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Abstract

A theory of elastically rigid finite deformation plasticity emphasizing the role of material

symmetry is developed. The fields describing lattice rotation, dislocation density, and plastic

spin, irrelevant in the case of isotropy, are found to be central to the present framework. A plane

strain characteristic theory for anisotropic plasticity is formulated wherein the solutions, as well

as the nature of their discontinuities, show remarkable deviation from the classical isotropic

slipline theory.

keywords. Finite deformation plasticity, elastically rigid deformation, plane strain, anisotropy, slipline

theory, strong discontinuities.

1. Introduction. In the theory of elastically rigid plasticity elastic strains are neglected and

stresses are determinate only during plastic flow. It is suitable for problems involving large plastic

deformation and offers greater analytical tractability in comparison to elasto-plastic theories. A

systematic development of the theory can be pursued either by considering an elasto-plastic theory,

under the limiting case of extreme elastic moduli, or by a priori neglecting elastic strains [3].

The latter viewpoint is more transparent for it avoids any assumption on the nature of elasticity,

inadvertently present in the former, while bringing out the truly plastic nature of stress and strain

fields; it is the choice for the paper at hand. In the present formulation of a general theory the
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main objective is to bring out the role of material symmetry in posing a complete boundary value

problem. Such a consideration has been mostly ignored in an otherwise classical discipline.

Rigid plasticity theory is best studied under the plane strain assumption where it displays an

elegant mathematical structure allowing for rigorous construction of analytical solutions. In fact

the isotropic plane strain problem remains one of the most well established subject in classical

plasticity [18, 10]. It has found successful applications in diverse areas such as metal forming [18],

soil mechanics [6], glacier mechanics [25], and tectonics [34], to name a few. The incompressible

plane strain problem is, in particular, unique in that it remains hyperbolic for all the stress values in

the plastic regime. This is neither true for the other two-dimensional problems of axial symmetry,

plane stress, and plate theory [18, 10] nor for the problems in three-dimension [35]. The hyperbolic

nature of the problem, which naturally allows for discontinuities in the solution, is to be contrasted

with the problems in quasi-static linear elasticity which are always elliptic.

The anisotropic plane strain problem, on the other hand, has remained mostly unexplored

with only a few analytical studies [2, 29, 20] and fewer applications [30]. Unlike the pressure-

insensitive incompressible isotropic case, where the radius of the circular yield locus is the only

constitutive input, the anisotropic problem involves a non-circular yield locus and a plastic spin

tensor field; the locus, which can possibly have corners and flat segments, in fact rotates with the

rate of change in the lattice rotation. All of the previous work, whether for a specific shape of

the yield locus [17, 31] or for arbitrary shapes [2, 29], neglects the influence of lattice rotation

and plastic spin. This is justifiable for incipient plastic flow problems but not for those involving

continued plastic deformation, or those with dislocated domains. The inclusion of these features

bring additional richness into the plane problem without disturbing its hyperbolicity. Moreover,

the nature of discontinuities in the solution, which for anisotropy is significantly different from

isotropy, is discussed rarely (cf. [31, 29]) and only in insufficient detail. The present work is an

attempt to fill these gaps and develop a general framework to solve problems of anisotropic plane

strain plastic flows.

After fixing the notation and summarizing the background theory in the rest of this section, a

theory of anisotropic elastically rigid plastic solids is developed in Section 2. Several conceptual

issues related to material symmetry, intermediate configuration, flow rules, and plastic spin are

discussed. In Section 3 the boundary value problem is reduced under the plane strain assumption.
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Subsequently, the theory of characteristics is used in Section 4 to develop solutions for the isotropic

and the anisotropic problem. The latter is discussed first by neglecting, and then incorporating,

the lattice rotation field. The nature of discontinuities in stress, velocity, and lattice rotation fields

is studied in detail. The considerations of the present work are limited to a purely mechanical and

rate-independent theory. The conceptual framework is developed along the lines of a recent work

on finite anisotropic plasticity by the present authors [13, 14, 33].

1.1. Notation. Let E and V be the three-dimensional Euclidean point space and its translation

space, respectively. The space of linear transformations from V to V (second order tensors) is

denoted by Lin, the group of rotation tensors by Orth+, and the linear subspaces of symmetric

and skew tensors by Sym and Skw, respectively. For A ∈ Lin, At, A−1, A∗, SymA, SkwA, trA,

and JA stand for the transpose, the inverse, the cofactor, the symmetric part, the skew part, the

trace, and the determinant of A, respectively. The tensor product of a ∈ V and b ∈ V, written as

a⊗b, is a tensor such that (a⊗b)c = (b ·c)a for any arbitrary c ∈ V. The inner product in Lin is

given by A ·B = tr(ABt), where A,B ∈ Lin; the associated norm is |A| =
√
A ·A. The identity

tensor is denoted by I. The derivative of a scalar valued differentiable function G(A), denoted by

∂AG, is a second order tensor defined by

G(A+B) = G(A) + ∂AG ·B+ o(|B|), (1.1)

where o(|B|) → 0 as |B| → 0. Similar definitions hold for derivatives of vector and tensor valued

functions. The set of real numbers is called R.

1.2. Basic theory. Let κr ⊂ E and κt ⊂ E be the fixed reference placement and the current

placement of the body, respectively, such that there exists a bijective map χ, the motion, between

them; i.e. for every X ∈ κr and time t there is a unique x ∈ κt given by x = χ(X, t). The motion

is assumed to be continuous but piecewise differentiable over κr and continuously differentiable

with respect to t. The deformation gradient, F = ∇χ, is well-defined and invertible whenever χ

is differentiable. It is assumed that JF > 0 for κr to be a kinematically possible configuration of

the body. The particle velocity v ∈ V is related to the motion by v = χ̇, where the superposed

dot represents the material time derivative (at fixed X). Let s ⊂ κt be an evolving surface across

which various fields, which otherwise are continuous in κt\s, may be discontinuous. The surface s
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is assumed to be oriented with a well defined unit normal ns ∈ V and normal velocity (with respect

to a fixed reference frame) V ∈ R.

The equations of mass balance are (cf. p. 71 in [32])

∂tρ+ div(ρv) = 0 in κt\s and (1.2)

V JρK − JρvK · ns = 0 on s, (1.3)

where ρ ∈ R is the mass density in κt, ∂t is the time derivative at fixed x, and div is the divergence

with respect to x. Here, J·K ≡ (·)+ − (·)− is the discontinuity on s, with subscripts ± denoting the

limits of the argument as s is approached from the regions into which ns and −ns are directed,

respectively. The equations of momentum balance are (cf. p. 73 in [32])

divT+ ρb = ρ∂tv + ρLv, T = Tt in κt\s and (1.4)

JTKns + jsJvK = 0 on s, (1.5)

where T ∈ Lin is the Cauchy stress, b ∈ V is the specific body force density, L ≡ gradv is the

velocity gradient (grad denotes the gradient with respect x), and js ≡ ⟨ρ⟩V − ⟨ρv⟩ · ns is the flux

of mass through the singular surface, where ⟨·⟩ ≡ (·)++(·)−
2 .

Assume the body to be a materially uniform simple solid [24]. For a simple body the material

response at a point is given in terms of the local value of fields, whereas material uniformity requires

all the points in the body to consist of the same material. For a materially uniform simple solid

there always exists a uniform undistorted configuration with respect to which the material symmetry

group of every material point is a subset of the orthogonal group and is uniform (i.e. the symmetry

group is identical for all material points). The body is said to be dislocated (or inhomogeneous)

if there is no globally continuous and piecewise differentiable map from κt to any undistorted

configuration [24]. It is then useful to work with the local tangent space of the latter denoted by

κi ⊂ V (the intermediate configuration) in our subsequent discussion. For an elasto-plastic body κi

can be obtained as a local stress-free (or natural) configuration [13]. For an elastically rigid plastic

isotropic body the current configuration κt can be identified as a uniform undistorted configuration

and hence it remains homogeneous; that this is not so for anisotropic bodies is argued in Subsection

2.1 below. The lattice distortion H ∈ Lin is defined as the invertible map from κi to the translation

space of κt. The plastic distortion K ∈ Lin, which maps κi to the translation space of κr, is thus
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given by H = FK. Writing K−1 as G, often denoted by Fp in the literature, this multiplicative

decomposition becomes

F = HG. (1.6)

We impose JH > 0 and obtain JG > 0. Unlike F, neither H nor G are, in general, gradients of

vector fields. A measure of their incompatibility, away from the singular surface, is furnished by

the true dislocation density [4]

α ≡ JHH−1 curlH−1 (1.7)

equivalently given by J−1
G GCurlG, where curl and Curl are the curl operators with respect to x

and X, respectively. On surface s the incompatibility is characterized by the surface dislocation

density β, defined as [1, 12]

βt ≡ JH−1Kϵ(n), (1.8)

where ϵ(n) is the two-dimensional permutation tensor density on Ts(x), the tangent space of s at

x ∈ s. For any two unit vectors in Ts(x), say t1 and t2, which with ns form a positively oriented

orthonormal basis at x ∈ s, we have ϵ(n) = t1 ⊗ t2 − t2 ⊗ t1. The two dislocation densities are

related to each other by the compatibility condition [12]

JJ−1
H α

t
HtKns = divs βt on s, (1.9)

where divs is the surface divergence on s. It represents the fact that dislocation lines along the

singular surface can end arbitrarily only to be continued within the neighboring bulk.

2. Elastically rigid plasticity. Elastic rigidity requires H ∈ Orth+; hence elastic strain and

elastic strain energy both vanish. The lattice distortion H is then identified as the lattice rotation

field. The stress field however is non-zero but indeterminate, except within the plastic region. The

velocity field in the rigid region is obtained from the boundary conditions, while within the plastic

region it is solved using in addition the equations of plastic flow. It is discontinuous at the boundary

of rigid and plastic region and possibly across surfaces within the plastic region. Before moving to

a more detailed discussion on the nature of these solutions, several general considerations regarding

the intermediate configuration, the plastic spin, and the flow rule will be taken up in the following.
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2.1. Intermediate configuration. The non-uniqueness in determining the intermediate config-

uration κi for a given motion and material response is now investigated. At fixed t and for a given

motion χ consider lattice distortions H1 and H2 from two local configurations κi1 and κi2 to κt,

respectively. The mapping from κi1 to κi2 is a tensor A defined by

H1 = H2A. (2.1)

A is a rotation since elastic rigidity requires both H1 and H2 to be rotations. The local config-

urations are required to yield the same motion, thereby requiring F1 = F2 and G2 = AG1. Let

G1 ⊂ Orth+ be the symmetry group at a material point with respect to κi1 and a given material

response function.

We show that the decomposition

A = PR (2.2)

holds, where P ∈ Orth+ is uniform1; if G1 is continuous (i.e. isotropy and transverse isotropy) then

R ∈ G1 is a piecewise-continuous field (possibly discontinuous across s) whereas if G1 is discrete then

R ∈ G1 is a piecewise-uniform field. Similar results, within the context of elastic bodies, were first

given by Noll (Theorem 8 in [24]). To verify this proposition, consider a material response function

given in terms of a smooth scalar-valued function F = F̂ (S), where S is the second Piola-Kirchhoff

stress (relative to κi) defined by

T = HSHt, (2.3)

and denote it by F̂1(S1) or F̂2(S2) depending on the choice of local intermediate configuration.

This function is assumed to be invariant under superposed rigid body motions. The Cauchy stress

tensor, being defined on κt, is invariant with respect to both (2.1) and material symmetry transfor-

mations. The former invariance, with the help of (2.1) and (2.3), yields S2 = AS1A
t, with obvious

notation. Invariance of the material response with respect to the choice of local configuration re-

quires F̂2(S2) = F̂1(S1) = F̂1(A
tS2A). On the other hand, for R ∈ G1, invariance of F1 and T

under G1 implies F̂1(S1) = F̂1(RS1R
t). Combine these two results to obtain

F̂2(S2) = F̂1(P
tS2P). (2.4)

1A tensor field is uniform if it is continuous and independent of the position. It is piecewise-uniform if it is

independent of the position and continuous everywhere except across s.
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Material uniformity requires F2 to depend on position only implicitly through S2; the response will

be otherwise different at different material points for the same value of S2. This is possible if and

only if P is uniform. If G1 is a discrete group then, by the uniformity of P, R has to be piecewise-

uniform to ensure that H1, given by (2.1), retains the piecewise-continuity from H2; whereas if G1

is a continuous group, then R can be any piecewise-continuous field with values drawn from G1.

For isotropic response, i.e. G1 = Orth+, A (which now belongs to G1) is non-uniform and hence

there always exists an intermediate configuration with respect to which the lattice distortion H

is equal to I at all material points. A materially uniform isotropic elastically-rigid body is hence

homogeneous and κt is a uniform undistorted configuration (cf. Theorem 9 in [24]). Of course, if

H is uniform then it can be reduced to I even in the anisotropic case; it is therefore truly relevant

only for a dislocated anisotropic solid. It is also clear that, under symmetry transformations within

a continuous group, the magnitude of dislocation density tensor will change implying that it can no

longer be taken as a definitive measure of inhomogeneity. Otherwise, whenever the symmetry group

is discrete, α is uniquely determined modulo a rigid-body rotation and β is uniquely determined

modulo a rigid-body rotation and a relative rigid rotation across s, with the latter restricted to be

an element of the symmetry group.

Remark 2.1. (Noll’s rule) The relation between the symmetry groups with respect to two local

configurations can be derived by starting with (2.4) to obtain F̂2(S2) = F̂2(R̂S2R̂
t), where R̂ =

ARAt; thus G2 = AG1A
t.

2.2. Dissipation and plastic spin. For an arbitrary part ω of κt, the dissipation D is defined

as the difference between the power supplied to ω and the rate of change of the total energy in ω,

the latter being equal to the change in the total kinetic energy of ω. Thus,

D =

∫
∂ω

Tn · vda+
∫
ω
b · vdv − d

dt

∫
ω

1

2
ρ|v|2dv. (2.5)

According to the mechanical version of the second law of thermodynamics we have D ≥ 0 for all

ω ⊂ κt, or equivalently [14]

D ≡ S · ĠG−1 ≥ 0 in κt\s and (2.6)

Ds ≡ ⟨T⟩ns · JvK ≥ 0 on s, (2.7)
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provided balances of mass and momentum are satisfied. These inequalities furnish restrictions on

the evolution of plastic flow and the evolution of the discontinuity, respectively. It is straightforward

to see that the local configurations, considered in Subsection 2.1, yield equal dissipation. Additional

postulates, involving D, will be introduced in the next section to derive the equations of plastic

flow while requiring inequality (2.6) to be satisfied everywhere in the plastic region. Inequality

(2.7) will subsequently used to restrict the nature of stress and velocity discontinuities.

The skew part of ĠG−1, identified as plastic spin, makes no contribution to D in (2.6). This

leads to the question whether or not plastic spin can be suppressed without affecting the initial-

boundary-value problem. The answer is in affirmative for the case of isotropy (cf. [16]). Indeed,

with the notation introduced in Subsection 2.1, we have Ġ2G
−1
2 = A(Ġ1G

−1
1 + AtȦ)At, where

A is a non-uniform rotation field. For a fixed material point define Ω̂(t) = Skw(Ġ1G
−1
1 ). The

existence and uniqueness of the solution to Ḃ = Ω̂B, with B0 ∈ Orth+ as the initial condition, is

guaranteed by the standard theory of ordinary differential equations. To verify that the solution

is a rotation (cf. p. 228 in [15]), let Z(t) = BBt and obtain Ż = Ω̂Z − ZΩ̂ with Z(0) = I.

The foregoing equation has Z = I as the unique solution; hence B is an orthogonal tensor. That

B ∈ Orth+ follows from J̇B = JB tr Ω̂ = 0 and JB0 = 1. The desired rotation which nullifies the

plastic spin is A = Bt. Thus, there always exists an intermediate configuration with respect to

which the plastic spin vanishes identically. This is not true for the anisotropic response, where A

is uniform and hence cannot nullify plastic spin at every material point, unless Ω̂ is also uniform.

Moreover, as argued in [33], the assumption of vanishing plastic spin is incompatible with the notion

of fixed lattice vectors in κi. It is shown in the next subsection that specifying plastic spin entails

the prescription of additional constitutive restrictions (cf. [8]).

2.3. Constitutive framework for plastic flow. For a plastic deformation process, assumed to

be rate-independent, the constitutive assumptions include a yield criterion, the maximum dissipa-

tion hypothesis, and a prescription for plastic spin, all adhering to material symmetry restrictions.

The yield criterion restricts the stress field, during plastic flow, to a manifold (in the space of

symmetric tensors) parameterized by other variables. It is assumed to be given by

F (S,α) = 0, (2.8)

8



where F is a continuously differentiable scalar function of its arguments. It is invariant with respect

to superposed rigid-body motions and compatible changes in the reference configuration [13]. As

noted earlier, α is well-defined only for materials with discrete symmetry group and therefore so

is the criterion given above; for isotropic materials F is necessarily independent of α. Let G be

the material symmetry group relative to the undistorted configuration κi and with respect to the

response function given by (2.8). Then [13]

F (S,α) = F (RtSR,RtαR), (2.9)

where R is an arbitrary element of G. This relation is used to decide the form of F for a given

symmetry group, see for example Remarks 2.2 and 2.3 at the end of present subsection.

The evolution of plastic deformation is assumed to follow from the maximum dissipation hy-

pothesis: for a given plastic distortion rate ĠG−1, at a fixed material point (away from the singular

surface), the associated stress value is the one which maximizes dissipationD, defined in (2.6), while

restricting the stress field to lie on or within the yield manifold. The hypothesis is a consequence

of Ilyushin’s postulate for finite elasto-plasticity [14]. This is not so within the present theory of

a priori elastically-rigid plasticity, where Ilyushin’s postulate reduces to the dissipation inequality

(2.6), thereby furnishing no additional restriction. The required flow rule is therefore obtained by

max(S · ĠG−1) subject to G(S,α) ≤ 0 and M = 0, (2.10)

where M = Skw(S) and G(·,α) is a smooth extension of F (·,α) from Sym to Lin satisfying the

same material symmetry rule [33]. This is an optimization problem with both equality and inequal-

ity constraints; the relevant Kuhn-Tucker necessary condition, assuming G(·,α) to be differentiable,

is [37]

ĠG−1 = λ∂SG+ (∂SM)tΩ̄, (2.11)

where λ ∈ R+ and Ω̄ ∈ Skw are Lagrange multipliers. The derivative ∂SG ∈ Lin is evaluated on

Sym. The transpose of the fourth-order tensor ∂SM is defined by (∂SM)A · B = A · (∂SM)tB,

where A ∈ Lin and B ∈ Lin are arbitrary. With (∂SM)t[Ω̄] = Ω̄ (2.11) reduces to

ĠG−1 = λ∂SG+ Ω̄, (2.12)

and hence

Sym(ĠG−1) = λ∂SG and Skw(ĠG−1) = Ω̄. (2.13)
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The material time derivative of (1.6), with H ∈ Orth+, yields

ḞF−1 = ḢHt +HĠG−1Ht, (2.14)

and consequently, using (2.13),

D = Sym(ḞF−1) = λH(∂SG)H
t and (2.15)

W = Skw(ḞF−1) = ḢHt +HΩ̄Ht, (2.16)

where D is the rate of deformation tensor and W is the vorticity tensor. Furthermore, we use (2.3)

to define H(T,H,α) = G(HtTH,α) and obtain

∂TH = H(∂SG)H
t and (2.17)

∂HH = H (S∂SG− (∂SG)S) . (2.18)

Combining (2.15) and (2.17), we obtain

D = λ∂TH. (2.19)

The rate of deformation tensor vanishes at some x if and only if v(x, t) = W(t)x+ d(t), where d

and W are uniform (cf. [15], p. 69). This will always happen in the absence of plastic flow, i.e.

when Ġ = 0.

Under material symmetry transformations ∂SG→ Rt(∂SG)R and ĠG−1 → RtĠG−1R, where

R ∈ G; these follow from (2.9) and G → RtG, respectively. Relation (2.12) therefore requires

Ω̄ → RtΩ̄R. At this stage the constitutive specification for Ω̄ is restricted only by material

symmetry and the usual invariance with respect to superposed rigid-body motion and compatible

changes in κr. Additional restrictions are however imposed on Ω̄ within a finite elasto-plasticity

theory [33]. For an isotropic response Ω̄ vanishes identically and the multiplier λ is calculated as a

part of the boundary value problem. For anisotropic responses Ω̄ is prescribed constitutively while

λ is obtained by solving a partial differential equation generated from the consistency condition

[14]. Finally it is clear that in the absence of lattice spin, i.e. ḢHt = 0, no constitutive rule is

required for the plastic spin. The latter is then in one-one correspondence with the material spin

W.

Attention is confined to the rules of the form Ω̄ = Ω̂
(
Sym(ĠG−1),S,α

)
, with Ω̂ a smooth

function of its arguments; these are invariant under superposed rigid body motions and compat-

ible changes in the reference configuration [13]. Rate-independence, in conjugation with (2.13)1,
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requires Ω̂ to be homogeneous of degree one in λ, thereby furnishing the necessary and sufficient

representation

Ω̄ = λΩ(S,α), (2.20)

where Ω ∈ Skw. Here we have used the fact that ∂SG is a function of S and α.

Considerations of material symmetry, which require that

Ω(RtSR,RtαR) = RtΩ(S,α)R (2.21)

for all R ∈ G, are used to derive representations for Ω. Here it is assumed that the symmetry group

obtained with respect to plastic spin function is identical to the group G defined with respect to the

yield function. Under isotropic symmetry Ω̄ vanishes identically. Indeed, for the aforementioned

reasons, Ω is then independent of α and, according to a representation theorem (cf. [38]), a skew

tensor function of (only) a symmetric tensor field necessarily vanishes.

Remark 2.2. (Isotropic symmetry) Under isotropy G is independent of α, and S and ∂SG are

coaxial. To see the latter, recall (2.9) to note that G(S) = G(RtSR) for all R ∈ Orth+. Consider a

one parameter family of rotations R(s) such that R(0) = I (s ∈ R is the parameter). Differentiate

the aforementioned relation with respect to s, and evaluate it at s = 0, to get ((∂SG)S− S(∂SG)) ·

R′(0) = 0, where R′(0) ∈ Skw is arbitrary. Hence (∂SG)S = S(∂SG). This combined with (2.17)

and (2.18) to imply H(T) = G(S). Moreover, H and G depend on their arguments necessarily

through their invariants. The flow rule is given in (2.19). For a pressure insensitive isotropic von

Mises type yield criterion ∂TH = Td, where Td is the deviatoric part of T; consequently D = λTd,

which is the classical Lévy–von Mises flow rule.

Remark 2.3. (Cubic symmetry) Assume F to be independent of α and trS (i.e. pressure insensi-

tive); and that it depends on S through a homogeneous function of degree two. Under the cubic

symmetry group the simplest representation for F is

F =
A1

2

(
(Sd

11)
2 + (Sd

22)
2 + (Sd

33)
2
)
+A2

(
S2
12 + S2

13 + S2
23

)
− d2, (2.22)

where A1, A2, and k are constants and Sd
ij = Sd · Sym(ei ⊗ ej) (S

d is the deviatoric part of S) are

the components of Sd with respect to an orthonormal basis, given by {e1, e2, e3}, aligned with the

cube axes (which are fixed and assumed to be known). The above representation is obtained using

invariant theorems for a scalar function dependent on a symmetric tensor, cf. [11]. With the above
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expression for the yield function we obtain

S · (∂SF ) = A1

(
(Sd

11)
2 + (Sd

22)
2 + (Sd

33)
2
)
+ 2A2

(
S2
12 + S2

13 + S2
23

)
. (2.23)

The dissipation inequality (2.6) hence yields A1 ≥ 0 and A2 ≥ 0. To derive a simple relation for

plastic spin under the cubic symmetry group it is assumed that Ω is independent of α. It is also

required, based on phenomenological considerations, that Ω is an odd function of S. The simplest

representation of Ω is a third order polynomial in S given by [9]

2Ω32 = B0pS23 (S22 − S33) +B1S11S23 (S22 − S33) +B2S23

(
S2
12 − S2

13

)
+B3S12S13 (S33 − S22) ,

2Ω13 = B0pS13 (S33 − S11) +B1S22S13 (S33 − S11) +B2S13

(
S2
23 − S2

12

)
+B3S12S23 (S11 − S33) , and

2Ω21 = B0pS12 (S11 − S22) +B1S33S12 (S11 − S22) +B2S12

(
S2
13 − S2

23

)
+B3S13S23 (S22 − S11) , (2.24)

where Ωij = Ω·Skw(ei⊗ej) and 3p = − trS; the scalar coefficients B0, B1, B2, and B3 are constant

parameters. The plastic spin components given above vanish if S is coaxial with the cubic axes.

Remark 2.4. (Multiple yield surfaces) The flow rule (2.12) is easily modified when there are more

than one inequality constraints in the optimization problem (2.10). For p continuously differentiable

functions Ga(S,α) on Lin× Lin, the problem is to find

max(S · ĠG−1) subject to Ga(S,α) ≤ 0 and M = 0, a = 1, . . . , p. (2.25)

The Kuhn-Tucker conditions, which replace (2.12), are given by (cf. [21])

ĠG−1 =

p∑
a=1

λa (∂SGa +Ωa(S,α)) , (2.26)

where λa ∈ R+ and Ωa ∈ Skw are Lagrange multipliers (the derivatives ∂SGa are evaluated on

Sym), leading to

D =

p∑
a=1

λa∂THa, (2.27)

where Ha(T,H,α) = Ga(H
tTH,α).

2.4. Governing equations. The complete set of equations for an initial-boundary-value problem

for elastically-rigid plastic deformations is now collected. Away from the discontinuity surface

the problem constitutes of equation of motion (1.4)1, the yield criterion (2.8) with S = HtTH

and α = Ht curlHt (H ∈ Orth+), and flow rules (2.15) and (2.16) with D = Sym(gradv),
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W = Skw(gradv), and Ω given by (2.20). The dislocation density tensor is non-trivial if and only

if H is non-uniform. Thus, we have a total of thirteen equations for thirteen variables: T ∈ Sym,

H ∈ Orth+, v ∈ V, and λ ∈ R+. These are to be supplemented with boundary conditions

for traction, velocity, and lattice rotation, and initial conditions for velocity and lattice rotation.

Imposing plastic incompressibility, i.e. JG = 1, requires JF = 1 or equivalently

divv = 0 in κt\s. (2.28)

Discontinuities in stress, velocity, and lattice rotation fields (and their gradients) occur either

at the boundary of the rigid and the plastic regions or within the plastic region. The jumps in

velocity and stress fields are restricted by (1.3) and (1.5), respectively. The former of these reduces

to JvK · ns = 0 on s (2.29)

under the assumption of plastic incompressibility and continuity of mass density in κr. Taking

a dot product of (1.5) with ns and t ∈ Ts(x) yields JTKns · ns = 0 and JTKns · t + jsJvK · t =

0, respectively. The normal stress is therefore always continuous across l while the shear stress

is balanced by the inertial term. Due to the impossibility of non-trivial rank-one connections

between two different rotation tensors any discontinuity in lattice rotation H always leads to a

non-trivial surface dislocation density. The definition of the latter as well as the compatibility

relation connecting the bulk and the surface dislocation density were provided in Equations (1.8)

and (1.9).

3. Plane strain problem. The plane strain problem is introduced by assuming the velocity

field to be of the form

v = u(x, y, t)e1 + v(x, y, t)e2, (3.1)

where x and y are the Cartesian coordinates of x ∈ κt along e1 and e2, respectively, such that unit

vectors {e1, e2, e3} form a fixed right-handed orthonormal basis. Define εij = D ·Sym(ei⊗ej) and

ωij = W ·Skw(ei⊗ej) as the components of D and W with respect to the fixed basis, respectively,

where the subscripts vary from one to three. The gradient of (3.1) then yields ε11 = ∂xu, ε22 =

∂yv, ε12 = ε21 = 1
2(∂yu + ∂xv), and ω12 = −ω21 = 1

2(∂yu − ∂xv), the rest being zero. Hence

D = εαβeα ⊗ eβ and W = ωαβeα ⊗ eβ , where the Greek indices vary between one and two and

summation is implied for repeated indices.
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Additionally, assume e3 to be the axis of lattice rotation field, i.e. He3 = e3, and let H be

independent of the out-of-plane coordinate. This immediately furnishes the representation

H = h1 ⊗ e1 + h2 ⊗ e2 + e3 ⊗ e3, (3.2)

where

h1 = cos γe1 + sin γe2, and h2 = − sin γe1 + cos γe2 (3.3)

Here γ = γ̂(x, y, t) represents the angular change in the lattice orientation measured anticlockwise

with respect to the e1-axis. The function γ̂ is piecewise continuously differentiable with respect

to the space variables but continuously differentiable with respect to time. The bulk dislocation

density, defined in (1.7), reduces to

α = (h1 · grad γ)e3 ⊗ e1 + (h2 · grad γ)e3 ⊗ e2. (3.4)

A convenient form of the dislocation density is obtained when α is written with respect to κt,

i.e. ᾱ = HαHt; with (3.2) this yields ᾱ = e3 ⊗ grad γ (cf. [4]). On the other hand the surface

dislocation density, calculated using (3.2) and (1.8), takes the form

β = 2 sin
JγK
2

(
sin(ϕ− ⟨γ⟩)e3 ⊗ e1 − cos(ϕ− ⟨γ⟩)e3 ⊗ e2

)
, (3.5)

where ϕ is the angle between the tangent to the line of discontinuity in the plane and e1, measured

anticlockwise with respect to the latter. In (3.5), and rest of the paper, it is assumed that the

surface of discontinuity is such that ns is spanned by {e1, e2}; thus ϵ(n) = t ⊗ e3 − e3 ⊗ t, where

t = cosϕe1 + sinϕe2. Thus it will always intersect the plane in a line. If this line bisects h+
α and

h−
α then ϕ = ⟨γ⟩, reducing (3.5) to β = −2 sin JγK

2 e3 ⊗ e2. As expected, dislocation densities α and

β vanish if and only if grad γ = 0 and JγK = 0, respectively, i.e. if γ is uniform. According to (3.4)

and (3.5), α and β are densities of edge dislocations with Burgers vector in the {e1, e2} plane and

dislocation lines along the e3-axis.

Let Sij = S · Sym(ei ⊗ ej) and σij = T · Sym(ei ⊗ ej). The flow rule (2.19) in conjunction

with the plane strain assumptions imply that the yield function H is independent of σ13, σ23, and

σ33 (or equivalently that G is independent of S13, S23, and S33). With the assumption of plastic

incompressibility, i.e. trD = 0, the yield functions involve the stress through its deviatoric part

and hence are of the form

H(σ11 − σ22, σ12, γ,α) = G(S11 − S22, S12,α) (3.6)
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keeping (2.3) and (3.2) in mind.2 The flow rule (2.19) then reduces to two independent equations,

which upon eliminating λ yields

ε11∂σ12H − 2ε12∂(σ11−σ22)H = 0. (3.7)

It will be useful to write the above relations in an alternative form. Let σ1 and σ2 be the

in-plane principal stresses and u1 and u2 be the corresponding principal directions. Let θ be the

angle between e1 and u1 measured anticlockwise from the former. Hence obtain σ11 − σ22 = (σ1 −

σ2) cos 2θ, 2σ12 = (σ1−σ2) sin 2θ, S11−S22 = (σ1−σ2) cos(2θ−2γ), and 2S12 = (σ1−σ2) sin(2θ−2γ).

Accordingly, the yield criterion can be expressed in the form Ĥ(σ1 − σ2, θ − γ,α) = 0, where Ĥ is

a continuously differentiable function. Use of the implicit function theorem allows us to solve this

for σ1 − σ2 and hence furnishes the following form of the criterion

σ1 − σ2 = 2k(θ − γ,α), (3.8)

where k is a (non-zero) continuously differentiable function usually interpreted as the maximum

shear stress (the coefficient 2 is for conventional reasons). The flow rule (3.7) consequently reduces

to

2∂xu cos(2θ + 2ψ) + (∂yu+ ∂xv) sin(2θ + 2ψ) = 0, (3.9)

where ψ is defined from

k′ = 2k cot 2ψ. (3.10)

Here k′ denotes the partial derivative of k with respect to its first argument. For a physical

interpretation of ψ it is convenient to visualize the yield criterion (3.8) as a polar plot (k(θ −

γ, ·), 2θ − 2γ) for fixed α. The horizontal and the vertical projections of a polar ray are given by

1
2(S11 − S22) and S12, respectively. According to (3.10), 2ψ is the anticlockwise inclination of the

tangent to the polar plot with respect to the radial direction. For an isotropic yield locus, the polar

plot is circular (k constant) with ψ = ±π/4.

Flow rules for anisotropic plastic evolution additionally involve the spin relation (2.16) which is

now simplified under plane strain. To this end the material time derivative of (3.2) is substituted

into (2.16) to obtain

W = γ̇(h2 ⊗ h1 − h1 ⊗ h2) +HΩ̄Ht, (3.11)

2According to (2.3) and (3.2) S11−S22 = (σ11−σ22) cos 2γ+2σ12 sin 2γ and 2S12 = −(σ11−σ22) sin 2γ+2σ12 cos 2γ.
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or equivalently

h2 ·Wh1 = γ̇ + e2 · Ω̄e1 and (3.12)

Ω̄e3 = 0. (3.13)

As shown below, (3.13) can be used to impose restrictions on the (out-of-plane) stress state of the

plastic body. Relation (3.12) can be written in a succinct form

ω21 = γ̇ + Ω̄21, (3.14)

where Ω̄21 = −Ω̄12 = Ω̄ · (e2 ⊗ e1) are the only non-zero components of Ω̄ with respect to the fixed

basis. The above reduction requires h2 · Wh1 = e2 · We1 which follows from WH = HW. To

verify the latter equality observe that both W and H have identical axial vector e3. As a result,

for an arbitrary a ∈ V, HWa = H(e3 × a) which, on using the definition of the cofactor, can be

rewritten as He3×Ha or equivalently as WHa. Constitutive prescription for plastic spin therefore

entails finding a representation for the two-dimensional skew tensor Ω̄ = Ω̄21(e2 ⊗ e1 − e1 ⊗ e2),

such that Ω̄ = λΩ(S,α), cf. (2.20).

3.1. Material symmetry and constitutive rules. The constitutive input for the plane strain

anisotropic problem is provided by prescribing maximum shear stress k, see (3.8), and plastic

spin Ω(S,α). Under a given symmetry group the constitutive representations can be derived

from the three-dimensional theory. As an illustration consider the yield function and plastic spin

tensor, obtained for cubic symmetry group, from Remark 2.3. Assume the orthonormal triad ei

to be aligned with the cube axes. The yield function in (2.22) in conjunction with the flow rule

(2.17) and the plane strain assumptions imply S13 = 0, S23 = 0, and Sd
33 = 0. As a result

Sd
11 = −Sd

22 =
1
2(S11 −S22), and S33 =

1
2(S11 +S22) = −p. Substituting these equalities into (2.22)

and (2.24), and some straightforward manipulation, furnishes a yield criterion in the form (3.8)

with

k(θ − γ) =
d√

a1 cos2(2θ − 2γ) + a2 sin
2(2θ − 2γ)

, (3.15)

where a1 = A1
2 , a2 = A2, and d are material constants, and components of the plastic spin tensor

as

Ω13 = Ω23 = 0, and 2Ω21 = b0pk
2 sin(4θ − 4γ), (3.16)

where b0 = (B0 −B1) is a material constant and k is as given in (3.15).
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4. Slipline theory. The purpose of this section is to solve the plane strain problem using the

method of characteristics. The emphasis is to obtain characteristic curves, with the associated

normal forms, and discuss the nature of velocity, stress, and rotation discontinuities. Before pro-

ceeding further the set of governing equations is collected. The equations of equilibrium (1.4), after

neglecting inertial terms and body force, are reduced to

∂xσ11 + ∂yσ12 = 0 and ∂xσ12 + ∂yσ22 = 0. (4.1)

The incompressibility equation (2.28) reduces to

∂xu+ ∂yv = 0. (4.2)

The yield criterion and the flow rules are given by Equations (3.8), (3.9), and (3.14). All together

these are six equations for six unknowns σ1, σ2, θ, u, v, and γ, with three independent variables

x, y, and t. The equations are valid everywhere on the plane except at the line of discontinuity. The

stress equations are decoupled from the velocity equations as long as k is independent of γ. The

solution should satisfy appropriate boundary conditions, initial values, and jump conditions across

the line of discontinuity. The latter include (2.29) and JTKns = 0 (from (1.5) ignoring inertia),

which with ns = sinϕe1 − cosϕe2 can be rewritten as

JuK sinϕ− JvK cosϕ = 0, (4.3)

Jσ11K sinϕ− Jσ12K cosϕ = 0, and (4.4)

Jσ12K sinϕ− Jσ22K cosϕ = 0. (4.5)

The last two relations together with (3.8) yield

cot(2ϕ− 2⟨θ⟩) = JkK cotJθK
2⟨k⟩

, (4.6)

which is an equation for the slope of stress discontinuity curve, and

JpK = −2⟨k⟩ sinJθKcos(4ϕ− 4⟨θ⟩)
sin(2ϕ− 2⟨θ⟩)

, (4.7)

where 2p = −(σ1 + σ2) is the hydrostatic pressure. Hence the in-plane stress components are

continuous if and only if p is continuous. In fact the jump in stress tensor, projected onto the

plane, can be written as JPTPK = −2JpKt⊗ t, (4.8)
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where t = cosϕe1 + sinϕe2 is the unit tangent to the discontinuity line and P = I− e3 ⊗ e3 is the

projection tensor.

We now show that, for a strictly convex yield contour, the jump in the velocity field cannot

coincide with the jump in the stress field and that the strain-rate tensor always vanishes at such a

stress discontinuity (cf. pp. 271-273 in [19]). Recall the surface dissipation inequality (2.7) which,

in the present situation, takes the form

T± · JvK ⊗ ns ≥ 0, (4.9)

where the superscript ± implies that either of the signs can be chosen. Following Subsection 2.3,

the postulate of maximum dissipation can be invoked to obtain

Sym(JvK ⊗ ns) = χ±(∂TH)± = χ̂±D±, (4.10)

where χ+ ∈ R+ and χ− ∈ R+ are plastic multipliers and χ̂± = χ±/λ±. The second equality

in (4.10) has been obtained using (2.19). According to the stress equilibrium at the surface, i.e.JTKns = 0, and (4.10), the stress jump and the strain-rate tensor at the discontinuity are orthogonal

to each other, i.e. JTK ·D± = 0, and consequently JTK · JDK = 0. (4.11)

However, for a strictly convex yield surface, with an associated flow rule given by (2.19),

JTK ·D+ > 0 and JTK ·D− < 0. (4.12)

The contradictory result proves the non-coincidence of a velocity discontinuity with that of stress,

unless the yield contour is no longer strictly convex. The latter is true, for instance, when the

contour has linear segments (as in Figure 1). Furthermore, for a continuous velocity field, JDK =

k⊗ ns + ns ⊗ k (where k ∈ V is arbitrary), which when combined with JTKns = 0 again leads to

(4.11)2. The ensuing contradiction with (4.12) implies the absence of any plastic deformation at

the interface, i.e. D± = 0. Note that the above results hold only for the stress states away from the

vertex on the yield contour; the relevant modification is straightforward and will not be discussed

here.

The theory of characteristics is now used to develop a slipline field theory for isotropic and

anisotropic flows. The latter is dealt with first by neglecting lattice rotation and then subsequently
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incorporating it. The characteristic directions as well as the normal forms have been obtained using

the standard procedure from the theory of quasilinear hyperbolic equations. A brief account of the

mathematical theory is given below before moving on to its application.

Consider a system of n quasilinear first-order equations

A∂xU +B∂yU + C = 0, (4.13)

defined over some region of a two-dimensional Euclidean point space, where U is a n× 1 matrix of

dependent variables, A,B (both n× n) and C (n× 1) are known matrix functions of independent

variables x, y, and U ; ∂xU and ∂yU are partial derivatives of U with respect to x and y, respectively.

Assume A to be non-singular and let D = A−1B have real eigenvalues. The system of equations

(4.13) is called strictly hyperbolic if all the eigenvalues of D are distinct. It is hyperbolic if there are

repeated eigenvalues but D is diagonalizable, i.e. there exists n linearly independent eigenvectors

ξa (1×n matrix functions) such that ξaD = λaξa. If the n linearly independent eigenvectors do not

exist then the system (4.13) is called degenerate hyperbolic. The matrix D is no more diagonalizable

and it is not possible to reduce (4.13) to a set of ordinary differential equations. The stress and

velocity equations in Subsections 4.1 and 4.2, as well for the unsteady flow case in Subsection 4.3, are

decoupled from each other. Individually they form a system of strictly hyperbolic equations. Taken

together they represent a system of hyperbolic equations with two eigenvalues, each of multiplicity

two. The steady flow case in Subsection 4.3, on the other hand, consist of a coupled system of

stress, velocity, and lattice orientation equations. It is degenerate hyperbolic with two eigenvalues

of multiplicity two and one eigenvalue of multiplicity one.

If coefficients A, B and the solution U are discontinuous across a curve, say C, but smooth

elsewhere then there exists a (generalized) solution restricted by the jump condition (see [7], pp.

486-488 for details) s(
A− dx

dy
B

)
U

{
= 0 on C, (4.14)

which, for continuous coefficients, reduces to(
A− dx

dy
B

) JUK = 0. (4.15)

Hence a non-trivial discontinuity in U is permissible only when C is characteristic. The motivation

for constructing a generalized solution should always come from some physical principle. For
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example, while considering a generalized solution for the velocity field, relations such as (4.10) are

derived from the principle of maximum dissipation.

4.1. Isotropy. Under isotropy the yield criterion (3.8) is independent of θ−γ and α. It is reduced

to

σ1 − σ2 = 2k (4.16)

with constant k. Equations (4.1) and (4.16) form a system of strictly hyperbolic quasilinear equa-

tions for stresses. The two (mutually orthogonal) characteristic directions (sliplines) are identical

with the maximum shear stress directions, given by θ ∓ π/4. The two family of curves are labeled

as α-lines, with slope tan(θ − π/4), and β-lines, with slope tan(θ + π/4). The partial differential

equations when written in the normal form lead to the Hencky relations, p + 2kθ = constant (on

an α-line) and p − 2kθ = constant (on a β-line) [18, 10]. The velocity equations (3.9) and (4.2),

the former of which is reduced to (with 2ψ = π/2)

2∂xu− (∂yu+ ∂xv) cot 2θ = 0, (4.17)

are a pair of linear first-order strictly hyperbolic equations with characteristic curves identical to

those of stress equations. Let s1 and s2 be the arc-length parameterizations along α and β-lines,

respectively. The corresponding normal form, which requires vanishing of extension rate along

sliplines, is given by Geiringer’s equations [18, 10]

∂s1v1 − v2∂s1θ = 0 and ∂s2v2 + v1∂s2θ = 0, (4.18)

where v1 and v2 are the components of the velocity along α- and β-lines, respectively.

According to (4.6), the curves with stress discontinuity are inclined at anticlockwise angle of

ϕ = ⟨θ⟩ + π/4 ± nπ (n integer) from e1, i.e. bisecting the discontinuous β-lines [27]; also, JpK =

2k sinJθK. The yield surface is strictly convex and therefore discontinuities in stress and velocity

never coincide; and strain-rate necessarily vanishes at every stress discontinuity. Discontinuities in

the velocity field, as well as its gradient, are allowed only across the sliplines, cf. (4.10) and (4.15).

The velocity jumps are tangential and constant along a slipline, as can be deduced by subtracting

(4.18) for the two limiting sliplines across the discontinuity.

The boundary between the plastically deforming region and the (non-deforming) rigid region,

say C, is a characteristic (or an envelope of characteristics). The strain-rate field is necessarily
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discontinuous across C, with D vanishing in the rigid part but not otherwise. The velocity in the

rigid region can be taken as zero by superimposing a suitable rigid-body motion. If the velocity

field is continuous at C then the boundary has to be characteristic since otherwise the zero-velocity

solution will be extended to the deforming region. If the velocity is discontinuous then we need

to consider a generalized solution which vanishes in the non-deforming part and satisfies a jump

condition of the type (4.14). The latter in turn requires C to be a characteristic for a non-trivial

velocity field in the deforming region. This result was first proved in [22], although within a less

rigorous framework.

4.2. Anisotropy without lattice rotation. Attention is now confined to yield criteria (3.8)

which are independent of γ and α; hence given by

σ1 − σ2 = 2k(θ), (4.19)

where the maximum shear stress k depends on the inclination θ of the first principal direction of

stress. This is justified during incipient flow when γ can be assumed to be uniform. A latitude in

choosing the intermediate configuration then exists such that γ can be assumed to vanish, without

loss of generality, and consequently the plastic spin field be identified with the vorticity tensor. The

Cauchy stress T is identical to the second Piola Kirchhoff stress S. A general slipline theory in this

context was developed in [2, 29, 20]; earlier studies [17, 31] were restricted to specific choices of the

anisotropic yield surface. The function k(θ) is assumed to be differentiable for all θ. The stress

equations, obtained from (4.1) and (4.19), are a pair of quasilinear strictly hyperbolic equations

with characteristic directions θ + ψα (α-lines) and θ + ψβ (β-lines), where ψα and ψβ are roots of

(3.10) (with γ = 0) such that ψβ > ψα and ψα, ψβ ∈ [−π/2, π/2]. According to (3.10) ψβ = ψα+π/2

and 2ψβ is the anticlockwise angle from the radial direction to the tangential direction of the polar

plot (k(θ), 2θ). The anticlockwise inclination of the outward normal to the polar plot with respect

to the θ = π/4 line (or equivalently the positive σ12-axis) is given by 2θ + 2ψβ + π, i.e. twice the

inclination for α-lines. The normal form is given by

− sin(2ψα)∂s1p+ 2k∂s1θ = 0 and sin(2ψβ)∂s2p− 2k∂s2θ = 0, (4.20)

which can be written equivalently as p+ l = constant (along an α−line) and p− l = constant (along

a β−line), where l, the arc-length parameter measured anticlockwise from the θ = 0 line on the
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polar plot, satisfy sin(2ψβ)dl = 2kdθ [20]. The velocity equations, given by (3.9) and (4.2), are a

pair of linear strictly hyperbolic equations whose characteristics are identical to those of the stress

equations with the associated normal form given by

∂s1v1 − v2∂s1(θ + ψ) = 0 and ∂s2v2 + v1∂s2(θ + ψ) = 0, (4.21)

which also characterizes vanishing of the extension rates along the sliplines.

Anisotropy allows for the yield locus to have vertices as well as linear segments; the contours in

Figure 1, for example, are constructed entirely of such elements. Studying the nature of solutions in

regions where stress states are restricted entirely to an edge or a vertex can provide insights unique

to an anisotropic theory, not to mention of their practical importance [30]. Consider a region whose

stress states lie on a single linear segment of the yield locus, such that the outward normal to the

edge is inclined at a constant anticlockwise angle 2η with respect to the θ = π/4 line on the polar

plot. The sliplines within the region are two families of straight lines inclined at anticlockwise

angles η (α-lines) and η + π/2 (β-lines) with respect to e1. As is clear from (4.21), the respective

velocity components are constant along the characteristic direction, i.e. v1 = v1(s2) and v2 = v2(s1).

Furthermore it is interesting to note that, for the considered stress states, k(θ) = C| sin(2η−2θ)|−1,

where C is a material constant. Indeed, for η constant, dη = dθ + dψ = 0, where d(·) denotes the

differential of (·). This can be used in (3.10), with γ = 0 and k independent of α, to integrate the

equation and obtain the desired result.

On the other hand, for a region with the stress state corresponding to a vertex on the yield

locus, the stress is uniform within the region and the stress equations are trivially satisfied. The

characteristic curves for the velocity equations are derived by starting from the modified flow

rule given in Remark 2.4. To this end consider two smooth loci, H1(σ11 − σ22, σ12) = 0 and

H2(σ11−σ22, σ12) = 0, such that they intersect at the vertex. Their respective outward normals at

the vertex are assumed to be inclined at angles 2η1 and 2η2, measured anticlockwise with respect

to the θ = π/4 line on the polar plot. However, unlike previous cases where the plastic multiplier

was eliminated, the velocity equations retain an undetermined variable (cf. [28], pp. 15-18). The

velocity equations are given by

2(cos 2η1 + λ̂ cos 2η2)∂xu+ (sin 2η1 + λ̂ sin 2η2)(∂yu+ ∂xv) = 0 (4.22)
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2θ = π/2 2θ = π/2

Figure 1: Polar plots of two convex polygonal yield contours in the Mohr plane with γ = 0. Here
σ11 − σ22

2
=

S11 − S22

2
and σ12 = S12. (a) The rectangular yield locus was used for NaCl-type ionic single crystal to

study indentation [29]. (b) The hexagonal yield locus was used for a fcc-type single crystal to obtain stress

fields in the neighborhood of a crack tip [30].

and (4.2), where

λ̂ =
λ2
λ1

√
4(∂(σ11−σ22)H2)2 + (∂σ12H2)2

4(∂(σ11−σ22)H1)2 + (∂σ12H1)2
. (4.23)

Relation (4.22), derived from (2.26), can be read as a one parameter family (with respect to λ̂)

of velocity equations which reduces to (3.9) when η1 = η2. The characteristic curves are mutually

orthogonal and still given as those along which the extension rates vanish; their slope ϕ satisfy

sin(2ϕ− 2η1)

sin(2ϕ− 2η2)
= −λ̂. (4.24)

With both λ1 and λ2 positive, it is clear that η1 < ϕ < η2 or η2 < ϕ < η1 (depending on whether

η1 < η2 or η1 > η2) for α-lines and η1 + π/2 < ϕ < η2 +π/2 or η2 +π/2 < ϕ < η1 +π/2 for β-lines.

The nature of discontinuities for the case at hand is considerably different from that under

isotropy. A stress discontinuity curve, whose inclination is obtained from (4.6), can possibly in-

tersect with a slipline (this will entail a suitable modification in (4.21)). For instance, α-lines

from either side can coincide with the discontinuity curve, i.e. ϕ = θ± + ψ±, if Jk sin(2ψ)K = 0.

Interestingly, stress discontinuities in a region, where the stress states belong to the same linear

segment on the yield locus, always coincide with a slipline. This can be seen by substituting

k± = C| sin(2η − 2θ±)|−1, obtained in a previous paragraph, into (4.6). Moreover, it is precisely

in this region that the stress and the velocity discontinuities can coincide. This is proved in the
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discussion following (4.10), where a flow rule for the velocity jumps is also prescribed. In any other

case the stress discontinuity curves necessarily allow for only continuous velocity field and vanishing

strain-rates. On the other hand, the curves across which stress is continuous but velocity (and its

gradients) discontinuous, are necessarily sliplines, cf. (4.10) and (4.15). The velocity jumps are

constant across such curves. Further, the boundary between the plastically deforming region and

the (non-deforming) rigid region is always a characteristic curve. The last two conclusions follow

from the arguments made previously in the case of isotropy.

Remark 4.1. (Polygonal yield surface, cf. [31, 29, 30]) Consider polygonal yield loci such as those

illustrated in Figure 1. The following conclusions can be made based on the above discussion. i)

A stress discontinuity curve inside the plastic region, where all the stress states belong to one edge

of the yield contour, coincides with a slipline. ii) The slope of a stress discontinuity curve between

plastic regions of constant stress, each belonging to distinct vertices but sharing a common edge

on the yield contour, is identical to one of the slipline families associated with the common edge.

(iii) The velocity can be discontinuous across the curves considered in (i) and (ii). iv) A stress

discontinuity curve can also exist between plastic regions with stress states on different edges or

non-neighboring vertices of the yield contour. The velocity field, however, is always continuous

across these curves.

4.3. Anisotropy with lattice rotation. Let the yield criterion (3.8) be independent of disloca-

tion density such that

σ1 − σ2 = 2k(θ − γ) (4.25)

with k a smooth function of its argument. The finite and non-uniform lattice rotation field γ

cannot be eliminated; hence we require non-trivial constitutive prescription for plastic spin. The

six governing equations for three in-plane stress components (σ1, σ2, θ), two velocity components

(u, v), and lattice rotation angle (γ) are given by (4.1), (4.25), (3.9), (4.2), and (3.14). The equation

for lattice rotation, (3.14), can be rewritten as

∂xv − ∂yu = 2∂tγ + 2u∂xγ + 2v∂yγ + 2λΩ21, (4.26)

where Ω21 = −Ω12 = e2 ·Ωe1. Assume Ω ∈ Skw to be a constitutive function of p and θ − γ and

therefore independent of the out-of-plane stress components and dislocation density. The plastic
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Figure 2: Polar plot of a rectangular yield contour with γ ̸= 0 (Compare with Figure 1 (a)). A point on

the yield locus can be given either in terms of polar coordinates (k(θ− γ), 2θ− 2γ) or Cartesian coordinates

(
S11 − S22

2
, S12). The coordinate system (

σ11 − σ22
2

, σ12) is as shown above. Due to absence of any hardening

the yield surface remains fixed in (
S11 − S22

2
, S12) space. However, the contour rotates with changing γ,

when viewed with respect to (
σ11 − σ22

2
, σ12) axes.

multiplier λ can be eliminated from (4.26), using flow rule (2.19), to get

2
Ω21 sin(2ψ)

sin(2θ + 2ψ)
∂xu+ ∂yu− ∂xv + 2∂tγ + 2u∂xγ + 2v∂yγ = 0. (4.27)

The system of equations is studied under the assumption of unsteady and steady flow. The

former assumes γ to be known at a given time instant. The stress and the velocity field can then

be solved for the given γ and substituted into (4.27) to calculate the evolution of lattice rotation.

Steady flow, on the other hand, requires ∂tγ = 0 for an otherwise unknown γ; the equations are

coupled to each other and have to be solved simultaneously for stress, velocity, and lattice rotation.

First, consider the case of unsteady flow. The stress and the velocity equations are uncoupled

to each other; both are strictly hyperbolic with coinciding characteristic directions given by θ+ψα

(α-lines) and θ + ψβ (β-lines), where ψα and ψβ are roots of (3.10) such that ψβ > ψα and

ψα, ψβ ∈ [−π/2, π/2]. According to (3.10) ψβ = ψα + π/2 and 2ψβ is the anticlockwise angle from

the radial direction to the tangential direction of the polar plot (k(θ−γ), 2θ−2γ). The anticlockwise

inclination of the outward normal to the polar plot with respect to the θ = π/4 line (or equivalently

the positive σ12-axis, see Figure 2) is given by 2θ + 2ψβ + π, i.e. twice the inclination for α-lines.
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The stress equations can be equivalently written as

sin(2ψα)∂s1p− 2k∂s1(θ − γ) = 2k sin(2ψα)∂r2γ and (4.28)

sin(2ψβ)∂s2p− 2k∂s2(θ − γ) = 2k sin(2ψβ)∂r1γ, (4.29)

where r1 and r2 are arc-length parameterizations along lines inclined at clockwise angles of 2ψα

with respect to the α- and β-line, respectively. The bulk dislocation density, given in terms of

grad γ from (3.4), contributes as body force. The normal form associated with velocity equations,

identified with the vanishing of extension rates along the sliplines, is as given in (4.21). All together

the stress and the velocity equations, in this reduced form, are four ordinary differential equations

along the characteristic curves. Their solution is substituted into (4.27) to obtain ∂tγ and hence to

calculate γ for the next time instant.

Consider steady flow, i.e. ∂tγ = 0. The equations for stress, velocity, and lattice rotation are

all coupled. The characteristic curves corresponding to stress and velocity fields remain the same

as above, while the characteristic direction for the lattice rotation is given by velocity streamlines

inclined at an anticlockwise angle φ = arctan(v/u) with respect to e1-axis. It is clear that for non-

vanishing (bulk) dislocation density, i.e for grad γ ̸= 0, the stress equations (reduced to (4.28) and

(4.29)) are no longer given by ordinary differential equations along the characteristic curves. They

are in fact coupled with the velocity equations, which remain in the form (4.21), and the equation

for lattice rotation, as given below. In this sense, the structure of these equations is comparable

to those obtained for plane strain problems of isotropic hardening and granular materials [5, 6].

The normal form for the spin relation is determined by assuming that neither the stress/velocity

characteristics nor the stress discontinuity curves intersect with streamlines. On using velocity

equations (3.9) and (4.2) in addition to (4.27) we obtain

w∂q(γ − φ) +

(
Ω21 sin(2ψ) + cos(2φ− 2θ − 2ψ)

sin(2φ− 2θ − 2ψ)

)
∂qw = 0, (4.30)

where w and q denote the magnitude of velocity and the arc-length parametrization, respectively,

along the streamline direction. On the other hand, if the streamline direction is identical to a

characteristic curve (say an α-line), but is away from any stress discontinuity, then (4.30) is to be

replaced by

2w∂s1γ + (1− Ω21 sin(2ψα)) ∂s2w − (1 + Ω21 sin(2ψα))w∂s1(θ + ψ) = 0, (4.31)
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whence it is clear that the normal form is no longer an ordinary differential equation along the

characteristic. Additionally, the speed w is constant along the streamline, i.e. ∂s1w = 0, and

∂s2(θ + ψ) = 0; both of these follow from (4.21). For a streamline with stress discontinuity, the

above equations can be suitably modified with the stress dependent coefficients obtainable from

either side of the curve.

The sliplines in a region, with stress states lying on the same linear segment of the yield locus,

are two families of curves inclined at η (α-lines) and η + π/2 (β-lines) with respect to e1. Here

2η is the anticlockwise inclination of the outward normal to the edge with respect to the positive

σ12-axis (see Figure 2) on the polar plot. Thus η = γ + η0, where 2η0 is the constant anticlockwise

inclination of the outward normal with respect to the positive S12-axis. Hence the curvature of

the slipline fields is identical to that of the glide lines, where the latter are curves along which the

dislocations undergo pure gliding; they are given by a family of two mutually orthogonal curves

each with a spatial distribution of edge-type dislocations of same sign [26] (see also [23, 36], where

the two families of curves are a priori assumed to be identical). It should be noted that the sliplines

and the glide lines are in general dissimilar (cf. §5 in [26]); the present case being, of course, an

exception.

In the same region as considered above, the velocity equations (4.21) are reduced to

∂s1v1 − v2∂s1γ = 0 and ∂s2v2 + v1∂s2γ = 0. (4.32)

Furthermore, for the considered stress states, k(θ − γ) = C |sin (2η0 − 2(θ − γ))|−1, where C is a

material constant. Indeed d(θ − γ) + dψ = 0, which can be used in (3.10), with k independent of

α, to integrate the equation and obtain the desired result. If a streamline coincides with an α-line

in the considered region then the lattice rotation field is a linear function in s1 given by

γ = −w
′

w
s1 + f(s2), (4.33)

where w′ is the derivative of w(s2) and f(s2) is any smooth function such that ∂s2γ = 0. This

follows from (4.31) with the assumption that (1− Ω21 sin(2ψα)) ̸= 0.

For a region whose (Second Piola) stress state belongs to a vertex on the yield contour, S11−S22

and S12 are fixed but σ11−σ22, σ12, as well as p are variable due to non-uniformity of γ. The vertex

state is also characterized by a given constant value of (θ − γ) (which, for example, is ν for the

vertex A in Figure 2); hence dθ = dγ. Let H1(σ11−σ22, σ12, γ) = 0 and H2(σ11−σ22, σ12, γ) = 0 be
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two yield loci intersecting at the vertex. The stress equations, decoupled from rest of the system,

are strictly hyperbolic with characteristic curves inclined at θ ± π/4 with corresponding normal

form as p±2kθ = constant, where k can be obtained from either of the yield loci. The curvature of

these characteristic curves is hence related to the distribution of dislocation density in the region.

The velocity equations, derived from (2.26), consist of (4.2),

∂xu = λ1∂(σ11−σ22)H1 + λ2∂(σ11−σ22)H2, 2(∂xv + ∂yu) = λ1∂σ12H1 + λ2∂σ12H2, (4.34)

where λ1 and λ2 are plastic multipliers, and

∂xv − ∂yu = 2∂tγ + 2u∂xγ + 2v∂yγ + 2λ1Ω
1
21 ++2λ2Ω

2
21, (4.35)

where Ω1
21 = e2·Ω1e1 and Ω2

21 = e2·Ω2e1 are assumed to be constitutive functions of p. These are all

together four equations for two velocity components and two plastic multipliers. The latter can be

eliminated to get a pair of equations for two velocity fields. The slopes of characteristic directions as

well as the normal forms can be obtained after a straightforward, although cumbersome, calculation.

It is noted that the resultant characteristic curves do not coincide with those of stress. More

interestingly it should be remarked that, unlike the vertex case discussed in the previous subsection,

a completely determined system of velocity equations is now obtained. This adds to the relevance

of prescribing plastic spin for anisotropic flows.

The stress discontinuity curves, if present, are inclined at angles calculated from (4.6) and can

coincide with sliplines as well as streamlines. However within a region, whose stress states belong

to one edge of the yield locus, they necessarily coincide with either sliplines or streamlines. The

former situation arises when γ is continuous across the discontinuity curve (the proof is identical

to the one provided in the last subsection). The latter is whenever γ jumps, which is possible only

across streamlines (see below). The sliplines will have discontinuous slopes across such a streamline

with the jump given by JγK. On the other hand, across stress discontinuity curves outside the

considered region, velocity remains continuous and with vanishing strain-rates, cf. the discussion

following (4.12). A possible exception could be within a region with stress state on a single vertex

and where stress and γ discontinuities coincide. This can be seen by appropriately modifying (4.10)

and the ensuing discussion.

The velocity discontinuity curves, with continuous stress and lattice rotation, are necessarily

sliplines; this is verified by constructing a generalized solution of velocity equations (3.9) and (4.2)
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and using (4.15). The curves with discontinuous lattice rotation fields are necessarily streamlines.

Indeed for a generalized solution of (4.27),

J(u− v cotϕ)γK = 0, (4.36)

where tanϕ is the inclination of the discontinuity, cf. (4.14). According to (4.3) J(u− v cotϕ)K = 0

at every singular curve, thus reducing (4.36) to (u − v cotϕ)JγK = 0, which furnishes the required

result. Finally, it should be noted that discontinuities in γ characterize the presence of surface

dislocation density (or dislocation walls), cf. (3.5).

Remark 4.2. (Polygonal yield surface) The curve separating two regions with stress states belonging

to a linear segment on the yield contour, or to vertices sharing a common edge, is either a slipline

(when JγK = 0) or a streamline (when JγK ̸= 0) associated with the edge state. The velocity field

can be discontinuous across the curve.

5. Conclusion. A theory of elastically rigid finite plasticity is developed while emphasizing the

role of material symmetry. In particular, the nature of intermediate configuration, plastic spin,

and anisotropic flow rule have all been carefully studied. The appearance of dislocation density

and lattice rotation tensors, otherwise absent in an isotropic theory, have also been emphasized.

Subsequently attention is restricted to a plane strain version of the three-dimensional theory which is

then used to develop a slipline theory for transient anisotropic plastic flows. Solutions are discussed

separately under the assumption of isotropy, anisotropy without lattice rotation, and anisotropy

with lattice rotation. Anisotropy brings in distinctive constitutive features in the theory such as

vertices and linear segments on the yield locus. Including lattice rotation in the anisotropic theory

brings forth additional richness in the form of plastic spin and dislocation density. The resulting

solutions too demonstrate increasing sophistication. The difference is also evident in the nature of

discontinuities in stress, velocity, and rotation fields. Whereas it is well known that the isotropic

theory does not allow for stress and velocity discontinuity curves to coincide, the anisotropic theory

places no such restriction. In fact if the stress state is restricted to one edge of a piecewise linear

yield locus then the stress discontinuity necessarily coincides with either a slipline or a streamline. A

velocity discontinuity curve, across which stress and lattice rotation are continuous, coincides with

a slipline. On the other hand a curve with discontinuous rotation, which can also be interpreted as

an array of dislocations, is necessarily a streamline.

29



References.

[1] B. A. Bilby. Types of dislocation source. In Report of Bristol Conference on Defects in

Crystalline Solids, pages 124–133. London: Physical Society, 1955.

[2] J. R. Booker and E. H. Davis. A general treatment of plastic anisotropy under conditions of

plane strain. Journal of Mechanics and Physics of Solids, 20:239–250, 1972.

[3] J. Casey. On finitely deforming rigid-plastic materials. International Journal of Plasticity,

2:247–277, 1986.

[4] P. Cermelli and M. E. Gurtin. On the characterization of geometrically necessary dislocations

in finite plasticity. Journal of Mechanics and Physics of Solids, 49:1539–1568, 2001.

[5] I. F. Collins. Boundary value problems in plane strain plasticity. In H. G. Hopkins and M. J.

Sewell, editors, Mechanics of Solids, pages 135–184. Pergamon Press, 1982.

[6] I. F. Collins. Plane strain characteristics theory for soil and granular materials with density

dependent yield criteria. Journal of Mechanics and Physics of Solids, 38:1–25, 1990.

[7] R. Courant and D. Hilbert. Methods of Mathematical Physics, Vol. II. Interscience Publishers,

1962.

[8] Y. F. Dafalias. A missing link in the macroscopic constitutive formulation of large plastic

deformations. In A. Sawczuk and G. Bianchi, editors, Plasticity Today, pages 135–151. Elsevier,

1985.

[9] J. Edmiston, D. J. Steigmann, G. J. Johnson, and N. Barton. A model for elastic-viscoplastic

deformations of crystalline solids based on material symmetry: Theory and plane-strain sim-

ulations. International Journal of Engineering Science, 63:10–22, 2013.

[10] H. Geiringer. Some recent results in the theory of an ideal plastic body. Advances in Applied

Mechanics, 3:197–294, 1953.

[11] A. E. Green and J. E. Adkins. Large Elastic Deformations (2nd edition). Oxford University

Press, Oxford, 1970.

30



[12] A. Gupta and D. J. Steigmann. Plastic flow in solids with interfaces. Mathematical Methods

in the Applied Sciences, 35:1799–1824, 2012.

[13] A. Gupta, D. J. Steigmann, and J. Stölken. On the evolution of plasticity and incompatibility.

Mathematics and Mechanics of Solids, 12:583–610, 2007.

[14] A. Gupta, D. J. Steigmann, and J. Stölken. Aspects of the phenomenological theory of elastic-

plastic deformation. Journal of Elasticity, 104:249–266, 2011.

[15] M. E. Gurtin. An Introduction to Continuum Mechanics. Academic Press, Orlando, 1981.

[16] M. E. Gurtin and L. Anand. The decomposition FeFp, material symmetry, and plastic ir-

rotationality for solids that are isotropic-viscoplastic or amorphous. International Journal of

Plasticity, 21:1686–1719, 2005.

[17] R. Hill. The theory of plane plastic strain for anisotropic metals. Proceedings of the Royal

Society at London A, 198:428–437, 1949.

[18] R. Hill. The Mathematical Theory of Plasticity. Oxford University Press, 1950.

[19] R. Hill. Discontinuity relations in mechanics of solids. Progress in Solid Mechanics, 2:245–276,

1961.

[20] R. Hill. Basic stress analysis of hyperbolic regimes in plastic media. Mathematical Proceedings

of the Cambridge Philosophical Society, 88:359–369, 1980.

[21] W. T. Koiter. Stress-strain relations, uniqueness and variational theorems for elastic-plastic

materials with a singular yield surface. Quarterly of Applied Mathematics, 11:350–354, 1953.

[22] E. H. Lee. The theoretical analysis of metal-forming problems in plane strain. ASME Journal

of Applied Mechanics, 19:97–103, 1952.

[23] T. Mura. Continuous distribution of dislocations and the mathematical theory of plasticity.

Physica Status Solidi, 10:447–453, 1965.

[24] W. Noll. Materially uniform simple bodies with inhomogeneities. Archive of Rational Mechan-

ics and Analysis, 27:1–32, 1967.

31



[25] J. F. Nye. The flow of glaciers and ice-sheets as a problem in plasticity. Proceedings of the

Royal Society at London A, 207:554–572, 1951.

[26] J. F. Nye. Some geometrical relations in dislocated crystals. Acta Metallurgica, 1:153–162,

1953.

[27] W. Prager. Discontinuous solutions in the theory of plasticity. In K. O. Friedrichs, O. E.

Neugebauer, and J. J. Stoker, editors, Studies and Essays: Courant Anniversary Volume,

pages 289–300. Interscience, New York, 1948.

[28] W. Prager. An Introduction to Plasticity. Addison-Wesley Publishing Company, Inc., 1959.

[29] J. R. Rice. Plane strain slip line theory for anisotropic rigid/plastic materials. Journal of

Mechanics and Physics of Solids, 21:63–74, 1973.

[30] J. R. Rice. Tensile crack tip fields in elastic-ideally plastic crystals. Mechanics of Materials,

6:317–335, 1987.

[31] E. M. Shoemaker. A theory of linear plasticity for plane strain. Archive of Rational Mechanics

and Analysis, 14:283–300, 1963.
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