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A Novel Method for Down-Conversion of
Multiple Bandpass Signals

Aditya Mahajan, Manu Agarwal, and Ajit K. Chaturvedi, Senior Member, IEEE

Abstract— Simultaneous down-conversion of multiple band-
pass signals is desirable for a number of wireless applications.
Bandpass sampling technique can be used for this purpose,
but it is difficult to implement and has several drawbacks. In
this paper we propose a novel front-end technique to directly
down-convert multiple frequency division multiplexed (FDM)
signals separated by certain minimum frequency. A special down-
conversion function is derived to achieve simultaneous down-
conversion of the received signals. The technique requires simpler
bandpass filters and the ADC has a baseband input as compared
to bandpass sampling, which imposes strict requirements on
bandpass filters and requires an ADC which can handle RF
inputs. The performance of the method has been evaluated by
simulating a BPSK receiver employing this technique.

Index Terms— Analog-digital conversion, bandlimited commu-
nication, bandpass filters, demodulation, frequency conversion,
signal design, signal reconstruction, signal sampling, radio spec-
trum management.

I. INTRODUCTION

NEXT generation wireless standards must support dy-
namic spectrum allocation and spectrum sharing to

achieve higher total spectral efficiency and provide better QoS
as the traffic loads change over a multi-network [1]. Thus in
a cellular network dynamically allocated spectrum need not
be in contiguous blocks, rather small blocks at different, non-
contiguous carrier frequencies can be allocated. To demodulate
the desired signals, the receiver must simultaneously down-
convert multiple bandpass signals. Bandpass sampling has
been proposed to achieve this objective [2], [3]. Algorithms to
compute the sampling frequency for down-converting multiple
signals using bandpass sampling have been given in [4]
and [5]. However, bandpass sampling imposes many stiff re-
quirements on the front-end hardware, i.e., the bandpass filters
and the ADC [2]. The bandpass filters should be centered at
the carrier frequencies and require narrow passbands, thereby
requiring precise center frequencies and a high Q factor. The
ADC input bandwidth needs to be very high, of the order
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of carrier frequencies of the bandpass signals. This increases
complexity, hardware noise and power consumption.

Finding the sampling frequency to simultaneously down-
convert multiple bandpass signals using bandpass sampling
is not straightforward. For N bandpass signals, a numerical
solution for the sampling frequency is obtained by solving
3 +

(N
2

)
constraint equations [3, Eq. (1) · · · (4)]. Often, these

constraints can lead to considerable oversampling require-
ments i.e., the solution needs much higher sampling frequency
than the sum of sampling rates required by all desired signals.
Higher sampling rate not only increases the ADC complexity
but also requires higher DSP speeds, thereby also increasing
the power consumption. Moreover, the complexity of finding
an appropriate sampling frequency is high and is clearly shown
in [5] for a two channel system. It is easy to see that such
methods will become increasingly more complex and solution
for sampling frequency harder to find with increase in the
number of channels.

We propose an alternative front-end scheme that offers
several advantages over bandpass sampling for directly down-
converting multiple bandpass signals. We present our scheme
in section II, suggest a realization of down-conversion function
in section III, provide simulation results in section IV, make
some general remarks about the scheme in section V and
conclude in section VI.

II. PROPOSED SCHEME

We will use a novel function, referred to as the down-
conversion function, to mechanise the front-end of the receiver
in such a way that the signal received by the digital hardware
for the proposed scheme is in no way different from the
signal received by the digital hardware in a conventional single
channel receiver. In the digital domain the usual lowpass or
matched filtering is assumed.

Let the N bandpass signals of interest be
{mi(t) cos 2πfc,it}|N−1

i=0 , where mi(t) is the ith baseband
signal with bandwidth Wi and fc,i is its carrier frequency.
We propose a receiver front-end for the simultaneous and
direct down-conversion of these N signals. As shown in
Fig. 1, the received signal is passed through a bandpass filter
array to allow only the N signals of interest to pass through.
Let Wmax be the bandwidth of the signal with the maximum
bandwidth, amongst the N signals being considered. For the
present we assume that each bandpass filter (BPF) in the
array is ideal and its bandwidth B is equal to Wmax. The
output of the filter array is given by

rBPF(t) =
N−1∑

i=0

mi(t) cos 2πfc,it (1)
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Fig. 1. Block diagram for the proposed receiver

This is passed through a low noise amplifier and then
multiplied by a down-conversion function d(t). The down-
conversion function has to bring all the messages to baseband,
so it can be of the form

d(t) =
N−1∑

i=0

gi(t) cos 2πfc,it (2)

where gi(t) is a baseband signal. Multiplying rBPF(t) with
d(t) gives

s(t) = rBPF(t)d(t)

=
1
2

N−1∑

k=0

mk(t)gk(t)

+
1
2

N−1∑

k=0

N−1∑

m=0
m !=k

mk(t)gm(t) cos 2π(fc,k−fc,m)t

+
1
2

N−1∑

k=0

N−1∑

m=0

mk(t)gm(t) cos 2π(fc,k+fc,m)t
(3)

The signal s(t) is passed through an anti-aliasing filter which
should be able to filter out the double summation terms. This is
possible only when |fc,k−fc,m| for all k and m is greater than
certain minimum value, which we call minimum frequency
separation. We determine the minimum frequency separation
required, in Appendix II. For the moment we assume that the
|fc,k−fc,m| is large enough for the last two terms to be easily
filtered. The filtered s(t) is given by,

sF(t) =
1
2

N−1∑

k=0

mk(t)gk(t) (4)

This is sampled at a rate RS , which can be as low as NWmax

samples/sec. We can increase RS to simplify the design of
bandpass filter, as shown in Section II-E. After sampling we
get,

x[n] = sF

(
n

RS

)
(5)

which is demultiplexed into N different digital channels,
{xi[n]}|N−1

i=0 . This demultiplexing downsamples each channel
by a factor of N with a suitable phase shift. The downsampled
signals, having a sample rate of RS

N , are passed through digital
lowpass filters with bandwidth equal to the corresponding
message bandwidth, giving {yi[n]}|N−1

i=0 . The purpose of these

digital filters is to remove the out of band noise from the digital
signals, leaving the message unaffected. Thus,

yi[n] =
1
2

N−1∑

k=0

mk

(
nN + i

RS

)
gk

(
nN + i

RS

)
(6)

The down-conversion function d(t) is to be designed such
that these N digital signals are the sampled versions of the
corresponding message signals mi(t).

In the remaining parts of this section we consider the design
of the down-conversion function d(t), the constraints on the
anti-aliasing filter, minimum frequency separation required
and finally consider ways for reducing the complexity of the
bandpass filters.

A. Design of Down-conversion Function

The baseband signals gi(t)s are to be chosen such that yi[n]
in (6) is the sampled version of the corresponding message
signal mi(t), i.e.,

yi[n] = λ · mi

(
nN + i

RS

)
(7)

where λ is some constant. If this is possible then yi[n] is
not different in any way to the digitized baseband signal in
a conventional single channel receiver. For convenience we
assume a symmetric form for the down-conversion function
d(t) wherein all the gi(t) are just time shifted versions of
each other, i.e.,

gi(t) = g0

(
t − i

RS

)
(8)

Thus we only need to design g0(t), and then we can use (2)
and (8) to obtain d(t).

General Down-conversion Function

Consider a periodic function g0(t) having H harmonics with
its Fourier Transform of the form

G0(f) =
H∑

k=−H

ckδ

(
f − k

RS

N

)
(9)

A sufficient condition that the down-conversion function d(t),
obtained from this g0(t) using (8) satisfies (7) is given by

"H−m
N #∑

k=−"H+m
N #

cm+kN = K, ∀m =
{
−

⌊
N

2

⌋
, . . . ,

⌊
N

2

⌋}
(10)
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where K is some constant and

H ≥
⌊

N

2

⌋
(11)

We prove this result in Appendix I.

B. Minimum Frequency Separation Required

The Fourier transform of d(t), D(f) is spread out around
each of the carrier frequencies. In general when we multiply
d(t) with rBPF(t), the product s(t) may experience interference
amongst the N message signals. However, if the signals have
some separation in their carrier frequencies this situation can
be avoided. It is shown in Appendix II that a minimum
frequency separation given by

∆fmin = max
i,j

{∆fi,j} = 2H
RS

N
+

B

2
+

Wmax

2
(12)

will prevent interference amongst the signals.
Note that the carrier frequencies need not be equi-spaced.

However the separation between any two of them should be
greater than the minimum value obtained from (12).

The Optimal Solution: We want to optimize the down-
conversion function such that the minimum frequency sep-
aration required is lowest possible. To minimize ∆fmin given
by (12), we must minimize H . Now according to (11), the
minimum value of H is $N

2 %. Thus,

Hopt =
⌊

N

2

⌋
(13)

Solving for G0(f) subject to the constraints (10) (assuming
K = 1) and (A8) for H = $N

2 %, we get1

Gopt
0 (f) =

1
N

"N
2 #∑

n=−"N
2 #

rect
( n

N

)
δ

(
f − n

RS

N

)
(14)

Taking the inverse Fourier transform we obtain,

gopt
0 (t) =

1
N

{
1 + 2

k=$N
2 %∑

k=1

rect
(

k
N

)
cos

(
2π
N kRSt

)}
(15)

Using (8), we get

gopt
i (t) =

1
N

{
1 + 2

k=$N
2 %∑

k=1

rect
(

k
N

)
cos

(
2π
N k(RSt − i)

)}
(16)

From (12), we obtain that the minimum frequency separation
for the case of optimal d(t) is given by

∆f opt
min = 2

⌊
N

2

⌋
RS

N
+

B

2
+

Wmax

2
(17)

C. Example of Optimal Down-conversion function

Suppose there are N = 5 message signals to be down-
converted. Parts g0(t) and g1(t) of the optimal down-
conversion function for this case, as given by (16), are shown
in Fig. 2(a) and 2(b). It can be seen that here gi(t) peaks at
only those sampling instants where the ith channel is to be
sampled and is zero at sampling instants of other channels.

1We follow the convention that rect
(
± 1

2

)
= 1

2 .

(a) Plot of g0(t) cos 2πfc,0t. The dashed envelope shows g0(t).

(b) Plot of g1(t) cos 2πfc,1t. The dashed envelope shows g1(t).

(c) Plot of g0(t) cos 2πfc,0t + g1(t) cos 2πfc,1t. Both the envelops
g0(t) and g1(t) are shown.

(d) Plot of d(t). All the envelopes g0(t), g1(t), g2(t), g3(t) and g4(t)
are shown.

Fig. 2. Down-conversion function.

Since the number of channels is five, gi(t) will have a peak
at every fifth sampling instant and four zeros at the sampling
instants in between. The overall down-conversion function is
a sum of five similar gi(t)s upconverted to different carrier
frequencies. The sum of g0(t) and g1(t) after upconversion
to fc,0 and fc,1 is shown in Fig. 2(c). Fig. 2(d) shows the
complete down-conversion function d(t) along with all the
envelopes gi(t).

It is important to note the difference between the N is even
and N is odd cases. Although H remains the same for N = 2k
and N = 2k+1 for integer k, there is a difference between the
down conversion functions as shown here by example. Fig. 3
shows the Fourier Transforms D4(f) and D5(f) of the down-
conversion function for the cases N = 4 (even) and N = 5
(odd). From (13), we get Hopt = 2 for both cases. However, for
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Fig. 3. Fourier transforms of down-conversion function for N = 4 and
N = 5.

even N, for all the gi(t)s the amplitude of the highest cosine
is half the amplitude of other cosines, as can be seen from
Fig. 3(a). This is because for even N , the highest frequency
corresponds to the ‘edges’ of the rect function, so their value
is half of the maximum. For odd N, all the cosines in gi(t)
have the same amplitude as can be seen from Fig. 3(b).

D. Anti-Aliasing Filter Bandwidth

The anti-aliasing filter must allow the baseband signal∑N−1
k=0 mk(t)gk(t) to pass undistorted. Moreover, it should

not allow any part of the signal that comes as a result of
frequency difference terms in (3) to pass, as they can cause
aliasing. Thus, the bandwidth of the anti-aliasing filter WF,
should be between F i,j

R and F i,j
L , shown in Fig. 9 and given

by (A16) and (A17). Hence,

H
RS

N
+ max

{
Wi

2
+

Wj

2

}
≤ WF ≤ ∆fi,j − H

RS

N
− B

2
(18)

⇒ H
RS

N
+

Wmax

2
≤ WF ≤ min{∆fi,j}− H

RS

N
− B

2
(19)

The output of the anti-aliasing filter is fed into the ADC. We
observe that the input to the ADC is a baseband signal as
opposed to bandpass sampling where the input to the ADC is
an RF signal. This considerably simplifies the design of the
ADC, as further discussed in Section V .

E. Bandpass Filter and Reducing its Complexity

A bandpass filter is characterized by its center frequency,
passband width and bandwidth (refer to Fig. 4). In this section,
we explain the necessity of a bandpass filter array and deter-
mine the constraints on the passband width and bandwidth
of the filters. A bandpass filter array is needed to avoid
aliasing when rBPF(t) is multiplied with the down-conversion
function. For simplicity we assume that all the filters have
the same bandwidth B. The minimum frequency separation
(Section II-B) ensures that there is no interference amongst the
different components of rBPF(t), i.e. the component of rBPF(t)
centered at fc,i will not interfere with the component centered
at fc,j , ∀j (= i, after multiplication with d(t). However, the
component centered at fc,i can still be aliased when multiplied
with the component gi(t) cos 2πfc,it of d(t). The passband

fc,0 fc,i fc,N− 1 f

Wmax

B

passband

bandwidth

Fig. 4. Bandpass filter.

and bandwidth of the bandpass filter should be chosen so as
to avoid this aliasing. At the same time, the filter must allow
the signal of interest to pass undistorted. Hence, the passband,
centered around the carrier frequency, must have a width larger
than the message bandwidth. Thus B > Wmax. Moreover,
when Wmax < B < RS

/
N , the signal is not aliased, as shown

in Fig II-E. Furthermore, if B > RS

/
N , this multiplication

causes aliasing. However, for B < 2RS

/
N − Wmax, this

aliasing does not distort the message signals as shown in
Fig. II-E. Hence for the message signals to remain undistorted

Wmax ≤ B < 2
RS

N
− Wmax (20)

The filter response between fc,i ± Wmax
2 and fc,i ± B

2 need
not be flat. This means that we can increase the transition
band of the filter, without introducing any additional noise in
the message bandwidth. A larger transition band simplifies the
design of the filter.

This leads to a useful trade-off between ADC design and
filter design. The design of the filter can be simplified by
increasing the sampling rate which will lead to an increase
in the complexity of the ADC. Let us consider an example
to illustrate the flexibility provided by this trade-off. Assume
that there are N = 2 signals, each of bandwidth Wi = 2MHz.
Suppose we want to keep the ADC as simple as possible.
This means that we need a sampling rate RS of NWmax = 4
M samples/sec. At this sampling rate, the maximum bandwidth
of the BPF that we can have, without causing aliasing, is
Bmax = 2RS

N − Wmax = 2 MHz. Assuming the carrier
frequency to be of the order of 1 GHz, we need to realize
a BPF with Q ∼ 1G/2M = 500 which can be difficult to
realize. Now assume that we can easily realize filters with
Q ∼ 50. So we need to have a BPF with B = 20 MHz and
RS = N

2 (B + Wmax) = 22 Msamples/sec, thereby increasing
ADC complexity. Thus one can trade-off filter complexity
with ADC complexity. Table I shows the flexibility available
in the choice of the bandwidth of the bandpass filter at the
cost of a higher sampling frequency and larger ∆fmin. In
this table, the minimum frequency separation corresponds to
its minimum possible values, employing the optimal down-
conversion function as derived in Section II-B.

III. REALIZATION OF DOWN-CONVERSION FUNCTION

In this section, we present a very simple method of realizing
the down-conversion function, thus emphasizing the simplicity
of this seemingly complex function. The realization of the
down-conversion function can be divided into two parts, the
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Fig. 5. Fourier transform of signal after bandpass sampling and multiplication
with the down-conversion function.

generation of the baseband signals gi(t)s and combining them
to generate d(t). For the generation of gi(t) in the optimal
solution case, consider (16)

gi(t) =
1
N

{
1 + 2

k=
⌊

N
2

⌋

∑

k=1

rect
(

k
N

)[
cos

(
2π
N i

)
cos

(
2π
N kRSt

)

+ sin
(

2π
N i

)
sin

(
2π
N kRSt

)]
}

=
1
N

{
1 + 2

k=
⌊

N
2

⌋

∑

k=1

rect
(

k
N

)
×

(
Ai cos

(
2π
N kRSt

)
+ Bi sin

(
2π
N kRSt

))
}

(21)

where,

Ai = cos
(

2π
N

i

)
and Bi = sin

(
2π
N

i

)
(22)

From (21) we get that gi(t) is a weighted sum of low
frequency sine and cosine functions. We generate the sines
and cosines of frequency kRS

N and add them in the ratio

(RS,N)

Cosine
Sources

90º
Phase Shift

gi (t)
Generator +

×

˜
×

×

fc,0

fc,i

fc,N− 1

d(t)

Lowpass Block RF Block

˜

˜

Fig. 6. Hardware implementation for the down-conversion function.

TABLE I

TRADEOFF BETWEEN FILTER BANDWIDTH (B) AND SAMPLING

FREQUENCY (RS )

No. of Signals Sampling Freq Bandwidth Min. freq. separation
N RS (M spl./sec) B (MHz) ∆fmin (MHz)

2 4 2 6
2 22 20 33
5 10 2 10
5 55 20 55

of weights given by (22) to get gi(t). Then the gi(t)s are
up-converted and added to get the down-conversion function
d(t). The block diagram of this scheme is shown in Fig. 6.
Though this is a realization for the special case of the optimal
solution (Section II-B), this idea can also be used to generate
the general baseband gi(t).

IV. SIMULATION RESULTS

We simulated the proposed front end scheme by simultane-
ously down-converting N channels using the optimal (in terms
of the lowest ∆fmin) down-conversion function derived in
Section II. The signals were initially modulated using uncoded
BPSK, received over an AWGN channel, down-converted
using the proposed scheme, sampled using an ideal ADC and
demodulated using digital matched filtering.

In one simulation we varied the number of channels N ,
each having a data rate Rb of 1 Mbp. We chose the bandpass
filter bandwidth2 as 5 MHz and the digital processing rate
of each demultiplexed channel RS/N as 10 samples/(bit
duration) (=10 M samples/sec), regardless of the value of N .
The bandwidth of the anti-aliasing filter WF was chosen to
be ($N/2% · 10 + 4) MHz. It can be seen that this choice
satisfies (19). Fig. 7 shows the performance curves of the
proposed receiver, for two, three and five channels along
with the performance curve of the conventional single channel
receiver drawn for reference. It is clear from the figure that the
performance is independent of the number of channels and is
same as that for a conventional receiver. In another simulation
we fixed the number of channels to two and simulated for
three different bandwidths that satisfied (20). We again used
messages with data rate Rb of 1 Mbps and digital processing

2We chose B to be larger than the minimum required by a data rate of
1 Mbps to ease the design of the bandpass filter (refer Section II-E).
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Fig. 7. Performance for different values of N .
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Fig. 8. Performance for different bandwidths of the BPF for N = 2.

rate RS/N of 10 M samples/sec. Since N was taken to be two,
this means that the sampling rate RS was 20 M samples/sec.
WF , the bandwidth of the anti-aliasing filter was fixed at
14 MHz. The result is shown in Fig. 8 along with the curve
for a conventional system. We observe that the performance
does not get affected by the width of the bandpass filter, if it
is within the bounds derived in (20).

V. DISCUSSION

There are no issues of cross-talk from the theoretical per-
spective. We have assumed ideal filters and not taken into ac-
count the possible phase distortion caused by the anti-aliasing
filter, which will lead to deviation from this zero cross-talk be-
havior. However, this distortion can be pre-compensated while
generating the down-conversion function or computationally
removed in the digital domain. Furthermore, for zero cross-
talk, the carrier frequencies of the message signals must be
separated by more than the minimum frequency separation
given by (17). This however is not a major limitation as in
most cases, ∆fmin can be designed to moderate values (see
Table I). Moreover if the signals are located very close to

each other, they can be considered as a single message signal,
down-converted together as a single band and separated in
digital processing, as is done in wide-band receivers [6]. In
some applications it may be desirable to choose the down-
conversion function so as to minimise the errors due to jitter
which, in turn, will also lead to cross-talk. The errors because
of jitter would depend on the slope of the baseband gi(t) at
its zero crossings. But the slope alone cannot be the criterion
for choosing gi(t) as its bandwidth will have implications on
the minimum frequency separation required.

In section III, a simple architecture for generating the
down-conversion function was presented. Although we have
not looked into all the details required for the hardware
implementation of the proposed scheme, yet there are some
inherent advantages over bandpass sampling technique vis-a-
vis ADC and bandpass filter design. In bandpass sampling,
ADC has RF input, while in the proposed scheme it has a
baseband signal as input. Designing an ADC for an RF input
is harder as it is difficult to implement sample and hold circuit
for high analog frequencies. Furthermore, a bandpass sampling
receiver is very prone to thermal noise. A typical bandpass
sampling receiver architecture consists of a stage, either a
BPF array or a subsequent buffer stage, which drives the ADC
analog input. The output impedance of this stage, typically 50
Ohm, feeds white thermal noise into the ADC. An ADC with
RF input has a very small input capacitance and hence a large
noise power is sampled [2]. Since the output bandwidth of the
ADC is low, as the signal is being undersampled, this large
noise power is distributed over a much smaller bandwidth,
thereby reducing the effective SNR. Even in our scheme the
digital demultiplexing, which is equivalent to undersampling,
would multiply the power of the thermal noise from the stage
driving the ADC. However the multiplication factor will be
equal to the number of channels being down-converted in the
system (∼2-10), which is small and the total noise would
still be dominated by the channel noise. On the contrary
in bandpass sampling systems, downsampling factors can be
expected to be huge (∼50-1000), thereby leading to significant
increase in thermal noise.

Moreover, bandpass sampling requires bandpass filters hav-
ing a high Q-factor. In our scheme if we use such high
Q-factor filters, we can operate the ADC at a rate close
to the sum of Nyquist rates of all messages. More im-
portantly, in our scheme the design of bandpass filters can
be simplified by oversampling, as discussed in Section II-
E. In practical digital receivers oversampling is inherently
needed for phase and timing recovery, thus bandpass filter
design can be simplified without drastically increasing the
ADC complexity. Furthermore, bandpass sampling needs to
separate different messages computationally during the digital
processing. In the proposed scheme, different messages are
separated by the simple operation of demultiplexing. Thus
the amount of DSP computation required is same as that in
a conventional receiver, and considerably less than what is
required in bandpass sampling.

VI. CONCLUSION

In this paper we have proposed an alternative to bandpass
sampling using a novel down-conversion function, to directly
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down-convert N message signals which have certain minimum
frequency separation. The design of the system has been
discussed and all the proposed blocks have been explained.
The proposed system provides several advantages in terms of
sampling rate, Band Pass Filter and ADC requirements.
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APPENDIX I
GENERAL SOLUTION OF THE

DOWN-CONVERSION FUNCTION

We want the down-conversion function (2) to be such that
we get the desired output (7),

yd,i[n] = λ · mi

(
nN + i

RS

)
(A1)

where λ is some constant. In this appendix, we will derive
a class of solutions for g(t) under the constraint that g(t) is
symmetric (8) and the output of the receiver is given by (7).
To get the desired output we can choose gi(t) satisfying,

gi

(
n

RS

)
=

{
λ if n ≡ i (mod N)
0 otherwise

, for 0 ≤ i ≤ (N−1)

(A2)
We assume that all the gi(t) are just time shifted versions of
each other, that is

gi(t) = g0

(
t − i

RS

)
(A3)

Thus we only need to solve for g0(t) and using (A3), we can
find all gi(t)s. Let

g[n] ! g0

(
n

RS

)
(A4)

(A2) implies that

g[n] =

{
λ if n ≡ 0 (mod N)
0 otherwise

(A5)

Taking DTFT gives,

G(ejω) =
2πλ
N

"N
2 #∑

m=−"N
2 #

δ

(
ω

2π
RS − m

RS

N

)
(A6)

Now, we can assume that gi(t)s are periodic functions with a
time period of N

RS
. (This is a reasonable assumption to make,

as gi(t) is the sampling function for mi(t) with a sampling
period of N

RS
). This implies that the Fourier transform of g0(t)

is of the form

G0(f) =
H∑

k=−H

ckδ

(
f − k

RS

N

)
(A7)

where H is the number of harmonics. Since g(t) is real,
the Fourier coefficients should also have conjugate symmetry.
Thus,

cp = c∗−p ∀p ∈ {−H, . . . , H} (A8)

Any function gi(t) of the form (A7) that satisfies (A2) and
(A3) can be used in (2). Taking Fourier Transform of (A4)
we get,

=⇒ G(ejω) = RS

∞∑

k=−∞
G0

( ω

2π
RS − kRS

)
∀ω ∈ (−π,π]

(A9)
where G(ejω) is the DTFT of g[n] and G0(f) is the Fourier
Transform of g0(t). Substituting (A7) in (A9), we get

G(ejω) = RS

∞∑

k=−∞

H∑

m=−H

cmδ

(
ω

2π
RS − kRS − m

RS

N

)

=






RS

"N
2 #∑

m=−"N
2 #

bmδ

(
ω

2π
RS − m

RS

N

)
when H ≥

⌊
N
2

⌋

RS

H∑

n=−H

cmδ

(
ω

2π
RS − kRS − m

RS

N

)
when H <

⌊
N
2

⌋
,

(A10)

for all ω ∈ (−π,π] where

bm =
"H−m

N #∑

k=−"H+m
N #

cm+kN , ∀m =
{
−

⌊
N
2

⌋
, . . . ,

⌊
N
2

⌋}
(A11)

Combining (A10) and (A6), gives

For H ≥ $N
2 %, bm =

2πλ
NRS

, ∀m =
{
−

⌊
N
2

⌋
, . . . ,

⌊
N
2

⌋}

For H < $N
2 %, inconsistent equations

(A12)

Let K = 2πλ
NRS

. Then, (A11) and (A12) imply

"H−m
N #∑

k="H+m
N #

cm+kN = K ∀m =
{
−

⌊
N
2

⌋
, . . . ,

⌊
N
2

⌋}

(A13)

H ≥
⌊

N

2

⌋
(A14)
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f

D ( f )
· · ·· · · · · ·· · ·

fc,i fc,i + H RSN fc, jfc, j − H RSN
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Mi Mj

f

Baseband Signal

0 fc,i − fc, j

Fx

Fi, jR Fi, jL

· · · · · · · · · · · ·

Fig. 9. Fourier transform of s(t) and d(t).

APPENDIX II
MINIMUM FREQUENCY SEPARATION

Let S(f) and Gi(f) be the Fourier Transform of s(t) and
gi(t) respectively. From (3) we get that,

S(f) =
1
2

N−1∑

k=0

Mk(f) ∗ Gk(f)

+
1
4

N−1∑

k=0

N−1∑

m=0
m !=k

Mk(f) ∗ Gl(f − ∆fk,m)

+
1
4

N−1∑

k=0

N−1∑

m=0
m !=k

Mk(f) ∗ Gl(f + ∆fk,m)

+
1
4

N−1∑

k=0

N−1∑

m=0
m !=k

Mk(f) ∗ Gl(f − fc,k−fc,m)

+
1
4

N−1∑

k=0

N−1∑

m=0
m !=k

Mk(f) ∗ Gl(f + fc,k+fc,m) (A15)

The signal at ∆fi,j = |fc,i − fc,j | should not overlap with
the message signals at the baseband

∑N−1
k=0 mk(t)gk(t). Thus

∆fi,j should be large enough so that mi(t)gj(t)cos2π∆fi,jt
does not overlap with

∑N−1
k=0 mk(t)gk(t). The Fourier Trans-

form of S(f) is shown in Fig. 9. We assume that B ≥ Wmax

and G0(f) is of the form (A7). The last (extreme right) alias
(message only) of Mi(f) ∗Gi(f) + Mj(f) ∗Gj(f) will be at

F i,j
R = H

RS

N
+ max

{
Wi

2
,
Wj

2

}
(A16)

The extreme left alias (message signal along with all the
undesirable signal allowed by the BPF) of Mi(f) ∗ Gj(f ±
∆fi,j) + Mj(f) ∗ Gi(f ± ∆fi,j) will be at

F i,j
L = ∆fi,j − H

RS

N
− B

2
(A17)

As seen from Fig. 9 to avoid aliasing Fx = F i,j
L − F i,j

R ≥ 0.
Thus,

∆fi,j = |fi−fj | ≥ 2H
RS

N
+

B

2
+max

{
Wi

2
,
Wj

2

}
for all i, j

Thus,

∆fmin = max
i,j

{∆fi,j}

= 2H
RS

N
+

B

2
+

Wmax

2
(A18)
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