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Abstract—A recently reported result on large/massive multiple-
input multiple-output (MIMO) detection shows the utility of the
branch and bound (BB) based tree search approach for this
problem. We can consider strong branching for improving upon
this approach. However, that will require the solution of a large
number of quadratic programs (QPs). We propose a likelihood
based branching criteria to reduce the number of QPs required to
be solved. We combine it with a node selection strategy to achieve
a better error performance than the reported BB approach, that
too at a lower computational complexity. Simulation results show
that the proposed algorithm outperforms the available detection
algorithms for large MIMO systems.

Index Terms—Large MIMO, massive MIMO, branch and
bound, integer programming.

I. INTRODUCTION

With the advancement towards the upcoming 5G systems

[1], the number of antennas in multiple-input multiple-output

(MIMO) systems will be scaled up [2] to achieve higher data

rates. Such large antenna systems are popularly referred to as

large/massive MIMO systems. The detection of signals in such

systems becomes challenging. This is because the existing near

maximum likelihood (ML) detectors for conventional MIMO

systems like the tree search algorithms in [3], [4] are infeasible

for large/massive MIMO systems owing to their increasing

computational complexity with the number of antennas. On

the other hand, the performance of low complexity detectors

like minimum mean square error (MMSE) deteriorates with

increasing number of antennas.

In the literature, various approaches like [5]–[9] have been

proposed to address the issue of large MIMO detection. One

recent approach [9] has formulated this problem as a mixed

integer quadratic programming (MIQP) problem [10] and

solved it using the standard branch and bound (BB) algorithm

[11]. It has been shown that the BB based approach can

perform significantly better than other existing approaches.

BB is a tree search based algorithm and requires strategies

for branching and node selection. Among the various branch-

ing techniques available, strong branching (SB) is known

to provide the optimal solution while doing minimal tree

exploration [12]. However, BB using SB comes at a huge

computational cost of solving 2N + 1 quadratic programs

(QPs) at every node (N denotes the size of the problem) and

turns out to be practically infeasible even for small MIMO

systems. Out of the 2N + 1 QPs, only one is used towards

obtaining the solution and the remaining 2N are required for
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deciding which variable to branch upon. If we can branch

without solving QPs, the complexity of this approach can be

drastically reduced.

In this paper, we address this issue by using a metric [13] for

determining the likelihood of a symbol being in error. Thus, we

propose to branch the tree at the index where the magnitude of

the likelihood is maximum. As a result, at every node, instead

of 2N QPs we need to solve only a single QP. We further

propose a node selection strategy which explores the tree in

a way such that a good performance can be obtained at a

reasonable complexity. We verify this using simulations and

show that this provides a better error performance than the

recently reported BB based technique [9].

The rest of the paper is organized as follows. We describe

the system model, problem formulation, and a review of BB

algorithm in Section II. Section III proposes the likelihood

based tree search algorithm and its complexity analysis has

been discussed in Section IV. Simulation results are presented

in Section V. Finally, we conclude the paper in Section VI.

We use ‘A’ to denote matrices, ‘a’ to denote vectors, and ‘a’

to denote scalar quantities.

II. PRELIMINARIES

We consider a MIMO system with Nt transmit and Nr

receive antennas. The input-output relationship is given by

ỹ = H̃x̃+ ñ, (1)

where ỹ = [ỹ1, ỹ2, · · · , ỹNr
]T ∈ CNr×1 is the received

signal vector and x̃ = [x̃1, x̃2, · · · , x̃Nt
]T ∈ CNt×1 is the

transmitted signal vector where each x̃i belongs to an M-QAM

square constellation X̃ . H̃ ∈ CNr×Nt denotes the channel gain

matrix with CN (0, 1) elements and ñ ∈ C
Nr×1 denotes the

complex additive white Gaussian noise (AWGN) vector with

i.i.d. CN (0, σ2) entries. This system model (1) is valid for

both, single user point to point large MIMO systems, as well

as multi user massive MIMO systems [14].

The system model in (1) can be expressed as an equivalent

real-valued model

y = Hx+ n, (2)

where y = [ℜ(ỹ)T ℑ(ỹ)T ]T , x = [ℜ(x̃)T ℑ(x̃)T ]T , n =
[ℜ(ñ)T ℑ(ñ)T ]T and

H =

[

ℜ{H̃} −ℑ{H̃}
ℑ{H̃} ℜ{H̃}

]

.

The objective of the optimal (ML) detection problem is to

find the transmitted vector x∗ which minimizes the Euclidean
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cost i.e.

x∗ = argmin
x∈X 2Nt

‖y−Hx‖22, (3)

where X ∈ {−
√
M + 1, · · · , −1, 1, · · · ,

√
M − 1}. As

shown in [9], by using the linear transformation zi =
xi + (

√
M−1)

2 ∀i ∈ {1, · · · , 2Nt}, the problem can be converted

to the following MIQP problem

z∗ = argmin
z∈Λ2Nt

1

2
zTQz+ gT z, (4)

where Λ ∈ {0, 1, · · · ,
√
M − 1}, Q = HTH is a symmetric

positive semi-definite matrix, g = −HT (y+(
√
M−1)H1)/2

and a represents a column vector of all a’s, having size 2Nt.

The problem in (4) can be solved optimally using the branch

and bound (BB) algorithm [11]. We will briefly discuss it in

the next subsection.

A. Review of Branch and Bound Algorithm

BB is a tree search based algorithm which recursively looks

for the optimal solution in a reduced search space. It begins

by relaxing the integer constraints in (4) as

argmin
z

1

2
zTQz+ gT z

subject to 0 ≤ z ≤ (
√
M − 1)1.

(5)

This relaxed problem is convex and can be solved using a

standard QP solver. We consider this problem as the root node

of the tree. If all the elements of the obtained solution vector

are integers, it also solves (4) and thus is the required solution.

Otherwise, the node branches into other nodes with reduced

(but exhaustive in terms of integer points) and mutually

exclusive search spaces.

Variable branching is one of the popular strategies used

for generating reduced search spaces, as it does not create

any extra constraints for the QP solver [12]. Among several

variable branching techniques [11], strong branching (SB) is

known to provide the solution with minimal tree exploration.

It measures the increase in objective function by branching

on every solution variable and then chooses the one which

maximizes this increase. However, this comes at a cost of

solving 4Nt QPs for branching itself, whereas only a single QP

is required for obtaining the solution. Therefore, application

of SB is infeasible for detection in large MIMO systems.

On the other hand, the remaining low complexity branching

techniques in [11] require a much larger tree exploration,

which is again computationally prohibitive for large MIMO

systems.

III. LIKELIHOOD BASED TREE SEARCH ALGORITHM

We can solve the problem with low complexity if we can

avoid solving such high number of QPs for branching, while

still retaining a reasonable error performance.

A. Error Likelihood Metric based Variable Branching

Ideally, for the large MIMO detection problem, branching

at a node should take place at the symbols which are in error.

This would exclude the search space which would lead to an

incorrect solution vector. However, we do not know which

symbols are in error. Fortunately, recently a metric which

computes the likelihood of a symbol being in error, especially

in the context of large MIMO systems, has been reported in

the literature [13]. In the MIQP problem (4), the likelihood of

the ith symbol being in error can be expressed as [13]

ηi =
|gi + qiz|√

qii
, (6)

where qii and qi are the (i, i) element and ith column of Q,
respectively, and gi denotes the ith element of g. Here ηi is the

likelihood of zi being in error, higher the value of ηi higher

is the probability of zi being in error. Let k be the index for

which this likelihood metric is maximum. We branch upon the

kth variable of a node S into two search spaces S
(1)
k and S

(2)
k

as defined below

S = {z : lbk ≤ zk ≤ ubk ∀k ∈ {1, 2, · · · , 2Nt}}.

S
(1)
k = S ∩ {z : lbk ≤ zk ≤ ⌊zk⌋},

S
(2)
k = S ∩ {z : ⌈zk⌉ ≤ zk ≤ ubk},

where ⌊·⌋ and ⌈·⌉ denote the floor and ceiling functions while

lbk and ubk are the lower and upper bounds respectively, on

zk.

This helps in searching the tree efficiently and hence

reaching the solution with lesser exploration. Moreover, this

branching strategy can be used without solving any QP,

thereby greatly reducing the computational complexity and

still providing a reasonable error performance.

B. Node Selection Strategy

Let us define a tree with depth d and breadth b as a (d, b)
tree. For chosen values of d and b, the nodes having depth

less than d are allowed to branch further in the tree. Building

upon the idea in the previous subsection, we propose to branch

upon b indices with the b largest values of the likelihood

metric. Thus, during branching at any node, we create 2b new

nodes with corresponding search spaces S
(1)
k and S

(2)
k with

k being the indices corresponding to the b largest value of

the likelihood metric. We would like to search this (d, b) tree

such that after exploring the tree, we are likely to have the best

possible solution within the tree. In view of this, we propose

the following node selection and tree search strategy.

Assume at any depth i, there exist a set of candidate nodes

{P 1
i , P

2
i , · · · , Pn

i }, where subscript denotes the depth and

superscript is used to index the candidate nodes. One of these

nodes will be selected to branch further. We choose the node

at which the corresponding solution vector has the least value

of objective function (4) and denote it as P ∗
i . This can be

mathematically expressed as

P ∗
i = argmin

{P l

i
| l∈1,··· ,n}

f(zP l

i

), (7)
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Fig. 1. BER of (a) a 32× 32 16-QAM system at Eb/N0 = 15 dB for different d and b values, (b) a 64× 64 16-QAM system, and (c) a 32× 32 64-QAM
system.

Algorithm 1 Likelihood Based Tree Search

1: Parameters: d, b
2: Input: Q, g
3: Initialization: List := {P 1

0 }, i := 0, f∗ := ∞
4: while List is not empty do

5: Find P ∗
i ∈ List with minimum f(zP l

i

) using (7)

6: Keep P ∗
i and prune all other nodes

7: if f(zP∗

i
) < f∗ then

8: f∗ := f(zP∗

i
)

9: z∗ := zP∗

i

10: end if

11: if node P ∗
i is at depth d then

12: Delete P ∗
i

13: continue

14: end if

15: Compute ηi :=
|gi+qiz|√

qii
∀ i ∈ {1, 2, · · · , 2Nt}

16: Sort ηi’s in descending order and rank corresponding

indices

17: for j := 1 : b do

18: Choose index with rank j
19: Branch P ∗

i at the chosen index

20: Store the newly created nodes as P 2j−1
i+1 and P 2j

i+1

21: Push P 2j−1
i+1 and P 2j

i+1 to List
22: end for

23: Delete P ∗
i

24: i := i+ 1
25: end while

26: return z∗

where f(r) = 1
2r

TQr+ gT r and zP l

i

is the solution vector

of node P l
i . It may be noted that zP l

i

is obtained by rounding

off the elements of the solution of the relaxed problem (5).

For generating the set of candidate nodes at (i+1)th depth,

we prune the existing nodes from the (d, b) tree except the

node P ∗
i , on which we further branch upon. After exploring

the tree till depth d, the solution vector z∗ is given by

z∗ = argmin
{zk | k∈P∗

0
, ··· , P∗

d
}
f(zk). (8)

Combining all the above, we summarize the pseudo-code

in Algorithm 1, where z∗ returns the desired solution. In

the pseudo code P 1
0 represents the lone root node (initial

candidate node) in the tree, which corresponds to the problem

in (5). We refer to this as the likelihood based tree search

(LBTS) algorithm. For a given (d, b) tree, we believe that

this tree search strategy can give a good error performance at

a reasonable complexity, for large MIMO systems. This has

been corroborated using simulations in Section V.

IV. COMPLEXITY ANALYSIS OF LBTS

The computational complexity of LBTS depends upon the

number of QPs required to be solved. We consider the interior

point QP solver [15] which has O(N3
t ) complexity per itera-

tion. The advantage of using an interior point solver is that the

number of iterations, for a given QAM size, is independent of

Nt [16]. Thus, the overall complexity at a given node is of

the same the order i.e. O(N3
t ). Out of approximately (2b)d−1

nodes in a (d, b) tree, d × 2b nodes are explored and since

only one QP is required to be solved at every node, the overall

complexity is O(dbN3
t ).

V. SIMULATION RESULTS

In this section, we study the performance of the proposed

LBTS algorithm for large MIMO systems of different sizes,

considering a Rayleigh fading channel. We first evaluate the

effect of d and b on the bit error rate (BER) performance.

For this, we consider a 32 × 32 (i.e. Nr = Nt = 32)

16-QAM system and present the results for Eb/N0 = 15
dB in Fig. 1(a). From the figure, it can be viewed that the

performance saturates with increasing values of d and b.
However, complexity increases linearly with d×b (explained in

Section IV). In the sequel, we choose d = 3 and b = 3 as this

seems to provide a reasonable trade-off between performance

and complexity.

Next, we compare the performance for LBTS (d, b) with

some recent algorithms for large MIMO detection. Thus, we

choose ULAS [17], MLAS [5], and RTS [6], along with

BB (l,m) [9] where l and m are simulation parameters. The

results have been shown for a 64× 64 16-QAM system and a

32×32 64-QAM system in Fig. 1(b) and Fig. 1(c), respectively.
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Fig. 2. BER of a 16-QAM at Eb/N0 = 18 dB.

To start with, we choose the value of (l,m) such that the

number of QPs required by BB (l,m) are same as for LBTS

with d = 3 and b = 3. In other words, both have similar

complexity. Hence, we choose the value of (l,m) as (5, 2). We

prefer this over other possible pairs like (3, 3) and (4,2) having

similar complexities, owing to its superior BER performance.

From the figures one can observe that LBTS (3, 3) outperforms

all of the other algorithms and BB is its best competitor. At a

BER of 10−3, compared to BB (5, 2), LBTS (3, 3) has a gain

of around 2.5 dB and 3.5 dB for 64 × 64 16-QAM system

and 32 × 32 64-QAM system, respectively. Next, we allow

BB (l,m) to explore more number of nodes (i.e. to solve more

number of QPs) by selecting l = 36 and m = 2. It may be

noted that the BER performance of BB (l,m) is more sensitive

to l than m, and hence increasing the value of l has more

payoff [9]. Even after allowing to solve a significantly higher

number of QPs i.e. 144 compared to 18 for LBTS (3, 3), the

latter has still a performance gain of around 1.5 dB, at the

same BER of 10−3.
Further, we examine the error performance for increasing

number of antennas and show the corresponding BER curves

in Fig. 2. From the figure, we can see that LBTS outperforms

the rest of the algorithms by a large margin.

Lastly, in Table I, we compare the number of arithmetic

operations for a 64× 64 16-QAM system and a 32× 32 64-

QAM system. It can be observed that LBTS (3, 3) requires

lowest number of arithmetic operations after ULAS. As an

illustration, for a 32 × 32 64-QAM system at Eb/N0 = 18
dB, the savings in complexities are nearly 23%, 90%, 86%,

and 98% compared to BB (5, 2), BB (36, 2), MLAS, and RTS,

respectively. Only ULAS has a lower complexity, however it

has an inferior BER performance (see Fig. 1(b) and Fig. 1(c)).

It may be noted that the complexities of LBTS (3, 3), BB (5, 2),

and BB (36, 2) are directly proportional to the number of QPs

solved viz. 18, 20, and 144 respectively.

VI. CONCLUSIONS

We have considered an MIQP based approach to propose

LBTS - a low complexity tree search algorithm for detection

in large MIMO systems. The algorithm is based on a novel

branching strategy using a recently proposed error likelihood

metric which helps in searching the tree more efficiently. We

TABLE I
COMPARISON BASED ON ARITHMETIC OPERATIONS (×10

5) PER BIT

Detection

Algorithms

32× 32 64 QAM 64 × 64 16 QAM

12 dB 18 dB 8 dB 14 dB

MLAS 34.237 37.250 115.157 80.505

RTS 560.104 292.026 426.956 222.454

ULAS 0.213 0.199 2.993 1.309

BB (5, 2) 6.862 6.335 39.807 40.780

BB (36, 2) 49.580 50.667 298.033 306.465

LBTS (3, 3) 4.725 4.868 27.308 27.784

combine it with a node selection strategy to obtain a good

trade-off between performance and complexity. Simulation

results show that LBTS provides a better error performance, at

a lower complexity, compared to existing algorithms for large

MIMO systems.
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