u+J+|(F+)−TN|) − (Q−u−J−|(F−)−TN|)

= (u�Q� − �Qv� · n)|(F−)∗N|, (2.116)
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where u± = u− n · v±. Relations U = u±|(F±)−TN| and |(F+)∗N| = |(F−)∗N| have also

been used. Equation (2.114) follows immediately after substituting (2.116) into (2.115).

Transport theorem for surface integrals with smooth fields Let p be a scalar,

vector or tensor field continuously differentiable on St × (t1, t2). Then, for an arbitrary

surface S ⊂ St

d

dt

∫
S

pdA =
∫
S
(̊p − 2pUH)dA, (2.117)

where N, U , and H are the unit normal, normal velocity, and the mean curvature associated

with St, respectively. We prove this relation using the surface parametrization outlined in

subsection 2.1.4. We assume that p can be extended to the small neighborhood ΩS , and

use the same symbol to denote its extension. Obtain

d

dt

∫
S

pdA = { d
dt

∫
(ξ1,ξ2)

p(X(ξα, ζ(t)), t)jAdAξ}ζ=0

=
∫

(ξ1,ξ2)
{(ṗjA + jAζ̇(∇p · N) + p ˙jA)dAξ}ζ=0

=
∫
S
{ṗ + ζ̇∇p ·N + p ˙jAj−1

A }ζ=0dA. (2.118)

At the surface, ζ = 0, we have ζ̇ = U , jA = ξ and ˙jA = −2UHξ (cf. (2.81)). Substituting

these into (2.118) and recalling the definition of the normal time derivative from (2.60), we

obtain (2.117).

2.2.2 Balance laws and jump conditions

Let p, r and s be piecewise continuously differentiable vector fields on κ(B) ×

(t1, t2). A global (or integral) balance law is a relation of the following form: For an
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arbitrary Ω ⊂ κ(B),

d

dt

∫
Ω

pdV =
∫

Ω
rdV +

∫
∂Ω

sdA. (2.119)

This relation expresses the integral form of the balance of the change in the quantity p with

a volume supply/sink density r and a surface interaction s.

Surface interactions Given that a balance law of the form (2.119) exists, the surface

interaction vector s depends on the surface only through the unit normal and moreover the

dependence is linear. The first claim was introduced by Cauchy in 1823 (for an historical

account see footnotes in [171], sections 200 & 203) as a hypothesis and was proved much later

in 1959 by Noll [131]. The second claim, which is also known as the Cauchy’s theorem, is

based on the classical tetrahedron argument first proposed by Cauchy and is now recognized

as a result of fundamental importance in continuum physics. These classical derivations are

restricted to continuously differentiable fields defined on domains with piecewise smooth

boundaries. Much research has been done in the past fifty years to investigate these results

under less stringent smoothness requirements. Such considerations are indeed necessary for

many practical problems in mechanics such as those involving shocks, fracture, dislocations

and corner singularities (for a recent contribution, where most of the past work is carefully

reviewed, see [153]). In the following we state the theorems of Noll and Cauchy, whose

proofs are available in most of the standard texts on continuum mechanics.

According to Cauchy’s hypothesis (Noll’s theorem), if N is the outward unity

normal to the positively oriented surface ∂Ω, then

s(X, t; ∂Ω) = s(X, t;N), (2.120)
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i.e. the dependence of the surface interaction vector on the surface on which it acts is only

through the normal N. According to Cauchy’s theorem, the surface interaction vector s

depends linearly on N. Therefore, there exists a tensor S such that

s(X, t;N) = S(X, t)N. (2.121)

We now obtain local statements of the fundamental balance laws in continuum

mechanics. The fields are allowed to be piecewise continuously differentiable so that they

may suffer jump discontinuities across a surface in the domain over which they are defined.

Consider an arbitrary part of the body, S ⊂ B, whose placement in the reference and

current configurations is denoted by Ω = κ(S) and ω = χ(S), respectively. Let S = Ω∩St,

where St is the singular surface in κ(B) with normal Ns and speed U . Correspondingly let

s = ω ∩ st, where st is the singular surface in χ(B) with normal ns and speed u.

Remark 2.2.2. Here we have made an implicit assumption regarding the coherency of the

interface, i.e. �χκ� = 0. In the absence of coherency, the referential interface St will be

mapped into two distinct surfaces in the current configuration, rather than an interface

st. In case of an incoherent interface, global balance laws are written only in the reference

configuration (since the spatial configuration is disconnected). The local balance laws in

the spatial configuration can be obtained from the local balance laws in the reference con-

figuration using appropriate transformations. In the following we will, however, restrict our

attention to coherent interfaces (see [29] for a detailed account on incoherent interfaces).

Balance of mass Define a mass function m ∈ R such that:

(i) m(S) ≥ 0, ∀S ⊂ B,
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(ii) m(∅) = 0 and

(iii) Let {Si}∞i=1 be a disjoint family of subsets of the body B, i.e. Si ∩ Sj = ∅, i �= j.

Then m(
∞⋃
i=1

Si) =
∞∑
i=1
m(Si).

Therefore the function m is a measure on B. Denote by V and v respectively,

the volume of S in the reference configuration and the current configuration. Define the

density of mass in the reference and the current configuration by

0 < ρκ(X, t) = lim
V→0

m(S, t)
V

(2.122)

and

0 < ρ(x, t) = lim
v→0

m(S, t)
v

, (2.123)

respectively, where X ∈ Ω and x ∈ ω. The existence of limits is assumed in the above

definitions. The mass of the part S ⊂ B is then given by

m(S, t) =
∫

Ω
ρκ(X, t)dV =

∫
ω
ρ(x, t)dv. (2.124)

The reference mass density can be related to the current density of mass by using the

jacobian JF = detF > 0, such that JF dV = dv (and dx = FdX), and the localization

theorem in (2.124). We get

ρκ = JF ρ. (2.125)

Assuming (for now) an absence of diffusion and any external source of mass, we

express the law of balance of mass as

ṁ(S, t) = 0 (2.126)

or from (2.124)

d

dt

∫
Ω
ρκ(x, t)dv = 0, (2.127)
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which, on using the transport theorem (2.113), reduces to

∫
Ω
ρ̇κdV −

∫
S
U�ρκ�dA = 0. (2.128)

We can choose Ω such that S = ∅. Thereupon using the localization theorem we obtain

ρ̇κ = 0 (2.129)

outside the singular surface. The referential mass density is therefore independent of time.

For S �= ∅, substitution of (2.129) in (2.128) reduces it to a surface integral. Using the

arbitrariness of S, the localization theorem for surface integrals then yields the following

jump condition at the singular surface

U�ρκ� = 0, (2.130)

i.e. either the normal speed vanishes or the referential mass density is continuous across St.

The spatial form of the balance law reads

d

dt

∫
ω
ρ(x, t)dv = 0, (2.131)

which, on using the transport theorem (2.114) and the localization theorem, yields

∂ρ

∂t
+ div(ρv) = 0 (2.132)

outside the singular surface and

(u�ρ� − �ρv� · ns) = 0 (2.133)

on the singular surface st.
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Balance of linear and angular momentum We assume that the forces acting on S

are either contact forces or body forces. A contact force arises from the contact of two parts

of B, say S1 and S2. The force exerted by S2 on S1 is given by

Fc(S1,S2, t) =
∫
I
pdA =

∫
i
tda, (2.134)

where I = κ(S1) ∩ κ(S2) and i = χ(S1) ∩ χ(S2). The vector p is the contact force per

unit area of ∂Ω (Piola traction force) and t is the contact force per unit area of ∂ω (Cauchy

traction force). A body force arises from the interaction of S with sources external to S

(e.g. gravitational force). It can be of two kinds: one due to effects exterior to B and the

other due to effects due to the matter in B \ S. It acts on the particles comprising the

body and has a form

Fb(S, t) =
∫

Ω
ρκbdV =

∫
ω
ρbdv, (2.135)

where b = b̂(X, t) = b̃(x, t) is the body force per unit mass. The total force on S can then

be written as

F(S, t) = Fc(S,B \ S, t) + Fb(S, t). (2.136)

Associated with these forces are moments. The moments of the contact force and

the body force with respect to an arbitrary point x0 ∈ E are respectively,

Mc(S1,S2, t;x0) =
∫
I
(x − x0) × pdA =

∫
i
(x − x0) × tda, and

Mb(S, t;x0) =
∫

Ω
ρκ(x − x0) × bdV =

∫
ω
ρ(x− x0) × bdv. (2.137)

The total moment acting upon S is

M(S, t;x0) = Mc(S,B \ S, t;x0) + Mb(S, t;x0). (2.138)
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The linear momentum of S ⊂ B is given by

G(S, t) =
∫

Ω
ρκvdV =

∫
ω
ρvdv. (2.139)

The balance of linear momentum can be stated in the form of Euler’s first postulate of

motion: The rate of change of linear momentum of S is equal to the total force acting on

S, i.e.

Ġ(S, t) = F(S, t). (2.140)

The referential (or material) form of the balance of linear momentum obtained by substi-

tuting definitions (2.136) and (2.139) into (2.140) is

d

dt

∫
Ω
ρκvdV =

∫
∂Ω

pdA+
∫

Ω
ρκbdV. (2.141)

By Noll’s and Cauchy’s theorems there exists a tensor field P such that p = PN. The

tensor P is called the Piola-Kirchhoff stress tensor. Use the transport theorem (2.113) and

the divergence theorem (2.97) to get

∫
Ω
ρκv̇dV −

∫
S
Uρκ�v�dA =

∫
Ω

Div PdV +
∫
S
�P�Ns +

∫
Ω
ρκbdV, (2.142)

where we have also used (2.129) and (2.130). Since Ω is arbitrary, we can choose it such

that S = ∅. The localization theorem then yields the local form for the balance of linear

momentum

ρκv̇ = Div P + ρκb, (2.143)

which holds outside the singular surface. Now consider S �= ∅. Substitute (2.143) in (2.142)

and use the arbitrariness of S to use the localization theorem to obtain the jump condition

across St

Uρκ�v� + �P�Ns = 0. (2.144)
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The spatial form of these equations can be obtained in a similar manner. We write

the spatial form of the balance of linear momentum as

d

dt

∫
ω
ρvdv =

∫
∂ω

tdA+
∫
ω
ρbdv. (2.145)

By Noll’s and Cauchy’s theorems there exists a tensor field T such that t = Tn. The

tensor T is called the Cauchy stress tensor. The local form of the balance law can be

now obtained using the transport theorem (2.114), the divergence theorem (2.98) and the

localization theorem. We obtain outside the singular surface and on the singular surface

respectively,

ρv̇ = divT + ρb (2.146)

and

js�v� + �T�ns = 0, (2.147)

where

js =
ρκU

|(F±)∗Ns|

is the flux of mass through the singular surface. Use (2.87)2 to rewrite (2.147) as

ρ±(u− ns · v±)�v� + �T�ns = 0. (2.148)

The moment of momentum of S ⊂ B relative to an arbitrary x0 ∈ E is given by

H(S, t;x0) =
∫

Ω
ρκ(x − x0) × vdV =

∫
ω
ρ(x − x0) × vdv. (2.149)

The balance of angular momentum in the form of Euler’s second postulate of motion is the

following: The rate of change of moment of momentum of S is equal to the total moment

acting on S, i.e.

Ḣ(S, t;x0) = M(S, t;x0). (2.150)
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Substituting equations (2.138) and (2.149) into (2.150) we get the referential form of the

balance of angular momentum

d

dt

∫
Ω
ρκ(x − x0) × vdV =

∫
∂Ω

(x − x0) × pdA+
∫

Ω
ρκ(x − x0) × bdV. (2.151)

The local form outside the singular surface is

ρκ((x − x0) × v)̇ = Div((x − x0) × P) + ρκ(x − x0) × b, (2.152)

where for any y ∈ V, (y × P)il = eijkyjPkl. On using (2.143), (2.152) leads to

PFT = FPT . (2.153)

The jump condition is

Uρκ�(x− x0) × v� + �(x − x0) × PNs� = 0, (2.154)

which can be rewritten using (2.46) as

〈x− x0〉 × (Uρκ�v� + �P�Ns) + �x� × (Uρκ〈v〉 + 〈P〉Ns) = 0. (2.155)

Jump conditions (2.130) and (2.144) imply that the term (Uρκv+PNs) is continuous across

S, thereby reducing (2.155) to

�x� × (Uρκv± + P±Ns) = 0, (2.156)

where the superscript ± indicates that either of the limits can be used. For a motion which

continuous across the singular surface,i.e. �x� = 0, this results into a trivial relation, and

therefore is of no consequence. But for �x� �= 0, (2.156) provides us with an additional

jump condition to be satisfied across the singular surface.
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The corresponding spatial form of the equation (2.153) is

T = TT . (2.157)

Remark 2.2.3. The balance of angular momentum implies the balance of linear momentum.

Let c be an arbitrary vector. Rewrite equation (2.151) after replacing x0 by (x0 + c).

Subtract (2.151) from this equation to get

d

dt

∫
Ω
ρκc × vdV =

∫
∂Ω

c × pdA+
∫

Ω
ρκc × bdV. (2.158)

Since c is arbitrary, we get the desired result.

Balance of energy We restrict our attention to systems where the energy is supplied to

the body either through mechanical work (done by contact and body forces) or via a supply

of heat. We assume that the supply of heat to S has two sources. The contact heating

supplied to S1 by S2 through their surface of contact is

Hc(S1,S2, t) =
∫
I
qdA =

∫
i
hda, (2.159)

where q ∈ R and h ∈ R are heat flux per unit area of I = κ(S1) ∩ κ(S2) and i =

χ(S1) ∩ χ(S2), respectively. The external supply of heat to S is received from sources

external to the body and is given by

He(S, t) =
∫

Ω
ρκrdV =

∫
ω
ρrdv, (2.160)

where r = r̂(X, t) = r̃(x, t) is the rate of heat supply to S per unit mass of S. Therefore,

the total heat supply to S is

H(S, t) = Hc(S,B \ S, t) +He(S, t). (2.161)
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The total energy U of the part S of the body at any time consists of the kinetic

energy and the internal energy of S

U(S, t) =
∫

Ω

1
2
ρκv · vdV +

∫
Ω
ρκedV, (2.162)

where e is the internal energy per unit mass of S. The balance of total energy is the first

law of thermodynamics which postulates that a time-change in total energy of S is balanced

by the supply of the mechanical power and the heat to (or from) S:

U̇(S, t) = P (S, t) +H(S, t), (2.163)

where the mechanical power P is of the form

P (S, t) =
∫
∂Ω

p · vdA+
∫

Ω
ρκb · vdV. (2.164)

Upon substituting definitions (2.162), (2.164), and (2.161) into (2.163) we obtain the refer-

ential form of the balance of energy

d

dt

∫
Ω
ρκ(e+

1
2
|v|2)dV =

∫
∂Ω

(v · PN + q)dA+
∫

Ω
ρκ(v · b + r)dV. (2.165)

By Noll’s and Cauchy’s theorems, the balance law (2.165) implies the existence of a vector

q such that q = −q ·N (the − sign is conventional). The vector q is the referential heat flux

vector (we can similarly argue for the existence of a vector h, the spatial heat flux vector,

such that h = −h ·n). The local form of the balance of energy can be obtained upon using

the transport theorem (2.113), the divergence theorem (2.97), and the localization theorem.

We get

ρκ(e+
1
2
|v|2 )̇ = Div(PTv − q) + ρκ(v · b + r) (2.166)
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outside the singular surface and

−Uρκ�e+
1
2
|v|2� = �PTv − q� ·Ns (2.167)

on the singular surface St (the conditions for mass balance, (2.129) and (2.130), have also

been used). These two equations, on using the local forms of the balance of linear momen-

tum, reduce to

ρκė = P · Ḟ − Div q + ρκr (2.168)

and

Uρκ�e� = −�v� · 〈P〉Ns + �q� ·Ns, (2.169)

respectively. For a coherent interface, use (2.74) to rewrite (2.169) as

Uρκ�e� = U〈P〉 · �F� + �q� ·Ns. (2.170)

The spatial form of these balance equations can be derived in a similar manner.

We obtain

ρė = T · L̇ − divh + ρr (2.171)

outside the singular surface st in χ(B) and

−js�e� = 〈T〉�v� · ns − �h� · ns (2.172)

on the singular surface st.

Remark 2.2.4. The balance of mass and momentum follows from the balance of energy.3

To obtain the balance of mass, recall Galileo’s law of inertia (also called Newton’s first
3This assertion was first made by Green and Rivlin [62] using invariance under superimposed rigid body

motions. Another argument based on material frame indifference was later provided by Šilhavý ([156], Ch.

6). Our discussion is motivated from the symmetries of classical physics and does not (explicitly) require

principles of rigid body invariance and material frame indifference.
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law of motion): the body in the state of uniform motion (i.e. v = c, a constant) remains

so, unless an external force is applied to it. It is also assumed that no heat is exchanged

with the body (which otherwise might bring a change in the state even during a uniform

motion). We apply this law to Ω with zero applied force (p = 0 = b), no heat supply

and constant velocity c. Since the internal energy is a function of the state of the body, it

remains unchanged during the uniform motion. The global balance of energy (2.165) then

implies

1
2
|c|2 d

dt

∫
Ω
ρκdV = 0, (2.173)

which reduces to the global form of the balance of mass (2.127), since c is an arbitrary

constant.

The balance of linear momentum is recovered if we assume that for all inertial

frames of reference (velocity under such frames are related by v′ = v + c, with constant

c), quantities ρκe, p, b, q and r remain invariant. Assume that the balance of energy

(2.165) is written for an inertial frame. For another inertial frame, where the velocity field

is v′ = v + c, the balance law takes the following form

d

dt

∫
Ω
ρκ(e+

1
2
|v + c|2)dV =

∫
∂Ω

((v + c) ·PN + q)dA+
∫

Ω
ρκ((v + c) · b + r)dV. (2.174)

Subtracting relation (2.165) from (2.174), and using (2.173), we get

d

dt

∫
Ω
ρκc · vdV =

∫
∂Ω

c ·PNdA+
∫

Ω
ρκc · bdV. (2.175)

As c is an arbitrary constant, this relation reduces to the balance of linear momentum

(2.141).

We can recover the balance of angular momentum if we assume ρκe, p, b, q and r

to be invariant for any frame of reference (infinitesimally) rotating with respect to an inertial
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frame such that v′ = v + ω × (x − x0), where v is the velocity field in an inertial frame

of reference. The vector ω ∈ Vχ is an arbitrary (constant) angular velocity and x0 ∈ Eχ is

any fixed point. Writing the balance of energy for a reference frame which is rotating with

respect to the inertial frame, for which the balance law (2.165) holds, we obtain

d

dt

∫
Ω
ρκ(e+

1
2
|v + ω × (x− x0)|2)dV =

∫
∂Ω

((v + ω × (x − x0)) ·PN + q)dA

+
∫

Ω
ρκ((v + ω × (x − x0)) · b + r)dV.

(2.176)

After subtracting (2.165) from (2.176) and rearranging the integrands we obtain

d

dt

∫
Ω
ρκ(ω · (x − x0) × v +

1
2
|ω × (x − x0)|2)dV =

∫
∂Ω

ω · (x − x0)) × PNdA

+
∫

Ω
ρκω · (x − x0)) × bdV.

(2.177)

Let ω = εω1, where ε ∈ R and ω1 ∈ Vχ are constant. Substitute this in (2.177), divide the

whole equation by ε and let ε→ 0. Obtain

ω1 ·
d

dt

∫
Ω
ρκ(x−x0)×vdV = ω1 ·

∫
∂Ω

(x−x0))×PNdA+ω1 ·
∫

Ω
ρκ(x−x0))×bdV. (2.178)

The balance of angular momentum (2.151) is then recovered from (2.178) on using the

arbitrariness of ω1. Substitute the result into (2.177) to get

d

dt

∫
Ω
ρκ|ω × (x − x0)|2dV = 0, (2.179)

which can be rewritten as (since ω is constant)

ω · dIx0

dt
ω = 0, (2.180)
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where

Ix0 =
∫

Ω
ρκ(|x − x0|21 − (x− x0) ⊗ (x − x0))dV (2.181)

is the inertia tensor ([81], page 496), a quantity in rotational dynamics analogous to mass

in translational dynamics. Note that Ix0 is symmetric and thus can be diagonalized. Using

the arbitrariness of the constant ω, it then follows from (2.180) that

dIx0

dt
= 0, (2.182)

i.e. the inertia tensor (with respect to the rotating frame) is time independent.

2.2.3 Clausius-Duhem inequality

The state of a material point is a set of variables, assumed to characterize it

uniquely. The set of variables can be divided into two groups: one which define the state

of motion (velocities) and the other, which define the thermodynamic state of the material

point (stress, strain, temperature, specific energy, etc.). In this thesis, however, a state

would, in general, refer to the thermodynamic state (cf. [18], page 126). The state of body

B is the collection of states of the constituting material points. A material point is in the

equilibrium state if it remains in the same state under vanishing external influence.

During an irreversible process, the body evolves asymmetrically in time. In other

words, a process which takes the body (or a part of it) from state A to state B, is irreversible,

if on reversing the direction of time (i.e. reversing the sign of the time variable in the

equations which describe the process), it fails to take the body from state B to state A.

Therefore, irreversible processes can be characterized with a preferred direction in time.

The purpose of the second law of thermodynamics is to prescribe this preferred direction.
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Classically, the second law has been formulated in terms of equilibrium states and reversible

processes [142]. Its extension to non-equilibrium states and irreversible processes has been

a subject of much debate for more than a century now.4 Central to the discussion is the

question of the existence of quantities like absolute temperature, energy, and entropy outside

equilibrium. This problem was initially addressed by the Brussels school of thermodynamics

(De Donder, Prigogine, etc.) using the concept of local equilibrium [146, 87], under which

the notions of temperature, energy, and entropy, are assumed to make sense, if only locally.5

In the past fifty years many more attempts have been made to provide a rational theory of

irreversible thermodynamics. In particular, we note the work done by Truessdell, Coleman,

Serrin, Owen, and Šilhavý.6 Our assumption, therefore, of existence of a temperature field,

specific energy density, and specific entropy density, rests on rigorous grounds, valid for a

sufficiently wide class of irreversible processes. We will take up this discussion again, in the

context of plasticity, in Chapter 3.

To this end, we consider the statement of the second law of thermodynamics as:

the evolution proceeds so as to always bring a non-decreasing change in the internal entropy

of the body [146]. We assume the existence of specific entropy η ∈ R such that the total

entropy s (in the reference configuration) is given by

s =
∫

Ω
ρκηdV. (2.183)

4The situation is aptly described by Bridgman [18] in the opening sentence of his discussion on the

second law of thermodynamics: “There has been nearly as many formulations of the second law as there

have been discussions of it”.
5By a local region, Prigogine [146] meant a macroscopic region containing enough molecules for micro-

scopic fluctuations to be negligible. In our context, such local regions are represented by material points.
6Two excellent collection of articles outlining their (and related) ideas are [169] and [154].
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A change in the total entropy is due to the change in the external entropy (se) and the

change in the internal entropy (si). We write

ṡ = ṡe + ṡi. (2.184)

The change in the external entropy represents the change in entropy of the sub-body Ω as

a result of its interaction with the surroundings. For a diffusion-less process it is given by

[146, 154]

ṡe =
∫
∂Ω

q

θ
dA+

∫
Ω
ρκ
r

θ
dV, (2.185)

where θ > 0 is the absolute temperature. According to the second law

ṡi ≥ 0, (2.186)

with equality holding for a reversible process. This can be rewritten in the form of the

Clausius-Duhem inequality, using equations (2.183)-(2.185) as [156]

d

dt

∫
Ω
ρκηdV ≥

∫
∂Ω

q

θ
dA+

∫
Ω
ρκ
r

θ
dV. (2.187)

Use the transport theorem (2.113) and the divergence theorem (2.97) to obtain the local

forms

ρκη̇ ≥ −Div
q
θ

+ ρκ
r

θ
(2.188)

outside the singular surface and

−Uρκ�η� ≥ −
�q
θ

�
· Ns (2.189)

on the singular surface. The balance of mass and the relation q = −q · N have also been

used in obtaining these local inequalities. Use the balance of energy (2.168) to eliminate r
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from (2.188). Obtain

ρκθη̇ ≥ ρκė− P · Ḟ − θDiv
q
θ

+Divq. (2.190)

By the chain rule of differentiation

Div
q
θ

=
Div q
θ

− q · g
θ2

, (2.191)

with g = ∇θ. Inequality (2.190) can then be rewritten as

ρκθη̇ ≥ ρκė− P · Ḟ +
q · g
θ

. (2.192)

Similarly, we can eliminate �q/θ� ·Ns between (2.170) and (2.189). Use (2.46) to write

�q� = 〈θ〉
�q
θ

�
+ �θ�〈q

θ

〉
. (2.193)

Substituting this in (2.189) and eliminating �q� · Ns from (2.170) yields

−Uρκ〈θ〉�η� ≥ −U(ρκ�e� − 〈P〉 · �F�) + �θ�〈q
θ

〉
·Ns. (2.194)

Define specific free energy density as

f = e− θη. (2.195)

Therefore

ḟ = ė− θ̇η − θη̇ (2.196)

and

�f� = �e� − 〈θ〉�η� − �θ�〈η〉. (2.197)

It is then straightforward to rewrite equations (2.192)and (2.194) in terms of the free energy

density. Substitute ė and �e� from (2.196) and (2.197), respectively, into equations (2.192)

and (2.194) to obtain

ρκḟ − P · Ḟ + ρκηθ̇ +
q · g
θ

≤ 0 (2.198)
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and

U(ρκ�f� − 〈P〉 · �F�) + (Uρκ〈η〉 −
〈q
θ

〉
·Ns)�θ� ≥ 0. (2.199)

Use (2.46) to write

Ns · �FTP�Ns = �F�Ns · 〈P〉Ns + 〈F〉Ns · �P�Ns. (2.200)

Furthermore, compatibility (2.65) implies that Ns ⊗ �F�Ns = �FT � and therefore

�F�Ns · 〈P〉Ns = tr{〈P〉(Ns ⊗ �F�Ns)} = tr(〈P〉�FT �) = 〈P〉 · �F�. (2.201)

Also, using the balance of linear momentum at the surface (2.144), the compatibility con-

dition (2.74), and the identity (2.46), we get

〈F〉Ns · �P�Ns = −Uρκ〈F〉Ns · �v� = U2ρκ〈F〉Ns · �F�Ns =
1
2
U2ρκ�|FNs|2�. (2.202)

Substituting (2.202) and (2.201) into (2.200) we obtain

Ns · �FTP�Ns = 〈P〉 · �F� +
1
2
U2ρκ�|FNs|2�. (2.203)

Thus (2.199) can be rewritten as

U

(
Ns · �E�Ns +

1
2
U2ρκ�|FNs|2�

)
+
(
Uρκ〈η〉 −

〈q
θ

〉
·Ns

) �θ� ≥ 0, (2.204)

where

E = ρκf1− FTP (2.205)

is the Eshelby tensor.7

7Named after J. D. Eshelby, whose work has had great impact in many areas of defect mechanics. A

collection of all his published work is now available [116].
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Chapter 3

A Continuum Theory of Plastic

Deformation 1

In this chapter we lay down a thermodynamically consistent theory of plastic

evolution in solids. By plastic evolution (or plastic flow) we understand an irreversible

deformation process, which brings permanent structural changes in a solid. In our treatment

we assume such permanent changes to be brought either via motion of dislocations [38] (e.g.

slip) or as a result of a moving interface (e.g. twin boundaries [36], surface dislocations [13]).

In the present (and the following) chapter, we will mainly concentrate on plastic deformation

in the bulk, away from the interface. Our discussion on the thermodynamics of plastic flow,

will however be general, except that we include an interface energy term only in Chapter 6.

That dislocations are carriers of plasticity, at least in crystals, was reported in 1934

in the independent works of Orowan [136], Polanyi [144], and Taylor [162]. The paper by
1A few sections of this chapter have appeared in a recent research article [66].
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Taylor, in addition, pioneered the study of work hardening in crystals (see the first remark

in Section 3.8). These works emphasized the microscopic nature of plastic flow, which unlike

(conventional) elasticity is a consequence of microstructural rearrangements and therefore

always inhomogeneous, at least locally. A homogeneous plastic flow can be understood only

as an average over a macroscopic region. The phenomenological theory of plasticity, on the

other hand, developed independently as a subject of macroscopic observations (and predic-

tions) of plastic flow. Such a theory has of course been motivated by imminent engineering

challenges and experimental limitations. It’s development in metals can be traced back to

as far as 1864, when Tresca published his studies of a yield criteria for initiating plastic

flow. Significant progress in the subject was subsequently made by Saint-Venant, Lévy, von

Mises, Hencky, Prandtl, Reuss, Nadai, Schmidt and Hill (for a detailed historical outline,

see [75]). The study of plastic flow as a thermodynamically irreversible process appears to

have begun in the works of Eckart [44] and Bridgman [20]. This resulted in an attempt to

precisely understand the evolution of plastic flow in a sufficiently general thermodynamic

environment. As we shall see below, thermodynamics provides us with a natural starting

point for the development of the theory. By 1950, plasticity had achieved a status of one

of the most challenging problems in condensed matter physics, continuum mechanics and

thermodynamics. The theory, as developed in the next two chapters, combines various

ideas from microscopic, macroscopic and as well as thermodynamic viewpoints to present a

coherent picture of plastic flow.

The modern literature on metal plasticity emphasizes a multiplicative decomposi-

tion of the deformation gradient into elastic and plastic factors in which the former measures
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distortion relative to some unstressed or relaxed configuration of a local neighborhood of a

material point. The definition of the elastic deformation in terms of information about the

stress immediately implies that the former is inherently both constitutive and kinematic

in nature. This contrasts with conventional ideas in continuum theory according to which

kinematical and dynamical variables are viewed as being conceptually independent of a

constitutive framework. The constitutive/geometric nature of the constituent elastic and

plastic deformations affords considerable latitude in resolving ambiguities about their prop-

erties that are unavoidable in a purely geometric interpretation. We will extract definitive

statements about these variables from specific constitutive hypotheses and thus clarify the

structure of initial-boundary-value problems for the motion of a continuum in the presence

of plasticity.

The basis of the idea of a local stress-free state, and an associated manifold of

intermediate configurations, is examined in Section 3.1. This is grounded in the notion

of an equilibrium unloading process together with appropriate constitutive hypotheses on

the elastic response. In Section 3.2 the constituent elastic and plastic deformations are

discussed. Stokes’ theorem is used to describe the concepts of incompatibility and the as-

sociated dislocation density. The notion of geometrically necessary and statistically stored

dislocation densities is also clarified. In Section 3.3, restrictions are obtained for a con-

stitutive function to be independent of compatible changes in the reference configuration.

The basis for such an invariance is the fact that our choice of a reference configuration is

arbitrary and therefore should not have any influence on the material response. The basic

thermodynamic framework is discussed in Section 3.4, where the elasticity of the body is
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described and the dissipation associated with the plastic evolution is expressed in terms

of Eshelby’s tensor. Of central importance is the assumption introduced there of strong

dissipation, according to which plastic evolution is inherently dissipative. This imposes a

constraint on the kinds of evolution that qualify as plasticity, constituting, in effect, part

of the definition of plastic flow. It is used, in Section 3.5, to derive unambiguous transfor-

mation rules for the elastic and plastic deformations under superposed rigid-body motions.

Material symmetry restrictions on the elastic response and on constitutive equations for

yield and plastic flow are discussed in Sections 3.6 and 3.7, following ideas put forth in [168]

and [45]. In Section 3.7, the latitude afforded by the constitutive character of the plastic

deformation is used to dispose of a long-standing controversy surrounding plastic spin. Fi-

nally, in section 3.8, we provide some remarks on work hardening, size effects, symmetry

groups and Bauschinger effect.

We use the notation from Chapter 2 and denote κr ≡ κ(B) and κt ≡ χ(B) as the

placements of the body B in a (global) fixed reference configuration and a (global) spatial

configuration, respectively. As in Chapter 2, a piecewise continuously differentiable map is

assumed to relate these two global configurations.

3.1 Unloading elastic bodies to zero stress

A central tenet of the considered model is the idea that stress is purely elastic in

origin, the associated deformation being measured from a stress-free local configuration. It
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is therefore of no small importance to justify this assumption.2 To explore this issue we

appeal to the mean–stress theorem, according to which the mean Cauchy stress in a body

is zero if it is in equilibrium and subjected to vanishing surface tractions and body forces.3

Thus, the mean stress for some ω ⊂ κt (such that ω ∩ st = ∅)

T̄(t) = (vol(ω))−1
∫
ω
T(x, t)dv (3.1)

vanishes, where T is the Cauchy stress, vol(ω) is the volume of a part ω of the configuration

κt. This theorem is valid for stress fields that are differentiable and hence continuous in ω.

The mean-value theorem is then applicable and guarantees the existence of x̄ ∈ ω such that

T(x̄, t) = T̄ (= 0). Let

d(κt) = sup
x,y∈ω

|x− y| (3.2)

be the diameter of ω. For d → 0 we have |x − x̄| → 0 for all x in ω and the continuity of

T(x, t) furnishes T(x, t) → T(x̄, t) = 0. Thus, if the hypotheses of the mean-stress theorem

are satisfied, then the local stress can be brought arbitrarily close to zero by making the

diameter of the body correspondingly small against any length scale at hand. This result is

of course independent of material constitution and furnishes theoretical justification for the

measurement of residual stress by cutting out a small part of a body and observing its change

in shape. Of course, this argument is not valid at the surface of singularity st, where the
2The arguments in this section are purely mechanical in nature, and therefore, for convenience, we

suppress the dependence of fields on temperature.
3The mean Cauchy stress of a body in equilibrium can be calculated as: ([32], pages 105-106)

T̄(t) =
1

2
(vol(ω))−1

{∫
ω

ρ(x⊗ b + b ⊗ x)dv +

∫
∂ω

ρ(x⊗ t + t ⊗ x)da

}
.
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Cauchy stress might suffer a discontinuity. However, such singular surfaces constitute a set

of measure zero and therefore our argument remains valid almost everywhere in κt. We can

in addition have a surface stress arising, for example, from a surface energy (as considered

in Chapter 6). In that case, an appropriate argument can be made, for neighborhoods in the

immediate vicinity of st, to relax the surface stress in addition to the bulk Cauchy stress.

In the present section, we restrict our attention to the case when st = ∅, and postpone the

discussion related of the interface until Chapters 5 and 6.

For elastic bodies the Cauchy stress is given in terms of the deformation from a

configuration κi of B by (see Section 3.4)

JHT = WHHT , (3.3)

where H is the local map from the tangent space of κi to the tangent space V of κt (at a

material point), JH(> 0) is the local ratio of volume in κt to that in κi, and W (H) is the

strain energy per unit volume of κi. Here and henceforth we use bold subscripts to denote

gradients with respect to tensors.4 The function W (H) satisfies the requirement of frame

invariance, in the sense that W (H) = W (QH) for any rotation Q (see the discussion given

in Section 3.5), if and only if it is determined by the right Cauchy-Green deformation tensor

CH = HTH; thus, W (H) = Ŵ (CH) and the relation WH = 2H(SymŴCH
) furnishes

JHT = 2F
(
SymŴCH

)
HT . (3.4)

4The gradient of a scalar differentiable function G : Lin → R is the tensor GA defined by G(A + B) =

G(A)+GA ·B+o(|B|), where {A,B} ∈ Lin. Moreover, if H is a differentiable function H : Sym → R, then

its gradient is defined as the symmetric tensor Sym(HC), where C ∈ Sym. To evaluate Sym(HC), consider

an extension of H(C) from Sym to Lin. That is, define H̄(C) for C ∈ Lin such that H̄(C) = H(C) when

C ∈ Sym. The tensor tensor Sym(HC) is then given by 1
2

(
(H̄C) + (H̄C)T

)
.
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The Cauchy stress vanishes if and only if Ŵ is stationary. Since κi is stress free,

Ŵ is stationary at CH = 1. We assume that CH = 1 is the unique stationary point. This is

assured by adopting the constitutive assumption that the strain-energy function is a strictly

convex function of CH with a minimum at CH = 1. Thus, we assume that

Ŵ (CH2) − Ŵ (CH1) > SymŴCH
(CH1) · (CH2 − CH1); CH2 �= CH1,

with Ŵ (1) = 0 and SymŴCH
(1) = 0. (3.5)

This in turn guarantees that stress relaxation is energetically optimal and reflects the phe-

nomenology typical of metals in the elastic range provided that

|CH − 1| < ε, (3.6)

where ε depends on the material at hand.

To elaborate, imagine cutting κt into an arbitrarily large number of sub-bodies of

arbitrarily small diameter and relaxing the loads thereon. The mean-stress theorem together

with our constitutive hypotheses imply that equilibrium states of these sub-bodies are stress-

free, minimum-energy configurations in a Euclidean point space E provided, as we assume

here, that no energy is needed to generate the new surfaces created by this process. If these

relaxed configurations cannot be made congruent in the absence of strain, then they do not

fit together to form a connected whole in Euclidean space, and the material is then said to

be dislocated. This then implies the non-existence of a global differentiable map from κt to

the disjoint relaxed sub-bodies in E . We thus relate the unstressed manifold to a smooth

manifold M which has a non-Euclidean structure (for more on smooth manifolds see [104]).

The manifold M is therefore the union of local configurations at each X ∈ B. The local
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configuration κi at X ∈ B can be identified with the tangent space TM(p) at p = κi(X).

Thus, H locally maps κi at p = κi(X) ∈ M to V at x = χ(X) ∈ κt and HTH is the strain

at p required to make the collection of stress-free sub-bodies in E fit together in κt. The field

H does not then satisfy the usual compatibility condition which follows from the existence

of a global differentiable map. The incompatibility is typically identified with a distribution

of Burgers vectors via an analogy with the geometry of defective crystal lattices. This idea

is the basis of the elegant differential-geometric theory of self-stressed bodies containing

continuously distributed dislocations [44, 88, 14, 93, 129, 172, 99, 164, 90, 83]. Finally, note

that both M and κt might evolve with time, unlike κr which, by our choice, is fixed.

We now investigate a possible latitude offered by our constitutive assumptions

on the nature of κi. Consider two relaxed configurations κi1 and κi2 . Let H1 and H2,

respectively, be the maps from the tangent space of these configurations to the translation

space V of κt at a spatial point x ∈ κt. Thus

H1 = H2A, (3.7)

where A, with JA > 0, is the map from the tangent space of κi1 to the tangent space of κi2

(or from κi1 to κi2 , since these local configurations are identified with their tangent spaces).

We wish to characterize any non-uniqueness in the local unloading process and so require

that H1 and H2 generate the same Cauchy stress in κt:

(W1)H1(H
∗
1)

−1 = T = (W2)H2(H
∗
2)

−1, (3.8)

where W1(H1) and W2(H2), respectively, are the strain-energy functions based on κi1 and

κi2 . These are related, modulo a constant, by

W1(H1) = JAW2(H2). (3.9)
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To see this consider a parameterized path of deformations and let a superposed dot denote

the derivative with respect to the parameter. Using Ẇ = WH · Ḣ = TH∗ · Ḣ with A fixed,

we then obtain

Ẇ1(H1) = TH∗
1 · Ḣ1 = TH∗

2A
∗ · Ḣ2A = TH∗

2A
∗AT · Ḣ2 = JAẆ2(H2). (3.10)

Integrating this with respect to the parameter we recover (3.9), modulo a constant.

The Cauchy stress vanishes at x if and only if

Sym{(Ŵ1)CH1
} = 0 and Sym{(Ŵ2)CH2

} = 0, (3.11)

where

Ŵ1(CH1) = JAŴ2(CH2) and CH1 = ATCH2A. (3.12)

Our constitutive hypotheses, applied to both strain-energy functions, then imply that

CH1 = CH2 = 1 and hence that ATA = 1. Thus,

A ∈ Orth+. (3.13)

Substitution of (3.7) and (3.13) in (3.9) then yields

W1(H1) = W2(H1AT ). (3.14)

We will assume our body to be materially uniform, i.e. assume that material at

any two points in the body is same (see Remark 3.8.3 at the end of this chapter for a pre-

cise definition of material uniformity). In particular, the assumption of material uniformity

ensures that W1 is not dependent explicitly on X. Therefore, A has to be uniform, since

otherwise W1 will have a non-uniform character by virtue of (3.14). The unloading pro-

cess therefore determines a local relaxed configuration modulo orientation and translation.
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This degree of freedom is seen to follow directly from our constitutive hypotheses and the

consequent interplay between deformation and stress in the definition of unloading.

Our assumption of a unique energy well in the domain of Ŵ excludes certain models

of crystal elasticity proposed by Ericksen [49] and Hill [74]. These models are motivated

by the observation that there exist unimodular non-orthogonal transformations of a regular

cubic lattice, say, which generate lattices that are geometric copies of each other. If W1(H)

and W2(H) are the strain-energy functions for two lattices related in this manner, then it is

natural to assume that they respond identically to a given deformation and thus that they

satisfy the symmetry condition

W1(H) = W2(H). (3.15)

Our view (see also [143]) is that symmetries of this kind do not fit naturally in the framework

of Noll’s simple elastic solid [128]. For, if G is an element of the symmetry set of the first

lattice, then by Noll’s Rule KGK−1 belongs to the symmetry set of the second, where K

is the gradient of the deformation that carries the first lattice to the second. We then have

W1(H) = W1(HG) and W2(F) = W2(HKGK−1), (3.16)

which imply that G = K and G = K−1 are symmetry transformations for both (hence all)

lattices so related. Thus,

W (H) = W (HK) = W (HK−1), (3.17)

where W stands for W1 or W2. Let ei (i ∈ {1, 2, 3}) be the axes of the first cubic lattice,

normalized by the (uniform) lattice spacing and aligned with the edges of a typical cube.

Then a transformation of the required type is furnished by the simple shear K = 1+γe1⊗e2,
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where γ is an integral multiple (positive or negative) of the lattice spacing. The inverse of K

is a simple shear of amount −γ and also furnishes a map of the lattice to itself. The presence

of such K and its inverse in the symmetry set is thus to be expected on physical grounds.

In turn, this implies that KTCHK belongs to the domain of the strain-energy function

Ŵ whenever CH does, for any amount of shear equal to an integral multiple (positive

or negative) of the lattice spacing. Elastic response of this kind may be understood by

regarding the bonds between atoms at the corners of a lattice cell as nonlinear springs. This

analogy suggests that Noll’s simple elastic material does not furnish an acceptable model

of the physics at hand as arbitrarily large spring extensions would have to be admitted,

whereas interatomic bonds presumably fail to persist when extended beyond finite limits.

Here, we discard the elastic interpretation and instead adopt the mechanism of

plasticity to account for the underlying phenomenon. Thus, we re-interpret (3.15) as a state-

ment to the effect that the elastic response of the lattice to a deformation H is unaffected

by plastic slip K (or K−1). We retain Noll’s view insofar as a superposed elastic distortion

H is concerned. Variations in H at fixed K generate variations in stress in accordance

with the elastic properties of the crystal, provided that such variations engender non-zero

strains belonging to the domain of the elastic constitutive function. Thus, we introduce an

elastic energy and confine symmetry transformations to subgroups of the orthogonal group,

in accordance with Noll’s original distinction between simple solids and simple fluids [128].

Such transformations preserve inequality (3.6) and the energy-minimizing value, 1, of CH .

To model the invariance embodied in (3.15), it is then necessary to extend the constitutive

structure beyond Noll’s simple elastic solid to encompass the evolution of K. This of course
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is precisely the aim of Plasticity Theory. The shortcomings of Noll’s simple materials as

models of plasticity are discussed further in [130] and [147].

The connection between (3.17) and plasticity seems to be what Ball and James

[8] have in mind in their discussion of lattice symmetry. Specifically, their view is that

the domain of the strain-energy function should be limited in accordance with a restriction

like (3.6) above so as to exclude from the symmetry group of the elastic response function

the possibly large lattice shears typically associated with plasticity. The adjustment means

that if CH belongs to the domain of Ŵ then KTCHK does not, if the amount of shear is

sufficiently large. Instead, the latter would necessarily be associated with inelastic behavior.

The restriction advocated by Ball and James excludes such shears from the theory of the

elastic response of crystals. To effect such exclusion it is sufficient to assume (3.6) and to

restrict the symmetry set to a subset of the orthogonal group.

3.2 Deformation and incompatibility

Let F be the gradient of the deformation from κr to κt (cf. (2.21)). Let K be

the local map from tangent space κi to V at X ∈ κr. We assume JK to be positive. Thus,

H and K−1 are the elastic and plastic deformations, respectively. Unlike F, they are not,

in general, gradients of position fields. This issue is associated with the fact that position

fields do not exist in M due to its non-Euclidean character. We have5 [91, 129, 103, 47]

H = FK. (3.18)
5A different notation, with Fe in place of H and Fp in place of K−1, is usually found in the literature.

We follow the notations introduced by Noll [129] and Epstein [47].
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3.2.1 Dislocation density

The properties of the manifold M imply that CurlK−1 need not vanish. Let

C ⊂ κr be a closed material curve, which bounds a surface AC ⊂ κr (for every C there are

infinitely many AC), with an associated unit normal N. Define a vector B ∈ TM(p) by

B(C, t) .=
∮
C

K−1dX =
∫
AC

(CurlK−1)TNdA, (3.19)

where the right-most equality follows if the field K−1 is smooth (cf. (2.100)). This is referred

to as the Burgers vector associated with C in recognition of its interpretation in dislocation

theory. Thus, the existence of a non-zero Burgers vector is due to the incompatibility of

the plastic deformation or, equivalently, to the non-existence of a position field in M with

(referential) gradient K−1. Using the (smooth) elastic deformation instead, we define vector

b ∈ TM(p) by

b(c, t) .=
∮
c
H−1dx =

∫
Ac

(curlH−1)Tnda, (3.20)

where c is the image of C ⊂ κr in κt, and Ac ⊂ κt is any surface bounded by c with

unit-normal field n(x, t). Recall from the definition of F, that dx = FdX. Substitute this

in (3.20)1 and use (3.18) and (3.19)1 to conclude

b(c, t) = B(C, t), (3.21)

a result which is valid even for piecewise smooth fields (considered in Section 5.1). Then

H−1(x, t) is incompatible if and only if K−1(X, t) is incompatible. The tensors

αr = CurlK−1 and αt = curlH−1 (3.22)

thus provide measures of the incompatibility per unit area of a material surface in κr and

κt, respectively. Accordingly, we refer to these as the referential and spatial dislocation
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densities.

In [30] an associated tensor α called the true dislocation density6 is introduced.

This satisfies

JKK−1 CurlK−1 = α = JHH−1 curlH−1, (3.23)

wherein the outer equality may be shown to hold by first using Nanson’s formula nda =

F∗NdA in (3.20)2 and then using equations (2.25), (3.18), (3.21) and (3.19)2 with the

localization theorem for surfaces. The name is justified by the remarkable fact that α is

invariant under arbitrary differentiable (i.e. compatible) variations of the configurations κr

and κt. To see this we consider a variation of κr from κr1 to κr2 defined by the one-to-one

map X2 = λ(X1), with invertible gradient A = ∇1λ, where ∇1 is the gradient with respect

to X1. Using obvious notation we have K−1
1 dX1 = K−1

2 dX2 and therefore

∫
AC2

(Curl2 K−1
2 )TN2dA2 =

∮
C2

K−1
2 dX2 =

∮
C1

K−1
1 dX1 =

∫
AC1

(Curl1 K−1
1 )TN1dA1,

(3.24)

where C2 = λ(C1), provided that

K2 = AK1. (3.25)

Nanson’s formula in the form N2dA2 = A∗N1dA1 and the arbitrariness of AC1 then combine

to give [30]

JA Curl2 K−1
2 = ACurl1 K−1

1 , (3.26)

which yields the invariance of α by virtue of (3.23)1 and JK1JA = JK2 . Further, (3.25)

and (3.26) may be used with an obvious adjustment in notation to establish the outer

equation in (3.23) directly. The same reasoning based on the second equality of (3.23)
6Teodosiu [164], however, refers to αt as the true dislocation density.
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proves the invariance of α under arbitrary one-to-one differentiable variations of κt. In effect

α furnishes a measure of dislocation in the body per se in the sense that it is insensitive

to the placement of the body in any configuration in E . It is thus no coincidence that α

is associated with an intrinsic property of the material manifold M, namely the torsion of

the affine connection introduced by K−1 and ∇K−1 (or H−1 and gradH−1) [129, 172].

3.2.2 Single dislocations

To obtain the representation of dislocation density and plastic distortion for a

single dislocation, we follow Kunin [94, 95], and start by introducing a few generalized

functions. Let L ⊂ κr be a material curve and let φ(X) be a smooth scalar, vector or tensor

field with bounded support on κr. The generalized function δ(L) is then defined by

∫
κr

δ(L)φ(X)dV =
∫
L
φ(XL)dL, (3.27)

where XL ∈ L. It then follows that

δ(L) =
∫
L
δ(X − XL)dL, (3.28)

where δ(X − XL) is the usual Dirac delta distribution. Equation (3.28) can be verified by

substituting it into (3.27). We also introduce a surface generalized function. Let S ⊂ κr be

a material surface. Define

δ(S) =
∫
S
δ(X −XS)dS, (3.29)

with XS ∈ S. This satisfies

∫
κr

δ(S)φ(X)dV =
∫
S
φ(XS)dS. (3.30)
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We can similarly define two vector valued generalized functions by

∫
κr

δ(L)φ(X)dV =
∫
L
φ(XL)dL (3.31)

and ∫
κr

δ(S)φ(X)dV =
∫
S
φ(XS)dS, (3.32)

where dL = tdL and dS = NdS, with t being the unit tangent vector to L, and N, the unit

normal field associated with S. Let S be a surface bounded with curve L. Then [95]

Curl δ(S) = δ(L) (3.33)

and therefore for a closed L

Div δ(L) = 0. (3.34)

Furthermore, note that, if L intersects S orthogonally at one point, say X0 ∈ κr, then we

have7

δ(L) · δ(S) = δ(X − X0). (3.35)

Corresponding to a dislocation line (denoted by material curve L) with unit tangent vector

t ∈ V and Burgers vector b, the dislocation density field αr should then be such that for

any closed curve C around L, the resulting Burgers vector (from equation (3.19)) should be

a constant, i.e. b. The following dislocation density distribution satisfies this requirement

[89, 94, 95, 96]

αr = δ(L) ⊗ b. (3.36)
7Orthogonality requires that the tangent vector to the line L is parallel to the normal to the surface S at

point X0 = L∩S. The dot product of two generalized functions in (3.35) is well defined only if orthogonality

holds at X0.
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Indeed, on substituting (3.36) into the surface integral in (3.19), we obtain

∫
AC

αT
r NdA =

∫
κr

αT
r δ(AC)dV =

∫
κr

(b⊗ δ(L))δ(AC)dV = b, (3.37)

where in the first equality the definition of surface generalized function (for AC) has been

used. In writing (3.37)2 we have implicitly assumed the orthogonality of L and AC at their

point of intersection, say X0. The final relation (3.37)3 is then a direct consequence of

(3.35). Using (3.34), it is easy to check that for αr defined in (3.36)

Div αT
r = 0. (3.38)

We can similarly obtain a formula for K−1, which should be such that its integral

over any material curve (say C) which encloses the dislocation line L, must equal the

constant b. The following expression satisfies this requirement (cf. equation (27.8) in [96])

K−1 = 1 + (b⊗ δ(S)), (3.39)

where S is any surface bounded by L, such that it meets C orthogonally. This expression for

K−1 is compatible with that of αr in (3.36), in the sense that Curl K−1 = αr. This follows

at once from (3.33) and (2.20). Note that, unlike the representation (3.36), the expression

for K−1 is non-unique. This is due to the fact that there might be infinite number of surfaces

S which are bounded by L and intersect C orthogonally. Any combination of expressions of

the type (3.39) for each of these surfaces will give us a valid representation for K−1 (with

obvious adjustments for b).
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3.2.3 Geometrically necessary and statistically stored dislocations

Recall that plastic distortion K maps a local neighborhood in the relaxed configu-

ration κi to a local neighborhood in the fixed reference configuration. The size of the local

neighborhood (as implied from our discussion in Section 3.1) is such that every dislocation

can be distinctly identified. Since otherwise, there would still remain a distribution of in-

ternal stresses, if only locally.8 On the other hand, plastic distortion can be considered in

an average sense, i.e. averaged over a representative volume element (RVE). A need for

such averaging arises, for example, in cases where due to limitations of the experimental

technique, measurements are restricted by the scale of the observation. Furthermore, in

many problems, we are interested only in a macroscopic response. The classical theory of

plasticity itself is a macroscopic theory, with the notion of plastic strain understood only in

an average sense (cf. Chapter 2 in [4]).

As a result of averaging, each RVE has an associated plastic distortion. The dis-

tribution, over the body, of (averaged) dislocation density is then, a result of the incompat-

ibility between different RVE’s induced by an inhomogeneous (averaged) plastic distortion

field, and is termed as geometrically necessary dislocation density (GND). Of course, as

a result of averaging, much information about the microstructure is lost. To characterize

this lost information, another measure called statistically stored dislocation density (SSD)

is introduced. This name derives from the fact that SSD, unlike GND, is not geometric in

nature, but is purely a consequence of random interactions among dislocations in the RVE

[6]. Therefore, given a plastic distortion field in the body, one can obtain the resultant
8At this point, the term local has no scale attached to it. Exploiting the nature of the continuum, it can

be arbitrarily small in diameter.
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GND via a formula of the type (3.22)1. However, to obtain any information regarding SSD,

one has to specify (or presume) additional information about the microstructure and the

averaging method used. We emphasize that the concepts of GND and SSD are intrinsic

to selecting a preferred (length) scale of plastic deformation in the theory and their nature

depends not only on the true microstructure of the body, but also on the averaging method.

For example, if we consider the whole body as our RVE, the average plastic dis-

tortion field will be homogeneous and there would be no net GND, but there will be a

non zero distribution of SSD. On the other hand, if we choose the dimensions of the RVE

such that each individual dislocation is identifiable, then GND will be the total dislocation

density and SSD would be zero. The notion of an average dislocation density was first

introduced by Nye [134] who expressed the dislocation density in terms of the number of

dislocation lines crossing a unit area (see also [90]). Later, Ashby [6]9 provided a physical

basis for GND and SSD and demonstrated their emergence in plastically inhomogeneous

deformations. It was however, not until the paper by Arsenlis and Parks [5], that a precise

distinction between GND and SSD was made. They considered a RVE (of volume V) and

obtained the associated average dislocation density (calling it Nye’s tensor) as a line integral

of all the dislocations within the RVE.

We will now use the distributions for single dislocations (from previous subsection)

and present the ideas of Arsenlis and Parks [5] in a different light. Consider a simple volume

average of type – “a” of dislocations, with each dislocation line being treated as a separate
9The terms GND and SSD are coined in this paper.
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entity, represented by the dislocation density as in (3.36). Define (cf. [92])

ᾱr =
1
V

∫
V

a∑
ξ=1

α(ξ)
r dV, (3.40)

where

α(ξ)
r = δ(L(ξ)) ⊗ b(ξ). (3.41)

Substituting this back into (3.40) we obtain

ᾱr =
1
V

a∑
ξ=1

∫
L(ξ)

dL(ξ) ⊗ b(ξ). (3.42)

Let r(ξ) =
∫
L(ξ) dL(ξ), l̄(ξ) = |r(ξ)|, and t̄(ξ) = r(ξ)

|r(ξ)| . Equation (3.42) can then be written as

(cf. equation (6) in [5])

ᾱr =
a∑
ξ=1

ρ
(ξ)
GN t̄(ξ) ⊗ b(ξ), (3.43)

where

ρ
(ξ)
GN =

l̄(ξ)

V
(3.44)

is the geometric dislocation length (of dislocation ξ) per unit volume of the representative

volume element. It is of course different from the total dislocation line length, the difference

being the statistical dislocation length. Similarly, define the volume average for the plastic

distortion as

K̄−1 =
1
V

∫
V

a∑
ξ=1

K−1(ξ)dV, (3.45)

where from (3.39)

K−1(ξ) = 1 + (b(ξ) ⊗ δ(S(ξ))). (3.46)

If we restrict each of the K−1(ξ) to a specific plane,10 with (fixed) unit normal N(ξ) and an
10Thus restricting slip to a few planes. In crystal plasticity, these planes are the crystallographic planes

on which slip occurs.
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area (inside the RVE) A(ξ), then equation (3.45) takes the form

K̄−1 = 1 +
a∑
ξ=1

γ(ξ)s(ξ) ⊗ N(ξ), (3.47)

where

γ(ξ) =
A(ξ)

V
|b(ξ)|, and s(ξ) =

b(ξ)

|b(ξ)|
(3.48)

denote net plastic slip and the unit slip direction, respectively. The geometric line length

ρ
(ξ)
GN can be written in terms of the gradients of γ(ξ) as

ρ
(ξ)
GN =

√(
ρ

(ξ)
GN(e)

)2
+
(
ρ

(ξ)
GN(s)

)2
, (3.49)

where

ρ
(ξ)
GN(e)|b

(ξ)| = −∇γ(ξ) · s(ξ), and ρ(ξ)
GN(s)|b

(ξ)| = ∇γ(ξ) · m(ξ) (3.50)

are the edge and the screw components of the geometric dislocation length, respectively.

In (3.50)2, m(ξ) = s(ξ) × N(ξ). These results can be obtained on using (3.22)1, (3.47) and

(3.43). The above illustration clearly demonstrates the relationship of macroscopic plastic

distortion to local plastic distortion.

In constructing continuum plasticity theories, we usually consider (implicitly) the

plastic distortion in a macroscopic sense. The resulting dislocation distribution is then

GND. Additional parameters of state are therefore required to characterize SSD, whose

importance in plastic flow had been demonstrated in many works [123]. We, however,

will neglect any contributions from SSD in our constitutive relations, and thus identify

GND with the net dislocation density field. In doing so, we are assuming that the role of

dislocations in plastic flow is completely characterized by GND. For an implication of this

assumption on hardening, see the first remark in Section 3.8.
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3.3 Invariance under compatible changes in the reference

configuration

Before we move on to a discussion on the thermodynamics of plastic flow, we

state and prove a result of central importance in our formulation. This result is concerned

with obtaining restrictions on constitutive equations due to their invariance with respect to

compatible changes in the reference configuration. We call two configurations compatible,

if their point spaces are related by a continuously differentiable map.

Any constitutive function should be invariant with respect to arbitrary changes

in the reference configuration, unless it is defined explicitly with respect to a particular

reference configuration.11 This results from the fact that our selection of a reference config-

uration is purely a matter of convenience and the response of the body should be invariant

to our choice of a reference configuration. However the reference configurations are re-

stricted to be subsets of the Euclidean point space. Therefore they should be related only

through a compatible mapping. In this section we will restrict our attention to constitutive

functions defined away from the singular surface. The representation for functions defined

on a singular surface will be obtained later in Chapter 6.

Let us denote a (time independent) compatible change in the reference configu-

ration κr1 by a smooth and invertible mapping λ : κr1 → κr2 , where κr2 denotes the new

reference configuration (cf. the discussion following (3.23)). Therefore X2 = λ(X1) where
11An example of this is furnished by the standard form of the strain energy density in the classical theories

of elasticity, i.e. W (F). This strain energy represents the material response for distortions with respect to

a reference configuration.
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X1 ∈ κr1 and X2 ∈ κr2 . Let the gradient associated with this mapping be A = ∇1λ. Here

∇1 and ∇2 represent the gradient with respect to X1 and X2, respectively. The interme-

diate and the current configurations are invariant under such a transformation. It is then

straightforward to obtain the following:

K2 = AK1, H2 = H1, and F2 = F1A−1 (3.51)

A scalar function12 Ψ = Ψ̂(H1,K−1
1 , Ḣ1,

˙K−1
1 ,∇1K−1

1 , θ1,g1), where g1 = ∇1θ1

and ˙K−1
1 denotes the time derivative of K−1, is invariant under the change in reference

configuration to κr2 if

Ψ̂(H1,K−1
1 , Ḣ1,

˙K−1
1 ,∇1K−1

1 , θ1,g1) = Ψ̂(H2,K−1
2 , Ḣ2,

˙K−1
2 ,∇2K−1

2 , θ2,g2). (3.52)

The choice of arguments for the function Ψ is motivated partially by our discussion on the

thermodynamics of plastic flow (see next section), where we assume {F,H, θ} to be the set

of state variables. In the set of state variables, F can be replaced by HK−1 (cf. (3.18)).

The inclusion of rate terms and the temperature gradient term g is motivated from the

dissipation inequality (3.75) (we can also include θ̇ in the list of arguments, without any

loss of generality). The term ∇1K−1 is included since, as we shall see below, the dependence

of Ψ on K−1 (in an isothermal case) can only be through a rate term of the form K−1K̇ or

through α. If ∇1K−1 would have been excluded from the list of variables, the dependence

would have been only through K−1K̇. This would in turn imply that the flow rule for the

evolution of plastic distortion (see Section 3.7) would be independent of K (or its gradient)
12Similar considerations apply to vector and tensor valued functions, which belong to the intermediate

configuration, i.e. vectors and tensors defined as, say, c ∈ κi and C : κi → κi, respectively.
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and therefore would fail to capture effects such as hardening which depend on the state of

plasticity in the body.

It follows from (3.51)1,2 and λ̇ = 0 that

˙K−1
2 = ˙K−1

1 A−1 and Ḣ2 = Ḣ1. (3.53)

To relate the gradients, use dK−1
2 = (∇2K−1

2 )dX2 = (∇2K−1
2 )AdX1 to obtain

∇2K−1
2 = (∇1K−1

2 )A−1. (3.54)

Expressing this in terms of components we write,

(∇2K−1
2 )ijl = A−1

kl K
−1
2ij,k

= A−1
kl A

−1
mjK

−1
1im,k +A−1

kl A
−1
mj,kK

−1
1im, (3.55)

where in (3.55)2 the relation K−1
2 = K−1

1 A−1 has been used. Furthermore

θ2 = θ1, and g2 = g1A−1, (3.56)

where to obtain (3.56)2 use dθ = ∇2θdX2 = ∇1θdX1 and dX2 = AdX1.

To obtain a necessary condition choose A−1 such that A−1
kl (X0) = δkl but with

∇1A−1(X0) �= 0, where X0 ∈ κr1 is the point at which equation (3.52) is evaluated. Use

this choice of A in (3.51)1,2, (3.53), (3.55)2, and (3.56) and consequently obtain from (3.52)

Ψ̂(H1,K−1
1 , Ḣ1,

˙K−1
1 ,∇1K−1

1 , θ1,g1) = Ψ̂(H1,K−1
1 , Ḣ1,

˙K−1
1 ,∇1K−1

1 + K−1
1 ∇1A−1, θ1,g1)

(3.57)

at some X0 ∈ κr1 . Furthermore, obtain from (3.55)2 (at X0)

Sym
jl

(∇2K−1
2 )ijl(X0) = Sym

jl
(K−1

1ij,l) +A−1
mj,lP

−1
1im, (3.58)
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where Sym
jl

Bijl = 1
2(Bijl+Bilj) for some arbitrary third order tensor B. In obtaining (3.58),

we have also made use of the fact that A−1
ml is a gradient. The skew part, on the other hand

is given by (at X0)

Skw
jl

(∇2K−1
2 )ijl = Skw

jl
(K−1

1ij,l), (3.59)

where Skw
jl
Bijl = 1

2(Bijl − Bilj). Therefore, the symmetric part Sym
jl

(∇2K−1
2 )ijl is the

only term, among all the arguments of function Ψ, which depends on the transformation

mapping. Consequently it can be changed while other arguments are kept fixed. Therefore

Ψ cannot depend on this term. Equation (3.57) then reduces to

Ψ̂(H1,K−1
1 , Ḣ1,

˙K−1
1 ,∇1K−1

1 , θ1,g1) = Ψ̃(H1,K−1
1 , Ḣ1,

˙K−1
1 ,K−1

1ij,l −K−1
1il,j , θ1,g1) (3.60)

Consider two arbitrary constant vectors a ∈ V and b ∈ κi. Define another vector p ∈ V by

p = K−T
1 b. Therefore

(∇1p)jl = K−1
1ij,lbi and 2Skw(∇1p)jl = (K−1

1ij,l −K−1
1ij,l)bi (3.61)

As a result

(K−1
1ij,l −K−1

1ij,l)bial = (2Skw(∇1p)a)j = (Curl(p) × a)j = (Curl(K−1
1 )b × a)j, (3.62)

where the first equality derives from (3.61)2. The second equality is an identity and can be

verified by expressing all the terms in indicial notation. The third equality is a consequence

of the definition of Curl operator (cf. (2.20)). The outer equality in (3.62) then implies that

we can replace the term (K−1
1ij,l − K−1

1il,j) in (3.60) by Curl(K−1
1 ). Therefore, a necessary

condition for Ψ to be invariant is

Ψ = Ψ̃(H1,K−1
1 , Ḣ1,

˙K−1
1 ,Curl(K−1

1 ), θ1,g1). (3.63)
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Next, consider A−1 such that it is homogeneous and equal to the local value of K1.

That is A−1(X) = K1(X0), for all X ∈ κr and some X0 ∈ κr. Under such a transformation,

therefore (at X0)

K−1
2 = 1, ˙K−1

2 = ˙K−1
1 K1, Curl2(K−1

2 ) = JK1K
−1
1 Curl1(K−1

1 ), and g2 = g1K1, (3.64)

where (3.64)1,2 follows from (3.51)1 and (3.53)1, respectively, and (3.64)3 has been proved

earlier in (3.26). The relation (3.64)4 follows from (3.56)2. Therefore, if Ψ is invariant under

compatible changes in the reference configuration, it takes the following form

Ψ = Ψ̆(H, Ḣ, ˙K−1K, JKK−1 Curl(K−1), θ,gK). (3.65)

It is straightforward to check that such a form of Ψ is also sufficient for it to be

invariant under compatible changes in the reference configuration. This can be done by

directly substituting (3.51)1,2 in (3.65). Thus, representation (3.65) furnishes us with a

necessary and sufficient condition for Ψ to be invariant under compatible changes in the

reference configuration. A similar result has been obtained earlier by Cermelli and Gurtin

[30] in the context of continuum plasticity, and by Davini, Parry and Šilhavý [42, 139, 138]

in the context of a formulation based on crystal lattice vectors.

A most important conclusion, as implied from (3.65), is that Ψ can be a function of

K−1 and ∇K−1 only through a dependence on the rate term13 ˙K−1K, the true dislocation

density tensor α or through the temperature gradient term gK.

13The rate term can be rewritten using KK−1 = 1, as ˙K−1K = −K−1K̇, where we note again that

˙K−1 denotes the time derivative of K−1 and is therefore not same as K̇−1, which is the inverse of the time

derivative of K.
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3.4 Thermodynamics of plastic flow

In this section, We recall our discussion on the second law of thermodynamics

from Subsection 2.2.3, and make further assumptions on the nature of state variables and

constitutive functions. Restrictions on the plastic evolution are then obtained at points

away from the singular surface and on the singular surface. After this chapter, we will

limit our attention to isothermal and adiabatic processes only, and therefore we provide in

a subsection below, the form of governing equations for these processes.

3.4.1 State variables and constitutive assumptions

The thermodynamical state of each material neighborhood is assumed to be deter-

mined completely by F, H, and θ. We right away make a distinction between controllable

variables and uncontrollable ones. The absolute temperature can of course be controlled (at

least in principle) by using temperature baths. A mechanical variable, on the other hand,

is controllable if it can be coupled to an external force field which can control its value [18].

The mechanical work, therefore, can be written only for controllable variables. A variable

is observable if its value can be experimentally determined, a property which is essential

for it to qualify as a state variable. The deformation map F can be both observed and

controlled while the elastic distortion H can only be observed but not controlled [21, 85].

The controllability of F stems from the fact that it appears as a result of the local gradient

of the spatial position at a fixed material point. The spatial position, as our experiences

show, can be controlled via a force. Regarding the observability of F, it can be obtained

by tracking the deformation map χ for each neighborhood of the body. The elastic dis-



101

tortion H, however, is related to the local distortion of a neighborhood. For crystals it

represents the local distortion of lattice vectors. In the absence of dislocations, it retains

the character of F and a distinction is then superfluous. But otherwise, it also measures the

local dislocation content at a material point. The reason that it is not controllable, comes

from the fact that there does not exist an independent forcing mechanism by which we can

control its value. In recent years there have been successful advancements in observing H.

One such technique for crystals is to use X-ray microscopy in which lattice distortions are

measured with respect to an unstressed crystal configuration [100, 113]. These techniques

are, however, still restricted to small elastic distortions.

Note that since H and ∇H (hence α) are independent at a material point, we

could have included dislocation density α as an independent state variable. However, we

simply assume that H alone affects the state of the lattice while α affects its yield (see

Section 3.7).

Also, contrary to most of the treatments on plasticity, we do not restrict our

attention to isochoric plastic flow. Therefore JK = detK �= 1. Such a restriction has been

found to be unnecessary in many experiments [19, 11].

Constitutive assumptions A constitutive function is a scalar, vector or tensor valued

function, which contains information about the response of the system at hand. A dis-

tinction should, however, be made between constitutive functions which are functions of

the state, i.e. dependent only on the state variables, and those which can depend on state

variables and also on their temporal and spatial gradients. It is functions of the latter kind,

which are used to characterize an irreversible behavior. Possible examples of the functions
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of state are specific energy and specific entropy. Examples of constitutive functions de-

pendent also on the gradients of state variables are furnished by the yield surface and the

plastic flow rule (see Section 3.7). Further, we assume that we are dealing with materially

uniform bodies (cf. Remark 3.8.3), and thus there is no explicit dependence on X in any of

the constitutive functions.

These constitutive functions should follow the invariance requirements mentioned

in Section 3.3. Let us denote by W , the free energy density per unit volume of the inter-

mediate configuration. It is a state function, and therefore a function of F, H, and θ. But

the invariance requirement imposed in Section 3.3 restricts it to have the following form

W = Ŵ (H, θ). (3.66)

This function describes the response of the material to distortion induced by the map from

κi to V at x ∈ κt. The specific free energy with respect to the reference configuration is

given by ρκf = J−1
K Ŵ (H, θ). Similarly, specific entropy η with respect to the reference

configuration can be expressed as ρκη = J−1
K S, where S = Ŝ(H, θ) is the total entropy per

unit volume of the intermediate configuration.

Under the hypothesis that stress is purely elastic in origin, we assume the Cauchy

stress T ∈ Sym and the entropy S to be given by

JHT = WHHT , and S = −Wθ. (3.67)

The Piola stress is related to Cauchy stress by P = TF∗ and therefore we can obtain

PK∗ = WH. (3.68)
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3.4.2 Dissipation

Recall the local form of the Clausius-Duhem inequality from Chapter 2 (cf. (2.198)

and (2.204))

ρκḟ − P · Ḟ + ρκηθ̇ +
q · g
θ

≤ 0, (3.69)

outside the singular surface and

U

(
Ns · �E�Ns +

1
2
U2ρκ�|FNs|2�

)
+
(
Uρκ〈η〉 −

〈q
θ

〉
·Ns

) �θ� ≥ 0 (3.70)

at the singular surface St, where E = ρκf1− FTP is the Eshelby tensor. We now simplify

these relations using our constitutive assumptions.

Use (3.66), (3.68), and (3.67)2 to write

Ẇ = PK∗ · Ḣ − Sθ̇. (3.71)

Substitute this in

ρκḟ = J−1
K Ẇ − J−2

K
˙JKW (3.72)

and use ˙JK = JKK−T · K̇ to obtain

ρκḟ = P · Ḟ + (FTP − J−1
K W1)K−T · K̇ − J−1

K Sθ̇, (3.73)

where we have also used the relation

Ḣ = ḞK + FK̇, (3.74)

which follows from (3.18). Substitute (3.73) in (3.69) to get [47]

D ≡ E · K̇K−1 − q · g
θ

≥ 0, (3.75)
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with D denoting the dissipation (or rate of internal entropy generation, cf. (2.186)), per unit

volume of the reference configuration. Further, using (3.68) and (3.18), Eshelby’s tensor

may be written in the form

E = J−1
K K−TE′KT , (3.76)

where

E′ = W1− HTWH (3.77)

is purely elastic in origin. This in turn yields

D = J−1
K E′ · K−1K̇ − q · g

θ
. (3.78)

Consequently, dissipation away from the surface St vanishes if

K̇ = 0, and g = 0 (3.79)

or if

J−1
K E′ ·K−1K̇ =

q · g
θ

. (3.80)

Therefore in addition to (3.79), where there is no plastic and heat flow, (3.80) represents

a condition under which the production of entropy via plasticity is compensated with that

produced via heat flow, so as to avoid irreversibility, if only locally. Processes as governed

by (3.75) are thermodynamically coupled14 in a sense that the evolution of one dissipative

process (plasticity) is coupled with the other (heat conduction). Such a coupling allows for

a process (here, plastic flow or heat conduction) to evolve in a direction contrary to the one
14See Prigogine [146, 57] for more on the notion of coupling in similar contexts. An illustrative example

is provided by Bénard instability in hydrodynamics ([57], Chapter 11). There, a relation similar to (3.80)

(with viscosity instead of plasticity) provides a criterion for the onset of instability.
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prescribed, when the processes exist independently. Therefore, the nature of plastic flow

can be significantly different in the presence of heat conduction compared to the situation

when heat conduction is neglected (for example, isothermal and adiabatic processes). With

this in mind, we will, however, restrict our discussions only to isothermal and adiabatic

processes (see the following subsection).

To clarify the contribution of plastic flow on the surface, we use (3.76) and (2.46)

to write the jump in E as

�E� = �K−T �〈J−1
K E′KT 〉 + 〈K−T 〉�J−1

K E′KT �
= �K−T �〈J−1

K E′KT 〉 + 〈K−T 〉〈E′〉�J−1
K KT � + 〈K−T 〉�E′�〈J−1

K KT 〉. (3.81)

Also, use (3.18) and (2.46) to write

1
2
�FNs ·FNs� = �K−1�Ns · 〈HT 〉〈FNs〉 + 〈K−1〉Ns · �HT �〈FNs〉. (3.82)

Substitute (3.81)2 and (3.82) into (3.70) to obtain

UNs ·
(�K−T �〈J−1

K E′KT 〉 + 〈K−T 〉〈E′〉�J−1
K KT � + U2ρκ�K−T �〈HT 〉〈F〉

)
Ns

+
{
UNs ·

(
〈K−T 〉�E′�〈J−1

K KT 〉 + U2ρκ〈K−T 〉�HT �〈F〉
)
Ns

+
(
Uρκ〈η〉 −

〈q
θ

〉
· Ns

) �θ�} ≥ 0. (3.83)

In (3.83), we have divided in three lines, terms which are depend on �K�, �H�, and �θ�,
respectively. If we identify U�K� with the plastic flow at the surface, then the terms in

the first line of (3.83) represent the contribution to the dissipation (at surface St) due to

plastic flow. The term inside {·} then represents the usual production of surface dissipation

in thermo-elasticity (cf. equation (3.7.10) in [156]).
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Remark 3.4.1. (Vanishing plastic flow) There is no plastic flow in the body if K̇ = 0 away

from St and U�K� = 0 on St. These conditions are equivalent to postulating that

d

dt

∫
Ω

KdV = 0 (3.84)

for all Ω ⊂ κr such that Ω ∩ St �= ∅. The validity of this proposition can be verified by

invoking the transport theorem (2.113) and then using the localization theorem.

3.4.3 Isothermal and adiabatic processes

Isothermal process A process is isothermal if temperature θ remains constant. There-

fore θ̇ = 0, g = ∇θ = 0, and �θ� = 0. The free energy is given by ρκf = J−1
K Ŵ (H), and

the Clausius-Duhem inequality reduces to

E · K̇K−1 ≥ 0, (3.85)

outside the singular surface and

U

(
Ns · �E�Ns +

1
2
U2ρκ�|FNs|2�

)
≥ 0 (3.86)

on the singular surface St. It is obvious from (3.85) that dissipation (away from St) vanishes

if K̇ vanishes. To enforce the idea that plasticity is inherently dissipative, we adopt the

following hypothesis:

E · K̇K−1 > 0 if and only if K̇ �= 0. (3.87)

In most of this thesis, we will assume processes to be isothermal. An exception

will be Chapter 5, which deals with plastic waves, where we will assume processes to be

adiabatic.
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Adiabatic process A process is adiabatic if heat flux q = 0 for all durations of time.

The equations for balance of energy, from (2.168) and (2.170), are reduced to

ρκė = P̃ · Ḟ + ρκr, (3.88)

where P̃ is the adiabatic Piola stress, and

Uρκ�e� = U〈P̃〉 · �F� (3.89)

outside and on the surface, respectively. The following constitutive assumptions are made

ρκe = J−1
K W̃ (H, η), θ = θ̃(H, η) (3.90)

and

JHT̃ = W̃HHT , ρκθ = J−1
K W̃η, (3.91)

where T̃ represents the adiabatic Cauchy stress. The adiabatic Piola stress is given by

P̃K∗ = W̃H. Using these constitutive assumptions, it is then not difficult to obtain

ρκė = P̃ · Ḟ − J−1
K Ẽ′ ·K−1K̇ + ρκθη̇, (3.92)

where

Ẽ′ = W̃1− HT W̃H (3.93)

is the adiabatic Eshelby tensor. Substitute (3.92) into the balance of energy (3.88) to get

ρκθη̇ = J−1
K Ẽ′ ·K−1K̇ + ρκr, (3.94)

which for vanishing body heat supply, r = 0, reduces to

ρκθη̇ = J−1
K Ẽ′ ·K−1K̇. (3.95)
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Use (3.94) into the Clausius-Duhem inequality (2.188) to get

J−1
K Ẽ′ ·K−1K̇ ≥ 0. (3.96)

On the surface, the dissipation inequality, as derived from (2.189), has the form

−Uρκ�η� ≥ 0. (3.97)

We will come back to adiabatic approximation in Chapter 5, when we discuss plastic waves.

3.5 Superposed rigid motions15

Granted the symmetry of the Cauchy stress (cf. (2.157)), (3.67)1 implies that

WH · WH = 0 (3.98)

for any fixed W ∈ Skw. Consider a parameterized path H(u) defined by Ḣ(u) = WH with

H(0) = H0. The unique solution [67] is H(u) = Q(u)H0, where Q ∈ Orth+ is a rotation

with Q(0) = 1 and Q̇QT = W. This means that Ẇ = 0 on the path in question; i.e., that

W (QH0) = W (H0) for any rotation Q. Standard arguments based on Cauchy’s theorem

for hemitropic functions [170] or on the polar decomposition theorem then furnish (with

the subscript 0 suppressed)

W (H) = Ŵ (CH) where CH = HTH, (3.99)

and thus

JHT = HS(CH)HT , (3.100)
15Isothermal response will be assumed in the next two sections, without loss of any generality.
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where

S(CH) = 2SymŴCH
. (3.101)

Henceforth we assume that all constitutive hypotheses introduced in Section 3.1 apply to

the function Ŵ (CH).

Note that in the course of deriving (3.100) we have assumed only the symmetry of

the Cauchy stress. In particular, we have not imposed the invariance of the strain-energy

function under superposed rigid-body motions. Indeed, in conventional finite elasticity

theory, it is well known that invariance of the strain-energy function under superposed

rigid-body motions is equivalent to symmetry of the Cauchy stress [170].

This issue leads us to consider the transformation rules for the elastic and plastic

deformations under superposed rigid-body motions. In a way, this question is rendered

meaningless if we understand M to be a material manifold. For, M is then indifferent to

the placement of its points in E and the issue of invariance under changes of such placements

does not arise [130]. The fact that K−1 maps V, at X ∈ κr, to TM(p), at p = κi(X), would

then lead naturally to the conclusion that K is invariant under superposed rigid-body

motions. This would then dictate, via (3.18), the transformation rule H → QH, where

Q(t) is the spatially uniform rotation in the conventional rule F → QF. This is tacitly

assumed in most works concerned with the invariance issue (e.g. [168, 30, 115, 125, 109]).

However, we can proceed in a different manner that emphasizes the constitutive

character of the constituent elastic and plastic deformations. We know from conventional

theory that

F → QF (3.102)
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in a superposed rigid-body motion, where Q ∈ Orth+. This follows from the fact that

x → Qx+c in such a motion, with x = χ(X, t) and c a function of t alone. We also assume

that

T → QTQT , and therefore P → QP. (3.103)

The line of reasoning leading to (3.102) cannot be applied to H and K because there

is no position field in M associated with material points p. Instead, we appeal to the

aforementioned result in finite-elasticity theory and define superposed rigid-body motions

by the requirement that W (= Ŵ ) have the same value at any two H related by a superposed

rigid-body motion. Let H1(t) and H2(t) be two elastic deformations so related and define

Z(t) = H2H−1
1 . We require that Ŵ (HT

1 ZTZH1) = Ŵ (HT
1 H1) for H1 ∈ Lin with JH1 >

0. To obtain a necessary condition we set H1 = 1, and derive Ŵ (ZtZ) = Ŵ (1). Our

constitutive hypotheses imply that Ŵ (ZTZ) > Ŵ (1) if ZTZ �= 1. The two statements are

reconciled only if ZTZ = 1 and it follows, since JZ > 0, that Z ∈ Orth+, which is also

sufficient. Therefore, in a superposed rigid motion,

H → QHH, (3.104)

where QH is a rotation. Since the argument is local, this rotation may depend on x (or

X) in addition to t. It follows immediately from (3.104) that CH and S(CH) are invariant

under superposed rigid motions.

To obtain the transformation rule for the plastic deformation K, we assume that

superposed rigid motions do not generate dissipation, so that the dissipations associated

with any two motions related by a superposed rigid-body motion are identical. Clearly the

Eshelby tensor E given by (2.205) is invariant under superposed rigid motions. This can
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be seen from (2.205) and the invariance of ρκf , which is implied by that of W and JK , the

latter following from (3.18), (3.102) and (3.104). Further, from (3.67)1, (3.77) and (3.100)

we have

E′ = Ŵ (CH)1 −CHS(CH), (3.105)

which is also invariant. Suppose K1(t) and K2(t) are two plastic flows related by a super-

posed rigid-body motion and let Z(t) = K2K−1
1 . These generate two local configurations

κi1 and κi2 from κr at X via the maps K−1
1 and K−1

2 , respectively. We assume the super-

posed rigid motion to commence at time t0 so that Z(t0) = 1. If D1 = J−1
K1

E′ · K−1
1 K̇1 is

the dissipation associated with K1 then the dissipation D2 associated with K2 satisfies

JK2D2 = JK1D1 + E′ · K−1
1 Z−1ŻK1. (3.106)

Invoking the invariance of JK and the assumed invariance of the dissipation then yields

E′ ·K−1
1 Z−1ŻK1 = 0, (3.107)

for any plastic flow K1(t). To obtain a necessary condition we set K1(t) ≡ 1 at the point

p, which amounts to adopting κi1 as the reference configuration for the superposed rigid

motion, this being permitted by the purely local nature of the argument. This in turn yields

E′ ·Z−1Ż = 0 and Z ≡ K2, ensuring that Z(t) is a plastic flow. As such it is subject to the

dissipation hypothesis (3.87), which is easily seen to be equivalent to the statement:

K̇ �= 0 if and only if E′ · K−1K̇ > 0. (3.108)

It follows that Ż vanishes and hence that Z(t) = Z(t0) = 1. This is also sufficient for

(3.107) and for the invariance of the dissipation. Thus, K2 = K1 and K is invariant under
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superposed rigid motions, i.e.

K → K. (3.109)

As a corollary, we then have QH = Q(t), implying that QH is spatially uniform.

In addition to furnishing the transformation rules for the elastic and plastic de-

formations under superposed rigid motions, the strong dissipation hypothesis and our con-

stitutive hypotheses on the elastic response also imply that plastic evolution ceases in the

absence of elastic distortion. For, if CH = 1 then Ŵ and S vanish; therefore E′ and E

vanish, D = 0 and (3.87) yields K̇ = 0.

3.6 Material symmetry

The function W (H) is subject to restrictions imposed by material symmetry.

These are of the kind one finds in conventional finite elasticity theory and are crucial to

the understanding of elastic/plastic response. Accordingly, a brief review of the concept

is appropriate before proceeding. Thus, if two local configurations κi1 and κi2 are used to

describe the stress T at a material point in κt, then

T = (W1)H1(H
∗
1)

−1 and T = (W2)H2(H
∗
2)

−1, (3.110)

where W1(H1) and W2(H2) are the associated strain-energy functions. These equations are

identical to (3.8). Accordingly, if A is a map from κi1 to κi2 , then

H1 = H2A, (3.111)



113

and if A is fixed at the material point p, then consistency between the two expressions for

T requires that (cf. (3.9))

W1(H1) = JAW2(H2). (3.112)

This formula specifies the change in the form of the strain-energy function induced by any

local time-independent change of reference at a given material point.

Suppose now that there exists a local change of reference G1, with JG1 = 1, such

that W2(H) = W1(H) with JH > 0; the two local references then respond identically to a

given deformation. Using (3.111), we find that

W1(H) = W1(HG1). (3.113)

It is well known that the set of all such G1 is a group G1, say, the symmetry group associated

with κi1 . If the body is materially uniform, then W1(H) does not depend explicitly on

X ∈ B (or on X ∈ κr). This restriction is satisfied by requiring that G1 be independent of

X ∈ B [129, 37].

Combining (3.112) with (3.113), we have

JAW2(H) = W1(HA) = W1(HAG1) = JAW2(HAG1A−1). (3.114)

In other words,

W2(H) = W2(HG2), with G2 = AG1A−1, (3.115)

which is Noll’s Rule G2 = AG1A−1 relating the symmetry groups of the two local references.

We have seen in Section 3.1 that our constitutive hypotheses determine the place-

ments of stress-free local equilibrium configurations in E modulo orientation and translation.
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Thus, if κi1 is a local relaxed configuration, then any κi2 is also such a configuration pro-

vided that the transformation A from κi1 to κi2 is a rotation. Further, G1 is a subgroup of

the orthogonal group if and only if the same is true of G2. Any G2 ∈ G2 is obtained simply

by rotating some G1 ∈ G1 by A to obtain G2 = AG1AT . For example, if ei (i ∈ {1, 2, 3})

are the orthonormal axes of a cubic lattice in κi1 , then the 180◦ rotation G1 = 2e3 ⊗ e3 −1

about e3 maps the lattice to itself and thus belongs to G1. The corresponding element of

G2 is given by G2 = 2e′3 ⊗ e′3 − 1, where e′i = Aei.

This result is of the greatest importance for the practical implementation of the

theory. It implies that the symmetry group G1 for the local stress-free κi1 may be fixed once

and for all, provided that this group is a sub-group of the orthogonal group. Then, given

the response function W1(H), we generate the response function relative to any relaxed

local configuration κi2 by setting W2(H) = W1(HA), where A is a suitable rotation. By

construction, all such configurations are equivalent insofar as the computation of the stress

is concerned. The same issue is discussed from a different viewpoint in [168].

For example, if the material in configuration κi exhibits cubic symmetry, and if

the elastic strain is sufficiently small to justify a quadratic approximation to the energy,

then the strain-energy function is of the form [60]

Ŵ = 1
2C1(ε11 + ε22 + ε33)2 + C2(ε11ε22 + ε11ε33 + ε22ε33) + C3(ε212 + ε213 + ε223), (3.116)

where Ci; i = {1, 2, 3} are material constants, εij = ε · Sym(ei ⊗ ej), {ei} ∈ V is a basis of

orthonormalized vectors aligned with the cube axes, and

ε =
1
2
(CH − 1) (3.117)

is the (infinitesimal) elastic strain. The linear and quadratic invariants of ε are common to
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each of the five subclasses of cubic symmetry [60]. Accordingly, (3.116) applies to all kinds

of cubic symmetry. From (3.101) we then obtain

S = C1(tr ε)1 + C2[(ε22 + ε33)e1 ⊗ e1 + (ε11 + ε33)e2 ⊗ e2 + (ε11 + ε22)e3 ⊗ e3]

+C3[ε12(e1 ⊗ e2 + e2 ⊗ e1) + ε13(e1 ⊗ e3 + e3 ⊗ e1) + ε23(e2 ⊗ e3 + e3 ⊗ e2)].

(3.118)

Our requirement that Ŵ be a convex function of CH is satisfied if and only if it

is a convex function of ε. In the quadratic case this in turn is satisfied if and only if the

energy is a positive-definite function of ε. To construct necessary conditions for this, we set

all εij = 0 except ε12(= ε21). The resulting inequality can then be satisfied only if C3 > 0,

which in turn ensures that the final quadratic form in (3.116) is positive definite. Next, we

set all off-diagonal components εij to zero, along with ε33. We then require

1
2C1(ε11 + ε22)2 +C2ε11ε22 > 0 (3.119)

for all ε11, ε22. For this it is necessary and sufficient that C1 > 0 and C2 ∈ (−2C1, 0).

Necessary conditions for positive-definiteness are thus given by

C1 > 0, C3 > 0, −2C1 < C2 < 0. (3.120)

To derive sufficient conditions we write (3.116) in the form

Ŵ = P (ε11, ε22) + P (ε11, ε33) + P (ε22, ε33) + C3(ε212 + ε213 + ε223), (3.121)

where

P (A,B) = 1
4C1(A2 +B2) + (C1 + C2)AB. (3.122)
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Sufficient conditions for positive-definiteness are C3 > 0 and P (A,B) > 0, which holds if

and only if C1 > 0 and C2
1 > 4(C1 + C2)2. The latter are equivalent to C1/2 > |C1 + C2|.

Taken together we have

C1 > 0, C3 > 0, −3
2C1 < C2 < −1

2C1. (3.123)

From the foregoing discussion it is clear that, in the presence of convexity, the re-

sponse functions relative to any other stress-free local configuration are obtained from those

given simply by substituting e′i = Aei in place of ei, where A is a suitable rotation. Accord-

ingly, since these configurations are, by construction, equivalent insofar as the computation

of the stress in κt is concerned, we may fix the basis {ei}, and hence the symmetry group

Gκi , once and for all. For example, we may identify ei with their values in some known

configuration of the body, which may then serve as a reference configuration κr. This is

not to say that we identify κi with κr; rather, we simply require that Gκi be insensitive to

plastic flow, as suggested by experiments on crystal slip [162, 93]. Similar ideas are imposed

a priori as part of the definition of plastic deformation in [168, 115, 125].

In the isotropic case the quadratic approximation to the strain-energy function

and the associated expression for the stress are, of course, well known. Thus,

Ŵ =
1
2
λ(tr ε)2 + με · ε and S = λ(tr ε)1 + 2με, (3.124)

where λ and μ are the Lamé moduli. Necessary and sufficient conditions for convexity are

that μ > 0 and λ+ 2
3μ > 0.
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3.7 Flow and yield

In this section we obtain the general forms of the flow rule and the yield condi-

tion, after imposing restrictions of invariance under the change of reference configuration,

invariance under a rigid body motion, and considerations of material symmetry.

3.7.1 Flow rule

To complete the model we require a flow rule for the evolution of plastic deforma-

tion K. In view of the structure of the dissipation inequality (3.75), it is natural to consider

rules of the form

F(K−1, ˙K−1,H, Ḣ,E, Ė,∇K−1, θ, θ̇,g) = 0, (3.125)

where F : κi → κi is a tensor-valued function. It is assumed in line with our assumption of

material uniformity, that this function does not depend explicitly on p = κi(X).

Following [45], we impose the requirement that this equation be invariant under

compatible changes of the reference configuration κr. The reason for this is that the choice

of reference is in principle a matter of convenience and hence irrelevant to the physical pro-

cesses under study. Precisely the same viewpoint was adopted in the derivation of (3.9) by

invoking the insensitivity of the Cauchy stress to the choice of reference. We have obtained

in Section 3.3 the necessary and sufficient conditions for the representation of constitutive

functions to be invariant under compatible changes in the reference configuration. Be-

fore using the result from Section 3.3, recall from (3.76), that, E = J−1
K K−TE′KT , where

E′ = W1− HTWH and W = W̃ (H). We can in addition obtain

JKKT ĖK−T = Ė′ + E′(K−1K̇)T − (K−1K̇)TE′ − E′ tr(K−1K̇). (3.126)
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Noting (3.77), the function F can therefore be equivalently represented as

F(K−1, ˙K−1,H, Ḣ,E, Ė,∇K−1, θ, θ̇,g) = F̃(K−1, ˙K−1,H, Ḣ,∇K−1, θ, θ̇,g). (3.127)

The set of variables are now similar to that considered in Section 3.3 and we can use the

result obtain therein to conclude the following representation for flow rule

F̂(H, Ḣ, ˙K−1K,α, θ, θ̇,gK) = 0. (3.128)

Further, if we impose the invariance of the function F̂ under superposed rigid-body

motions then it is unaffected by the substitution of Q(t)H in place of H. Equating QT

identically to the rotation in the polar factorization of H, we then have the flow rule as

F̌(CH , ĊH , ˙K−1K,α, θ, θ̇,gK) = 0. (3.129)

This form of the flow rule provides us with the necessary and sufficient condition for it to

be invariant under compatible changes in the reference configuration and also under rigid

body motions. A special case of (3.129) has the form

˙K−1K = H(CH , ĊH ,α, θ, θ̇,gK). (3.130)

Plastic spin We observe from (3.105) that M(CH) ∈ Sym, where

M(CH) = E′CH . (3.131)

To embed this fact in the model, assume the response to be isothermal and write the

dissipation (cf. (3.78), without the heat term) in the form

JKD = M · K−1K̇C−1
H . (3.132)
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Hypothesis (3.87) is then equivalent to the statement

K̇ �= 0 if and only if M ·K−1K̇C−1
H > 0. (3.133)

It follows immediately that K̇ vanishes if K−1K̇C−1
H ∈ Skw. In other words, the latter

does not correspond to a bona fide evolution of plasticity. Conversely, if K̇ �= 0 then

K−1K̇C−1
H is not skew. This of course should not be construed to mean that that latter is

symmetric. However, it does beg the question of how the skew part of K−1K̇C−1
H should be

interpreted. This is the issue of plastic spin, which is of significant ongoing concern in the

plasticity literature (e.g. [168, 109, 166]). To address it, we exploit the latitude afforded by

the constitutive character of K and adopt the constitutive assumption

K−1K̇C−1
H ∈ Sym. (3.134)

In effect, we resolve the issue simply by requiring that indeterminate variables vanish.

The flow rule (3.130) simplifies accordingly. Using ˙K−1K = −K−1K̇, we have

K−1K̇C−1
H = S(CH , ĊH ,α), (3.135)

where

S(CH , ĊH ,α) = H(CH , ĊH ,α)C−1
H ∈ Sym. (3.136)

The plastic deformation then satisfies

K̇ = KS(CH , ĊH ,α)CH . (3.137)

The specialization to rate-independent response is of particular interest in appli-

cations. In this case we require the flow rule to be insensitive to the time scale, so that S
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is homogenous of degree one in its second argument, i.e.

S(CH , λĊH ,α) = λS(CH , ĊH ,α) for all λ ∈ R. (3.138)

Differentiating with respect to λ and evaluating the result at λ = 0 furnishes the necessary

and sufficient condition

S(CH , ĊH ,α) = M(CH ,α)[ĊH ], (3.139)

where M is a fourth-order tensor.

Material symmetry It is obvious from its structure that the function S (or H) depends

on the local configuration κi. We are concerned with material symmetry and thus with the

question of how the flow rule transforms under variations of these configurations. The role

of material symmetry in this context is discussed in the comprehensive review by Cleja-

Ţigoiu and Soos [168] and independently by Epstein [45].16 Thus, consider a map from κi1

to κi2 , as in Section 3.6. Assume x = χ(X, t) to be given. Using (3.18) and (3.111) for

fixed F, we have

K1 = K2A. (3.140)

Writing (3.137) for both local configurations, we are then led, using obvious notation, to

the rule

S2(CH2, ĊH2 ,α2) = AS1(CH1 , ĊH1,α1)AT , (3.141)

where, for A fixed at p, as in Section 3.6,

CH1 = ATCH2A and ĊH1 = AT ĊH2A. (3.142)
16The role of material symmetry in a theory of polymer science based on local intermediate configurations

is discussed in [177, 148].
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we use (3.23)1 to relate α1 to α2. Thus,

α1 = JK1K
−1
1 CurlK−1

1 = JAJK2A
−1K−1

2 Curl(A−1K−1
2 ). (3.143)

If the change of local reference is uniform, in the sense that A is independent of p (hence,

of X), we have [30]

Curl(A−1K−1
2 ) = (CurlK−1

2 )A−T , (3.144)

yielding

α1 = JAA−1α2A−T . (3.145)

Thus, if the function S1 is known, then S2 is generated by the formula

S2(CH , ĊH ,α) = AS1(ATCHA,AT ĊHA, JAA−1αA−T )AT . (3.146)

Since the local configurations κi1 and κi2 are stress-free by definition, our constitutive

hypotheses give A ∈ Orth+, affording the simplification

S2(CH , ĊH ,α) = AS1(ATCHA,AT ĊHA,ATαA)AT . (3.147)

Suppose now that the transformation is such that both local references respond

identically. Let G1 be such a transformation. Then the functions S1 and S2 coincide, and

(3.147) furnishes

GT
1 S1(CH , ĊH ,α)G1 = S1(GT

1 CHG1,GT
1 ĊHG1,GT

1 αG1). (3.148)

Here we identify G1 with any element of G1, the symmetry group associated with κi1 . The

restriction to uniform A (hence uniform G1) is due to our prescription for enforcing the

condition of material uniformity in Section 3.6.
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It is easily demonstrated that the dissipation JKD regarded as a function of the

variables CH , ĊH , and α, is invariant under symmetry transformations. Further, a straight-

forward but involved calculation based on (3.146) and (3.148) furnishes the analog of Noll’s

rule for plastic flow, which we do not record here.

In practice, given G1, (3.148) is solved by regarding S as a function of three sym-

metric tensors and one vector [178]. This reduction is achieved by writing S as a function

of Sym(α) and Skw(α). If a is the axial vector of Skw(α), then GTSkw(α)G may be

replaced by GTa in the statement of material symmetry, for any G ∈ G1 ⊂ Orth+. To see

this we observe that for any vector u,

GTa ×GTu = GT (a × u) = GTSkw(α)u = [GTSkw(α)G](GTu), (3.149)

so that GTa is the axial vector of GTSkw(α)G. With this simplification, the problem of

solving (3.148) for the canonical form of the response function is tractable [178]. It is eased

considerably in the rate independent case in which the functional dependence on ĊH is

linear.

Remark 3.7.1. In the case of isotropy, CH commutes with S(CH) so that E′ ∈ Sym. It

follows from (3.108) and the argument leading from (3.133) to (3.134) that if K̇ �= 0, then

K−1K̇ ∈ Sym, and thus from (3.135) that S also commutes with CH . This means that

H ∈ Sym, where H is now a hemitropic function of its arguments. In the case of isotropy

an independent argument, relying on the connectedness of the symmetry group, may be

used to eliminate the plastic spin Skw(K−1K̇). This is discussed in [48]. A variant of the

idea is developed independently in [69]. However, the present model, in which dislocation

density figures in the list of variables, is not appropriate in the case of isotropy. This is
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due to the degree of freedom H → HG afforded by material symmetry. If G belongs to

a continuous group, as in the case of isotropy or transverse isotropy, then the dislocation

density is highly non-unique and is therefore not a state variable. The issue is discussed

in ([129], Theorem 8) and investigated in [37]. There is no such difficulty in the case of

a discrete group, however. In the isotropic case, Riemannian curvature derived from the

plastic strain furnishes a unique measure of defectiveness of the material. The associated

theory entails significant complications vis à vis that considered here [46]. We will take up

this aspect of the theory again in Remark 3.8.3 in the next section, where we also discuss,

the restrictions thus imposed on our model.

Motion of a single dislocation Following Kosevich [90] and Mura [120], we write down

the flow rule for a single dislocation line L ⊂ κr moving with velocity V ∈ V as

˙K−1 = b⊗ (δ(L) × V), (3.150)

where b ∈ TM is the constant Burgers vector and δ(L) is a generalized function defined in

(3.31). Assuming the thermodynamic response to be isothermal, the net dissipation as a

result of the motion of a single dissipation can be calculated from integrating (3.85) over

κr. Use (3.76), (3.77), and ˙K−1K = −K−1K̇ in (3.85) to obtain

∫
κr

J−1
K E′ · ˙K−1KdV < 0. (3.151)

Note from (3.150) that

˙K−1K = b⊗ KT (δ(L) × V)

= JKb ⊗ (K−1δ(L) × K−1V), (3.152)
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where the second equality has been obtained using the definition of cofactor from (2.24)

and (2.25). Substitute (3.152) into (3.151) and use (3.31) to get

∫
L
E′ · b⊗ (K−1t× K−1V)dL < 0, (3.153)

where t ∈ V denotes the tangent to the dislocation line L. The vectors {t̂, V̂} ∈ TM defined

by

t̂ = K−1t, and V̂ = K−1V (3.154)

denote the tangent and velocity associated with the dislocation line, respectively, in the

intermediate configuration. Using these definitions, (3.153) can be rewritten as

∫
L
E′ · b⊗ (t̂ × V̂)dL < 0, (3.155)

which after some further manipulation yields

∫
L
(E′Tb× t̂) · V̂dL < 0. (3.156)

The dissipative force which drives the dislocation with velocity V̂ is therefore

f = E′Tb × t̂. (3.157)

For small elastic strain, the Eshelby tensor E′ reduces to Cauchy stress, thereby reducing

f to the expression for Peach-Koehler force [164]. Equation (3.157) provides us with a

generalization of Peach-Koehler force to the case of finite elastic strain.

For isochoric plastic flow, JK = 1 and therefore trK−1K̇ = 0 or tr ˙K−1K = 0.

Equation (3.152) then implies that

δ(L)b · (t̂ × V̂) = 0, (3.158)
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where we have used definitions (3.154) and the identity δ(L) = δ(L)t. According to (3.158),

the motion of dislocation for an isochoric plastic flow is restricted to the slip plane, i.e. V̂

lies in the plane spanned by vectors b (slip direction) and t̂ (dislocation line direction).

Finally, we can use the volume average, as introduced in Subsection 3.2.3, to obtain

a macroscopic plastic distortion rate. As before, let there be a types of dislocations in a

RVE of volume V . Define the average plastic distortion rate as

˙K−1K =
1
V

∫
V

a∑
ξ=1

˙K−1(ξ)K(ξ)dV, (3.159)

which for isochoric plastic flow, takes the form

˙K−1K =
a∑
ξ=1

γ̇(ξ)s(ξ) ⊗ N̂(ξ), (3.160)

where

γ̇(ξ) =
L(ξ)

V
|b(ξ)| · |t̂(ξ) × V̂(ξ)|, and s(ξ) =

b(ξ)

|b(ξ)|
. (3.161)

Here L(ξ) denotes the length of the dislocation type ξ inside the RVE and N̂(ξ) ∈ TM is the

fixed unit normal to the slip plane of each dislocation type. Relations (3.160) and (3.161)

follow from (3.159) on using equation (3.152) and noting that for isochoric plastic flow,

V̂ lies in the plane of slip. The flow rule in the form (3.160) is used extensively in the

theory of crystal plasticity. One should however be cautious on the generality of such a

rule. For example, a simple volume averaging like (3.159) might be insufficient to capture

the nonlinear effects due to large plastic distortions, thus warranting a more complicated

averaging technique.
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3.7.2 Yield criteria

Conventionally, flow is considered to be possible only if the material is in a state of

yield. This is enforced by requiring the pertinent variables to belong to a certain manifold,

assumed here to be expressible in the form

g(K−1,H,E,∇K−1, θ) = 0, (3.162)

which is preserved by compatible changes of reference configuration and by superposed

rigid-body motions. From the foregoing it is immediate that such invariance yields the

reduced form

g = ĝ(CH ,α, θ), (3.163)

which is subject to the restriction

ĝ(CH ,α, θ) = ĝ(GTCHG,GTαG, θ) (3.164)

due to material symmetry, this being meaningful only if the symmetry group is discrete

(i.e. for crystal symmetry). Further, we assume the response to be elastic, in the sense

that K̇ = 0 for all CH , α and θ such that ĝ < 0. This elastic range is assumed to contain

CH = 1 for consistency with our earlier finding that plastic flow vanishes in the absence of

elastic distortion.

Often further constitutive hypotheses are introduced which lead to a relationship

between the yield function and flow rule. We consider these and their implications in the

next chapter.
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3.8 Remarks

Remark 3.8.1. (Work hardening) In 1934, Taylor [162] introduced the idea of dependence of

the yield strength of a crystal on its dislocation content. He suggested that during plastic

flow, many dislocations remain stuck inside the crystal (due to mutual interactions, pile-

ups, mosaic boundaries, etc.) and thereby increase its yield strength. This phenomenon of

strengthening is referred to as work hardening17 (also called strain hardening). It has been

observed that work hardening depends on the microstructure developed during plastic flow

and also on the various structures (patterns), into which dislocations arrange themselves.

Owing to much complexity of the phenomenon, most of the progress has been experimental

in nature, with very few theoretical considerations. Not surprisingly, the problem of work

hardening is seen to be one of the most challenging problems in plasticity theory [123].

In our formulation, we allow for hardening through the dependence of flow rules

and yield criteria on the dislocation density tensor (cf. (3.137) and (3.163)). Recalling our

discussion on GND and SSD from Subsection 3.2.3, we note that depending on the scale at

which plastic distortion is considered, the dislocation density tensor α associated with GND

might lack some information about the microstructure. Moreover, there might be other

parameters useful in characterizing hardening, such as those considered in conventional

plasticity theories [109]. Additional variables can therefore be added in the constitutive

functions for flow and yield. The nature of these internal variables, however, remains

ambiguous. We, therefore, will restrict our attention to the forms considered in (3.137) and
17Excellent introductory account of work harding can be found in the book by Cottrell [38]. The present

state of knowledge in this discipline can be gathered from a special issue on work hardening, which appeared

recently in the famous Dislocations in Solids series edited by Nabarro [123].
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(3.163).

Remark 3.8.2. (Size effects and gradient theories of plasticity) The last decade has seen an

increasing number of papers in plasticity modeling with an aim to predict size effects,18

with GND (i.e. α) playing the central role. GND has a dimension of reciprocal length, and

therefore has been used to induce an internal length scale in the theory. The inclusion of

GND has been either through a full strain gradient theory, with free energy depending on

GND [68] and the appearance of couples [52], or through a presence in flow rules and yield

criteria [2], a view taken in the current work. The latter approach avoids the consideration

of additional boundary conditions and complicated free energy functions. However, as

pointed out by Mughrabi [119] in his sharp critique of these existing gradient theories,

much caution and a closer analysis is needed before a model is put up for predictions.

He asks for a better understanding of the microstructure in formulating phenomenological

laws, and in particular, for a clear (measurable) meaning of the internal length scale, which

“remains vague”.

To discuss this last point, recall Subsections 3.2.2 and 3.2.3. First, consider a

theory where plastic distortions are given at the scale of individual dislocations. Then α

characterizes the total dislocation content in the body. Taking a clue from the representation

(3.36) for single dislocations, we note that the material length scale introduced by α is

through the Burgers vector b and the generalized function δ(L). It is clear from (3.27)

and (3.31) that the magnitude of vector δ(L) (which is δ(L)) represents the line length

of the dislocation per unit volume (use φ = 1 in (3.27) to reach this conclusion). The
18Almost all of these papers rest on the experimental investigations by Fleck et al. [52], Stölken and

Evans [160], and Nix and Gao [127], the conclusion being the smaller, the stronger.
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dislocation density, therefore, introduces a local length scale of the order bL̂, where b and

L̂ denote magnitude of the Burgers vector and the dislocation line length per unit volume,

respectively. We emphasize the local nature of this scale, which of course varies from one

dislocation to another, and therefore from one material point to another. On the other

hand, if we consider the plastic distortion as an averaged quantity (over some RVE), we

introduce additional length scales (associated with averaging) in the model. An appropriate

dependence on SSD will be then required (see also previous remark) to capture the relevant

length scales in the theory.

Remark 3.8.3. (Continuous and discrete symmetry groups) Following Noll [129], we say

the body is materially uniform, if material at any two points of the body is same. We

will identify the manifold M, which is the collection of intermediate configurations, as the

body. Consider two points, {p1, p2} ∈ M. Then, Φ : TM(p1) → TM(p2) is called a material

isomorphism if

gp1(H(p1)) = gp2(H(p1)Φ), (3.165)

where g is any elastic response functional (for example, Cauchy stress). According to

condition (3.165), the elastic response of the material at two points p1 and p2 in the body is

identical for a given elastic distortion. The isomorphism Φ maps the tangent space at p1 to

the tangent space at p2, thus facilitating a comparison between gp1 and gp2, which otherwise

are defined on different domains. A body is materially uniform if a material isomorphism

exists between any two points in the body. Moreover, for the existence of a material

isomorphism, it is necessary that the response functional is not explicitly dependent on the

material point (i.e. gp1 can not be an explicit function of p1). This follows immediately
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from the definition of material isomorphism above. Any two material isomorphisms are

related by (equation (6.3) in [129])

Φ̂ = GΦGT , (3.166)

where G belongs to the isotropy group (or symmetry group) relative to the intermediate

configuration. Recall from Section 3.6 that G is uniform (that is, independent of the

position). It has been shown by Noll [129] (equations (6.4) and (6.5)) that any material

isomorphism can be represented as

Φ(p1, p2) = K−1(p1)K(p2). (3.167)

Consider a second reference configuration K̂ with material isomorphism given by

(3.166). It then follows from (3.166) and (3.167) that

K̂(p2)GK−1(p2) = K̂(p1)GK−1(p1) = L, (3.168)

where L ∈ Lin is uniform. Consequently, these two reference configurations can be related

by

K̂ = LPK, (3.169)

where

P(p1) = K(p1)G−1K−1(p1) (3.170)

belongs to the symmetry group relative to the reference configuration given by K. This last

claim follows from the relation (3.18).

Recall (3.25) and note that the transformation K → K̂ = AK leaves the total dis-

location density α invariant only if A is continuously differentiable and can be expressed as
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a gradient (here, A is identified with LP, cf. (3.169)). In case of discrete symmetry groups,

the tensor P at two neighboring material points, if not identical, will be discontinuous. A

nonuniform P will consequently violate the continuity of K̂. Therefore, in order to have a

smooth plastic distortion field (which is required to obtain α), P has to be uniform for a

material with discrete symmetry group. As a result, A = LP is uniform, and therefore α

remains invariant under compatible changes in the reference configuration. On the other

hand, for continuous symmetry groups (e.g. isotropy and transverse isotropy), one can con-

struct a smooth P field which can not be expressed as a gradient. In such a situation, the

total dislocation density is no more invariant, and therefore fails to be a genuine measure

of incompatibility. This conclusion was reached by Noll [129] in theorem 8 of his mentioned

paper. A further exposition was given by Cohen and Epstein [37], who also quantified the

non-uniqueness introduced by the continuous symmetry groups.

We can therefore conclude that our model ceases to be valid, for bodies with

continuous symmetry groups, such as isotropic or transversely isotropic symmetry. However,

it should be noted that such continuous symmetries are, in practice, used to model poly-

crystals, which are random aggregates of single crystals and at sufficiently large scales, can

be viewed as isotropic. To model a poly-crystalline material within our framework, we

would need to construct the theory at the level of an individual grain boundary, which

separates single crystals. This is precisely the aim of Chapter 6 in this thesis.

Remark 3.8.4. (Bauschinger effect) We observe that the present model, based on the idea

of a stress-free manifold, does not admit back stress as a constitutive variable.19 Back
19Gurtin [70, 71] derives a back stress from the dependence of energy on dislocation density, thus at-

tributing the Bauschinger effect to the constitutive nature of a strain-gradient theory of plasticity.
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stress is thought to be responsible for the Bauschinger effect [109]. Instead, back stress is

regarded as residual stress arising from a dislocation density distribution and a consequent

distribution of elastic strain. In principle, the residual stress field may be determined from

the dislocation density distribution [93, 176] and is therefore a feature of the solution to

a suitably posed initial-boundary-value problem. Its presence effectively means that the

proximity of the local stress state to the yield manifold varies over the body, and thus that

yield in a loaded body is non-uniformly distributed. From this point of view the Bauschinger

effect is structural, rather than constitutive, in nature.
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Chapter 4

Plasticity with Small Elastic

Strains and Elastic Rigidity

In the previous chapter, except for our choice of state variables, the theory of

elastic-plastic deformation was fairly general. In particular, no specific choice for flow rules

and yield criteria were considered. The purpose of this brief chapter is to obtain more

specific results under assumptions on the nature of plastic work and on the accompanying

elastic deformation during the plastic flow. Moreover, we will be restricting ourselves to

isothermal and rate–independent processes. We also emphasize how our model reduces to

classical models of phenomenological plasticity. Some standard texts on plasticity theory

should be mentioned here. The books by Hill [75], Bridgman [22], Kachanov [82], Prager

and Hodge [145], and Thomas [165] are a few, which provide an excellent introduction to

classical theories of plasticity.

This chapter is divided into three sections. We start with a postulate of Ilyushin,
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according to which the plastic work is always non–negative for a process with coinciding

initial and final deformation gradient fields. This postulate furnishes a sufficient condition

for obtaining associated flow rules and a convex yield surface. In Section 4.2 we assume

the elastic strain to be infinitesimally small, but still allowing for finite rotations and finite

plastic strain. After reducing our general theory in the light of this assumption, we discuss,

in detail, the nature of associated flow rules in the absence and presence of hardening. The

last section is concerned with elastically rigid and perfectly plastic solids. For elastically

rigid solids, the elastic strain is assumed to vanish completely, thereby reducing H to a rota-

tion. The stress S is indeterminate in such a situation (since there is no strain energy), but

it can be understood as the Lagrange multiplier associated with the constraint of imposing

H to be a rotation. The assumption of perfectly plastic behavior requires absence of any

hardening in the model. Therefore our flow rules and yield criterion are independent of α.

The theory of elastically rigid perfectly plastic bodies is fundamentally different from what

we have modeled so far, as the notion of stress is no longer constitutive and derived from

an energy, but is rather of the nature of a Lagrange multiplier. Many of our conclusions in

the previous chapter rest on the existence of a strain energy, and therefore it is important

to revisit the theory when no strain energy can be assumed. Such is the aim of this last

section, which is concluded with an example from the theory of Lüders bands [165] in the

context of cubic symmetry.
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4.1 Ilyushin’s postulate

The concepts of associated flow rule and convex yield surface are central to many

theories of rate–independent phenomenological plasticity. An associated flow rule is one for

which the change in plastic distortion, which in our general representation of flow rules is

given by K−1K̇ (cf. (3.137)), is in the direction of the normal to the yield surface (a precise

definition of this normal is given below). The flow rule is therefore associated with the yield

criterion.

Various dissipation postulates have been proposed which provide sufficient condi-

tions to derive an associated flow rule with a convex yield surface. The principle of maximum

plastic dissipation (see for e.g. Hill [75], page 66) is one of the most used postulates, ac-

cording to which plastic flow evolves so as to maximize the plastic work expended by the

body. If taken independently, such a postulate has no physical motivation beyond its utility

in proving certain existence and uniqueness theorems (see Chapter 3 of [75]). In the early

1950s, Drucker [43] introduced an inequality, which should be satisfied by all work harden-

ing materials. According to Drucker’s inequality, for a complete cycle of additional loading

and unloading, additional stresses do positive work in the presence of plastic deformation.

A consequence is that the plastic strain rate cannot oppose the stress rate (see §18 in [82]

and Section 3.2 in [109] for details). The principle of maximum dissipation follows from

Drucker’s inequality and therefore its validity could be justified at least for the physical

situations assumed by Drucker. However, Drucker’s inequality ceases to be valid for finite

elastic/plastic strains [79, 110] and for strain softening [109]. Motivated by this shortcom-

ing, Ilyushin [80] proposed another condition which remains valid for finite elastic/plastic
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strains and also for materials which exhibit strain softening [112, 109]. Ilyushin’s postulate

is equivalent to Drucker’s postulate only for small elastic/plastic strains [110]. As shown

below, the postulate of Ilyushin implies the principle of maximum dissipation.1

The thermodynamic state of an isothermal material element is given by {F,H}

(cf. Subsection 3.4.1).2 In the state space, we consider closed cycles for a time interval

[t1, t2] (where t2 > t1 and t1, t2 ∈ R), such that F(t1) = F(t2). Moreover, assume that these

closed cycles begin inside (or on) the yield surface (i.e. H(t1) is such that g ≤ 0 at t = t1, cf.

(3.163)). According to Ilyushin’s postulate, for a closed cycle (in the sense defined above),

the net work done (at a fixed material point) is non-negative. The work done at a fixed

material point is given by P · Ḟ, cf. (2.168). We therefore have

∫ t2

t1

P(t) · Ḟ(t)dt ≥ 0. (4.1)

Recalling (3.73) (with θ̇ = 0), we can rewrite the integrand in (4.1) as P·Ḟ = ρκḟ+E·K̇K−1,

where ρκf = J−1
K W (H) is the strain energy per unit volume of the reference configuration

and E = J−1
K W1−FTP is Eshelby’s energy-momentum tensor. The inequality thus can be

written as ∫ t2

t1

(ρκḟ + E · K̇K−1)dt ≥ 0. (4.2)

Assume the plastic loading to take place for the time interval [ta, tb] ⊂ [t1, t2], where tb > ta

and ta, tb ∈ R. Then K̇ �= 0 only for time, t ∈ [ta, tb]. Moreover, note that K(t2) = K(tb)
1The consequences of Ilyushin’s postulate in the context of finite distortions have been investigated in

[126, 107, 111, 112, 167, 157].
2We are therefore considering only those material points which are away from the singular surface. For

material points on the singular surface, the state is otherwise given by {F±,H±}.
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and K(ta) = K(t1). The inequality (4.2) therefore reduces to

ρκf(F(t2),K(t2)) − ρκf(F(t1),K(t1)) +
∫ tb

ta

E · K̇K−1dt ≥ 0 (4.3)

or equivalently

ρκf(F(t1),K(tb)) − ρκf(F(t1),K(ta)) +
∫ tb

ta

E · K̇K−1dt ≥ 0, (4.4)

where we have also used the fact that F(t1) = F(t2). Since f is differentiable with respect

to K, (4.4) furnishes

∫ tb

ta

(ρκfK(F(t1),K) · K̇ + E · K̇K−1)dt ≥ 0. (4.5)

Use the mean value theorem, and then take the limit tb → ta (after dividing the expression

by tb − ta) to obtain

(ρκfK(F(t1),K) · K̇ + E · K̇K−1) ≥ 0, (4.6)

evaluated at t = ta. Now, use ρκf(F(t1),K(t)) = J−1
K(t)W (F(t1)K(t)) to obtain

ρκfK(F(t1),K(t)) = −J−1
K(t)K

−T (t)W (F(t1)K(t)) − J−1
K(t)F

T (t1)WH

= −E(F(t1),K(t))K−T (t). (4.7)

Substitute this result into (4.6) to get

{E(F(t),K(t)) − E(F(t1),K(t))} · K̇(t)K−1(t) ≥ 0, (4.8)

which on using E = J−1
K K−TE′KT , where E′ = Ŵ (CH)1−CHS(CH) and S = 2SymŴCH

,

can be rewritten as

{
E′(CH(t)) − E′(CH(t1))

}
·K−1(t)K̇(t) ≥ 0. (4.9)
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Recall, that the dissipation (away from the singular surface) for an isothermal

process was obtained to be (cf. (3.75), (3.78))

D = E · K̇K−1 = J−1
K E′ ·K−1K̇. (4.10)

Moreover, our choice of state at t = t1 is arbitrary as long as g(t1) ≤ 0, where g = 0

defines the yield surface. For fixed K−1K̇, the inequality (4.9) therefore restricts the state

achieved by the material element to be the one which maximizes dissipation with respect to

all the thermodynamic states on or inside the yield surface. A similar interpretation follows

from (4.8). The inequalities (4.8) and (4.9) can be seen as two equivalent statements

of the principle of maximum plastic dissipation. Note that, these inequalities are only

necessary conditions for Ilyushin’s postulate. Their sufficiency can be proved only under

much restrictive conditions [112].

We now discuss the consequences of inequality (4.9). Assume the yield surface to

be smooth everywhere and given by

G(E′,α) = 0, (4.11)

such that g = ĝ(CH ,α) = G(E′(CH),α) (cf. (3.163)). For fixed α, E′(CH(t)) lies on the

manifold G = 0 and Ê′ = E′(CH(t1)) lies in the domain restricted by G ≤ 0 (see Figure

4.1). They are related via the inequality (4.9) as

(E′ − Ê′) · K−1K̇ ≥ 0. (4.12)

We can use our constitutive assumptions to interpret second order tensors K−1K̇, E′, and

Ê′ as members of a six dimensional vector space. Indeed, recall our assumption regarding

plastic spin from (3.134), i.e. K−1K̇C−1
H ∈ Sym. This constitutive assumption reduces
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K−1K̇

K−1K̇

G(E′,α) = 0 G(E′,α) = 0

(a) (b)

Ê′

E′E′
Ê′

Figure 4.1: Associated flow rule and convexity of the yield surface.3

the number of unknown components in K−1K̇ from nine to six. Furthermore, we have

constraints of the form E′CH ∈ Sym for E′, thus reducing its dimension from nine to six.

The surface G(E′,α) = 0 for a fixed α, therefore represents a five dimensional manifold in

the space of six dimensional vectors.

Interpreting the second order tensors K−1K̇, E′, and Ê′ as six dimensional vectors,

we can understand the inequality (4.12) as a requirement for the angle between (E′ − Ê′)

and K−1K̇ to be acute. Assume that the surface G = 0 is not convex (for example, as in

Figure 4.1 (b)). Then it is always possible to choose a point Ê′ such that the inequality

(4.12) is violated, regardless of the direction of K−1K̇. Therefore the yield surface has to

be convex. Referring now to Figure 4.1 (a), we can conclude that K−1K̇ has to be in a

direction of the outward normal (smoothness of G furnishes a unique normal) to the tangent

hyperplane of G = 0 at E′ (and at a fixed α). Otherwise, we can choose E′ − Ê′ such that
3The yield surface G = 0 represents a six dimensional manifold for fixed α. The second order tensors

K−1K̇, E′, and Ê′ are all understood as members of a six dimensional vector space.
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(4.12) is violated. This is the normality rule, which can be written as

K−1K̇ = μGE′(E′,α), (4.13)

where μ ≥ 0 is a scalar multiplying factor. The non-negativity of μ come from the fact

that K−1K̇ has to be an outward (and not inward) normal to G = 0. A more technical

derivation, instead of purely geometric arguments used here, can be pursued using concepts

from convex analysis.4 Finally, note that the flow rule as obtained in (4.13) should also

satisfy the following dissipation inequality (cf. (3.75) and (3.78) with g = 0), which follows

as a consequence of the second law of thermodynamics:

E′ · K−1K̇ ≥ 0. (4.14)

Using (4.13), inequality (4.14) then yields (for μ > 0)

E′ ·GE′(E′,α) ≥ 0. (4.15)

This inequality can be seen as a restriction on the form of the yield criteria G(E′,α).

Remark 4.1.1. (Plastic spin) If in the above discussion we remove the constraint on the

plastic spin, given by K−1K̇C−1
H ∈ Sym (cf. (3.134)), then the relation (4.13) poses a

problem. Without the constraint, the tensor K−1K̇ belongs to a nine dimensional vector

space, while on the other hand the right hand side of (4.13) lies in the local cotangent space

of the E′ manifold, which is a six dimensional vector space. This issue was identified by

Lubliner [108, 109] (and later by Cleja-Ţigoiu [167]), who proposed a solution by adding

to the right hand side of (4.13), a three dimensional vector orthogonal to GE′ in the space
4See for example the derivation in Lucchesi and Podio-Guidugli [111], which relies heavily on the concepts

introduced by Rockafellar [151].
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of nine dimensional vectors, so as to make it consistent. We avoid this altogether by

introducing an additional constitutive assumption on the nature of plastic spin.

Remark 4.1.2. (Yield surface in strain space) If the yield surface is given in terms of CH

rather than E′, then we would require to invert E′ = E′(CH) to express the normality rule

(4.13) in terms of the yield surface in strain space [167]. This in general is not valid in the

case of finite elastic strains, due to non invertibility of the stress strain relation . However,

as we shall see in the next section, this problem is overcome in the case of small elastic

strains.

4.2 Small elastic strains

For many practical problems, specifically in the case of metals, elastic strains

remain infinitesimally small and the material starts to flow plastically even under small

strains. The rotation appearing in the polar decomposition of H however can remain finite,

a fact which has important implications for the magnitude of dislocation density. The plastic

distortion also, in general, remains finite. It would be therefore interesting to simplify our

theory under the assumption of infinitesimal elastic strain. A more restrictive assumption is

of course of an absence of elastic strains. This assumption, however, requires us to approach

the theory in a fundamentally different way, and not just as a limiting case. We will discuss

the consequences of the assumption of elastic rigidity in Section 4.3.
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4.2.1 Preliminaries

Denote the Elastic strain by ε and assume it to be small, i.e. |ε| << 1. The left

Cauchy Green tensor CH = HTH is related to the elastic strain as CH = 2ε+1. The elastic

distortion H admits a polar decomposition (cf. (2.35)), i.e. H = RU, where R ∈ Orth+ is

a rotation and U ∈ Sym+ is symmetric and positive definite. Since U2 = CH , we obtain

U = 1 + ε + o(|ε|) and consequently

H = R(1 + ε) + o(|ε|), H−1 = (1 − ε)RT + o(|ε|), and JH = 1 +O(|ε|). (4.16)

Recall relations (3.100) and (3.101) for stresses. If we assume

S = O(|ε|) (4.17)

such that S vanishes for a zero elastic strain, then we can write the linear relationship

between stress and strain as

S = C[ε], (4.18)

where C is the fourth order constant elastic modulus tensor (see Page 22 for more on fourth

order tensors). The tensor C has a major symmetry and also minor symmetries with respect

to first two and last two indices. The strain energy, then has the following form (assuming

that there is zero strain energy in the absence of ε)

W =
1
2

C[ε] · ε. (4.19)

On the other hand, use (3.100),(4.16)1,3, and (4.17) to obtain an estimate for Cauchy stress,

T = RSRT + o(|ε|). (4.20)
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The Eshelby’s tensor E′ = Ŵ (CH)1−CHS(CH), on using (4.17), (4.19), and CH = 1+2ε,

can be written as

E′ = −S + o(|ε|). (4.21)

The dissipation inequality (3.75) therefore takes the form

D ≈ −S ·K−1K̇ = S · ˙K−1K ≥ 0, (4.22)

where ˙K−1 represents the material time derivative of K−1. The second equality in (4.22)

is obtained on using the identity, K−1K̇ + ˙K−1K = 0, which follows from taking the time

derivative of K−1K = 1. Moreover our constitutive assumption regarding plastic spin

(3.134), to the leading order, is now give by

K−1K̇ ∈ Sym. (4.23)

Recall the flow rule (3.137),

K−1K̇ = S(CH , ĊH ,α)CH , (4.24)

where S ∈ Sym. Use CH = 1 + 2ε to define Ŝ ∈ Sym as Ŝ(ε, ε̇,α) = S(1 + 2ε, 2ε̇,α).

Since K̇ vanishes in the absence of elastic distortion (Section 3.5), we have Ŝ(0, ε̇,α) = 0

by virtue of (3.137), and if Ŝ is a smooth function of its first argument, (4.24) furnishes

K−1K̇ = T (ε, ε̇,α) + o(|ε|), (4.25)

where T (ε, ε̇,α) is a symmetric tensor valued function linear in ε. In the rate-independent

case it is also linear in ε̇. Given the one-to-one relationship between S and ε implied by our

constitutive assumptions, we may write

K−1K̇ = R(S, Ṡ,α) + o(|S|), (4.26)
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in which S is non-dimensionalized by the largest modulus in the linear function S(ε), and

R(S, Ṡ,α) = T (ε(S), (ε(S))̇,α) is a symmetric tensor valued function linear in S (and also

in Ṡ in the rate–independent case). Substitute (4.26) into (4.22) yields

S · R(S, Ṡ,α) ≤ 0, (4.27)

with equality holding only when K̇ = 0. Further, since, under material symmetry, ε and

S transform to GT εG and GTSG, respectively (where G belongs to the symmetry group

Gκi associated with κi), the representation problems for T (ε, ε̇,α) and R(S, Ṡ,α) are the

same as that for S, except of course that the former are eased considerably by the linear

dependence on the first arguments, or by the bilinear dependence on the first two arguments

in the case of rate independence.

In the same way, if the yield function g (cf. (3.163)) depends smoothly on its first

argument, then

g(CH ,α) = H(ε,α) + o(|ε|2), (4.28)

where H contains terms linear and quadratic in ε. Our constitutive hypothesis imply that

this may be written as a similar function of S. Denote such a function by H̃(S,α) = H(ε,α).

These functions are subject to material symmetry restrictions which follow trivially from

(3.164). Taylor’s formula for the flow stress in single crystals involves a linear relationship

between the square of stress and the operative dislocation density. This suggests that a

linear dependence of H on α is relevant. Yield functions of this kind (modulo dislocation

density) have recently been studied [28] and correlated with experimental data on materials

having various kinds of symmetry. These may be adapted directly to the present framework

by using S as the operative stress measure and regarding Gκi as the relevant symmetry group.
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4.2.2 Associated flow rules

For small elastic strains, relation (4.12) on using (4.21), reduces to

(S − Ŝ) · ˙K−1K ≥ 0, (4.29)

where Ŝ is any stress satisfying H̃(Ŝ,α) ≤ 0 and S is the stress which is truly achieved

during plastic flow. On noting the definition of dissipation from (4.22), the inequality (4.29),

as in Section 4.1, represents the principle of maximum dissipation. Following the arguments

from Section 4.1, we can express the plastic evolution using an associated flow rule as5

˙K−1K = λH̃S, (4.30)

where λ ≥ 0 is a scalar. The second order tensors ˙K−1K and S can be identified with the

six dimensional vector space of symmetric tensors. The yield criterion H̃(S,α) = 0, for a

fixed α, then defines a five dimensional manifold in this six dimensional vector space. Note

that in the previous section, the six dimensional vector space did not correspond to the

space of symmetric tensors.

To establish the transformation of H̃S under material symmetry, write a relation

of the type (3.164) for H̃

H̃(S,α) = H̃(GTSG,GTαG), (4.31)

where G ∈ Gκi is a rotation. Fix G, and take a time derivative of (4.31) to get

H̃S · Ṡ + H̃α · α̇ = GH̃S̄G
T · Ṡ + GH̃ᾱGT · α̇, (4.32)

5The gradient H̃S is a symmetric tensor, cf. the footnote on Page 79.
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where S̄ = GTSG and ᾱ = GTαG. Matching coefficients of Ṡ and α̇, we get the transfor-

mations for H̃S and H̃α as

H̃S̄ = GT H̃SG, and H̃ᾱ = GT H̃αG, (4.33)

respectively. Further, the invariance of λ follows from noting that ˙K−1K → GT ˙K−1KG

(cf. (3.140)) and the transformation (4.33)1.

We now recover some classical flow rules. Use F = HK−1 (cf. (3.18)) to obtain

ḞF−1 = ḢH−1 + H ˙K−1KH−1. (4.34)

Here, ḢH−1 = ṘRT + Rε̇RT + o(|ε|), which follows from (4.16)1,2 and the assumption

that ε̇ = O(|ε|). Moreover, assume λ = O(1) and H̃S = O(|ε|). Then (4.30) when combined

with (4.16)1,2 furnishes

H ˙K−1KH−1 = λRH̃SRT + o(|ε|). (4.35)

The rate of deformation tensor D is defined by D = Sym(ḞF−1). Noting that ṘRT ∈ Skw

and H̃S ∈ Sym we can obtain

D = Rε̇RT + λRH̃SRT + o(|ε|). (4.36)

For isotropy, relations (4.31) and (4.33) hold for all G ∈ Orth+. For G = RT , we

have S̄ = GTSG = RSRT and therefore S̄ ≈ T (cf. (4.20)). As a result

H̃T ≈ H̃S̄ ≈ RH̃SRT , (4.37)

where (4.37)2 follows from (4.33)1. Substituting (4.37) back into (4.36) we get

D ≈ Rε̇RT + λH̃T. (4.38)
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This is of the form of Prandtl–Reuss equation for plastic flow [82]. If additionally we assume

that ε̇ = o(|ε|), then D ≈ λH̃T, which is the the classical Levy–St. Venant flow rule rule

[82].

In the rest of this section, we will discuss the procedure to evaluate λ, which has

been left undetermined so far. Significantly different results are obtained for the case of

perfect plasticity (no hardening) and for a flow with hardening. We therefore divide the

discussion into two parts:

Case (i): No Hardening Consider the case of perfect plasticity, that is plastic flow with

no hardening. In our context this implies an absence of the dependence of flow rules and

yield on α. The yield criterion is now given by

H̃(S) = 0. (4.39)

Using this yield criterion, we can obtain the consistency condition as

H̃S · Ṡ = 0, (4.40)

which can be rewritten in the form

HC[H̃S] · Ḣ = 0, (4.41)

where we have used equation (4.18) and relations 2ε̇ = ĊH , H̃S ∈ Sym, and C
T = C. The

superscript T denotes the major transposition of a fourth order tensor (defined on page 22).

Since H = FK, (4.41) yields

HC[H̃S] · (ḞK + FK̇) = 0, (4.42)
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which can be rearranged, on using F = HK−1 and K−1K̇ = − ˙K−1K, to get

HC[H̃S]KT · Ḟ −CHC[H̃S] · ˙K−1K = 0, (4.43)

Substitute ˙K−1K from the flow rule (4.30) into (4.43) and use the small strain approxima-

tion to obtain

λ =
HC[H̃S]KT · Ḟ
CHC[H̃S] · H̃S

≈ RC[H̃S]KT · Ḟ
C[H̃S] · H̃S

, (4.44)

where the denominator is assumed to be positive. Eliminating λ between (4.30) and (4.44)

yields

˙K−1K = φ(H̃S ⊗ RC[H̃S]KT )Ḟ, (4.45)

where

φ =
1

C[H̃S] · H̃S

. (4.46)

Similar results can be found in many texts of plasticity theory, for e.g. [75, 82].

Case (ii): Hardening For a model with hardening, the yield function depends on α and

the yield criterion is given by

H̃(S,α) = 0, (4.47)

which then implies the following consistency condition

H̃S · Ṡ + H̃α · α̇ = 0. (4.48)

Our aim is to solve for λ which appears in the flow rule (4.30). In most of the

conventional treatments [109], a separate flow rule is postulated for the hardening parame-

ter, which in our case is α. In the following, however, we will use the definition of α from

(3.23)1 and obtain a partial differential equation to be solved for λ. This approach avoids
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requiring additional constitutive information, which would be needed to postulate an inde-

pendent flow rule for α̇, at the cost of solving a differential equation for a scalar quantity.

To elaborate, start by evaluating α̇ by taking the time derivative of the expression for α in

(3.23)1. We get

α̇ = − tr( ˙K−1K)α + ( ˙K−1K)α + JKK−1 Curl ˙K−1. (4.49)

The term ˙K−1K can be substituted directly from (4.30). On the other hand, the last term

in (4.49) can be expanded using ˙K−1 = λH̃SK−1 (from (4.30)) as6

(Curl ˙K−1)ij = eimn(λH̃SK−1)jn,m

= eimnλ,m(H̃SK−1)jn + λeimn(H̃S)jl,mK−1
ln + λ(H̃S)jl(CurlK−1)il,

which, when substituted back into (4.49), yields

α̇pj = λ
(
(H̃S)pk − tr(H̃S)δpk

)
αkj + λJKeimnK

−1
pi (H̃S)jl,mK−1

ln

+ λ(H̃S)jkαpk + λ,mJKeimnK
−1
pi (H̃SK−1)jn (4.50)

and therefore

H̃α · α̇ = λ
(
H̃αH̃S + H̃SH̃α

)
· α − λ tr(H̃S)(H̃α · α)

+ λJKeimn(K−T H̃α)ij(H̃S)jl,mK−1
ln + λ,mJKeimn(K−T H̃αH̃SK−1)in.(4.51)

On substituting (4.51) in the consistency condition (4.48), we obtain a partial differential

equation (in space) to solve for λ. We note, simply by observation, that if the term H̃α

6Indicial notation is used for simplicity. The components are with respect to the Cartesian coordinate

system.



150

is volumetric (i.e. of the form a1, for some a ∈ R), then the coefficient of ∇λ in (4.51)

vanishes, thereby reducing the differential equation to a linear equation in λ.

It will be useful, for use in Chapter 5, to express the flow rule (4.30) as a linear

function of ĊH . According to our constitutive assumptions λ in (4.30) should be a linear

function of ĊH (cf. (4.26)) and therefore can be written as

λ = M · ĊH , (4.52)

where M = M(CH ,α) is a symmetric second order tensor. The expression for M can be

obtained from (4.48) as

M = −λ
2

C[H̃S]
H̃α · α̇

, (4.53)

where we have also used Ṡ = 1
2C[ĊH ], which follows from (4.18). We can verify (4.53) by

a direct substitution into (4.52) and using (4.48). Rewrite (4.53) in the form

M = ηC[H̃S], (4.54)

with

η = − λ

2H̃α · α̇
, (4.55)

where the denominator can be evaluated from (4.51). Use (4.54) and (4.52) to write the

flow rule (4.30) as

˙K−1K = η
(
H̃S ⊗ C[H̃S]

)
[ĊH ]. (4.56)

During plastic flow, λ > 0 and H̃S · Ṡ > 0. Therefore, H̃α · α̇ < 0 (cf. (4.48)) and

consequently (4.55) implies that η > 0.
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4.3 Elastically rigid, perfectly plastic material

In this section, we assume our body to be elastically rigid and perfectly plastic,

and restrict processes to be isothermal. An elastically rigid body is not capable of straining

elastically (i.e. ε = 0 identically for all processes), and therefore, in the isothermal case, is

unable to store any strain energy. Consequently, stress in the body is no longer derived from

a strain energy. It can however be interpreted as the Lagrange multiplier associated with the

constraint of elastic rigidity. On the other hand, the assumption of perfect plasticity requires

the flow rule and the yield stress to be independent of any hardening parameter, which in

our model is the dislocation density α. There is a broad class of materials, which satisfy

these assumptions [145, 75], and moreover, the resulting theory is analytically tractable to

the extent of obtaining many closed form solutions [145].

Due to the nature of stress, the treatment of elastically rigid bodies proceeds in a

fundamentally different way from the theory developed in Chapter 3, although much of the

framework can be borrowed from it. In the first subsection below, we revisit main concepts

developed in Chapter 3 in the light of present assumptions. In Subsection 4.3.2 we consider

specific forms of yield functions and flow rules for the case of cubic material symmetry and

use them in Subsection 4.3.3 to solve a problem involving Lüders bands.

4.3.1 Preliminaries

For an elastic rigid body, the elastic distortion is given by a rotation. Such a

constraint is expressed by six equations, and the corresponding Lagrange multipliers are

the components of the symmetric Cauchy stress tensor. As before, the elastic deformation
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and the Cauchy stress tensor are denoted by H ∈ Orth+ and T ∈ Sym, respectively.

Relaxed configuration It can be easily seen that two relaxed configurations (interme-

diate configurations) are locally related by a proper orthogonal tensor. Let H1 and H2 be

the gradient of maps of the two relaxed configurations to the current configuration κt at a

material point. If A denotes the gradient of the map connecting the two relaxed configu-

rations, then we can write, H1 = H2A. For an elastically rigid body, {H1,H2} ∈ Orth+,

and therefore it follows immediately that A ∈ Orth+.

Dissipation hypothesis The multiplicative rule of decomposition for the deformation

gradient F yields H = FK (cf. (3.18)), where K denotes the plastic distortion. The stress

power is given by P · Ḟ, where P = JFTF−T = J−1
K THKT for H ∈ Orth+. For an

elastically rigid solid, all the work done by stress is dissipated (since we assume storage

of energy only through elastic strains). Thus, dissipation equals the stress power, i.e.

D = P · Ḟ. Noting that Ḟ = ḢK−1 − FK̇K−1, and denoting ḢH−1 = Ω ∈ Skw, we

can obtain D = PFT · Ω − FTP · K̇K−1. But, since PFT ∈ Sym (cf. (2.153)), we get

D = −FTP · K̇K−1. We introduce the following dissipation hypothesis (cf. (3.87)):

D > 0 if and only if K̇ �= 0, or

FTP · K̇K−1 < 0 if and only if K̇ �= 0. (4.57)

Superimposed rigid body motion We now obtain transformation rules for H and

K under superimposed rigid body motions (SRBM). Let the elastic distortions associated

with two such motions, H1 and H2, be related by Z = H2H−1
1 . Since {H1,H2} ∈ Orth+,

therefore Z ∈ Orth+. Therefore under SRBM, H → QHH, where QH ∈ Orth+. To obtain
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the transformation rule for K, we introduce the hypothesis that SRBM does not generate

dissipation. We also use the transformation rules for the deformation gradient and the

Cauchy stress, i.e. F → QF and T → QTQT , where Q ∈ Orth+ denotes the rotation

involved in the rigid body motion. Using the transformation rules for F and H, it is easily

seen that JK remains invariant. On using the transformation rule for T, the term FTP is

found to be invariant under SRBM. Let Z = K2K−1
1 , with Z(t0) = I, where t0 is the initial

time of the rigid body motion. Let D1 and D2 denote the dissipation associated with K1

and K2 respectively. The above mentioned hypothesis then implies that

0 = D1 −D2 = FT2 P2 · (K−1
1 K̇1 − K−1

2 K̇2), (4.58)

which furnishes

FT2 P2 · (K−1
1 Z−1ŻK1) = 0. (4.59)

To obtain a necessary condition, let K1 = I. The above condition then reduces to FT2 P2 ·

(Z−1Ż) = 0. Noting that K2 = Z, we can invoke the hypothesis given by the relation (4.57)

to conclude that Ż = 0 and therefore Z(t) = Z(t0) = I. Therefore under a SRBM, K → K.

The multiplicative decomposition of F, then implies that QH = Q.

Flow rule In view of the dissipation inequality, the general form of flow rule can be

written as

F(K, K̇,H, Ḣ,FTP, (FTP)̇) = 0, (4.60)

where we have assumed the work hardening to be negligible in accordance with our assump-

tion of perfect plasticity. We require the flow rule to be invariant under a compatible change

in the reference configuration. Let R be the gradient of the map connecting two reference
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configurations κr1 and κr2 . Then F1 = F2R, H1 = H2, and K2 = RK1. The Cauchy stress

is insensitive to such changes in the reference configuration, and therefore P2 = J−1
R P1RT .

Insensitivity of the flow rule to a change in reference configuration then implies

F(K1, K̇1,H1, Ḣ1,FT1 P1, (FT1 P1)̇)

= F(RK1,RK̇1,H1, Ḣ1, J
−1
R R−TFT1 P1RT , J−1

R R−T (Ft1P1)̇RT ), (4.61)

where we have used the fact that R is independent of time. Let R = K−1
1 , and obtain from

(4.61),

F(K, K̇,H, Ḣ,FTP, (FTP)̇) = F̂(K−1K̇,H, Ḣ, JKKTFTPK−T , JKKT (FTP)̇K−T ).

(4.62)

Next, we suppose the tensor valued function F̂ to be invariant under superimposed

rigid body motion, that is under the transformations of the type F → QF, H → QH,

K → K, and P → QP, where Q ∈ Orth+. Further, if we assume Q = HT ∈ Orth+, then

under SRBM, H → I, Ḣ → Ω ∈ Skw, F → K−1, K → K, and P → HTP. Since Ω makes

no contribution to the dissipation (cf. (4.57)), we introduce a constitutive assumption that

Ω = 0. Obtain

F̂(K−1K̇,H, Ḣ, JKKTFTPK−T , JKKT (FTP)̇K−T )

= K(K−1K̇, JKHTPK−T , JKKT (FTP)̇K−T )

= K(K−1K̇,S, Ṡ), (4.63)

where S = HTTH and K is some tensor valued function. We also used the identity,

Ṡ = JKKT (FTP)̇K−T + (K−1K̇)TS + tr(K−1K̇)S − S(K−1K̇)T . The flow rule for an
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elastically rigid perfectly plastic body therefore takes the form

K(K−1K̇,S, Ṡ) = 0. (4.64)

For (isothermal) perfect plasticity, we cannot always solve (4.64) for K−1K̇ explicitly as

a function of S and Ṡ (cf. (3.130)). To elaborate, consider the one dimensional example

illustrated in Figure 1.1(i). During the rate independent plastic flow, the stress is constant

(given by the yield limit), and therefore the stress rate vanishes. The plastic strain rate,

however, need not be constant (it can be varied through the boundary). Therefore, we

cannot express plastic strain rate as an explicit function of stress and stress rate. It can

be shown that the plastic strain rate, in this case, is obtained only by solving the complete

boundary value problem [82].

Ilyushin’s postulate The assumption of an elastically rigid response implies that the

internal work expended by the total strain vanishes for the processes which satisfyH(S) < 0,

where H(S) = 0 defines the yield manifold. Further, the assumption of a perfectly plastic

response imply that the yield surface does not evolve in a loading process. Therefore, work

is only performed by trajectories of the stress S, which stay on the yield surface. It can

then be deduced that the postulate Ilyushin [80] is equivalent to the dissipation hypothesis

(4.57). Indeed, the postulate of Ilyushin states that for a closed cycle (in terms of F), which

begins inside (or on) the yield surface, the net working by internal strain (at a fixed material

point) is positive. That is for time t ∈ [t1, t2], such that F(t1) = F(t2), we require

∫ t2

t1

P(t) · Ḟ(t)dt ≥ 0. (4.65)
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If the process remains on the yield surface for a time [ta, tb] ⊂ [t1, t2], then for an elastically

rigid response, the above postulate reduces to,

∫ tb

ta

P(t) · Ḟ(t)dt ≥ 0. (4.66)

This integral inequality can be localized on the manifold given by the yield condition, as

the thermodynamic state remains on that manifold for any arbitrary time given by [ta, tb].

We also assume that the integrand is sufficiently smooth on the yield surface. On localizing

we obtain

P(t) · Ḟ(t) ≥ 0 (4.67)

for the processes which are constrained to remain on the manifold of yield surface. Therefore

for the case of elastically rigid perfect plasticity, Ilyushin’s postulate implies the dissipation

hypothesis (4.57). The converse is also true and can be proved on reversing the aforemen-

tioned steps.

The dissipation hypothesis, when expressed in terms of S, reads as

S · K−1K̇ < 0, (4.68)

where S remains on the yield manifold, defined by H(S) = 0 (and therefore K̇ �= 0). We

have seen that Ilyushin’s condition does not imply the maximum dissipation postulate.

However, Drucker’s postulate remains valid [109], which does imply the inequality of max-

imum dissipation. Therefore, following the procedure discussed earlier, we can obtain an

associated flow rule of the form

˙K−1K = γHS, (4.69)

where γ ≥ 0 is a scalar function. Moreover, since the skew part of K−1K̇ makes no
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contribution to the dissipation in (4.68), we can make the following constitutive assumption

(cf. (3.134) and (4.23))

K−1K̇ ∈ Sym. (4.70)

Remark 4.3.1. (Levy–St. Venant relation) Assume a Mises type yield criteria (for isotropy),

which is insensitive to pressure, such that

HS = Sd, (4.71)

where Sd is the deviatoric part of S. The flow rule (4.69) yields

Sym(K−1K̇) = γSd. (4.72)

Here γ is a scalar function such that it is invariant under the transformations which belong

to the symmetry group of κi (here, that for isotropic materials). For H ∈ Orth+, we have,

ḞF−1 = ḢHT + HK−1K̇HT and therefore D ≡ Sym(ḞF−1) = HSym(K−1K̇)HT . Also,

the relation S = HTTH implies that trS = tr T. Therefore, Sd = HTTH − 1
3(tr T)1 =

HTTdH. The flow rule (4.72) can then be rewritten as

D = λTd, (4.73)

which is the classical Levy–St. Venant relation for elastically rigid perfectly plastic solids

(for isotropic materials) [82].

4.3.2 Example of a yield criterion and a flow rule

The yield condition is further subjected to the following restrictions due to material

symmetry,

H(S) = H(GTSG) (4.74)
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where G is an element of the symmetry group of the intermediate configuration. The

classical Mises condition, for isotropic material symmetry, is given by 2J2(Td) ≡ Td ·Td =

2k2, where J2(Td) denotes the second invariant of the Cauchy stress deviator and k is a

constant for perfectly plastic behavior. The second invariant can be expanded in terms of

the cartesian components of Cauchy stress tensor as

J2(Td) =
1
6
(
(Tx − Ty)2 + (Tx − Tz)2 + (Ty − Tz)2

)
+
(
T 2
xy + T 2

xz + T 2
yz

)
=

1
6

(
(T dx − T dy )2 + (T dx − T dz )2 + (T dy − T dz )2

)
+
(
(T dxy)

2 + (T dxz)
2 + (T dyz)

2
)
,

where the second equality can be easily shown to follow from the identity, Td = T− 1
3(trT)1.

An extension of Mises criteria to materials demonstrating cubic symmetry can be obtained

by following the example of Cazacu and Barlat [28], who treated the case of orthotropy. A

generalized J2 (call it Jc2) is defined by writing down a second order homogeneous polynomial

in stress, which is invariant with respect to the cubic symmetry group. A further restriction

of its insensitivity to pressure is also imposed. We assume

Jc2(Td) =
m1

6

(
(T dx − T dy )2 + (T dx − T dz )2 + (T dy − T dz )2

)
+m2

(
(T dxy)

2 + (T dxz)
2 + (T dyz)

2
)
,

(4.75)

where m1 and m2 are constants. Therefore, the modified Mises criteria for materials with

cubic symmetry is given by

H(Sd) = Jc2 − k2 = 0. (4.76)

The yield criteria (4.76) satisfies the symmetry relation (4.74) by construction (for a cubic

symmetry group).

Next, we use the yield criterion (4.76) in the normality rule (4.69) to obtain a

specific flow rule for materials with cubic symmetry. An indifference to pressure is also
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assumed. Obtain

HSd = Td
Sd [(Jc2)Td ] = HT (Jc2)TdH, (4.77)

where we have used the relation Td = HSdHT to obtain the second equality. Further, the

identity Sym(K−1K̇) = HTDH enables us to write the flow rule (4.69) as

D = λ(Jc2)Td . (4.78)

Use the expression for Jc2 from (4.75) to write the cartesian components of (Jc2)Td

((Jc2)Td)ij =
1
2

( ∂Jc2
∂T dij

+
∂Jc2
∂T dji

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

m1T
d
x m2T

d
xy m2T

d
xz

m2T
d
xy m1T

d
y m2T

d
yz

m2T
d
xz m2T

d
yz m1T

d
z

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4.79)

Therefore, in terms of cartesian components of D we have⎛
⎜⎜⎜⎜⎜⎜⎝

Dx Dxy Dxz

Dxy Dy Dyz

Dxz Dyz Dz

⎞
⎟⎟⎟⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎜⎜⎜⎝

m1T
d
x m2T

d
xy m2T

d
xz

m2T
d
xy m1T

d
y m2T

d
yz

m2T
d
xz m2T

d
yz m1T

d
z

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4.80)

The above relation can be used in conjunction with the yield relation (4.76) to obtain λ in

terms of D and material constants.

4.3.3 Lüders bands

In this subsection we revisit the classical theory of Lüders Bands [165], but now

extending it to materials with cubic symmetry. These bands consist of plastically deforming

material, and are contained between two inclined planes bounded by rigid regions. We

assume the material to be incompressible. The material velocity is assumed to be constant

(with respect to time) in the plastic region and is assumed to vanish in the rigid region.
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Governing equations and jump conditions For an incompressible material which

displays cubic symmetry, we recall the flow rule and the yield condition from the previous

subsection (equations (4.78) and (4.76), respectively). Therefore, with addition of the stress

equilibrium (equation (2.146) with b = 0 and v̇ = 0), the following constitute the set of

governing equations:

divT = 0, (Equilibrium)

D = λ(Jc2)Td , and (Flow rule)

Jc2(Td) = k2, (Modified Mises Yield Condition)

where the flow rule and the yield condition in valid only in the plastic part of the material.

The jump conditions can be obtained at the interface between rigid and plastic medium.

Let u denote the normal velocity of the interface. The normal is denoted by n and we place

a bar over the variables for rigid medium. The jump conditions are given by (cf. (2.133)

and (2.148))

ρ(v · n− u) = ρ̄(v̄ · n− u), and (4.81)

�T�n = ρ(v · n − u)�v�, (4.82)

where ρ denotes the density and v, the material velocity. Since the material in the rigid

part is at rest, we have v̄ = 0. We can then substitute the first jump condition into the

second to obtain

�T�n = −ρ̄uv. (4.83)

An ideal flat bar As an illustrative example, we consider an ideal flat rectangular bar,

whose flat sides are formed by two infinite parallel planes. We can define a convenient carte-
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Figure 4.2: Portion of an ideal flat bar. (After Thomas [165]).

sian coordinate system, given by orthogonal triplets (y1,y2,y3) such that y1 lies parallel to

the band, y2 in the direction of normal to the interface between and plastic and rigid media

(cf. Figure 4.2, where the plastic medium is restricted between planes AA′ and BB′), and

therefore y3 points out of the plane of paper, through the free surface of the bar. We have

the following relation between two coordinate systems shown in Figure 4.2:

x1 = y1 cos θ − y2 sin θ,

x2 = y1 sin θ + y2 cos θ, and

x3 = y3.

Let the bar be subjected to uniaxial stress of magnitude Y in the direction of x2.

Therefore, the state of stress Σ in the rigid part of the bar is given by

Σ = Y x2 ⊗x2 = Y sin2 θy1 ⊗y1 +Y sin θ cos θ(y1 ⊗y2 +y2 ⊗y1)+Y cos2 θy2 ⊗y2. (4.84)
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Our aim is to find the inclination angle θ, which the plastic band makes with the

horizontal plane. We consider a simple solution of the velocity field in the plastic region

v = ay2y1 + by2y2 − by3y3, (4.85)

where a and b are constants. Note, that the condition of incompressibility is satisfied

immediately with this velocity field (div v = 0). The velocity field in (4.85) should also

satisfy jump conditions (4.81) and (4.83) and also the condition which requires vanishing

of the traction on the free surface (which is normal to y3). From the above velocity field

we obtain

D = Sym(gradv) = by2 ⊗ y2 +
a

2
(y1 ⊗ y2 + y2 ⊗ y1) − by3 ⊗ y3. (4.86)

Using the flow rule in the component form from (4.80), we can obtain the following stress

field in the plastic region:

Td =
b

λm1
y2 ⊗ y2 +

a

2λm2
(y1 ⊗ y2 + y2 ⊗ y1) −

b

λm1
y3 ⊗ y3 (4.87)

and therefore

T = −py1 ⊗y1

( b

λm1
− p
)
y2 ⊗y2 +

a

2λm2
(y1 ⊗y2 +y2 ⊗y1)−

( b

λm1
+ p
)
y3 ⊗y3, (4.88)

where p = −1
3 trT. Substituting T in the equilibrium condition furnishes grad p = 0.

Therefore p is constant within the plastic region. The traction on the free surface is given

by Ty3. Vanishing of this traction implies that p = − b
λm1

over the outer boundaries of

the band, and also inside the whole plastic band (since p is constant in the plastic region).

Moreover, the jump condition (4.81) provides us with the relation (with n = y2)

ρbŷ2 = u(ρ− ρ̄), (4.89)
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where ŷ2 is the half-width of the plastic band. The jump condition (4.83), on the other

hand, gives us

�Ti2� = Ti2 − Σi2 = −ρ̄uvi (4.90)

from which we obtain the following two conditions,

a

2λm2
− Y sin θ cos θ = −ρ̄uaŷ2. (4.91)

2b
λm1

− Y cos2 θ = −ρ̄ubŷ2. (4.92)

Divide above relations with respect to each other to obtain

tan θ =
m1a(1 + 2λm2ρ̄uŷ2)
2m2b(2 + λm1ρ̄uŷ2)

. (4.93)

We eliminate θ from these equations by using the identity 1 + tan2 θ = sec2 θ and the

relations (4.92) and (4.93) to get,

4m2
2b

2(2 + λm1ρ̄uŷ2)2 +m2
1a

2(1 + 2λm2ρ̄uŷ2)2

4m1m2
2b(2 + λm1ρ̄uŷ2)

= λY. (4.94)

Substitute the components of the stress state given in equation (4.87) into relation

(4.75) and then use the result in the yield equation (4.76) to obtain

b2

m1
+

a2

4m2
= λ2k2 =

m1λ
2Y 2

3
, (4.95)

which can be rewritten as (denoting c = a
b ),

λ2 =
3u2(ρ− ρ̄)2

m1ρ2ŷ2
2Y

2

( 1
m1

+
c2

4m2

)
, (4.96)

where we have used equation (4.89) to replace b. A nonlinear equation in c is then obtained

by substituting λ from (4.96) into (4.94). After solving for c, we can obtain λ from (4.96)

and subsequently θ from (4.93).
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Chapter 5

Surface Dislocations and Plastic

Waves

This chapter is divided into two parts. The first part deals with the general theory

of surface dislocation density and the second part is concerned with the theory of adiabatic

plastic waves. A wave is understood to be a moving singular surface, across which fields

and their derivatives might suffer jump discontinuities. We discuss waves across which

thermodynamic state variables are discontinuous (shock waves) and waves across which

state variables are continuous but their first derivatives are discontinuous (acceleration

waves). In particular, we emphasize the role of dislocation distribution in the neighborhood

of the wave. In shock waves, there exists a possibility of the formation of walls of dislocations

which propagate with the shock. On the other hand in acceleration waves, such walls cannot

exist, but an important role is played by the bulk dislocation content which lies close to the

wave.
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In Subsection 5.1.1 of Section 5.1, we introduce the concept of surface dislocation

density arising from a discontinuous plastic distortion or a discontinuous elastic distortion.

For a nonzero surface dislocation density, the jumps in K and H are not rank one, unlike

the jump in F (cf. (2.65)). We also obtain compatibility conditions to be satisfied at a

surface dislocation node, which is the line at which several dislocated surfaces intersect. In

Subsection 5.1.2, a measure of surface dislocation density, which is invariant with respect

to compatible changes in the reference configuration, is obtained. Finally in Subsection

5.1.3, the jump in bulk dislocation density is related to the surface dislocation density. For

a moving surface, the jump is given completely in terms of the jump in plastic distortion

rate and the surface dislocation density. In particular, we obtain in (5.68) a statement

of the conservation of dislocation density at the surface, according to which the normal

component of the jump in bulk dislocation density is equal to the surface divergence of the

surface dislocation density.

Section 5.2 is concerned with adiabatic shock waves in elastic-plastic solids. Shock

waves are defined as moving singular surfaces across which thermodynamic state variables

are discontinuous. After stating the relevant compatibility conditions and Hugoniot re-

lations, we discuss, in Subsection 5.2.1, some general results for elastic shock waves. In

particular we show that the jump in entropy is of the third order in the jump in defor-

mation gradient, and the change in entropy is of the same sign as of the change in shock

speed. The necessity of Legendre–Hadamard condition and the genuine nonlinearity is em-

phasized. In Subsection 5.2.2 on plastic shock waves, we investigate on how the results of

elastic shocks modify due to the presence of plastic flow at the shock surface. We find that
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the jump in entropy, for fixed plastic flow, is of the first order in the jump in deformation

gradient. Furthermore, we show that Legendre–Hadamard condition is no more necessary

for the existence of shocks. In the last subsection, we consider the shock as a dislocation

wall, i.e. a surface with dislocation distribution. Using results from Section 5.1 we obtain

simple equations, which for given material parameters can be used to determine dislocation

density distribution at the shock as well as the shock speed. Results are obtained for both

isotropic and cubic material symmetry.

The last section in this chapter deals with adiabatic acceleration waves in elastic–

plastic solids. Acceleration waves are defined as moving singular surfaces, across which

thermodynamic state variables are continuous, but their derivatives are discontinuous. The

form of governing equations for acceleration waves make them much more analytically

tractable than shock waves. In many simple cases, wave speeds can be determined even for

a three dimensional case. After developing the general theory of elastic–plastic acceleration

waves, we consider specific models of elastic and plastic acceleration waves. Some classical

results on the form of elastic acoustic tensor for isotropic and cubic material symmetry are

derived. In the last subsection on plastic acceleration waves, rate–independent behavior is

assumed and the resulting theory is formulated with and without hardening.

5.1 Dislocation distribution at the interface

Consider a singular surface St ⊂ κr, with normal N and normal velocity U (cf.

Subsection 2.1.4). For smooth deformations, we obtained, in equation (2.65), a compatibility

condition for F as �F� = a ⊗ N, where a ∈ V is arbitrary. Below, we obtain compatibility
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conditions for plastic and elastic deformation maps and interpret them in terms of surface

dislocations. The concept of surface dislocation density was introduced by Bilby [12, 25, 13]

as a smeared out defect distribution at an interface separating differently oriented/strained

domains. Bilby’s work attempted to generalize the earlier models of dislocation content

at grain boundaries as proposed by Burgers [26], Bragg [16], and Frank [54]. A physically

meaningful interpretation as a two dimensional array of dislocations is possible only for

low values of surface dislocation density, since individual dislocations can not be placed

arbitrarily closed to each other ([35], sec. 38). Examples include simple tilt boundaries [26],

low angle grain boundaries [149], and shock waves [158].

In Subsection 5.1.3, higher order compatibility conditions are used to investigate

the interplay between bulk and surface dislocation densities. For a moving interface, the

jump in bulk dislocation density is related to the jump in plastic distortion rate and deriva-

tives of surface dislocation density. Such a relation is useful in situations where a moving

interface modifies the defect structure in the bulk as it traverses through it.

5.1.1 Surface dislocation density

Recall, from Chapter 3, the definition of Burgers vector

B(C, t) =
∮
C

K−1dX, (5.1)

where C is a close material curve which intersects St in finite number of points and K−1 is

piecewise smooth. This restriction on C is to ensure that the integral in (5.1) is well defined.

The plastic deformation K−1 is singular on St, and therefore the integral in (5.1) will have

singularities only over a set of measure zero (a finite collection of points on a line constitute
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such a set). Let AC be the area of the surface enclosed by C and let Γ = AC ∩ St be the

curve which lies at the intersection of AC and St. Use the Stokes’ theorem for piecewise

continuous tensor fields (2.103) to obtain

∮
C

K−1dX =
∫
AC

(CurlK−1)TNCdA−
∫

Γ
�K−1�dX, (5.2)

where NC is the unit normal field associated with AC . The equation for Burgers vector

thus becomes

B(C, t) =
∫
AC

(CurlK−1)TNCdA−
∫

Γ
�K−1�dX. (5.3)

Let {t1, t2} ∈ TSt(X), where TSt(X) denotes the tangent space to St at X, be such

that {t1, t2,N} is a positively-oriented orthonormal basis. Furthermore, let t2 be oriented

along the curve Γ, so that dX = t2du = (N × t1)du in the final integral in (5.3), where

u measures arc-length on Γ. We define a tensor field βr on St, the (referential) surface

dislocation density, such that

�K−1�(t1 × N) = βTr t1. (5.4)

The net Burgers vector associated with C is then given by

B(C, t) =
∫
AC

αT
r NCdA+

∫
Γ

βTr t1du. (5.5)

Writing �K−1� = �K−1�1 with 1 = N ⊗ N + ta ⊗ ta (a = 1, 2), (5.4) leads to

�K−1� = k⊗ N − βTr ε(N), (5.6)

where k is an arbitrary 3-vector and

ε(N) = t1 ⊗ t2 − t2 ⊗ t1 (5.7)
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is the two-dimensional permutation tensor density on TSt(X). This satisfies ε(N) = Rε(N)RT

for all two-dimensional orthogonal transformations R that preserve the orientation of TSt(X).

Therefore any pair of vectors in TSt(X) which with N form a positive orthonormal basis may

be used in the definition of ε(N).

Use ε2
(N) = −P in (5.6), where P = 1−N⊗N is the identity for TSt(X), to obtain

βTr P = �K−1�ε(N). (5.8)

This determines the action of βTr on TSt(X). The action of βTr on N is indeterminate and

may be set to zero without loss of generality. Thus we can consider βTr to be a superficial

tensor (i.e. βTr P = βTr ) and write

βTr = �K−1�ε(N). (5.9)

The formula (5.9) is equivalent to a result stated by Bilby ([12], equation 10) and used

extensively in the subsequent literature on crystal interfaces and grain boundaries [135, 10].

Bilby’s result is not consistent with his definition of surface dislocation density as stated in

the text of [12]. He defines the latter to be the finite limit obtained by invoking Stokes’ the-

orem, collapsing AC onto Γ, and requiring the dislocation density αr to become unbounded.

However, the indicated limit vanishes under conditions in which Stokes’ theorem is valid.

The interface St is coherent at X ∈ St if the Burgers vector, as defined in (5.5),

has no contributions from the line integral, for all closed curves C such that X ∈ Γ, where

Γ = St ∩AC . Assume βTr to be superficial. It then follows from (5.5), that St is coherent at

X ∈ St if and only if the surface dislocation density βTr at X vanishes. For a zero surface

dislocation density, (5.6) yields Hadamard’s formula �K−1� = k ⊗ N.
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If K−1 is the gradient of a piecewise continuously differentiable deformation χp,

i.e. K−1 = ∇χp, then following the analysis which led to (2.69), we obtain

�K−1� = k⊗ N + ∇S�χp�. (5.10)

The surface dislocation density, given by (5.8), then has the form

βTr P = ∇S�χp�ε(N) = ∇�χp�ε(N), (5.11)

where the second equality is obtained using definition (2.54) and the identity Pε(N) = ε(N).

This situation occurs when the bulk dislocation density αr = CurlK−1 vanishes, on either

side of the interface, and the dislocation distribution is restricted to the singular surface St.

Equation (5.6) extend Hadamard’s result to general non-coherent (i.e., dislocated) interfaces

and equation (5.10) extend it to the non-coherent interface with vanishing bulk dislocation

density in the neighborhood.

Remark 5.1.1. In a situation where βTr is given by (5.11), a necessary and sufficient condition

for it to vanish on St is �χp� = c, a constant (on St). The sufficiency of this condition is

obvious. For necessity, put βTr = 0 in (5.11) to get

∇S�χp�ε(N) = 0. (5.12)

Multiply both sides by ε(N) and use ε2
(N) = −P to obtain ∇S�χp�P = 0, which on noting

the definition of the surface gradient (cf. (2.54)) and the identity P
2 = P, reduces to

∇S�χp� = 0, thereby implying that �χp� is constant at the surface.

Proceeding from (3.20) and (3.22)2 instead, we derive

�H−1� = h⊗ n − βTt ε(n) and βTt P(n) = �H−1�ε(n), (5.13)
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where h is an arbitrary 3-vector, n is the orientation of a surface st ⊂ κt of discontinuity of

H−1(x, t), P(n) = 1− n ⊗ n is the (spatial) projection tensor, and βt is the spatial surface

dislocation density. The Burgers vector using spatial description is given by

b(c, t) =
∫
c
H−1dx =

∫
Ac

(curlH−1)Tncda−
∫
γ
�H−1�dx

=
∫
Ac

(αt)Tncda+
∫
γ
βTt t̂1dû, (5.14)

where c is a (closed) spatial curve enclosing area Ac (with unit normal nc) and γ = Ac ∩ st.

The curve γ is parameterized with arc-length û and has an associated tangent vector, say

t̂2. The triad {t̂1, t̂2,n} forms a positively oriented orthonormal basis on st, where n is the

unit normal associated with st.

If H−1 is the gradient of a piecewise continuously differentiable deformation χe,

i.e. H−1 = ∇χe, then equations (5.13) reduce to (cf. (5.10) and (5.11))

�H−1� = h⊗ n + ∇s�χe� and βTt P(n) = ∇s�χe�ε(n), (5.15)

where ∇s is the surface gradient with respect to the spatial surface. This case has been

previously discussed in [97, 105, 29], but equations (5.13) now extend their analysis to the

case when dislocations are present even in the bulk surrounding the interface. Such an

extension has been discussed earlier by Cermelli & Sellers [31] in the context of crystal

lattice vectors.

Equation (5.13)1 reduces in the coherent case (i.e. when βTt = 0) to Hadamard’s

rank-one form �H−1� = h⊗n. Evidently the generalization to non-coherent interfaces yields

a full-rank expression which relaxes the constraint on the limits (H−1)± associated with

a coherent interface. Accordingly, surface dislocation is an additional interfacial degree of
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freedom which is available to minimize the elastic energy in the adjoining material. In gen-

eral, this implies that non-coherent interfaces are energetically optimal, which presumably

accounts for the stress relaxation typically attributed to the mechanism of surface disloca-

tion. For example, our constitutive hypotheses imply that adjoining crystal grains are in

their minimum-energy states if HTH = 1 therein. By the polar decomposition theorem,

H−1 then reduces to a rotation in each grain, and (5.13)2 furnishes the required surface

dislocation density in terms of the rotation discontinuity (cf. [54]). The so-called tilt and

twist boundaries furnish an illustrative example ([93], sec. 3.9).

The referential and spatial surface dislocation densities are not independent. For,

if st is the image of St under the overall deformation, i.e. if st = χ(St, t), then the existence

of a continuous inverse deformation χ−1(x, t) mapping κt to κr implies that any jump in

F−1 has Hadamard’s form �F−1� = a⊗ n. Using this in the inverse of (3.18) together with

�H−1� = 〈K−1〉�F−1� + �K−1�〈F−1〉, (5.16)

we derive

h⊗ n− βTt ε(n) = 〈K−1〉a ⊗ n + k⊗ 〈F−T 〉N − βTr ε(N)〈F−1〉. (5.17)

Nanson’s formula ensures that 〈F−T 〉N is parallel to n. Multiplication on the right by ε(n)

thus furnishes βTt in terms of βTr :

βTt P(n) = −βTr ε(N)〈F−1〉ε(n), (5.18)

and the normal component of (5.17) yields a relationship among the vectors a, k and h:

h = 〈K−1〉a + (n · 〈F−T 〉N)k − βTr ε(N)〈F−1〉n. (5.19)
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Remark 5.1.2. (Surface dislocation nodes) A surface dislocation node, as introduced by

Bilby [12], is the line of intersection of surfaces with dislocation distribution. The analysis

in [12] is restricted to plane surfaces and infinitesimal strains. We extend it for curved

surfaces and finite strains. Consider N surfaces intersecting at a line L ⊂ κr. Each surface

has an associated normal and a distribution of surface dislocation density. The following

compatibility relation holds in a neighborhood infinitesimal close to L

N∑
i=1

�K−1(i)� = 0, (5.20)

where the index i in the superscript represents the i’th surface. This relation follows from

the observation that, on passing around the line L (in a small neighborhood), one reaches

the initial material point. Use (5.6) to obtain

N∑
i=1

(k(i) ⊗ N(i) − βT (i)
r ε(N(i))) = 0. (5.21)

Let t be the unit tangent vector field associated with line L. We can therefore choose a

vector t(i) ∈ T
S

(i)
t

at X ∈ L such that {t, t(i),N(i)} forms a positively oriented orthonormal

basis at X ∈ L for each intersecting surface. We also have (cf. (5.7))

ε(N(i)) = t ⊗ t(i) − t(i) ⊗ t. (5.22)

On substituting this in (5.21), it follows immediately that

0 =
N∑
i=1

�K−1(i)�t =
N∑
i=1

βT (i)
r t(i) (5.23)

at X ∈ L. The outer equality in (5.23) provides us with a compatibility condition relating

the surface dislocation density tensors of various intersecting surfaces. This can be compared

to the equation of conservation of Burgers vectors. Equivalently, in terms of the spatial



174

surface dislocation density, we can obtain
N∑
i=1

β
T (i)
t t̂(i) = 0, where t̂(i) ∈ T

s
(i)
t

. Surface

dislocation nodes have been observed by Li et al. [106] during indentation of zinc crystals

and by Basinski and Christian [9] in their study of martensitic transformations.

5.1.2 True surface dislocation density

In equation (3.23), a measure of the bulk dislocation in the body, the true disloca-

tion density, was defined, and its invariance under compatible changes in the reference and

the current configurations was demonstrated. We will now obtain an analogous measure

for surface dislocation density. Consider two reference configurations, κr1 and κr2 such that

there exits a map λ such that X2 = λ(X1), where X1 ∈ κr1 and X2 ∈ κr2 , with invertible

gradient A = ∇1λ (such that K2 = AK1). For A to be a compatible deformation from κr1

and κr2 , the Hadamard’s rank one compatibility �A� = d ⊗ N, where d ∈ V is arbitrary,

persists at the singular interface. Such a compatible transformation leaves the Burgers

vector invariant and consequently it follows from (5.3) that

∫
AC1

(Curl1 K−1
1 )TNC1dA1 −

∫
Γ1

�K−1
1 �dX1 =

∫
AC2

(Curl2 K−1
2 )TNC2dA2 −

∫
Γ2

�K−1
2 �dX2,

(5.24)

where AC2 = λ(AC1) and Γ2 = λ(Γ1). Relations (3.25) and (3.26) ensure the equality of

the area integrals in (5.24) and thereby reducing it to

∫
Γ1

�K−1
1 �dX1 =

∫
Γ2

�K−1
2 �dX2. (5.25)

Let ta and ua be the unit tangent vector and the arc-length associated with Γa, respectively

(a = 1, 2). Then

t2du2 = dX2 = A±dX1 = A±t1du1, (5.26)
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where the superscript ± implies that both + or − limits can be used in the formula (this

follows from the compatibility of A, i.e. A+t1 = A−t1). Substituting dX2 from (5.26) into

(5.25) and using the arbitrariness of Γ1 we obtain

�K−1
2 �A±t1 = �K−1

1 �t1 (5.27)

for t1 ∈ TSt1 . This relation is satisfied if the jump assumes the following form

�K−1
2 �A± − �K−1

1 � = c⊗ N1, (5.28)

where c ∈ V is arbitrary. Multiply both sides by ε(N1). As a result, obtain

�K−1
2 �A±ε(N1) = βTr1P1, (5.29)

where the relation (5.8) has also been used.

Assume the following forms for ε(N1) and ε(N2):

ε(N1) = s1 ⊗ t1 − t1 ⊗ s1

ε(N2) = s2 ⊗ t2 − t2 ⊗ s2, (5.30)

such that {s1, t1,N1} and {s2, t2,N2} form positively oriented orthonormal basis at X1 ∈

St1 and X2 ∈ St2, respectively. Furthermore, let t1 and t2 be related by the outer equality

in (5.26) for some curves Γ1 ⊂ St1 and Γ2 ⊂ St2, i.e.

t2 = l−1A±t1, (5.31)

where l = du2
du1

is the ratio of infinitesimal arc-lengths of Γ2 and Γ1. Use (5.31) to obtain

s2 = (t2 ×N2) = l−1(A±t1 × N2). (5.32)
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By Nanson’s formula (cf. (2.24) and (2.77))

N2dA2 = (A±)∗N1dA1 (5.33)

or

N2 = jA
−1(A±)∗N1, (5.34)

where jA = dA2
dA1

is the ratio of infinitesimal areas of St2 and St1. Equation (5.32) then yields

s2 = (jAl)−1
(
A±t1 × (A±)∗N1

)
. (5.35)

Use (A±)∗N1 = (A±s1 × A±t1) and the identity g × (h × g) = (g · g)h − (g · h)g, where

{g,h} ∈ V are arbitrary, to obtain

s2 = (jAl)−1
(
l2A±s1 − l(A±t1 · A±s1)t2

)
. (5.36)

Thus

s2 ⊗ t2 − t2 ⊗ s2 = (jA)−1(A±s1 ⊗A±t1 − A±t1 ⊗ A±s1). (5.37)

Use (5.30) to conclude that

ε(N2) = (jA)−1A±ε(N1)(A
±)T , (5.38)

which can be used to eliminate ε(N1) from (5.29) to get

jA�K−1
2 �ε(N2) = βTr1P1(A±)T . (5.39)

Use the definition (5.8) and take the transpose of equation (5.39). Obtain

jAP2βr2 = (A±)P1βr1. (5.40)
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Note that A± = K±
2 (K±

1 )−1 and jA = j±2
j±1

, where j±a (a = 1, 2) represents the ratio of

infinitesimal area elements (of the singular surface) in the reference and the intermediate

configuration. Substitute these into (5.40) to get

j±2 (K±
2 )−1

P2βr2 = j±1 (K±
1 )−1

P1βr1. (5.41)

As a result we define the true surface dislocation density as

β± = j±(K±)−1
Pβr. (5.42)

For a superficial βTr , i.e. βTr P = βTr , this reduces to

β± = j±(K±)−1βr. (5.43)

If in the above analysis, we substitute F for A, we obtain, instead of (5.41), the

following relation

ĵ±(H±)−1
P(n)βt = j±(K±)−1

Pβr, (5.44)

where ĵ± represents the ratio of infinitesimal area elements (of the singular surface) in

the spatial and the intermediate configuration. A relation between referential and spatial

surface dislocation densities was also obtained in (5.18), whose equivalence to (5.44) can be

proved using a relation of the type (5.38).

Remark 5.1.3. Note, that in the incoherent case, the tangential plane (to the surface of

singularity) in the reference (or spatial) configuration is mapped into two tangent planes in

the intermediate configuration. As a result we have two measures of true surface dislocation

density for each X ∈ TSt (or x ∈ Tst), i.e. β±.
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Remark 5.1.4. (Geometrically necessary boundaries and incidental dislocation boundaries)

Recall Subsection 3.2.3, where the notions of geometrically necessary (GND) and statisti-

cally stored (SSD) dislocation densities were introduced. As noted therein, the emergence of

the need to divide the total dislocation content into GND and SSD was due to an averaged

plastic (or elastic) distortion, with the average being considered over some representative

volume element (RVE). The incompatibility in such an average plastic distortion yields

GND. On the other hand, as a result of averaging, some microstructural information is

invariably lost and is thus accommodated in SSD. Consider now the singular surface St

across which K is discontinuous and generates a distribution of surface dislocations (via

(5.9)). If, however, the plastic distortion K is an average quantity, the surface dislocation

density (from (5.9)) will result only from the incoherency of the averaged K. The dislo-

cation boundary formed out of such a density is termed geometrically necessary boundary

(GNB). To quantify the lost microstructural information (as a result of averaging) at the

boundaries, an additional surface dislocation density will be required (similar to SSD in the

bulk), the corresponding boundaries being termed incidental dislocation boundaries (IDB).

These concepts and their relation to their bulk counterparts have been studied recently

by Hughes and her co-authors (see [78] and references therein). The role played by these

boundaries in various stages of work hardening is a subject of current interest, of which ex-

cellent accounts can be found in the articles by Kuhlmann-Wilsdorf and Mughrabi in [123].

In this thesis, we will neglect the presence of IDB and identify all dislocation boundaries

with GNB.
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5.1.3 Jump in the bulk dislocation density

To obtain a jump in αr we start by writing the compatibility condition (cf. (2.69))

for ∇K−1 as

�∇K−1� = Q ⊗ N + ∇S�K−1�, (5.45)

where Q ∈ Lin is arbitrary. In terms of indicial notation this can be rewritten as1

�K−1
jl,k� = QjlNk + �K−1

jl �,mPmk. (5.46)

Multiplying (5.46) throughout by eikl and using the definition (3.22)1, we obtain

�αrij� = eiklQjlNk + eikl�K−1
jl �,mPmk. (5.47)

On the other hand, the jump in ˙K−1
jl can be expressed in terms of the normal time derivative

(cf. (2.59) and (2.60)) of �K−1
jl �. Following (2.72) we get

�K−1
jl �̊ = U�K−1

jl,k�Nk + � ˙K−1
jl �, (5.48)

where˚denotes the normal time derivative. Substituting (5.46) into (5.48) yields

UQjl = �K−1
jl �̊ − � ˙K−1

jl �. (5.49)

1Recall from Subsection 2.1.4 that the derivatives on the surface are obtained by first extending the

surface field to a small neighborhood near the surface, and then projecting the derivative of the extension

back on the surface. We assume that the extension always exists and use the same symbol for the field and

its extension (cf. remark 2.1.1). Therefore, wherever in the following discussion, the derivative of a surface

quantity appears, for e.g. �K−1
jl �,m, it is implicitly assumed that we are considering the derivative of its

extension.
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Use this in (5.47) to obtain the jump condition for dislocation density for a moving interface

(i.e. for U �= 0):

U�αrij� = −eikl� ˙K−1
jl �Nk + eikl�K−1

jl �̊Nk + Ueikl�K−1
jl �,mPmk. (5.50)

Therefore, the jump in the bulk dislocation density, across a moving interface, can be

obtained from the jumps in plastic distortion and the plastic distortion rate. It follows from

either (5.47) or (5.50) that

�αrij�Ni = eikl�K−1
jl �,kNi, (5.51)

where the identity, eiklNiNk = 0, has been used. The jump in K−1 is given in (5.6), which

in indicial notation can be written as

�K−1
ij � = kiNj + βrkiε

N
kj. (5.52)

The tensor εNkj is the two dimensional permutation symbol given by εNkj = t1kt
2
j − t2kt

1
j ,

where {t1k, t2j} ∈ TSt such that {t1k, t2j , Nl} forms a positively-oriented orthonormal basis.

Substituting (5.52) into (5.51), and using eiklNiNk = 0, we get

�αrij�Ni = eiklkjNl,kNi + eikl(βrqjε
N
ql ),kNi. (5.53)

Recall from (2.52)2,

|∇φ|Nl,k = φ,lk −Nlφ,knNn, (5.54)

where φ(X, t) = 0 defines the surface St (cf. (2.48)). Multiplying both sides of (5.54) by

eiklNi and noting, that φ,lkeikl = 0, eiklNiNl = 0, and |∇φ| �= 0, we can obtain

eiklNl,kNi = 0. (5.55)
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Consequently (5.53) reduces to

�αrij�Ni = eikl(βrqjε
N
ql ),kNi

= βrqj,keiklε
N
qlNi + βrqjeiklε

N
ql,kNi, (5.56)

where (5.56)2 is obtained using the chain rule for differentiation. Note the following two

identities:

eiklε
N
qlNi = Pqk, and (5.57)

eiklε
N
ql,kNi = 2HNq, (5.58)

where H is the mean curvature. The relation (5.57) follows from a straightforward calcu-

lation using the definition of εNql and the rules for vector cross product. To obtain (5.58),

start by taking a divergence of (5.57) to get

eiklε
N
ql,kNi + eiklε

N
qlNi,k = Pqk,k. (5.59)

Moreover, using the definition (2.56) of curvature tensor L (which satisfies L = LT and

LN = 0), we can write the gradient of the normal as ∇N = −L + (∇N)N ⊗ N. We use

this and the symmetry of L to evaluate the second term in (5.59) as

eiklε
N
qlNi,k = eiklε

N
qlNi,pNpNk

= −PqiNi,pNp, (5.60)

= −Nq,pNp, (5.61)

where the equality (5.60) is obtained using (5.57), and the equality (5.61) follows on using

the definition Pqi = δqi−NqNi and that Ni,pNi = 0, which is a consequence of |N| = 1. On
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the other hand, use the definition of Pqk and the chain rule for differentiation to write

Pqk,k = −Nq,kNk −NqNk,k. (5.62)

Substitute (5.61) and (5.62) into (5.59). The relation (5.58) then follows upon noting that

Div N = −2H (cf. (2.57) and (2.58)1).

Use identities (5.57) and (5.58) to obtain the equivalent form of (5.56) as

�αrij�Ni = βrqj,kPqk + 2HβrqjNq (5.63)

or in bold notations as �αT
r �N = DivS βTr +2HβTr N. To gain further insight into this result,

we will use the surface divergence theorem from remark 2.2.1. According to the theorem

(cf. (2.105)), for any arbitrary surface S ⊂ St, we have

∮
∂S

βTr νdL =
∫
S
(DivS βTr + 2HβTr N)dA, (5.64)

where ν is the outer unit normal to ∂S such that (N,ν, t) form a positively-oriented or-

thogonal triad at ∂S with t being the tangent vector along ∂S. Therefore, if �αT
r �N = 0,

then using (5.63), we obtain from (5.64)

∮
∂S

βTr νdL = 0, (5.65)

which can understood as a conservation law for surface dislocations. This can be seen

as analogous to the conservation law for αr, according to which for any arbitrary volume

Ω ⊂ κr with St ∩ Ω = ∅, ∮
∂Ω

αT
r NdA = 0, (5.66)

where N is the normal to ∂Ω. The physical interpretation of (5.66) is that no bulk dislo-

cations can arbitrarily end inside the solid which lacks any surface of discontinuities. The
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relation (5.65), on the other hand, provides us with the corresponding interpretation for

surface dislocations. Therefore for a vanishing normal jump in αT
r , the surface with a dislo-

cation distribution can not end arbitrarily inside the solid. This implies that such a surface

will either end at the boundary of the solid or at a surface dislocation node (see remark

5.1.2). If, however, �αT
r �N �= 0, then for S = St ∩ Ω �= ∅, the integral relation (5.66) is of

the form ∮
∂Ω

αT
r NdA =

∫
S
�αT

r �NdA. (5.67)

This result follows from the divergence theorem for piecewise smooth fields (2.97), and the

conservation law Div αT
r = 0, which holds away from the surface and follows immediately

from the definition of αr. Finally, combining relations (5.63), (5.64) and (5.68) we obtain

the following integral balance law for conservation of dislocations in an arbitrary volume

Ω ⊂ κr such that S = St ∩ Ω �= ∅:

∮
∂S

βTr νdL =
∮
∂Ω

αT
r NdA. (5.68)

Remark 5.1.5. The jump in the total dislocation density can be obtained using (3.23) and

(2.46):

�α� = 〈JKK−1〉�αr� + �JKK−1�〈αr〉. (5.69)

Remark 5.1.6. For continuous K−1, (5.50) reduces to

U�αrij� = −eikl� ˙K−1
jl �Nk. (5.70)

This provides us with a relation, for moving interfaces, between jump in plastic distortion

rate and the jump in bulk dislocation density when plastic distortion is continuous across

the interface. Such a relation will be used below, in the section on acceleration waves.
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5.2 Shock waves

Shock waves are defined as moving (i.e. U �= 0) singular surfaces across which the

deformation χ is continuous but deformation gradient F (= ∇χ) and therefore velocity v

(= χ̇) is discontinuous. As will be shown below, a non zero jump in F is necessary for the

existence of shocks, unlike H and η, which might or might not be discontinuous. Higher

order derivatives of χ (for example ∇F or Ḟ) can also be discontinuous.

Shock waves in elastic plastic solids were first studied by Taylor, von Karman, and

Rakhmatoolin (see for e.g. [163, 39, 41]). The plastic deformation, in these works (and in

most of the which followed), is understood in a sense that there exists a nonlinear relation

between stress and (total) strain, whereas a material is called elastic when this relation is

linear. Moreover, the analysis is restricted to one dimension (e.g. a bar with cylindrical

section). For a general three dimensional case, however, there are very few analytical results.

As we shall point out, this is due to highly complicated nature of the governing equations

and also due to the fact that one, in general, is required to integrate the bulk flow rules to

obtain state of plastic deformation at the shock [40, 56]. In first two subsections below, we

will obtain some general results on the behavior of elastic and plastic shock waves. These

results are are mostly restricted to shocks of small amplitudes. In the last subsection,

however, we take up the case of a plane shock wave, which also coincides with a surface of

dislocations. We obtain simple equations, which for given material parameters can be solved

for calculating the surface dislocation density and the shock speed. In the next section, we

will take up the topic of weak shock waves or acceleration waves, which are analytically

tractable and we avoid many difficulties, which otherwise arise in dealing with shock waves.
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The kinematical compatibility conditions for a shock wave are given by (cf. (2.65)

and (2.73))

�F� = a ⊗ N, and �v� = −Ua, (5.71)

where a ∈ V is arbitrary, and N and U are the unit normal and the normal velocity

field associated with the shock wave, respectively. The jump conditions resulting from the

balance of linear momentum and energy were obtained in Subsection 3.4.3. For an adiabatic

process they are (cf. (2.144) and (3.89))

�P�N = U2ρκa, and Uρκ�e� = U〈P〉 · �F�, (5.72)

where

ρκe = J−1
K W (H, η), P = J−1

K WHKT , and ρκθ = J−1
K Wη. (5.73)

Equations (5.71) and (5.72) relate the thermodynamical state R− = {F−,H−, η−} behind

the shock to the thermodynamical state R+ = {F+,H+, η+} ahead of the shock. Such

relations are called Hugoniot’s equations. Denote the set of all states, which for a given R+

and N satisfy relations (5.71) and (5.72) as R(R+,N). The speed U in (5.72) can be selected

so that U ≥ 0, without loss of any generality. Consider a state R = {F,H, η} ∈ R(R+,N)

such that R �= R+. If F �= F+ then U can be calculated from (5.72)1 (multiplying both sides

of the equation by a and then dividing by |a|), but if F = F+ (with η �= η− or H �= H−)

then e(R) �= e(R+) and (5.72)2 implies that U = 0. This contradicts the fundamental

definition of shock. Therefore, we can conclude that F �= F+ is a necessary condition for

the existence of shocks in solids. For R = R+, it is evident from equations (5.72) that U

remains undetermined. As will be shown below, U is then obtained from a characteristic

equation. We call the discontinuity described above, a shock, only when U �= 0. In addition
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to equation (5.72), a shock should also satisfy the second law of thermodynamics in the

form (cf. (3.97))

−Uρκ�η� ≥ 0. (5.74)

The inequality (5.74) is sometimes used as an admissibility criteria to resolve any non-

uniqueness in the solution.

Assume that at a given material point on the shock surface, the state ahead of the

shock and the normal N are known. The problem is then to determine the state behind

the shock and the speed of the shock. These are fourteen unknowns, since the jump �K−1�,
in general, is a full rank tensor (cf. (5.6)). We would therefore need additional relations

for a full determination of the state behind the shock. These relations are provided by the

constitutive equations for plastic flow. In most of the literature on plastic shock waves,

such a constitutive relation is obtained by integrating the flow rule for K̇. However, this

has been done for the simplest of the flow rules, and integrating general flow rules might

prove to be a challenging task. Another possibility is to posit an independent flow rule

for �K−1�, as was suggested by Craggs [40] and Germain & Lee [56]. The basis for such

considerations has been ad hoc in nature and no experimental data seems to available to

support it. Even after assuming a constitutive law, obtaining solutions for admissible shock

waves remains a difficult task (in the full three dimensional theory) because of the highly

non–linear nature of equations (5.72). Below we will obtain some results valid only for states

in a small neighborhood of R+. For an elastic shock wave, we follow Šilhavý ([156], Ch.

23) to show that the jump in entropy is of the third order in deformation gradient and that

entropy and speed U are strictly increasing functions in the neighborhood of R+. Next,
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we will re-evaluate these claims for plastic shock waves and show that the jump in entropy

across the shock is now of the first order in plastic distortion. Further, we will show that

the monotonicity of U will now depend on the constitutive structure for plastic flow. In

Subsection 5.2.3, however, we take a different stand and look at the problem of shock wave

as a dislocation wall. We calculate the surface dislocation distribution at a shock assuming

that a and U are known (in addition to the state ahead of the shock).

For the purpose of next two subsections, we consider curves in R(R+,N), param-

eterized by τ ∈ R such that any point on the curve is given by R(τ) = {F(τ),H(τ), η(τ)} ∈

R(R+,N). Furthermore, we require that R(0) = R+ and R(τ) �= R+ for τ �= 0. In the

following subsections we will, in particular, be interested in the behavior of the shock for τ

close to zero. As discussed above, the shock speed does not necessarily tends to zero as τ

approaches zero. Let U0 = lim
τ→0

U(τ) and e = lim
τ→0

ȧ(τ). Here and in next two subsections,

(˙) denotes the derivative along the curve, with (˙)(0) the value as τ approaches zero (thus

e = ȧ(0)).

5.2.1 Elastic shock wave

In this subsection ,we will show that for an elastic shock wave, the jump in entropy

is of the third order in the jump in deformation gradient and that both η and U are strictly

increasing functions of τ near τ = 0. We define a shock wave to be elastic when �K−1� = 0

(which implies K̇(τ) = 0). Therefore,

Ḣ(τ) = Ḟ(τ)K = −ȧ(τ) ⊗ KTN, (5.75)



188

where (5.75)1 and (5.75)2 follow from (3.18) and (5.71)1, respectively. Differentiate (5.72)2

with respect to τ and obtain

−J−1
K

{
WH · Ḣ +Wηη̇

}
=

1
2
ṖN · a + 〈P〉N · ȧ, (5.76)

which on using (5.73) reduces to

−ρκθη̇ =
1
2
ṖN · a +

1
2
�P�N · ȧ. (5.77)

Evaluating (5.77) at τ = 0, and noting that a(0) = 0, ȧ(0) = e, and θ > 0, we get

η̇(0) = 0. (5.78)

Differentiating (5.77) with respect to τ , and recalling that ρ̇κ = 0 from mass balance, yields

−ρκθ̇η̇ − ρκθη̈ =
1
2
P̈N · a +

1
2
�P�N · ä, (5.79)

which at τ = 0 gives us

η̈(0) = 0. (5.80)

Differentiate (5.79) and evaluate it at τ = 0 to obtain

−ρκθ0
...
η (0) =

1
2
P̈(0)N · e − 1

2
Ṗ(0)N · ä(0), (5.81)

where θ0 = θ(0). On the other hand, differentiating (5.72)1 yields

−ṖN = 2ρκUU̇a + ρκU
2ȧ. (5.82)

Recalling the constitutive structure of P and using the chain rule for differentiation we can

write

Ṗ = PH[Ḣ] + Pηη̇. (5.83)
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At τ = 0, use (5.75)2 and (5.78), to conclude that Ṗ(0) = −PH(0)[e ⊗ KTN], using which

we can obtain from (5.82)

PH(0)[e ⊗ KTN]N = ρκU
2
0e. (5.84)

Substituting P from (5.73)2, equation (5.84) reduces to the familiar form of the character-

istic equation:

J−1
K WHH(0)[e ⊗ KTN]KTN = ρκU

2
0e. (5.85)

This implies that U2
0 ≥ 0 if and only if WHH satisfies Legendre-Hadamard condition at

τ = 0, i.e.

WHH(0)[e ⊗ KTN, e ⊗ KTN] ≥ 0, (5.86)

which is also equivalent to satisfying hyperbolicity condition at τ = 0. Before we move

ahead, it is important to note that the form of characteristic equation above is similar to

the one obtained for elastic acceleration waves (see Subsection 5.3.1), and therefore we can

conclude that shock wave speed approaches the acceleration wave speed as τ → 0, but as

we will see below, the shock wave speed increases monotonically with τ near τ = 0.

Differentiating (5.83) one more time, and evaluate it at τ = 0 to get

−P̈(0)N = 4ρκU0U̇(0)e + ρκU
2
0 ä(0). (5.87)

Substitute this in (5.81) and use (5.82) (at τ = 0). Obtain

−ρκθ0
...
η (0) =

1
2
P̈(0)N · e − 1

2
Ṗ(0)N · ä(0)

= −2ρκU0U̇(0) − 1
2
ρκU

2
0 ä(0) · e +

1
2
ρκU

2
0e · ä(0)

= −2ρκU0U̇(0) (5.88)
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and since ρκ > 0, we have

θ0
...
η (0) = 2U0U̇(0). (5.89)

Differentiating (5.83) at τ = 0, yields

P̈(0) = −PH(0)[ä(0) ⊗ KTN] + PHH(0)[e ⊗ KTN, e ⊗ KTN], (5.90)

where we have used equations (5.78) and (5.80) to eliminate η̇(0) and η̈(0). Multiply (5.90)

throughout by e ⊗ N and use (5.73)2 to obtain

P̈(0)N · e = −J−1
K WHH(0)[ä(0) ⊗KTN] · (e ⊗ KTN)

+ J−1
K WHHH(0)[e ⊗ KTN, e ⊗ KTN, e ⊗ KTN], (5.91)

which on using the symmetry of WHH and (5.85) reduces to

P̈(0)N · e = −ρκU2
0e · ä(0) + J−1

K WHHH(0)[e ⊗ KTN, e ⊗ KTN, e ⊗KTN], (5.92)

Taking a dot product of (5.87) with e and substituting from (5.92) we obtain

4ρκU0U̇(0) = −J−1
K WHHH(0)[e ⊗ KTN, e ⊗ KTN, e ⊗ KTN]. (5.93)

Combining this with (5.89) we see that
...
η (0) is at least of the third order in e, i.e.

2ρκθ0
...
η (0) = −J−1

K WHHH(0)[e ⊗ KTN, e ⊗ KTN, e ⊗ KTN]. (5.94)

For a genuinely nonlinear characteristic field (U0, e)

WHHH(0)[e ⊗ KTN, e ⊗ KTN, e ⊗ KTN] �= 0. (5.95)

This definition of nonlinearity has been provided by Šilhavý ([156], Section 23.2), who has

motivated it from the work on shock waves by Lax ([101], [102]). Lax found a similar
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condition to be necessary for the emergence of shock waves in a solution to a nonlinear

differential equation. Note that the condition (5.95) excludes linear elasticity, since we then

have WHHH = 0. For a genuinely nonlinear characteristic field, it follows from (5.89) that

...
η (0) and U̇(0) have same sign (assuming U > 0) and arbitrariness in the sign of τ can be

used to conclude that both η and U are monotonically increasing functions of τ near τ = 0.

Finally, differentiate (5.74) thrice with respect to τ , evaluating it at τ = 0, and using (5.78)

and (5.80), we can obtain (for ρκ > 0, U0 > 0, θ0 > 0, and JK > 0)

WHHH(0)[e ⊗ KTN, e ⊗ KTN, e ⊗ KTN] ≤ 0 (5.96)

which can be seen as a constitutive restriction. In one dimension, this condition restricts

the stress strain curve to be downward convex for compressive shock waves.2

5.2.2 Plastic shock wave

In the following discussion on plastic shock waves we will, in particular, show

that the jump in entropy is now of the first order in the jump in deformation gradient

(for fixed K̇(0)). The jump in entropy is also of the first order in the jump in plastic

distortion. Furthermore, unlike elastic shock waves, η̇(0) and U̇(0) are no more of the same

sign, and to make any judgements regarding monotonicity of U near τ = 0 will require

further constitutive knowledge. Another deviation from elastic shock waves is that we no

more require hyperbolicity in the sense of (5.86) as a necessary condition for the existence

of waves.
2The paper by Weyl [175] should be mentioned in this regard, who obtained such conditions for fluids.

In the context of one dimensional elasticity, see [34] and [133].
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For a plastic shock wave K̇(τ) �= 0, and therefore we have, instead of (5.75)

Ḣ(τ) = ḞK + FK̇ = −ȧ ⊗ KTN + FK̇. (5.97)

Differentiate (5.72)2 with respect to τ , and use (5.73)2 to get

−ρκθη̇ + E · K̇K−1 =
1
2
ṖN · a +

1
2
�P�N · ȧ, (5.98)

where E = (J−1
K W1−FTP) is the Eshelby tensor. For τ = 0, it follows from (5.98) that

ρκθ0η̇(0) = E0 · K̇0K−1
0 , (5.99)

where (·)0 ≡ (·)(0). Therefore, the jump in specific entropy is of the first order in the jump

in plastic distortion. To evaluate the second order term, differentiate (5.98) again at τ = 0.

Obtain

−ρκθ̇(0)η̇(0) − ρκθ0η̈(0) + Ė0 · K̇0K−1
0 + E0 · K̈0K−1

0 −E0 · (K̇0K−1
0 )2 = 0. (5.100)

Using the definition of E we can write,

Ė = −J−1
K W (tr K̇K−1)1 + J−1

K Ẇ1− ḞTP − FT Ṗ

= −(E · K̇K−1)1 + ρκθη̇1 + (PT ȧ ⊗ N) − (ȧ ·PN)1 − FT Ṗ, (5.101)

where the second equality has been obtained using (5.73)2,3 and (5.97). At τ = 0, (5.101)

reduces to (using (5.99))

Ė0 = (PT
0 e ⊗ N) − (e ·P0N)1 − FT0 Ṗ0. (5.102)

On the other hand, differentiate (5.73)2,3 to get

ρκθ̇ = −ρκθ(tr K̇K−1) + J−1
K Wηηη̇ + J−1

K WηH · Ḣ and (5.103)

Ṗ = −(tr K̇K−1)P + J−1
K WHH[Ḣ]KT + J−1

K η̇WHηKT + J−1
K WHK̇T , (5.104)
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respectively. Use (5.97) and (5.99) to write these at τ = 0 in the following form:

ρκθ̇0 = A · K̇0 + d · e (5.105)

Ṗ0 = −J−1
K0
W 0

HH[e ⊗ KT
0 N]KT

0 + A[K̇0], (5.106)

where

A = −ρκθ0K−T
0 +

J−1
K0
W 0
ηη

ρκθ0
E0K−T

0 + J−1
K0

FT0W
0
ηH,

d = −J−1
K0
W 0
ηHKT

0 N, and (5.107)

Aijmn = −P 0
ij(K

−1
ij )0 + J−1

K0
(W 0

HH)ipqnF 0
qmK

0
jp +

J−1
K0

ρκθ0
(W 0

ηH)ipK0
jpE

0
mq(K

−1
nq )0

+ J−1
K0

(W 0
H)inδjm.

In the above expressions, we have moved subscript 0 to a superscript whenever there were

too many subscripts already. Substituting (5.99), (5.102), (5.105) and (5.106) into (5.100)

we can note that η̈(0) is linear in K̈0, quadratic in K̇0 and linear in K̇0 ⊗ e. Therefore,

for fixed K̇0, the jump in entropy is of the first order in the jump in deformation gradient.

This is a first major departure from elastic shock waves. We next demonstrate the second

major departure, where we no more require a hyperbolic condition for the existence of shock

waves.

Differentiate (5.72)1 at τ = 0 and use (5.106) to obtain

J−1
K W 0

HH[e ⊗ KTN]KTN −A[K̇0]N = ρκU
2
0e. (5.108)

This equation replaces (5.85) for plastic shock waves. To solve this equation for U0 and e, we

will require a flow rule for K̇0. It is unclear on how should such flow rules be formulated,

unless we identify τ with the time variable. However in doing so, (5.108) resembles the
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characteristic equation for plastic acceleration waves (cf. Subsection 5.3.2). As it is clear

from (5.108), it is no more sufficient to have hyperbolicity condition such as (5.86) to ensure

that U2
0 ≥ 0. Finally, to evaluate U̇0, differentiate (5.72)1 twice at τ = 0 and multiply

throughout by e. Obtain

−P̈0N · e = 4ρκU0U̇0 + ρκU
2
0 ä0 · e, (5.109)

where P̈0 can be calculated by differentiating (5.104) at τ = 0. This will result in a very

lengthy expression for U̇0. Avoiding these cumbersome calculations, we can still conclude,

just by observation, that unlike elastic shock waves U̇0 no more has the sign as η̇0 and

furthermore to investigate behavior of U near τ = 0 will require us to know more about the

plastic evolution at the shock. As we shall see, the situation is much simpler in the case

of acceleration waves, where it is straightforward to obtain a set of simultaneous equations

which can be solved to obtain the state behind the shock.

5.2.3 Shock wave as a dislocation wall

In 1958 Smith [158] reported several experimental studies of shock fronts in met-

als. Motivated by the findings, he concluded that the shock front is an interface with

(surface) dislocation distribution (dislocation wall) on the shock surface, remain on the

surface through out the propagation of the shock, leaving the bulk without any defects.

This model was, however, extended subsequently, notably by Meyers ([117], Ch. 14) and

Weertman [173], who argued that the original model of Smith would require excessively high

energy for a dislocation wall to move at supersonic speeds. Both Meyers and Weertman

allow for plastic deformation to take place in the wake of the shock, thereby avoiding many
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shortcomings of Smith’s model.

Our aim, in this subsection, is obtain the surface dislocation density and the shock

speed which, given N, a, and �η�, satisfy Hugoniot relations (5.72). Let {e1, e2, e3} ∈ V be

a fixed orthonormal basis, and assume the shock interface to be plane, with uniform normal

N = e3. The state ahead of the shock is assumed to be given as: F+ = 1, H+ = 1 and

η+. The state behind the shock is is denoted by R = {F,H, η} ∈ R(R+,N). Consider a

uniaxial deformation field such that �F� = ae3 ⊗ e3 with a ∈ R \ {0, 1}. Thus

F = 1 − ae3 ⊗ e3. (5.110)

The first Piola stress P is related to the second Piola stress S by (cf. (3.68) and

(3.100))

P = J−1
K HSKT . (5.111)

Considering constitutive relations such that for H+ = 1, we have P+ = 0 and W+ = 0,

Hugoniot relations (5.72) reduce to

−J−1
K HSKTe3 = U2ρκae3, and −W =

a

2
HSKTe3 · e3. (5.112)

Equation (5.112)2, on using (5.112)1, can also be written as

W =
1
2
ρκJKa

2U2. (5.113)

We will use equations (5.112) and (5.113) to determine the shock speed and the density of

surface dislocations from a given strain energy function and amplitude a. Our attention

will be restricted to the case of small elastic strains, such that the strain energy is given

by W = 1
2Cε · ε, where C = C(η) is the elastic modulus3 and the elastic strain tensor ε is

3The dependence of energy on entropy is only through C.



196

(i) (ii)

e3

e1

e2

Figure 5.1: Dislocation Walls.4

related to H as

ε =
1
2
(HTH − 1). (5.114)

The second Piola stress is given by S = SymWε (cf. (3.101)).

Assume that the plastic flow at the shock interface is governed solely by surface

dislocations. This implies that �K−1� is superficial, i.e. �K−1�P = �K−1� or k = 0 in (5.6).

The state of plastic distortion behind the shock then takes the form (cf. (5.6))

K−1 = 1 + βTr ε(N), (5.115)

where ε(N) = e1 ⊗ e2 − e2 ⊗ e1. We now consider two kind of dislocation surfaces, as

illustrated in figure 5.1, and discuss these cases separately in the following:

Case (i) Consider the dislocation wall of type (i) in figure 5.1. The surface dislocation

density is of the form

βTr = βe2 ⊗ e1, (5.116)
4These arrays of dislocations should be considered as smeared over the interface, rather than discrete

set of individual dislocations.
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where β ∈ R. Using this we can obtain an expression for the plastic distortion behind the

shock from (5.115) as

K−1 = 1 + βe2 ⊗ e2, (5.117)

which can be inverted to get5 (for β �= −1)

K = 1 − β̂e2 ⊗ e2, (5.118)

where β̂ = β
1+β . The elastic distortion H can be then obtained by substituting equations

(5.110) and (5.118) in (3.18). We obtain

H = 1 − β̂e2 ⊗ e2 − ae3 ⊗ e3 (5.119)

and therefore the elastic strain tensor, defined in (5.114), is

ε =
1
2

{
(β̂2 − 2β̂)e2 ⊗ e2 + (a2 − 2a)e3 ⊗ e3

}
. (5.120)

Using (5.118), Hugoniot relations (5.112) become

Se3 = (β̂ − 1)U2ρκaH−1e3, and −W =
a

2
Se3 · HTe3. (5.121)

It follows from (3.18), that H−1 = K−1F−1. The tensor K−1 is given in (5.117) and F−1

can be obtained from (5.110) as

F−1 = 1 +
a

1 − a
e3 ⊗ e3. (5.122)

Thus

H−1 = 1 + βe2 ⊗ e2 +
a

1 − a
e3 ⊗ e3 (5.123)

5For arbitrary A ∈ InvLin and {p,q} ∈ V, (A + p ⊗ q)−1 = A−1 − (1 + A−1p · q)−1(A−1p ⊗A−T q),

assuming that (1 + A−1p · q) �= 0.
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and consequently (5.121)1 yields

Se3 = (β̂ − 1)U2ρκ
a

1 − a
e3. (5.124)

Relation (5.121)2, on the other hand, reduces to (using (5.119))

W =
1
2
a(a− 1)Se3 · e3. (5.125)

To obtain a closed form solution, we assume linear elastic response. For isotropic

and cubic symmetry groups, we have constitutive relations (cf. (3.124) and (3.118))

W =
1
2
λ(tr ε)2 + με · ε , S = λ(tr ε)1 + 2με (5.126)

and

W =
1
2
C1(ε11 + ε22 + ε33)2 + C2(ε11ε22 + ε11ε33 + ε22ε33) + C3(ε212 + ε213 + ε223),

S = C1(tr ε)1 +C2[(ε22 + ε33)e1 ⊗ e1 + (ε11 + ε33)e2 ⊗ e2 + (ε11 + ε22)e3 ⊗ e3]

+C3[ε12(e1 ⊗ e2 + e2 ⊗ e1) + ε13(e1 ⊗ e3 + e3 ⊗ e1) + ε23(e2 ⊗ e3 + e3 ⊗ e2)],

(5.127)

respectively, where λ, μ, C1, C2, and C3 are material parameters (dependent on η).

For isotropic material symmetry, (5.126) with ε from (5.120), yields

W =
1
4

{(
λ

2
+ μ

)[
(β̂2 − 2β̂)2 + (a2 − 2a)2

]
+ λ(β̂2 − 2β̂)(a2 − 2a)

}
(5.128)

and

Se3 = λ(tr ε)e3 + 2μεe3

=
1
2

{
λ(β̂2 − 2β̂) + (λ+ 2μ)(a2 − 2a)

}
e3. (5.129)
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Substitute (5.128) and (5.129) in (5.125) to obtain

{(
λ

2
+ μ

)[
α2 + (a2 − 2a)2

]
+ λα(a2 − 2a)

}
= a(a− 1){λα+(λ+2μ)(a2 − 2a)}, (5.130)

where α = (β̂2 − 2β̂). Equation (5.130) is quadratic in α, with all other parameters known.

We can therefore solve (5.130) to obtain α and thus β̂. The shock speed can be then

calculated from (5.124) and (5.129).

For cubic material symmetry, we instead obtain from (5.127) and (5.120)

W =
1
4

{
C1

2

[
(β̂2 − 2β̂)2 + (a2 − 2a)2

]
+ (C1 + C2)(β̂2 − 2β̂)(a2 − 2a)

}
(5.131)

and

Se3 =
1
2

{
(C1 + C2)(β̂2 − 2β̂) + C1(a2 − 2a)

}
e3. (5.132)

Substitute (5.131) and (5.132) in (5.125) to obtain

{
C1

2
[
α2 + (a2 − 2a)2

]
+ (C1 + C2)α(a2 − 2a)

}
= a(a− 1){(C1 + C2)α+ C1(a2 − 2a)},

(5.133)

where α = (β̂2 − 2β̂). Equation (5.133) is quadratic in α, with all other parameters known.

We can therefore solve (5.133) to obtain α and thus β̂. The shock speed can be subsequently

calculated from (5.124) and (5.132).

Case (ii) Consider now, the dislocation wall of type (ii) in figure 5.1. The corresponding

surface dislocation density is of the form

βTr = β1e2 ⊗ e1 + β2e3 ⊗ e1, (5.134)

where {β1, β2} ∈ R. Use (5.115) to get

K−1 = 1 + β1e2 ⊗ e2 + β2e3 ⊗ e2, (5.135)
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whose inverse can be obtained as

K = 1 + β̂1e2 ⊗ e2 + β̂2e3 ⊗ e2, (5.136)

where β̂1 = − β1

1+β1
and β̂2 = − β2

1+β1
(assume β1 �= −1). Further, use relations (5.110) and

(5.136) in H = FK to get

H = 1 + β̂1e2 ⊗ e2 + (1 − a)β̂2e3 ⊗ e2 − ae3 ⊗ e3 (5.137)

and similarly use (5.122) and (5.135) in H−1 = K−1F−1 to get

H−1 = 1 + β1e2 ⊗ e2 + β2e3 ⊗ e2 +
a

1 − a
e3 ⊗ e3. (5.138)

The elastic strain tensor, defined in (5.114), can be evaluated using (5.137) as

ε =
1
2
{
γe2 ⊗ e2 + σ(e2 ⊗ e3 + e3 ⊗ e2) + (a2 − 2a)e3 ⊗ e3

}
, (5.139)

and therefore tr ε = 1
2(γ + a2 − 2a), where

γ = β̂2
1 + 2β̂1 + (1 − a)2β̂2

2 , and σ = (1 − a)2β̂2. (5.140)

Before writing the Hugoniot relations for the case at hand, we make note of the following

relations,

KTe3 = β̂2e2 + e3, HTe3 = (1 − a)(β̂2e2 + e3), and H−1e3 =
1

1 − a
e3, (5.141)

which follow from (5.136), (5.137), and (5.138), respectively. Using these, Hugoniot relations

(5.112) reduce to

β̂2Se2 + Se3 = −(1 + β̂1)U2ρκ
a

1 − a
e3 (5.142)

and

W =
a(a− 1)

2
(β̂2Se2 + Se3) · (β̂2e2 + e3). (5.143)
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For isotropic symmetry, stress S is constitutively given by (5.126)2. Use elastic

strain from (5.139) to obtain from (5.126)2

Se2 =
{
λ

2
(γ + a2 − 2a) + μγ

}
e2 + μσe3 and (5.144)

Se3 =
{(

λ

2
+ μ

)
(a2 − 2a) +

λ

2
γ

}
e3 + μσe2. (5.145)

Taking a dot product of (5.142), with e2 and e3, and using equations (5.144) and (5.145),

we get

β̂2

{
λ

2
(γ + a2 − 2a) + μγ

}
+ μσ = 0 and (5.146)

β̂2μσ +
{(

λ

2
+ μ

)
(a2 − 2a) +

λ

2
γ

}
= −(1 + β̂1)U2ρκ

a

1 − a
, (5.147)

respectively. Recalling from (5.140)2 that σ = (1 − a)2β̂2, equation (5.146), for β̂2 �= 0,

yields {
λ

2
(γ + a2 − 2a) + μγ

}
+ μ(1 − a)2 = 0, (5.148)

which, for λ+ 2μ �= 0, can be rearranged to get an expression for γ:

γ = (2a− a2) − 2μ
λ+ 2μ

. (5.149)

On the other hand, the strain energy, as defined in (5.126)1, is now of the form

W =
λ

8
(γ + a2 − 2a)2 +

μ

4
{
γ2 + (a2 − 2a)2 + 2σ2

}
, (5.150)

where we have used elastic strains from (5.139). Substitute this expression for the strain

energy in the left side of Hugoniot relation (5.143), and use (5.144) and (5.145) in the right

side. We obtain

λ

8
(γ + a2 − 2a)2 +

μ

4
{
γ2 + (a2 − 2a)2 + 2σ2

}
=
a(a− 1)

2

{
μ(1 − a)2β̂2

2 − μ(1 + γ)
}
,

(5.151)
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where (5.148) has also been used to simplify the left hand side of the equation. Equation

(5.151) can be solved for β̂2, which can be then substituted into (5.140)1 to obtain β̂1 (γ has

been already obtained in (5.149)). Finally, the shock speed can be calculated from equation

(5.147).

For cubic symmetry, the strain energy and the stress are given in (5.127). Substi-

tuting the elastic strain from (5.139) into them, we can obtain

W =
C1

8
(γ + a2 − 2a)2 +

C2

4
γ(a2 − 2a) +

C3

4
σ2,

Se2 =
C1

2
(γ + a2 − 2a)e2 +

C2

2
(a2 − 2a)e2 +

C3

2
σe3, and (5.152)

Se3 =
C1

2
(γ + a2 − 2a)e3 +

C2

2
γe3 +

C3

2
σe2.

Taking a dot product of Hugoniot relation (5.142), with e2 and e3, and using equations

(5.152)1,2, we get

β̂2
C1

2
γ + β̂2

(C1 + C2)
2

(a2 − 2a) +
C3

2
σ = 0 and (5.153)

β̂2
C3

2
σ +

C1

2
(a2 − 2a) +

(C1 + C2)
2

γ = −(1 + β̂1)U2ρκ
a

1 − a
, (5.154)

respectively. Using (5.140)2 and β̂2 �= 0, we can obtain the following expression for γ from

(5.153):

γ = − 1
C1

{
(C1 + C2 + C3)(a2 − 2a) + C3

}
. (5.155)

On the other hand, Hugoniot relation (5.143), using (5.152), yields

C1

2
(γ+a2−2a)2+C2γ(a2−2a)+C3σ

2 = a(a− 1)
{
C3β̂

2
2(1 − a)2 + C1(γ + a2 − 2a) +C2γ

}
.

(5.156)

Noting (5.140)2, equation (5.156) can be solved for β̂2. Consequently, obtain β̂1 and U from

equations (5.140)1 and (5.154), respectively.
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Finally, note that to evaluate the change in bulk dislocation density in the wake

of such dislocation walls, equation (5.50) can be used, which also requires us to know the

plastic evolution in the bulk.

5.3 Acceleration waves

An acceleration wave is defined as a moving singular surface (i.e. U �= 0) across

which the thermodynamic state variables remain continuous, but their derivatives might be

discontinuous. In particular, it is necessary for ∇F and thus for v̇, to be discontinuous across

the singular surface. The name acceleration wave derives from the fact that acceleration is

necessarily discontinuous across the wave surface [171, 34]. In the following we discuss the

occurrence of such waves in an elastic-plastic medium. Notable earlier work on acceleration

waves in elastic-plastic medium can be found in the references [73, 63, 114, 7, 165, 107].

Out of these, only [7] and [107] consider the possibility of finite strains, but use an additive

decomposition of the strain.

Jump conditions The following two identities will be, in particular very useful for our

discussion below: Let A be a vector or tensor field defined on κr × t1, t2, such that A is

piecewise continuously differentiable across St. Then

�∇A� = B ⊗ N + ∇S�A�, and (5.157)

�Ȧ� = −U�∇A�N− �A�̊, (5.158)

where B is arbitrary. These two relations are generalized from the compatibility conditions

(2.69) and (2.72), and their proofs follow those of these conditions.
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For an acceleration wave, the following conditions hold

�F� = 0, �v� = 0, �H� = 0, and �η� = 0. (5.159)

Use (5.159)1 and (5.157) to obtain

�∇F� = Q ⊗ N (5.160)

for some arbitrary Q ∈ Lin. Since Fij,k = χi,jk, therefore Fij,k is symmetric with respect

to indices j and k. Thus, there exists a vector, say a ∈ V, such that Q = a ⊗ N. Equation

(5.160) then becomes

�∇F� = a ⊗ N ⊗ N. (5.161)

The jump in the time derivative of F can then be obtained using (5.159)1, (5.158) and

(5.161) as

�Ḟ� = −U�∇F�N = −Ua⊗ N. (5.162)

Similarly, we can use (5.159)2, (5.158) and (5.162) to obtain the jump in the acceleration

field:

�v̇� = −U�∇v�N = −U�Ḟ�N = U2a. (5.163)

We will also require jump conditions for (spatial and temporal) derivatives of K−1 and η.

Start by noting that �K−1� = 0, which follows from (5.159)1,3 and (3.18). Writing (5.157)

and (5.158) for K−1, we then have

�∇K−1� = G ⊗ N, and � ˙K−1� = −UG, (5.164)

where G ∈ Lin is arbitrary and ˙K−1 denotes the time derivative of K−1. Use K̇ =

−K ˙K−1K (which follows from KK−1 = 1) to obtain an expression for �K̇� as

�K̇� = UKGK. (5.165)
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The jump in the true dislocation density α, for �K−1� = 0, follows from (5.69) and (5.70),

and takes the form

U�αpj� = JKUK
−1
pi �αrij� = JKeilkK

−1
pi � ˙K−1

jl �Nk, (5.166)

which on substituting from (5.164)2 becomes

�αpj� = JKeiklK
−1
pi GjlNk. (5.167)

Finally, for evaluating jumps in the derivatives of η, write (5.157) and (5.158) for

a scalar A and obtain

�∇η� = ζN, and �η̇� = −Uζ, (5.168)

where ζ ∈ R is arbitrary.

Governing equations The balance laws for mass and linear momentum, away and on

the singular surface, were obtained in equations (2.129), (2.130), (2.143), and (2.144). We

rewrite them below:

ρ̇κ = 0, �ρκ� = 0, and (5.169)

ρκv̇ = Div P + ρκb, �P�N + U�ρκv� = 0. (5.170)

The statements of balance of energy, for adiabatic processes, were obtained in (3.95) and

(3.89) and are repeated below:

ρκθη̇ = J−1
K E′ · K−1K̇, and U�J−1

K W � = U〈P〉 · �F�, (5.171)

where E′ = W1 − HTWH, outside and on the singular surface, respectively. To these

balance laws, restrictions from the second law should also be appended. We have from
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(3.96) and (3.97)

J−1
K E′ ·K−1K̇ ≥ 0, and − Uρκ�η� ≥ 0. (5.172)

Finally, we make the following constitutive assumptions (cf. (3.91))

W = W (H, η), P = J−1
K WHKT , and ρκθ = J−1

K Wη. (5.173)

Noting the jump conditions (5.159), it immediately follows from the above constitutive

hypothesis that

�W � = 0, �P� = 0, and �θ� = 0 (5.174)

Substituting these and (5.159) into (5.170)2, (5.171)2, and (5.172)2, it turns out that the

jump conditions for balance of mass and momentum, and the dissipation inequality at the

surface, all are trivially satisfied for acceleration waves. As we will see below, this simplifies

our problem considerably. Moreover, note that there is no inherent dissipation involved

with the propagation of acceleration waves. The only source for dissipation in an adiabatic

process is plastic evolution in the neighborhood of the propagating wave (given by (5.172)1).

There is no dissipation at the singular surface. For an elastic acceleration wave (Subsection

5.3.1 below), therefore, there is no dissipation and the propagation of an acceleration wave

is a reversible process. Moreover, the condition (5.159)3 excludes the possibility of surface

dislocations at all acceleration waves (cf. (5.13)).

Our problem here, is to obtain the wave speed and the first order derivatives of

state variables behind the wave, for known values of these derivatives ahead of the wave.

Referring to equations (5.161)–(5.168), we are therefore interested to solve for a, G , ζ, and

U . These in general are fourteen unknowns. We would now obtain the set of governing

equations for obtaining these unknowns. Start by writing relations (5.170)1 and (5.171)1
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for both sides of the surface, and evaluating their difference. For �b� = 0, equation (5.170)1

on using (5.169)2, gives us

�Div P� = ρκ�v̇�, (5.175)

and equation (5.171)1 on using (5.174), yields

ρκθ�η̇� = J−1
K E′ ·K−1�K̇�. (5.176)

Recall jump conditions (5.165) and (5.168)2, and use them to rewrite the relation (5.176)

as

ρκθζ = −J−1
K E′ · GK. (5.177)

To express (5.175) in terms of our unknowns, first note the condition (5.174)2, and

obtain the jump in the gradient of P using (5.157)

�∇P� = Z ⊗ N, (5.178)

where Z ∈ Lin is arbitrary. Equation (5.178) implies

�Div P� = ZN. (5.179)

On the other hand, using (5.158) we have

�Ṗ� = −UZ. (5.180)

The tensor Z can be eliminated between equations (5.179) and (5.180) to get

�Ṗ�N = −U�DivP�. (5.181)

Substituting this and (5.163) into (5.175) we obtain

�Ṗ�N = −ρκU3a. (5.182)
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We can now use the constitutive hypothesis (5.173)2 and the chain rule to write

Ṗ = (tr K ˙K−1)P + J−1
K WHH[Ḣ]KT + J−1

K η̇WηHKT + J−1
K WHK̇T . (5.183)

Use Ḣ = ḞK + FK̇ in (5.183) to rewrite it as

Ṗ = (trK ˙K−1)P + J−1
K WHH[ḞK]KT + J−1

K WHH[FK̇]KT + J−1
K η̇WηHKT + P

(
K̇K−1

)T
.

(5.184)

This can be used to calculate �Ṗ� in terms of the unknowns. To this effect, obtain using

(5.162), (5.164)2, (5.165), and (5.168)2

−JK
U

�Ṗ� = JK(tr KG)P+WHH[a⊗KTN]KT−WHH[HGK]KT+ζWηHKT−JKP (KG)T ,

(5.185)

where we have also used conditions (5.159) and (5.174). Define

Ñ = KTN. (5.186)

Recall Nanson’s formula, NdA = K∗NidAi, which relates the unit normal Ni associated

with the (image of) singular surface in the intermediate configuration6 to the unit normal

N in the reference configuration. Here dAi and dA are the infinitesimal areas of the surface

in the intermediate and the reference configuration, respectively. Let j = dA
dAi be the ratio

of these areas. Comparing the stated Nanson’s formula with (5.186), we can then conclude

that

Ñ = JK
dAi

dA
Ni, with |Ñ| = JKj

−1 ≡ j, say. (5.187)

6Since �K� = 0, the tangent plane TSt(X) at some point X on the singular surface St is mapped into

an unique tangent plane at the point p = κi(κ
−1
r (X)) in the relaxed configuration (cf. Remark 5.1.3). As a

result the normal Ni is unique.



209

Therefore Ñ = jNi, with |Ni| = 1. Operate both sides of the equality (5.185) on normal N

and use the definition (5.186) to obtain

−JK
U

�Ṗ�N = (trKG)WHÑ +WHH[a ⊗ Ñ]Ñ −WHH[HGK]Ñ + ζWηHÑ − JKPGT Ñ,

(5.188)

where (5.173)2 has been used in the first term on the right hand side. Substitute first the

expression for ζ from (5.177) into (5.188) and then the resulting expression for �Ṗ�N into

(5.182). Obtain

j−1
A[G] + Qa = ρrŨ

2a (5.189)

or in the indicial notation (with respect to Cartesian coordinate system)

j−1
AijkGjk +Qijaj = ρrŨ

2ai, (5.190)

where ρr = JKρκ is the mass density per unit volume of the relaxed configuration and

Ũ = j−1U . The third order tensor A and the second order tensor Q are given by

Aijk = (WH)imN i
mKjk − (WHH)impqN i

mHpjKkq

− 1
ρrθ

(WηH)imN i
mE

′
jqKkq + JKPikN

i
j , and (5.191)

Qij = (WHH)ikjmN i
kN

i
m. (5.192)

The tensor Q is sometimes known as the elastic acoustic tensor in the theory of elastic

waves.

In addition to (5.177) and (5.189), we can obtain another governing equation from

the flow rule which dictates the plastic flow in the neighborhood of the wave. A general

flow rule of the following form can be assumed: (cf. (3.130))

˙K−1K = H(CH , ĊH ,α, η, η̇,∇ηK). (5.193)
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Note that, in comparison with (3.130), we have used η instead of θ (since we are assuming

adiabatic response). If plasticity evolves on both sides of the wave surface, then (5.193) can

be written for the sides. Subtracting the resulting expressions and using (5.164)2 we get

−UGK = �H�. (5.194)

In general, �H� can be a highly nonlinear function of a, G and ζ. Any further analytical

investigation will require a specific form of H, which would then determine the complexity

of the problem. This is done in Subsection 5.3.2 below, where we assume a rate independent

response and an associated flow rule.

If, however, plastic flow is only restricted to behind the wave, which is the case of

a loading plastic wave, then (5.194) reduces to

UGK = H− (5.195)

since H+ = 0. Also, using ˙K−1
+

= 0 in (5.164)2 implies that ˙K−1
−

= UG. On the other

hand, for an unloading plastic wave, plasticity evolves only ahead of the wave, i.e ˙K−1
+ �= 0

but ˙K−1
−

= 0. In this case, assuming ˙K−1
+

to be known, G follows directly from (5.164)2

as UG = − ˙K−1
+
.

5.3.1 Elastic acceleration wave

An elastic acceleration wave is defined as the acceleration wave with no plastic

evolution in its neighborhood. This implies K̇± = 0 and consequently G = 0. As is evident

from (5.167), there can be no jump in the dislocation density α across such waves. Moreover

ζ = 0, which follows from (5.177). Therefore our problem is reduced to determining a and

U .
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For G = 0, (5.190) reduces to

(Qij − ρrŨ
2δij)aj = 0, (5.196)

where Qij is given in (5.192). The elastic acoustic tensor Qij is symmetric and therefore

has three real eigenvalues. The positive eigenvalues will correspond to real wave speeds.

The strain energy is usually given in terms of CH rather than H, i.e. we have

W (H, η) = Ŵ (CH , η). It would therefore be useful to express WH and WHH in terms of

ŴCH
and ŴCHCH

. Use CH = HTH and the chain rule to obtain

(WH)ik = 2HilSym
lk

(ŴCH
)lk, (5.197)

where 2Sym
lk

(Alk) = Alk + Akl, for A ∈ Lin. Differentiate (5.197)1 with respect to H and

use the chain rule to get

(WHH)ikjm = 2δijSym
lk

(ŴCH
)lk + 4HilHjnSym

lk,mn
(ŴCH

)lkmn, (5.198)

where 4Sym
lk,mn

(Blkmn) = Blkmn + Bklmn + Blknm + Bklmn (here B is an arbitrary fourth order

tensor). Denote

Clkmn = 4Sym
lk,mn

(ŴCH
)lkmn (5.199)

as the elasticity tensor. Also, recall that Slk = 2Sym
lk

(ŴCH
)lk (cf. (3.101)). Use these to

rewrite (5.197) and (5.198) as

(WH)ik = HilSlk, and (WHH)ikjm = δijSlk +HilHjnClkmn, (5.200)

respectively.

For small elastic strain ε, H = R + O(|ε|), S = O(|ε|), and C = O(1), where

R ∈ Orth+ is the rotation in the polar decomposition of H. Therefore for small elastic
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strain

(WH)ik ≈ RilSlk, and (WHH)ikjm ≈ RilRjnClkmn. (5.201)

In the following, we will use (5.201)2, (5.192), and (5.196) to obtain explicit representations

for the acoustic tensor for the case of isotropic and cubic symmetry. We obtain the classical

results for wave speeds in an isotropic medium, which are independent of the direction of

wave propagation (i.e. of Ni). However, for the cubic case, the wave speeds depend on

Ni and the situation is far more complicated than the isotropic case.7 The strain energy

for these two crystal classes are given in (5.126)1 and (5.127)1. We can use these and the

definition of elastic strain (5.120) in (5.199), to obtain C for isotropic and cubic symmetry

groups as

Clkmn = λδlkδmn + μ(δlmδkn + δlnδkm), and (5.202)

Clkmn = C1δlkδmn + C2Hlkmn +
C3

2
Klkmn, (5.203)

respectively, where H and K are constant fourth order tensors defined by

H = (e2 ⊗ e2 + e3 ⊗ e3)e1 ⊗ e1 + (e1 ⊗ e1 + e3 ⊗ e3)e2 ⊗ e2

+ (e1 ⊗ e1 + e2 ⊗ e2)e3 ⊗ e3, and (5.204)

K = (e1 ⊗ e2 + e2 ⊗ e1)(e1 ⊗ e2 + e2 ⊗ e1) + (e1 ⊗ e3 + e3 ⊗ e1)(e1 ⊗ e3 + e3 ⊗ e1)

+ (e3 ⊗ e2 + e2 ⊗ e3)(e3 ⊗ e2 + e2 ⊗ e3), (5.205)

where {e1, e2, e3} is a fixed orthonormal basis in E . Substitute (5.202) into (5.201)2 and
7Fundamental studies in the subject of elastic waves in anisotropic solids were conducted by Fedorov

[50] and Musgrave [121]. Owing to much complexity of the problem of obtaining any exact solutions, most

of the recent work on this subject concentrates on obtaining bounds for wave speeds [15].



213

use the result in (5.192) to obtain the elastic acoustic tensor for isotropic symmetry

Q = (λ+ μ)N̆ ⊗ N̆ + μ1, (5.206)

where N̆ = RNi is a unit vector (since |N̆|2 = |RNi|2 = 1). One eigenvalue of Qij is λ+2μ

corresponding to eigenvector N̆. The other eigen value is μ with a multiplicity of two, and

with eigenvector lying in the plane orthogonal to N̆. The wave speeds follow from (5.196):

Ũ e1 =

√
λ+ 2μ
ρr

, and Ũ e2 =
√
μ

ρr
. (5.207)

Both of these speeds are real, since λ+ 2μ > 0 and μ > 0 (cf. (3.124)).

On the other hand, the situation is not so simple for cubic symmetry. To evaluate

the relevant acoustic tensor, start by obtaining the following identities (using (5.204) and

(5.205)),

Ni · H ·Ni = Ni ⊗ Ni −
3∑
a=1

N i
aea ⊗ ea, and (5.208)

Ni · K ·Ni = 1 + Ni ⊗Ni − 2
3∑
a=1

N i
aea ⊗ ea, (5.209)

where N i
a = Ni · ea. Substitute these in (5.203) to get

Ni · C · Ni =
C3

2
1 + (C1 + C2 +

C3

2
)Ni ⊗ Ni − (C2 + C3)

3∑
a=1

N i
aea ⊗ ea. (5.210)

The acoustic tensor Q then follows on using (5.210) and (5.201)2 in (5.192). We obtain (see

also [121])

Q =
C3

2
1 + (C1 + C2 +

C3

2
)N̆i ⊗ N̆i − (C2 + C3)

3∑
a=1

N i
aĕa ⊗ ĕa, (5.211)

where N̆ = RNi and ĕa = Rea. It is evident from (5.211), that in general, the eigenvalues

of Q will be functions of Ni, and so will be the eigenvectors.
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5.3.2 Plastic acceleration wave

For a plastic acceleration wave K̇± �= 0, which implies that G �= 0. Therefore,

contrary to an elastic acceleration wave, a plastic acceleration wave is always accompanied

by a plastic evolution in the neighboring bulk. Moreover, as implied from (5.167) and

(5.177), there will be, in general, a jump in the dislocation density and rate of specific

entropy across the wave surface.

The contents of this subsection are divided into two parts. We start by obtaining

a necessary and sufficient condition for dislocation density to be continuous across a plastic

acceleration wave. According to this condition, the jump in plastic distortion rate is rank

one. Next, we restrict our attention to rate independent flow rules and obtain the governing

equations for both non-hardening and hardening plastic evolution.

Consequence of a continuous α In our model of plastic flow, a dependence of yield

and flow rule on α is the only source of work hardening (cf. Section 3.7 and Remark

3.8.1). Therefore, the continuity of α is a sufficient condition for continuous work hardening

across the wave. Necessary conditions can of course only be obtained once the specific

forms of flow rule and the yield are assumed. It should be noted that in most of the

previous work in plastic acceleration waves, hardening parameter has been assumed to be

continuous. However, as we shall see below, the assumption of continuous α restricts the

plastic distortion rate to a rank one form, which proves to be too restrictive even for the

simplest of flow rules.

For a continuous K, the true dislocation density α is related to the referential

dislocation density by (5.166)1, from which it is evident that �α� = 0 if and only if �αr� = 0.
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The compatibility relation between the jump in αr and the jump in plastic distortion rate

is given in (5.70). Take the material time derivative of the identity KK−1 = 1 and use the

result in (5.70) to obtain

U�αrij� = eiklK
−1
jmK

−1
nl �K̇mn�Nk. (5.212)

It follows immediately from (5.212) that

�αrij�Ni = 0, (5.213)

U�αrij�t1i = −K−1
jmK

−1
nl �K̇mn�t2l, and (5.214)

U�αrij�t2i = K−1
jmK

−1
nl �K̇mn�t1l, (5.215)

where {t1, t2,N} ∈ V form a right handed orthogonal triad at every point on the singular

surface St. Let t̃1 = K−1t1 and t̃2 = K−1t2. The triad of vectors {t̃1, t̃2, Ñ} ∈ TM,

where Ñ is defined in (5.186), form a basis in the tangent space to the surface in relaxed

configuration. This claim can be verified by first noting the following identities

t̃a · Ñ = K−1ta ·KTN = ta ·N = 0 (5.216)

K−1ta ·KT tb = δab, (5.217)

where a, b ∈ {1, 2}. Identities (5.216) prove that vectors {t̃1, t̃2} lie in the plane orthogonal

to Ñ. It remains to be shown that t̃1 and t̃2 are not parallel to each other. Assume that t̃1

and t̃2 are parallel to each other. Use {a, b} = {1, 2} and {a, b} = {2, 2} in (5.217) to obtain

K−1t1 · KT t2 = 0 and K−1t2 · KT t2 = 1, respectively. The first of these imply that KT t2

is perpendicular to t̃1 and therefore to t̃2, a fact contrary to the second relation. Therefore,

t̃1 and t̃2 are not parallel to each other, and we have proved that {t̃1, t̃2, Ñ} can form a

valid basis in the tangent space to the surface in κi.
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Equations (5.213)-(5.215) then imply that αr is continuous across the wave if and

only if the tangential components of the plastic distortion rate are continuous, i.e. when

�K̇�t̃a = 0 for a ∈ {1, 2}. Thus, the jump in K̇ has the following form:

�K̇� = h⊗ Ñ, (5.218)

where h ∈ V is arbitrary.

We now consider a simple flow rule and show that a condition of the type can be

too restrictive on the nature of stress state. Assume (cf. (4.72))

K−1K̇ = σSd, (5.219)

where σ ∈ R
+ is a scalar valued function and Sd is the deviatoric part of S. Associated flow

rules, with isotropic symmetry and von Mises yield criteria, have the same form as (5.219).

Eliminating K̇ between (5.218) and (5.219) we get

�σ�Sd = K−1h⊗ Ñ. (5.220)

This is indeed a severe restriction on the form of Sd, and something which does not hold in

general.

In conclusion, a continuous dislocation density across the wave might impose un-

necessary physical restrictions. Therefore we will, in general, allow for a discontinuous α in

our treatment of plastic acceleration waves.

Rate independent plastic flow For a rate independent plastic flow, the flow rule as-

sumed in (5.193) should be insensitive to the time scale. This implies that H is homogeneous

of degree one in both, ĊH and η̇. The flow rule then takes the form

˙K−1K = P(CH ,α, η,∇ηK)[ĊH ] + M(CH ,α, η,∇ηK)η̇. (5.221)
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where P and M are fourth order and second order tensors, respectively. Moreover, the

tensor P has a minor symmetry with respect to last two indices.8 Use CH = HTH,

Ḣ = ḞK + FK̇, and K̇ = −K ˙K−1K to obtain

ĊH = 2Sym(HT ḞK− CH
˙K−1K). (5.222)

Substituting ĊH and η̇ from (5.222) and (5.171)1, respectively, into (5.221) yields

˙K−1K = 2P[HT ḞK− CH
˙K−1K] − 1

ρrθ
(M ⊗ E′)[ ˙K−1K], (5.223)

where we have also used the minor symmetry of P. We can rearrange (5.223) to get

Q[ ˙K−1K] = R[Ḟ], (5.224)

where

Qijkl = Iijkl + 2PijmlCHmk +
1
ρrθ

(M ⊗E′)ijkl, and (5.225)

Rijkl = 2PijmnHkmKln. (5.226)

But in order to obtain an expression for ˙K−1K from (5.224), we would require Q to be

invertible. As we will see below, this is indeed true in the case of associated flow rules.

Assuming. for now, that Q is be invertible, (5.224) yields

˙K−1K = T [Ḟ], where T = Q−1R (5.227)

is a fourth order tensor function of {H,K,α, η,∇ηK}, and therefore in general, is not con-

tinuous across the wave. Evaluate (5.227) at both sides of the interface, take the difference

8This symmetry appears due to the symmetric ĊH . For some basic properties of a fourth order tensor,

see the paragraph on page 22.
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of the resulting equations and use (5.164)2 to get

−UGK = �T [Ḟ]� = �T �[Ḟ+] − UT −[a ⊗ N], (5.228)

where the second equality results on using relations (2.46) and (5.162). It should be noted

here that by virtue of conditions (5.167), (5.168), and (5.177), both �T � and T − would be

functions of G. This dependence can be ascertained only after specific forms of the flow

rule have been assumed. Equation (5.228), therefore can be highly non-linear in G. Our

problem is the determination of {a,G, ζ, U} for a given thermodynamic state at the wave,

a fixed normal N and known values of the derivatives of the state variables ahead of the

wave. These are fourteen unknowns, for which we will need equal number of equations. The

relation (5.228) provides us with nine equations. To these we append three relations from

(5.190), which is rewritten below

j−1
AG + Qa = ρrŨ

2a, (5.229)

where A and Q are as given in equations (5.191) and (5.192), respectively. An additional

relation at the wave surface is provided from the yield condition. Recall the general form

of yield criteria assumed in (3.146):

F (CH ,α, η) = 0, (5.230)

using which the following jump condition can be obtained

�F � = 0. (5.231)

Equations (5.228), (5.229), (5.231), and (5.177) are fourteen in number, which,

at least in principle, can be solved for the fourteen unknowns mentioned above. Further
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analytical study warrants specific constitutive assumptions. In the following we assume

associative flow rules and consider two cases. In the first case we assume absence of hard-

ening, and in the second case we consider hardening but only under an isothermal plastic

flow. Moreover, we assume small elastic strains in both of these cases.

Case (i). We assume that the tensor functions P and M appearing in (5.221) and the scalar

function F in (5.230) are all independent of α and ∇ηK. As an immediate consequence,

we note that the relation (5.231) is trivially satisfied.

For an associated plastic flow, the flow rule is of the form (σ ∈ R)

˙K−1K = σFCH
, (5.232)

where the right hand side can be obtained from (4.30) and the chain rule. On the other

hand, we have from (5.230)

FCH
· ĊH + Fηη̇ = 0. (5.233)

Substitute ĊH and η̇ from (5.222) and (5.171)1, respectively, into this equation to get

2FCH
· (HT ḞK− CH

˙K−1K) − Fη
ρrθ

E′ · ˙K−1K = 0. (5.234)

Assume that for small elastic strain, FCH
= O(|ε|), where 2ε = (CH − 1) is such that

|ε| � 1. Furthermore, H = R + O(|ε|) (R is the rotation the polar decomposition of H),

CH = 1 + O(|ε|), and E′ = S + o(|ε|). The last of these follow from (3.77) and (5.201)1.

Under the assumption of small elastic strain, equation (5.234) then reduces to

Fε · (RT ḞK− ˙K−1K) − Fη
ρrθ

S · ˙K−1K ≈ 0, (5.235)

where we have used the chain rule to replace 2FCH
by Fε. Rearrange (5.235) to obtain

(
Fε +

Fη
ρrθ

S
)
· ˙K−1K ≈ RFεKT · Ḟ. (5.236)
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Eliminating ˙K−1K between (5.232) and (5.236) then yields

σ ≈ 2(
Fε + Fη

ρrθ
S
)
· Fε

RFεKT · Ḟ, (5.237)

where the denominator is assumed to be non zero. Substituting this expression for σ back

into (5.232) we obtain

˙K−1K ≈ φ(Fε ⊗ RFεKT )[Ḟ], where φ =
1(

Fε + Fη

ρrθ
S
)
· Fε

. (5.238)

Note that the relation (5.238)1 is a special case of (5.227)1, and the invertibility require-

ment for Q in the general case reduces down to the assumption of a finite φ in (5.238)2

above. Comparing with (5.238)1 with (5.227)1, we find that T = φ(Fε ⊗ RFεKT ) and as

a consequence of our premise of no hardening, �T � = 0. The relation (5.228) thus becomes

GK ≈ φ(Fε ⊗RFεKT )[a ⊗ N] (5.239)

or with some rearrangement

G ≈ φ(FεK−1 ⊗ RFεKT )[a ⊗ N] (5.240)

which expresses a linear relation between G and a (Recall that, G and a denote the jump in

rate of plastic distortion and the jump in the gradient of deformation gradient, respectively).

To obtain a, we use (5.239) to substitute for G in (5.190). The tensors A and Q appearing

in (5.190) and defined in (5.191) and (5.192), reduce to the following form for small elastic

strain: (use (5.201))

Aijk ≈ −RilClmqjN
i
mKkq, and (5.241)

Qij ≈ RilRjnClkmnN
i
kN

i
m, (5.242)
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where C is the fourth order elasticity tensor defined in (5.199) and jNi = KTN (cf. (5.186)

and (5.187)). Also, rewrite G from (5.240) in terms of indices as

Gjk ≈ jφãrN
i
t (Fε)rt(Fε)jsK−1

sk , where ã = RTa. (5.243)

Combining this with A from (5.241) we get

AijkGjk ≈ jφRilClmqjN
i
tN

i
m(Fε)rt(Fε)jqãr. (5.244)

Substitute this in (5.190) and use (5.243)2 to obtain

φClmqj(Fε)nk(Fε)jqN i
kN

i
mãn + ClkmnN

i
kN

i
mãn = ρrŨ

2ãl. (5.245)

This can be written as

Qpij ãj = ρrŨ
2ãi, (5.246)

where

Qpln = φClmqj(Fε)nk(Fε)jqN i
kN

i
m + ClkmnN

i
kN

i
m (5.247)

is the plastic acoustic tensor. The positive (and real) eigen values of Qp correspond to real

speeds of the plastic acceleration wave. Unlike the elastic acoustic tensor, the plastic acous-

tic tensor might be non-symmetric. Specific forms of the yield criteria are now required

for any further analysis of the wave speeds and amplitude. Once wave speeds and ampli-

tudes are obtained, the corresponding values of G and ζ can be calculated using (5.240)

and (5.177), respectively. Finally, note that even though we have assumed hardening to

be absent, a jump in the total dislocation density persists and can be obtained from the

compatibility condition (5.167).
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Case (ii). We would now like to consider the presence of hardening (through dislocation

density) in an associated (isothermal) flow rule and an isothermal yield criteria. The flow

rule is assumed as (cf. (4.30))

˙K−1K = σFCH
, (5.248)

where σ ∈ R is a scalar valued function of {ĊH ,CH ,α} and (cf. (5.230))

F (CH ,α) = 0, (5.249)

defines the yield criterion. Moreover, comparing (5.248) with (5.221), we note that there

exists a tensor J such that σ = J · ĊH , with J = J(CH ,α) (cf. (4.56), where an expression

for J has also been derived), thus reducing (5.248) to

˙K−1K = (FCH
⊗ J)[ĊH ]. (5.250)

Therefore, the tensor P in (5.221) is now given by (FCH
⊗ J). As a result, the tensor Q in

(5.225) reduces to

Q = I + Fε ⊗ CHJ, (5.251)

where we have also used elastic strain ε and chain rule to replace FCH
by Fε (F is now

understood to be a function of ε (and α) rather than CH). Assuming Fε = O(|ε|), J = O(1),

and noting that CH = 1 +O(|ε|), equation (5.251) for small elastic strains yields

Q ≈ I + Fε ⊗ J. (5.252)

Moreover, the tensor R in (5.226) now takes the form

R ≈ Fε ⊗ RJK. (5.253)
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Next, to write (5.250) in the form (5.227)1, we need to evaluate the inverse of Q. We obtain9

Q−1 ≈ I − Fε ⊗ J
1 + Fε · J , (5.254)

assuming that (1 + Fε · J) �= 0. The tensor T in (5.227)2 can then be evaluated as

T = Q−1R ≈
(

I − Fε ⊗ J
1 + Fε · J

)
(Fε ⊗ RJK) (5.255)

=
Fε ⊗ RJK
1 + Fε · J . (5.256)

it should be noted that T will be discontinuous across the wave. This is because the tensors

Fε and J depend on α, which is discontinuous across the wave surface. Substitute T into

(5.228) yields an equation, which combined with (5.229) and (5.231), give us a complete set

of governing equations, sufficient to obtain our unknowns.

Remark 5.3.1. (Unloading plastic wave) For an unloading plastic acceleration wave, plastic-

ity evolves only in its front (which is the direction into which wave propagates), i.e. K̇+ �= 0

but K̇− = 0. Since K̇+ is assumed to be known, G follows directly from (5.164)2 as

G = − 1
U

( ˙K−1)+. (5.257)

This can then be substituted into (5.189) to get

− 1
j2Ũ

A[( ˙K−1)+] + Qa = ρrŨ
2a. (5.258)

9For a fourth order tensor of the form

Armpq = Irmpq + MrmNpq ,

we have

A−1
rmpq = Irmpq − MrmNpq

1 + MijNij
,

where the second order tensors M and N are arbitrary but satisfy the condition (1+M ·N) �= 0. The result

can be verified by a direct substitution.
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Note that if the tensor (Q − ρrŨ
21) is not invertible, then det(Q − ρrŨ

21) = 0 and the

problem is reduced to elastic acceleration waves. To obtain a solution for plastic waves,

however, we assume that (Q − ρrŨ
21) is invertible. It then follows from (5.258) that

a =
1

j2Ũ
(Q − ρrŨ

21)−1
A[( ˙K−1)+]. (5.259)

In (5.259) everything on the right hand side is known, except for the wave speed. To obtain

the wave speed, recall the yield criteria, which holds immediately ahead of the wave: (cf.

(5.230))

F+ = 0. (5.260)

This equality can also be viewed as the equation for surface St, i.e. as St = {X ∈ κr :

F+(X, t) = 0}. The wave speed can then be computed via the relation (cf. (2.49))

U = − (F+)̇
|∇F+| . (5.261)

This can then be substituted back into (5.259) to solve for a (Also use Ũ = j−1U , with j

from (5.187)2). The evaluation of U using this method was first considered by Green [63].

Remark 5.3.2. (Rate dependent plastic flow) For a special class of rate dependent flow rules,

we find that the governing equations decouple themselves. Consider the flow rules of the

type (cf. (5.193))

˙K−1K = D(CH ,α, η,∇ηK), (5.262)

which then implies

−UGK = �D�. (5.263)

Equation (5.263) is a special case of (5.194), differing in the fact that �D�, unlike the

general case, has no dependence on a. Contrasting this to the analogous relation for the
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rate independent case, i.e. (5.227), we note that in the considered class of rate dependent

flow rules, we have decoupled equations for G and a. Although complicated, (5.263) should

be seen as the set of equations which determine G. Once G is obtained, it can be substituted

in (5.190) to solve for a and ζ.
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Chapter 6

Interfacial Plastic Flow

In this last chapter we are concerned with the plastic flow at the interface, which

is endowed with an independent (from the bulk) constitutive structure. The motivation

is derived from the problems where plasticity evolves not only in the three dimensional

bulk, but also along the two dimensional interface. The resulting coupling of these two

mechanisms drives the interface as well as the dislocation content in the bulk. Historically,

the impetus for studying interfaces, particularly in metals, came from the seminal work by

Smith [159] , who presented many experimental observations as well as simple mathematical

models. Immediately much research work followed, exposing many interesting problems in

the area of interface mechanics in solids [17, 58, 150]. A more detailed review can be accessed

from the books by Howe [77], Gottstein & Shvindlerman [59], and Sutton & Balluffi [161].

In Section 6.1 we obtain the restrictions on constitutive functions, defined on the

interface, on using their invariance under compatible changes in the reference configuration.

A corresponding representation theorem for the material points in the bulk was obtained in
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Section 3.3. In the context of singular surfaces, the concept of a compatible change in the

reference configuration was introduced in our discussion on an invariant measure of surface

dislocation density in Subsection 5.1.2. Such an invariance is to be naturally expected of the

constitutive functions, which should not depend on our choice of a reference configuration.

We show that constitutive functions can depend on plastic distortion only through the true

surface dislocation density. A dependence on plastic distortion is also possible as suitable

coefficients to the rate terms: plastic distortion rate and the interface velocity.

In Section 6.2, we start by recalling the consequences of the dissipation inequality

as discussed earlier in Chapters 2 and 3. We go on to extend the discussion of dissipation

inequality and its consequences by adding interface stress and interface energy into the

formulation. Added mechanisms of dissipation now appear, which couple with each other in

the evolution of the dynamics of the concerned problem. The resulting theory provides, for

example, the basic framework for studying the problem of accompanying plastic deformation

during grain/phase boundary migration. Most of the previous work in the subject has been

restricted to coherent interfaces in an elastically deforming solid, see for example the reviews

by Fried & Gurtin [55] and Fischer et al. [51] (and the references therein). With regard to

incoherent interfaces, the work has been restricted to interfaces bounded by bulk with no

dislocation content [98, 105, 29]. In these earlier frameworks, it is not possible to model the

coupling of plastic flow in the bulk and the interface. Our formulation however, extends

their treatment to incoherent interfaces which are bounded by dislocated bulk.

We end the chapter with a long remark on the interface energy. We use the basic

invariant properties to deduce restrictions on its form. The aim of this remark is to clearly
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present the concept of strain energy, which otherwise remains shrouded with mystery in

most of the scientific literature.

6.1 Invariance under compatible changes in the reference

configuration

As motivated in Section 3.3, our constitutive functions should be such that they

are invariant with respect to any compatible change in the reference configuration. This

argument is based on the fact that the material response should be independent of any

choice of the reference configuration. A compatible change in the configuration ensures

that the topological structure of the reference configuration remains unaltered. Consider

two reference configurations, κr1 and κr2 with a map λ such that X2 = λ(X1), where

X1 ∈ κr1 and X2 ∈ κr2 , with invertible gradient A = ∇1λ (such that K2 = AK1). For A

to be a compatible deformation from κr1 and κr2 , the Hadamard’s rank one compatibility

�A� = d⊗ N, where d ∈ V is arbitrary, holds at the singular interface. Such a compatible

transformation leaves the Burgers vector invariant for any closed curve cutting across the

singular surface. This was proved earlier in Subsection 5.1.2. The following transformation

rules can then be inferred for elastic and plastic distortions (and their rates):

K±
2 = A±K±

1 , H±
2 = H±

1 , and (6.1)

K̇±
2 = A±K̇±

1 , Ḣ±
2 = Ḣ±

1 . (6.2)

We would also require the transformation rules for surface permutation tensor ε(N), surface

dislocation density βr2, and referential surface speed U . Two of these transformation rules
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were obtained earlier in Subsection 5.1.2 (cf. (5.38) and (5.40)). We restate them below:

ε(N2) = (jA)−1A±ε(N1)(A
±)T , (6.3)

βTr2P2 = (jA)−1βTr1P1(A±)T , (6.4)

where jA = dA2
dA1

is the ratio of infinitesimal areas corresponding to St2 and St1. These

relation can be used to obtain an invariant form of surface permutation tensor and surface

dislocation density. Such invariant forms is independent of any compatible changes in the

reference configuration. They follow from equations (6.3) and (6.4) on noting that

A± = K±
2 (K±

1 )−1, and jA =
j±2
j±1
, (6.5)

where j±a (a = 1, 2) represents the ratio of infinitesimal area elements (of the singular

surface) in the reference and the intermediate configuration. At this point, it would be

helpful to recall that the tangent plane at the singular surface, in the reference and the

current configuration, is mapped locally into two tangential planes in the intermediate

configuration. It is for this reason that we have two measures of the ratio of infinitesimal

areas in the reference and intermediate configuration, for e.g. j±1 . Substituting (6.5) into

(6.3) and (6.4), we obtain

j±2 (K±
2 )−1ε(N2)(K

±
2 )−1 = j±1 (K±

1 )−1ε(N1)(K
±
1 )−T , and (6.6)

j±2 βTr2P2(K±
2 )−1 = j±1 βTr1P1(K±

1 )−T , (6.7)

respectively. Define

ε± = j±(K±)−1ε(N)(K
±)−1, and (6.8)

(β±)T = j±βTr P(K±)−T , (6.9)
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where j± represents the ratio of infinitesimal area elements (of the singular surface) in any

reference and intermediate configuration. We call the quantities ε± and β±, the true surface

permutation tensor and true surface dislocation density (cf. 5.43), respectively. Both of

these are invariant with respect to any compatible change in the reference configuration.

Next, we would like to obtain the transformation for U . Start by recalling its

definition from (2.49), i.e.

U1 = − φ̇

|∇1φ|
, where φ(X1, t) = 0 (6.10)

determines the singular surface St1 in the reference configuration κr1 . The singular surface

in the reference configuration κr2 is then given by

φ̂(X2, t) = φ(λ−1(X2), t) = 0. (6.11)

The normal speed in the reference configuration κr2 is then given by

U2 = −
˙̂
φ

|∇2φ̂|
. (6.12)

To relate U1 and U2, we start by noting the following identities:

˙̂
φ = φ̇, and ∇2φ̂ = (A±)−T∇1φ, (6.13)

where (6.13)2 follows from (6.11)1 on using the chain rule of differentiation. Further, use

the definition of the normal (cf. (2.49)) and Nanson’s formula, given by

N1 =
∇1φ

|∇1φ|
, N2 =

∇2φ̂

|∇2φ̂|
, and N2 = j−1

A (A±)∗N1, (6.14)

to obtain

|∇2φ|
|∇1φ̂|

= jAJ
−1
A± . (6.15)
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Combining relations (6.15), (6.13)1, (6.10)1, and (6.12), we get

U2 = U1j
−1
A JA± . (6.16)

Moreover, use (6.5) to get

j±2 J
−1
K±

2

U2 = j±1 J
−1
K±

1

U1, (6.17)

thus defining

Û± = j±J−1
K±U (6.18)

as the true normal speeds associated with the singular interface.

We now use these transformation rules to obtain the representation for functions

to be invariant under compatible changes in the reference configuration. A scalar function

f = f̂(H±
1 ,K

±
1 , Ḣ

±
1 , K̇

±
1 , U) is invariant under the change in reference configuration from

κr1 to κr2 if

f̂(H±
1 ,K

±
1 , Ḣ

±
1 , K̇

±
1 , U1) = f̂(H±

2 ,K
±
2 , Ḣ

±
2 , K̇

±
2 , U2), (6.19)

where the variables are related to each other as in (6.1), (6.2), and (6.16). The choice of

arguments for the function f is motivated from the variables appearing in the dissipation

inequality in the next section. To obtain a necessary condition for (6.19) to hold true, let

A+ = (K+
1 )−1 and A− = (K−

1 )−1−βTr1ε(N1) locally at the point at which (6.19) is evaluated.

This choice indeed satisfies the rank one jump restriction for A, as can be verified from the

jump condition (5.6) for K−1. With this choice for A± we can use (6.1), (6.2), and (6.16)
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to obtain the following:

K+
2 = 1, K−

2 = 1− βTr1ε(N1)K
−
1 , (6.20)

K̇+
2 = (K+

1 )−1K̇+
1 , K̇−

2 = (K−
1 )−1K̇−

1 − βTr1ε(N1)K̇
−
1 , and (6.21)

U2 = U1j
+
1 J

−1
K+

1

. (6.22)

Therefore, a necessary condition for f to be invariant is to have the representation

f = f̃(H±,βTr ε(N)K
−, Ḣ±, (K±)−1K̇±, Û+), (6.23)

where Û+ is given in (6.18). For f to be invariant under arbitrary transformations, it has

to satisfy

f̃(H±
1 ,β

T
r1ε(N1)K

−
1 , Ḣ

±
1 , (K

±
1 )−1K̇±

1 , Û
+) = f̃(H±

2 ,β
T
r2ε(N2)K

−
2 , Ḣ

±
2 , (K

±
2 )−1K̇±

2 , Û
+).

(6.24)

It is easy to see that all the arguments of f̃ are invariant under arbitrary A, except for

βTr2ε(N2)K
−
2 , which can be expanded using (6.1)1, (6.3), and (6.4) to get

βTr2ε(N2)K
−
2 = βTr2P2ε(N2)K

−
2

= (jA)−2βTr1P1(A−)TA−ε(N1)(A
−)TA−K−

1 . (6.25)

Choose A− = (K−
1 )−1 (any value can be taken for A+ as long as �A� is rank one). Obtain

βTr2ε(N2)K
−
2 = (β−)Tε−(N), (6.26)

where the terms on right hand side are defined in equations (6.8) and (6.9).

The choice of a particular sign in the above discussion is arbitrary. Consequently,

we obtain the necessary and sufficient form of the representation for f to be invariant under
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compatible changes in the reference configuration as

f = f̆(H±, (β±)T ε±(N), Ḣ
±, (K±)−1K̇±, Û±). (6.27)

6.2 Thermodynamics: dissipation inequality

The mechanical version of second law of thermodynamics (under isothermal tem-

perature field) can be stated as (with zero body force):

Dissipation D
.=
∫
∂Ω

PN · vdA− d

dt

∫
Ω

ΨdV ≥ 0, (6.28)

where D is the dissipation associated with Ω ⊂ κi. Before discussing the case with interface

energy, we recall our discussion from Chapter 3 and also discuss a case with diffusion.

Case 1 We assume all fields to be sufficiently smooth on Ω. We allow body to deform

elastic-plastically in the bulk. We can write the free energy density (including kinetic

energy) per unit volume of the reference configuration as

Ψ = J−1
K W (H) +

1
2
ρκv · v, (6.29)

where ρκ is the density in reference configuration. Substituting (6.29) in (6.28) for a smooth

and fixed Ω we obtain

(J−1
K W (H)1 − FTP) · K̇K−1 ≥ 0 in Ω, (6.30)

where we have used the equilibrium relation (Div P = ρκv̇) and the arbitrariness of Ω.

Case 2 There exists a surface S = St ∩ Ω �= ∅ inside Ω, across which various fields suffer

jump discontinuities. The surface is assumed to be moving with an velocity UNs, where
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Ns denotes the normal to the surface S. In such a case

∫
∂Ω

PN · vdA =
∫

Ω
Div(PTv)dV +

∫
S
�PTv� · NsdA (6.31)

and

d

dt

∫
Ω

ΨdV =
∫

Ω
Ψ̇dV −

∫
S
�Ψ�UdA. (6.32)

We first evaluate,

�PTv� · Ns = �PT ]〈v〉 · Ns + 〈PT 〉�v� ·Ns

= �PNs� · 〈v〉 + 〈P〉 · �v� ⊗Ns

= −ρκU�v� · 〈v〉 − U〈P〉 · �F�
= −1

2
ρκU�v · v]� − U〈P〉 · �F�, (6.33)

where in the third equality we have used �P�Ns = −ρκU�v� and −U�F� = �v� ⊗ Ns,

which follow from the linear momentum balance and Hadamard’s lemma, respectively (cf.

Chapter 2). Moreover, we can write

Ns · �FTP�Ns = 〈P〉 · �F� +
1
2
ρκU

2Ns · �FTF�Ns, (6.34)

where the last term is obtained using �P�Ns = ρκU
2�F�Ns. The second term follows from

the following: Ns · �FT �〈P〉Ns = 〈P〉 · �F�(Ns ⊗ Ns) = 〈P〉 · �F�, where the last equality

is a consequence of Hadamard’s lemma. Finally, substituting equations (6.31)-(6.34) into

(6.28) we obtain

∫
Ω
(J−1
K W (H)1 − FTP) · K̇K−1dV

+
∫
S
UNs · (�J−1

K W (H)1 −FTP� +
1
2
ρκU

2�FTF�) · NsdA ≥ 0. (6.35)
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Arbitrariness of Ω and S then results into the following local relations:

(J−1
K W (H)1− FTP) · K̇K−1 ≥ 0 in Ω/ S (6.36)

and

UNs · (�J−1
K W (H)1− FtP� +

1
2
ρκU

2�FTF�)Ns ≥ 0 on S. (6.37)

Note that unlike the case of elastically deforming bulk, here the flow in bulk is coupled to

the flow at the surface of discontinuity.

Case 3 We now consider the case allowing for mass transfer across the interface. The

bulk on one side of the interface grows at the expense of the bulk on the other side of the

interface. It can be deduced from the equation for balance of mass that the mass flux across

unit area of the reference configuration is given by ρκU . We assume that diffusion takes

place only on the interface. We can then modify equation (6.28) to include working by the

chemical potential μ as

Dissipation D
.=
∫
∂Ω

PN · vdA +
∫
S
�μ�ρκUdA− d

dt

∫
Ω

ΨdV ≥ 0. (6.38)

If we further assume that the growth process is purely dissipative (provides no energy

change), then the dissipation relation at the interface follows from equation (6.37) after a

slight modification:

UNs · (�J−1
K W (H)1 + ρμ1− FTP� +

1
2
ρκU

2�FTF�)Ns ≥ 0 on S. (6.39)

The inequality (6.36) in the bulk remains unchanged.

Case 4 Consider now the case when the interface itself contributes energetically and is

therefore endowed with an energy density (per unit area of the reference configuration),
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say φ. We would also need to include working due to interfacial stresses in the dissipation

inequality. Before writing the the dissipation inequality, we deduce the interfacial Piola

stress tensor.

The boundary of the interface S ∈ Ω is denoted by ∂S. Let the unit normal to S

be given by Ns. Let the outward unit normal to ∂S (such that it is normal to Ns) be ν̂ and

the unit vector lying in the tangential space of ∂S be t̂. The triad of unit vectors {t̂,Ns, ν̂}

form an orthogonal system of vectors in the vector space of the reference configuration.

A similar triad of unit vectors can be defined in the current configuration ω, where the

interface is denoted by s and its boundary by ∂s, with the outward unit normal given by ν

and a tangential vector t. The orthogonal triad of unit vectors in the current configuration

is then given by {t,ns,ν}.

If T is the Cauchy stress tensor, acting on the interface s, then the net force

∫
∂s

Tνdl (6.40)

acts on the boundary of the interface. By Nanson’s formula we have, nsda = (F±)∗NsdA.

Moreover, tdl = F±t̂dL. It is easy to verify that t · ns = 0 implies t̂ · Ns = 0. Therefore,

on using ν = t × ns we can obtain

νdl = jA
−1(F±t̂ × (F±)∗Ns)dL, (6.41)
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where jA = da
dA . Substituting t̂ = Ns × ν̂ we get

νdl = jA
−1(F±(Ns × ν̂) × (F±)∗Ns)dL

= jA
−1J−1

F (((F±)∗Ns × (F±)∗ν̂) × (F±)∗Ns)dL

= jA
−1J−1

F (((F±)∗Ns · (F±)∗Ns)(F±)∗ν̂ − ((F±)∗Ns ⊗ (F±)∗Ns)(F±)∗ν̂)dL

= jA(1 − ns ⊗ ns)(F±)−T ν̂dL. (6.42)

Therefore the Piola stress tensor for surface is given by,

P = jATP(ns)(F
±)−T . (6.43)

The net dissipation can be written as,

D
.=
∫
∂Ω

PN · vdA+
∫
∂S

Pν̂ ·wdL− d

dt

∫
Ω

ΨdV − d

dt

∫
S
φdA ≥ 0, (6.44)

where w is the edge velocity. Use the surface divergence theorem and the surface transport

theorem (cf. (2.105) and (2.117)) to get:

∮
∂S

PTw · ν̂dL =
∫
S
(DivS(PTw) + 2HPN · w)dA, (6.45)

and

d

dt

∫
S
φdA =

∫
S
(φ̊− 2φUH)dA, (6.46)

where DivS and (̊ ) denotes the surface divergence and the normal time derivative, respec-

tively (cf. Subsection 2.1.4). These relations when substituted into (6.44) will yield (on

using localization theorem) the inequality (6.36) in the bulk and also a modified (in com-

parison to (6.37)) inequality on the interface. The final inequality will require us to calculate

φ̊, which we will illustrate below, for specific constitutive assumptions.
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We introduce the following constitutive assumptions regarding the energy densi-

ties:

Ψ = J−1
K W (H) +

1
2
ρκv · v (6.47)

for the bulk and

φ = A1w(H1P1,H2P2) (6.48)

for the interface (see Remark 6.2.1 below). We assume that the interface has a vanishing

mass and therefore has no associated inertial terms. Here w represents the interface energy

per unit area of surface 1 in the intermediate configuration (the area element in the reference

configuration is mapped into two area elements in the intermediate configuration, which we

label as 1 and 2. This is same as using signs ±, but provides a more clear notation for the

following calculation). In the above A1 represents the change in intermediate interface area

1 for every unit change in reference interface area. The projections Pa (a = 1, 2) are given

by Pa = 1a − na ⊗ na. Here 1a denotes the identity transformation in the intermediate

configuration a and na as the normals in the intermediate configuration (both of which map

to ns in the current configuration and to Ns in the reference configuration). Using Nanson’s

formula we evaluate, NsdA = JK1K
−T
1 n1dA1. Therefore,

A1 ≡ dA1

dA
= J−1

K1
(K−T

1 n1 · Ns)−1. (6.49)

We now calculate φ̊. Using (6.48) we write,

φ̊ = Å1w(H1P1,H2P2) + A1ẘ(H1P1,H2P2), (6.50)
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where (using (6.49))

Å1 = −A1K−T
1 · K̊1 − JK1A2

1(−K−T
1 K̊T

1 K−T
1 n1 ·Ns + K−T

1 n̊1 ·Ns + K−T
1 n1 · N̊s)

= −A1K−T
1 K̊T

1 · (1 − Ns ⊗ Ns) − JK1A2
1K

−1
1 Ns · n̊1 − JK1A2

1K
−T
1 n1 · N̊s. (6.51)

Also

ẘ = wH1P1 · ( ˚H1P1) + wH2P2 · ( ˚H2P2). (6.52)

Since ˚HaPa = F̊aKaPa + Fa ˚KaPa (no summation over a), we obtain

ẘ = wH1P1 · (F̊1K1P1 + F1
˚K1P1) + wH2P2 · (F̊2K2P2 + F2

˚K2P2)

=
2∑

a=1

(wHaPaPaKT
a · F̊a) +

2∑
a=1

(FTawHaPa · ˚KaPa). (6.53)

Remark 6.2.1. (Surface energy density) The atomic configuration near the interface is sig-

nificantly different from that in the bulk [17]. The energetic response to the distortion of the

underlying lattice will, therefore, also differ from the bulk energy responses. The interfacial

energy, as we shall show below, depends not only on the strain values, but also on the rel-

ative orientation of the intersecting lattices. Following Gibbs, we define the surface energy

density φ (surface energy per unit area of the interface in the reference configuration) by

E =
∫

Ω
ΨdV +

∫
S
φdA, (6.54)

where E is the total energy associated with Ω ∈ κi such that S = Ω∩St �= ∅. Therefore, the

interface energy can be seen as the excess energy contribution to an otherwise bulk energy.

The surface energy density φ is related to the w, which is the surface energy per unit area

of surface 1 in the intermediate configuration, by φ = A1w, where A1 is defined in (6.49).

Start by assuming w to be a function of Ka and Ha (a = 1, 2). But using the result from
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Section 6.1, we note that a dependence of w on Ka can only be through the true surface

dislocation density tensors. However, the true surface dislocation density tensors can also be

expressed in terms of Ha (cf. (5.44)), and thus the constitutive function w can be expressed

as a function of Ha. Note that to reach this conclusion, we have only used the invariance

of w with respect to compatible changes in the reference configuration. We next assume

that the energy w is insensitive to any out of plane (of the interface) lattice distortion. This

implies that w is independent of the normal components of Ha, i.e. of Hana. The roots of

this assumption lies in our work postulate, where we assume surface stress to do work in

association with the edge velocity (which lies in the plane of the interface). This combined

with our constitutive assumption regarding stress implies that there is no mechanism to

store surface energy corresponding to the normal components of Ha (Cermelli & Gurtin

[29] proved this result using the dissipation inequality, but in a slightly different context

than discussed here). We therefore have the interface energy with functional dependence

as mentioned in (6.48).

Further, subject w to the invariance with respect to superimposed rigid body

motions. Use the polar decomposition Ha = RaUa, where Ra ∈ Orth+ and Ua ∈ Sym+.

Under a superimposed rigid body motion, denoted by Q ∈ Orth, Ha transforms to QHa.

Choose Q = RT
1 . We then obtain the following necessary condition for w to be invariant:

w = ŵ(U1P1,RU2P2), (6.55)

where R ∈ Orth+ denotes the relative rotation of material points across the interface.

Moreover, w should be insensitive to the normal components Uana, since otherwise our

assumption of the insensitivity (of w) to the out-of-plane deformation will be violated.
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Noting that Ua are symmetric, we should have the following form for w:

w = w̌(P1U1P1,RP2U2P2). (6.56)

Define Ca = PaCaPa, where Ca = U2
a. Using the identity P

2
a = Pa we can therefore obtain

from (6.56)

w = w̄(Ca,R). (6.57)

If Ca = 1a, i.e. the bulk on either side of the interface is unstrained, then the representation

(6.57) reduces to

w = w̄(Pa,R). (6.58)

In the unstrained case, therefore, the surface energy is a function of normals at the inter-

face and the relative rotation. Such energies are widely studied in the literature on metal

interfaces, in particular grain boundaries, and many experimental methods have been de-

termined for their evaluation (see for example the article by Herring in [58] and the books

by Howe [77] and Gottstein & Shvindlerman [59]).

In much of the classical literature on surface/interface science, the free energy per

unit area of the interface in the current configuration is also called surface tension (per unit

length in the surface) [23, 155, 137]. This equivalence is motivated from the studies of liquid

surfaces, and surface tension should not be confused with surface stress.
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[92] E. Kröner. Initial studies of a plasticity theory based upon statistical mechanics. In

M. F. Kanninen et al., editor, Inelastic Behavior of Solids, pages 137–148. McGraw–

Hill Book Company, 1970.



253

[93] E. Kröner. Continuum theory of defects. In R. Balian et al., editor, Les Houches,

Session XXXV, 1980 – Physique des défauts, pages 215–315. North-Holland, New

York, 1981.

[94] I. A. Kunin. Fields of randomly distributed dislocations and force dipoles in an infinite

elastic anisotropic medium. Zhurnal Prikladnoi Mekhaniki Tekhnicheskoi Fiziki, 5:76–

83, 1965.

[95] I. A. Kunin. Elastic Media with Microstructure II. Springer–Verlag, 1983.

[96] L. D. Landau and E. M. Lifshitz. Theory of Elasticity, 3rd Edition: (Course of

Theoretical Physics, Vol. 7). Butterworth–Heinemann, 1986.
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[144] M. Polanyi. Über eine art gitterstörung, die einen kristall plastisch machen könnte.

Zeitschrift für Physik A Hadrons and Nuclei, 89:660–664, 1934.

[145] W. Prager and P. G. Hodge. Theory of Perfectly Plastic Solids. John Wiley & Sons

Inc., 1965.

[146] I. Prigogine. Introduction to Thermodynamics of Irreversible Processes. John Wiley

& Sons Inc., 1968.

[147] K. R. Rajagopal and A. R. Srinivasa. Inelastic behavior of materials. Part I: Theo-

retical underpinnings. International Journal of Plasticity, 14:945–967, 1998.

[148] K. R. Rajagopal and A. S. Wineman. A constitutive equation for non–linear elastic



259

materials which undergo deformation induced microstructural changes. International

Journal of Plasticity, 8:385–395, 1992.

[149] W. T. Read and W. Shockley. Dislocation models of crystal grain boundaries. Physical

Review, 78(3):275–289, 1950.

[150] W. D. Robertson and N. A. Gjostein, editors. Metal Surfaces: Structure, Energetics

and Kinetics. American Society of Metals, Metals Park, Ohio, 1963. Papers presented

at a joint seminar of the American Society for Metals and the Metallurgical Society

of AIME, October 27 and 28, 1962.

[151] R. T. Rockafellar. Convex Analysis (Princeton Landmarks in Mathematics and

Physics). Princeton University Press, 1996.

[152] W. Rudin. Principles of Mathematical Analysis. McGraw–Hill, 1976.

[153] F. Schuricht. A new mathematical foundation for contact interactions in continuum

physics. Archive of Rational Mechanics and Analysis, 184(3):495–551, 2007.

[154] J. Serrin, editor. New Perspectives in Thermodynamics. Springer–Verlag, 1986.

[155] R. Shuttleworth. The surface tension of solids. Proceedings of the Physical Society A,

63:444–457, 1950.
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[167] S. Cleja– Ţigoiu. Dissipative nature of plastic deformations in finite anisotropic elasto–

plasticity. Mathematics and Mechanics of Solids, 8:575–613, 2003.
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