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The purpose of this supplement is to provide additional details for certain results in the main

paper. In Section 1 we provide a description of the modal synthesis procedure for the right hand

tabla and obtain several results. This is followed by an analogous effort for the left hand tabla in

Section 2. Finally, in Section 3, we provide some additional plots regarding the error behavior while

studying optimum designs of tabla. The notation is taken from the accompanying paper, which is

called P for reference purposes in the following sections. We also note that an earlier attempt at

modal sound synthesis of right hand tabla, although using a different framework, is given in an

unpublished thesis.2

1 Modal sound synthesis of right hand tabla

Modal sound synthesis is a physical modelling based sound synthesis based on the modal description

of the vibrating system.1 In order to synthesise sound of right hand tabla, we express the transverse

displacement of the tabla membrane as a linear combination of nine modes (with coefficients ai)

given in Table II of P. Each of these modes is in turn a linear combination of five ‘normal’ modes

having m number of nodal diameters. By ‘normal’, we refer to the basis functions of the right hand

tabla membrane vibration without air loading (denoted as η0mn). The modal synthesis is performed

subjecting the membrane to an initial velocity condition simulating a snap stroke at a point on the
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membrane. The initial velocity is given in terms of the raised cosine profile

vrc(ρ, φ) =


c0
2

[
1 + cos

(
π
ρhw

√
ρ2 + ρ20 − 2ρρ0 cos(φ− φ0)

)]
, if |ρ− ρ0| ≥ ρhw

0, otherwise,

which has amplitude c0, half width ρhw and is centered at (ρ0, φ0). The initial velocity can also be

written in terms of nine modes

vrc = a1iω01η01 + a2iω02η02 + a3iω03η03 + a4iω11η11 + a5iω12η12

+a6iω21η21 + a7iω22η22 + a8iω31η31 + a9iω41η41,

(1)

where ωms are already determined by solving Equation (1) in P. In the above relation,

ηms =

5∑
k=1

V ms
k η0mk, (2)

where Vms are eigenvectors obtained by solving Equation (1) in P. Substituting the expansion of

each ηmn in (1) and taking an inner product of (1) with each ηmn one by one, while using the

orthogonality property of the normal modes η0mn

∫ 2π

0

∫ b

0
ση0mnη

0
m′n′ρdρdφ = σ1

∫ 2π

0

∫ a

0
η0mnη

0
m′n′ρdρdφ+ σ2

∫ 2π

0

∫ b

a
η0mnη

0
m′n′ρdρdφ

= 0 if m 6= m′ or n 6= n′,

(3)

we obtain a set of linear equations to solve for ai in the form

A9×9a9×1 = C9×1, (4)

where the subscripts denote the size of the respective matrices. Once the vector a is solved from

the previous equation, the evolution of the velocity profile for all points on the membrane with

time is a straightforward computation. In order to verify our results we use the following scheme:

1. To begin with, we choose the parameters as given in the first row of Table I of P, except

for tension, which is chosen so as to match the fundamental frequency with the obtained
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Figure 1: Experimentally measured frequency spectra for two basic strokes of right hand tabla
playing. The x−axis in each plot represents the frequency in Hz.

fundamental frequency from tin stroke.

2. Next, appropriate values of ρ0, φ0, ρhw and c0 are taken depending on the stroke that we

want to simulate.

3. We select an arbitrary point on the membrane, find its velocity vp(t) with respect to time

over the time interval t ∈ (0, tf ), for a conveniently large value of tf as well as a sufficiently

large value of sampling frequency Fs.

4. Finally, we take the fast Fourier transform of vp(t) over the above mentioned time interval and

compare the result with the spectrum obtained experimentally for the corresponding stroke.

1.1 Two playing strokes of right tabla playing

Tabla playing consists of a combination of different strokes each having their own playing style.

We describe two such strokes here, along with the respective frequency spectrums (experimentally

obtained). Both the strokes are associated with right hand tabla. Our nomenclature for the strokes

is derived from the Benaras Gharana.3 The playing style of each of the stroke is briefly mentioned

here so as to better understand the corresponding frequency spectrum. In our experiments, the

right hand tabla was tuned to the note A4 such that the fundamental corresponds to 220 Hz.

1. tin : This stroke is played using only the index finger, which is used to hit the black patch and
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Figure 2: Fast Fourier transforms of simulations of tin and nā.

no damping of any mode is brought about by pressing the membrane lightly. This enables

the fundamental mode to vibrate freely, see Figure 1(a). As we have discussed in the main

paper, the fundamental has a major second note as the dominant one, and thus this stroke

has a distinctly different pitch to it.

2. nā : The nā stroke is played by resting the ring finger lightly on the edge of the black patch

while striking the outer halo with the index finger. With a missing fundamental, several

higher harmonics are seen to appear in the resulting spectrum. The lightly pressed ring

finger keeps out the fundamental mode, see Figure 1(b).

1.2 Results from the modal analysis

We present the modal sound synthesis results by simulating two commonly played strokes: tin and

nā. As described above, tin is a thump at the center of the black patch whereas nā is a strike at

the edge of the tabla membrane, using only the index finger, while keeping out the fundamental

mode. To simulate these strokes as closely as possible,

1. We choose a higher value (a/4) of ρhw for tin, as compared to nā (a/8).

2. We choose the striking point (ρ0, φ0) for tin to be (0, 0), and for nā to be (0.04, 0). Note that

0.04 is slightly less than b.

3. We leave out the fundamental mode while performing the modal analysis of nā stroke. All
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Figure 3: Transverse displacement at a point (0.02,0) for simulations of tin and nā.

the modes are retained in the modal analysis of tin stroke.

4. We choose c0 = 0.001 for both the strokes.

Figures 2(a) and 2(b) show the fast Fourier transforms at a somewhat arbitrarily chosen point

(0.02,0) for the two strokes. Both the figures confirm well with the corresponding experimental

results (given in Figures 1(a) and 1(b)). We also plot the displacement evolution of this arbitrarily

chosen point as obtained from modal analysis with respect to time for the two strokes. Note that the

time axis goes from 0 to 1.5s in Figure 3(a) and upto 3s in Figure 3(b), indicating a low damping

for the latter. This is expected since we have removed the fundamental mode, which otherwise

dampens out quickly, in the simulation of nā.

2 Modal sound synthesis of left hand tabla

The numerical sound synthesis for the left hand tabla is done in the same manner as for the right

hand tabla. The modal basis functions in terms of which a general displacement (or velocity) profile

is expanded now consists of altogether twelve functions, as given in Table V of P. Note that six

of these functions have an azimuthal dependence of cosφ, while the other six of sinφ. Choosing a

‘raised cosine profile’ for the initial velocity, we can write it in terms of the basis functions as

vrc = a1iωe01ηe01 + a2iωe02ηe02 + a3iωe11ηe11 + a4iωe12ηe12 + a5iωe21ηe21 + a6iωe31ηe31

+a7iωo01ηo01 + a8iωo02ηo02 + a9iωo11ηo11 + a10iωo12ηo12 + a11iωo21ηo21 + a12iωo31ηo31,

(5)
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Figure 4: (a) Fast Fourier transform and (b) Transverse displacement of an arbitrary point on the
membrane of the left hand tabla.

where an ‘e’ appearing in the subscripts represents the azimuthal dependence of cosφ and ‘o’ of

sinφ. Also,

ηe/oms =
5∑

k=1

V
e/oms
k η0e/omk, (6)

where V e/oms are eigenvectors already determined by solving Equation (21) in P. Again, the or-

thogonality property of the ‘normal’ modes is used to form a set of twelve linear equations to solve

for ai. For illustration purposes, we choose (ρ0, φ0) = (0, 0), ρhw = a/8, and c0 = 0.001 in the

raised cosine profile. The fast Fourier transform of the point (ρ, φ) = (a/2, 0.5) is shown in Figure

4(a). Note that a non-zero value of φ is deliberately chosen to bring out the effect of modes with

azimuthal dependence of sinφ. The transverse displacement of this point with respect to time is

also plotted. Unlike our examples for the right hand tabla, it is not possible, within the present

framework, to simulate a playing stroke of a left hand tabla. This is because a typical left tabla

stroke (such a ghay) is produced in conjunction with a varying pressure of the wrist palm junction

on the edge of tabla membrane. It is presently not clear to us how to include such effects within

our model.

3 Additional plots for the optimum design of tabla

In this section, we collect some additional error plots indicating optimum parameter values for

tabla design. In Figure 5, we show the error variation for the right hand tabla with respect to
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Figure 5: Error variations for the right hand tabla. The remaining parameters in each plot are
fixed according to the values given in the first row of Table 1 in P.

density of the unloaded part of the membrane (σ2), outer radius (b), and uniform tension in the

membrane (T ). The error plots with respect to varying density ratios, radii ratios, and cavity sizes

are included in P (see Figure 3 therein). As noted in P, there is generally a flat valley around

minima points making the error less sensitive to parameter variations. This flexibility in design

parameters is also evident in the variety of tabla designs adapted by tabla makers.3

For the left hand tabla we have, in Figure 6, a surface plot of the error function El (defined in

P) with respect to tension and density variations. It is an alternate representation of the contour

plot given in P.
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Figure 6: Surface plot of the error function El with respect to tension and density variations. The
results are for the left hand tabla.
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