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I. Idakkā design6

We provide some additional figures to elucidate the design of the instrument. First, in Figure 1,7

we show a full profile view of an idakkā clearly showing the connection of the barrel with the8

drumheads via a cotton rope. The pegs and the tassels are also visible. Secondly, in Figure 2, we9

show the side view of an assembled idakkā accompanied by a schematic with detailed dimensions.10

Figure 1: A Profile view of a fully assembled idakkā.
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Figure 2: A side view of a fully assembled idakkā with a schematic. The central region appears
dark in (a) due to a converging barrel in the background.

II. Additional information regarding experiments11

A. Estimation of material properties12

The palmyrah strings are fixed to the barrel by first making them taut and then rolled around13

the copper nails on the edge. The snares are fixed without any scope for fine tuning. This would,14

presumably, lead to a variation in the snare tension during the installation. We need to estimate the15

range of tension values that a palmyrah fibre can sustain without breaking. From our interaction16

with an expert (Mr. P. Nanda Kumar),1 we found out that a successful installation of the snares17

may come after many unsuccessful attempts due to breaking of the fibres in the process. This18

suggests that the tensions are close to the breaking force. We estimated this force using a Universal19

Testing Machine. The results are collected in Figure 3. We observe that, for a force more than20

5 N, the force-displacement behavior becomes nonlinear and the final breakage happens around21

8-10 N. Given the uncertainty involved in the process, in addition to the differences that may arise22

in individual samples, we shall use a nominal value of 6.5 N for all our analyses.23

The area density of the drum was estimated by weighing a 4 cm × 4 cm sample of the24

drumhead material. The linear density of the palmyrah fibres was estimated by weighing two25

samples of around 20 cm length.26

B. PSD evolution27

In Figures 4(a) and 4(b) we plot the evolution of power for certain harmonic frequency segments28
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Figure 3: Force vs. extension curve for fibres of two different average diameters.
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Figure 4: Evolution of power/frequency of certain harmonic frequency segments corresponding to
spectrograms in Figure 4 of the main paper.

corresponding to spectrograms in Figures 4 (left) and 4 (right), respectively, of the main paper.29

The nature of these plots is oscillatory, explaining the slight buzzing tone in the idakkā’s sound.30

C. Error in harmonicity31

In Table 1 we have collected the percentage error, with respect to nearest integer, for the first32
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Table 1: Percentage error, with respect to nearest integer, for the first 8 near harmonic peaks for
the three cases in the top row of Figure 5 of the main paper.

f0 (Hz) Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 Peak 7 Peak 8

115 -0.2911 -0.7336 0.1601 -0.0125 0.2293 0.3105 0.4978 0.0794
158 -1.1574 -0.4893 -0.4167 -1.2626 -0.8207 -1.3731 -1.0101 -0.1326
192 0.3652 -0.4825 -0.5008 -0.2534 0.3246 -0.9285 -0.6023 -0.5869

8 near harmonic peaks for the three cases in the top row of Figure 5 of the main paper. Most of33

the deviations are below 1% and the highest magnitude of deviation is less than 1.4%.34

III. Nonlinear Normal Modes35

A Nonlinear Normal Mode (NNM) of an undamped system is defined as a synchronous periodic36

oscillation where all material points of the system reach their extreme values or pass through zero37

simultaneously.3;4 We will work with the undamped form of the governing equation (the notation38

is consistent with the main paper):39

¨̃ηmn = −B2
mnη̃mn + χ

NS∑
i=1

(∫ √1−(ψi)2

−
√

1−(ψi)2
h̃i
ξ̃iξ̃i

φmn(ξ̃i)dξ̃i

)
(1)

Let z(t, z0) =
[
η̃(t)
˙̃η(t)

]
, where z0 =

[
η̃0
˙̃η0

]
. We define the shooting function H(t, z0) = z(t, z0)− z0. If40

an initial condition zp0 and a time period T corresponds to a NNM then zp(t, zp0) = zp(t+ T, zp0).41

As a result, H(T, zp0) = 0. The problem of finding the NNMs is therefore equivalent to finding42

the solution of the nonlinear system of equations H(t, z0) = 0.5 These equations form a system43

of 2n equations for 2n + 1 unknowns. In order to make the problem solvable we can impose an44

additional constraint, |η̃p0| = 1. This excludes NNMs in which η̃0 = 0. The problem can be further45

simplified by considering specific initial conditions such as ˙̃η0 = 0.5 The equations to be solved46

are now reduced to
[

˙̃η(t,z0)
|η̃0|−1

]
= 0. This is a system of n + 1 equations for the same number of47

unknowns. We can simplify the system of equations further by noting that if z0∗ =
[
η̃(T,η0∗)

0

]
48

satisfies ˙̃η(T, z0∗) = 0 then ˙̃η(T, cz0∗) = 0, as long as c is positive. Therefore we can choose the49

displacement corresponding to one the modes and fix it to a constant value, say 1. The solution50

will scale accordingly. As a result, we can do away with the |η̃0| = 1 constraint, since fixing one51

of the displacements to a non-zero value will automatically exclude the trivial solution while still52

retaining the possibility of convergence to a non-trivial solution. Hence, ˙̃η(t, z0∗) = 0 is to be solved53

which is a system of n equations for n unknowns. This formulation excludes the NNMs for which54

the displacement corresponding to the fixed drum mode is actually zero. This can be mitigated by55
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Figure 5: PSD plots corresponding to the membrane center displacement (a) without and (b) with
a finite rim. The dotted lines indicate the frequencies corresponding to axisymmetric modes of
vibration of a uniform membrane without a finite rim. The non axisymmetric modes do not appear
due to the geometry and the initial conditions.

running the simulation again after fixing the displacement corresponding to a different drum mode.56

IV. The curved rim57

In this section, we reformulate the membrane vibration problem as a unilateral constraint58

boundary value problem by considering a finite rim at the edge of the membrane. The membrane,59

around its edge, will therefore wrap and unwrap during its motion similar to the string motion in60

Indian string instruments such as sitār, tānpurā, etc.6;7 We ignore the effect of string-membrane61

interaction from our present considerations. The effect of a finite rim was also noted in our analysis62

of audio recordings of the idakkā sound without strings in the bottom row of Figure 5 of the main63

paper. Considering the barrel rim to have an internal radius Ri and outer radius R, we take the64

cross section of the rim shape to be an inverted parabola centered at r = (Ri +R)/2 and of height65

p above the center point on the horizontal plane. The parabolic profile of the rim is hence of the66

form67

Srim(r) = p− 4p

(R−Ri)2

(
r − R+Ri

2

)2

. (2)
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The membrane displacements, considered to be axisymmetric, can be solved using the equation68

µWtt = TM

(
Wr

r
+Wrr

)
+K[Srim −W ]α, (3)

where subscript r indicates a partial derivative with respect to the radial variable; the constants K69

and α are associated with the contact interaction of the membrane with the rim. The membrane70

is clamped at r = R. The equation is solved by discretizing the spatial derivatives using a central71

difference scheme and then using ode113 solver in MATLAB to solve for the time evolution. For72

simulation purposes, we have taken µ = 0.1 kg-m−2, TM = 100 N-m−1, Ri = 5.5 cm, R = 6.5 cm,73

p = 0.2 mm, K = 1015, and α = 1.3. An initial displacement of 5 mm at the center of membrane74

was considered. The PSD plots corresponding to membrane displacement at the center are given in75

Figure 5 both without and with a finite rim. The former case shows frequency peaks corresponding76

to an ideal circular membrane clamped at the edge. The effect of a finite rim, in the latter plot, is77

clearly to add a rich set of overtones to the spectrum in addition to increasing the overall intensity78

of various overtones. We end by noting that the above treatment is at best preliminary and would79

need to be discussed with rigorous details in a future work.80
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