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Abstract— In UWB systems, FCC mask puts a constraint on
the Maximum Allowable Transmit Power (MATP) of a pulse.
The transmit power of a pulse is an important parameter that
determines the BER performance and range. In this paper a
subspace based approach has been found to make the MATP
optimization easier which otherwise seems intractable due to
mask constraints. The design procedure begins with some pulse
width and then we optimize for MATP. The obtained pulses turn
out to have higher MATP than the known pulses of the same
width. We show that using the proposed pulses, a lower BER
than that of the existing pulses can be achieved. The proposed
approach is applicable to the FCC mask or any other piecewise
constant mask that may be proposed in future.

I. INTRODUCTION

Recently there has been a spate of research in the area
of pulse design in general, as well as for UWB applications
[1], [2], [3]. In a UWB system, the choice of pulse shape
strongly affects the design of transceiver as well as the bit error
performance. Gaussian monocycles were initially proposed
and are being widely used for UWB applications [4]. In the
light of [5], pulses for UWB need not be constrained to some
standard shapes like Gaussian monocycles and its derivatives.
Hence, it is possible to consider new approaches to pulse
design for UWB applications. A pulse designed for UWB
should have a small pulse width and it should fit the FCC
mask [4]. Recently, new pulse families have been proposed
which were shown to fit the FCC mask criterion [3], [6], [7],
[8].

Apart from mask fitting, the pulses should also have other
desirable characteristics. It is well known that the BER per-
formance of a pulse depends on the transmitted power. It was
shown in [6] and [7] that the pulse shape puts a constraint
on the maximum allowable transmit power that could be
transmitted without violating the FCC mask. We refer to this
Maximum Allowable Transmit Power as the MATP of that
pulse. References [6] and [7] have tried to optimize pulses
based on Gaussian monocycles for MATP subject to FCC
mask constraint. However, these pulse designs for increased
MATP resulted in increase of pulse width which is undesirable
for high data rate applications [6], [7]. Hence, it is desired
to examine whether it is possible to have pulses with higher
transmit power than the existing pulses without compromising
on pulse width.

In this paper we design pulses for a given pulse width that
not only fit the FCC mask but also have more MATP than the
contemporary pulses of same width. We also show that for a
fixed data rate, a lower BER than that of the existing pulses
can be achieved using the proposed pulses. Further, using the
proposed design procedure, pulses can be designed for any
piecewise constant mask.

The paper is organized as follows. In the next section we
discuss some preliminaries and highlight the importance of
MATP in UWB communications. Section III discusses the new
design approach. In Section IV, design examples are given
to illustrate the usefulness of the proposed family. Finally,
Section V summarizes the results obtained.

II. PRELIMINARIES

Several modulation techniques have been proposed for
UWB communications. In schemes such as Biphase Modu-
lation (BPM) , On-Off Keying, Time-Hopping Binary Phase
Shift Keying, Time-Hopping Pulse Position Modulation and
Pulse Position Modulation, transmit power of the pulse plays
an important role in deciding the BER performance [4], [9].
For example, for BPM, the BER is given by [10]

Pe = Q

(√
2Er

No

)
(1)

where Er is the received energy per bit and No/2 is the double
sided PSD of Additive White Gaussian Noise (AWGN). Let
Tb be the bit interval. If α is the attenuation factor, then
the received energy per bit is directly proportional to the
transmitted energy per bit Et and is given by Er = α2Et.
Then the received power is given by Pr = Er/Tb = α2Pt

where Pt is the transmitted power. The SNR at the receiver
is given by Er/No = α2Et/No = α2PtTb/No. Now, because
of the need to satisfy the FCC mask, any arbitrary amount of
power cannot be transmitted and hence maximum value of Pt,
i.e. MATP, is fixed for a pulse. So, for a given noise power
and Tb, arbitrarily high values of SNR cannot be achieved.
Further, from (1), it is clear that BER depends on SNR. Thus
for a pulse with a given MATP, the upper bound on SNR puts a
limit on the minimum achievable BER. It is important to note
that even otherwise, pulses with high transmit power can find
applications in environments with high noise power and/or for
transmitting over longer ranges.
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III. DESIGN APPROACH

In the context of UWB, a pulse can be useful only if its
Power Spectral Density (PSD) lies within the FCC Mask.
Since the FCC mask is defined in the frequency domain, we
propose a frequency domain approach to pulse design. One of
the limitations of such an approach is that the pulse designed
cannot be ensured to be limited in time. This limitation can be
overcome by designing pulses that are highly concentrated in
a given time interval and then truncating them. The measure
of concentration, µ, of a bandlimited function h(t) in the time
interval |t| ≤ T/2 has been defined as [11]

µ =

∫ T/2

−T/2
h2(t)dt∫∞

−∞ h2(t)dt
(2)

A higher µ for a pulse implies a higher concentration in time.
Another issue is the maximization of MATP over the space

of all bandlimited pulses. It becomes complicated by the
constraint that the resulting pulse has to satisfy the mask.
In this paper we show that a subspace based approach leads
to a convenient solution to this problem. In this approach,
the MATP is maximized over a subspace of bandlimited
pulses. We try to find a basis for this subspace of the space
of bandlimited functions (defined later). We show that the
members of this basis with high values of µ can be linearly
combined so that the resulting pulse can be optimized for
MATP subject to mask constraints. We find that it is possible
to truncate these pulses such that the PSD of the truncated
pulse also satisfies the mask. In [14], a basis was found for
the space of bandlimited functions. We point out towards the
end of Section III that the basis derived in [14] is of limited
utility to the problem at hand.

A. Subspace of Bandlimited functions

Let us consider a function P (f) which is real and bandlim-
ited in [fL, fH ] where 0 ≤ fL < fH . The set F = [f1, · · · , fn]
represents a set of frequencies between fL and fH . To get a
subspace of the space of bandlimited functions, B, we define
a linear transformation Γ on P (f) such that

Γ[P (f)] =
√
Tb

n∑
i=1

P (fi)Di(f) (3)

where Di(f) is given by

Di(f) =




Ψ
(

f−fi

fi+1−fi

)
fi ≤ f ≤ fi+1

Ψ
(

fi−f
fi−fi−1

)
fi−1 ≤ f ≤ fi

(4)

Also, f0 = fL, fn+1 = fH and Ψ(f) is any function
bandlimited in the interval [0, 1] with Ψ(0) = 1 and Ψ(1) = 0.
This form of Ψ(f) makes Γ[P (fi)] =

√
TbP (fi) which

simplifies further analysis. Now, using Γ[P (f)], we can form a
real even pulse ge(t) and a real odd pulse go(t). The respective
Fourier transforms Ge(f) and Go(f) are defined by

Ge(f) = Γ[P (f)] + Γ [P (−f)] (5)

Go(f) = j(Γ[P (f)] − Γ [P (−f)])

The sets of even and odd pulses form subspaces We and Wo

of B. We want to find the functions in We and Wo which have
the largest value of µ as defined by (2).

B. Most concentrated pulse

We first find a simplified expression of concentration for
pulses in We. Since the design is in frequency domain, we try
to express (2) in terms of Ge(f). Using the inverse Fourier
transform expression ge(t) = 2

∫ fH

fL
Ge(f) cos(2πft)df in the

numerator and using Parseval’s theorem in the denominator of
(2), µ can be expressed as

µ =
4
∫ T/2

−T/2

∫ fH

fL

∫ fH

fL
Ge(fx)Ge(fy)ζ(fx, fy, t)dfxdfydt

2
∫ fH

fL
|Ge(f)|2df

(6)
where ζ(fx, fy, t) = cos(2πfxt) cos(2πfyt). Interchanging
the order of integrals and evaluating the integral with respect
to t, we get

µ =
T
∫ fH

fL

∫ fH

fL
Ge(fx)Ge(fy)ρ(fx, fy)dfxdfy∫ fH

fL
|Ge(f)|2df

(7)

where ρ(fx, fy) is given by

ρ(fx, fy) = sinc(T (fx + fy) + sinc(T (fx − fy)) (8)

Now, substituting (3) in (5) and Ge(f) from (5) into (7), we
get

µ(p) =
ptAp
ptCp

(9)

where A = [aij ]n×n, p = [P (f1), · · · , P (fn)]t ∈ �n×1

and C = [cij ]n×n. We refer to p as the pulse vector. Bold
representation is used for vectors. The entries in A and C are
given by

aij = T

∫ fH

fL

∫ fH

fL

Di(fx)Dj(fy)ρ(fx, fy)dfxdfy

cij =
∫ fH

fL

Di(f)Dj(f)df

It can be shown that for go(t) ∈ Wo, µ(p) can be expressed
as in (9) with ρ(fx, fy) given by

ρ(fx, fy) = sinc(T (fx − fy)) − sinc(T (fx + fy)) (10)

Thus, by choosing ρ(fx, fy) from (8) or (10), (9) defines
concentration for pulses belonging to We or Wo respectively.
Let g(t) be a pulse belonging to We or Wo with Fourier
transform G(f). Then its concentration is given by (9) where
p is the corresponding pulse vector of G(f).

The ratio in (9) is popularly known as the Rayleigh Quotient
of the matrices A and C and its maxima or minima occur when
the gradient ∇µ(p) = 0 [12]. The gradient of (9) is given by

∇µ(p) =
2

ptCp
[A− µ(p)C]p (11)

Therefore, the maxima or minima occur at

Ap = λCp (12)
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ge(t) = 2
√
Tb

n∑
i=1

P (fi) Re
[
ej2πfit {(fi+1 − fi)ψ(t(fi+1 − fi)) + (fi − fi−1)ψ(t(fi−1 − fi))}

]
(15)

go(t) = −2
√
Tb

n∑
i=1

P (fi) Im
[
ej2πfit {(fi+1 − fi)ψ(t(fi+1 − fi)) + (fi − fi−1)ψ(t(fi−1 − fi))}

]
(16)

The solutions of (12), {(pi, λi)}, are generalized eigenvectors
and eigenvalues of the matrices A and C. We denote the
pulses corresponding to these eigenvectors as the eigenpulses
gi(t) with Fourier transform Gi(f). As is clear from (12),
the eigenvalues denote the concentration of the eigenpulse
corresponding to eigenvector pi and hence a high λi implies
high concentration of that eigenpulse in time. The eigenpulse
corresponding to pulse vector p with the largest eigenvalue is
the most concentrated in time [−T/2, T/2] for the space of
We or Wo.

C. Basis of Eigenpulses

We show that the eigenpulses form the basis of the sub-
spaces We or Wo depending upon the choice of ρ(fx, fy) from
(8) or (10) respectively. As ptCp = 1

Tb

∫ fH

fL
|G(f)|2df >

0 for any p, hence C is positive definite. By Cholesky
decomposition, C can be expressed as C = LLt, where L
is an invertible matrix [12]. Substituting C = LLt in (12) and
pre-multiplying by L−1, we get

(L−1A(Lt)−1)(Ltp) = λLtp

Thus Ltp is the eigenvector of (L−1A(Lt)−1) for eigenvalue
λ. Using (Lt)−1 = (L−1)t, (L−1A(Lt)−1) = (L−1A(L−1)t).
Since (L−1A(L−1)t) is real and symmetric hence Ltp spans
�n×1 [12]. Since Lt is invertible hence the set of eigenvectors
{pi} also spans �n×1. So (12) has n independent eigenvectors
given by {pi}, i = 1, · · · , n.

For the eigenpulses {Gi(f)} to form a basis, we show that
all the eigenpulses are linearly independent and that they span
their corresponding subspace We or Wo.

Lemma 1: The set of eigenpulses {Gi(f)} corresponding
to independent eigenvectors {pi} is linearly independent.

Proof: Since {pi} forms a set of linearly independent
vectors, it implies that if

∑
i xipi = 0 then all xi = 0.

Consider, ∑
i

xiGi(f) = 0 ∀f

Using (3) and (5) in the above equation, we get for We(∑
i

xipi

)
· d(f) +

(∑
i

xipi

)
· d(−f) = 0 (13)

and for Wo

j

((∑
i

xipi

)
· d(f) −

(∑
i

xipi

)
· d(−f)

)
= 0 (14)

where d(f) = [D1(f),D2(f), · · · ,Dn(f)]t and dot product
a · b = atb. For f > 0, both (13) and (14) become(∑

i

xipi

)
· d(f) = 0

This is true only if (
∑

i xipi) = 0. Since {pi} is an
independent set, this implies all xi = 0. This implies that
Gi(f) are independent.

It can be easily seen from (3) and (5) that We and
Wo are n dimensional subspaces. Since eigenpulses Gi(f)
corresponding to the eigenvectors of (12) form a set of n
independent pulses in Wo or We, they form a basis of Wo

or We respectively.
From the above discussion, we have been able to obtain

a set of eigenpulses that span the subspace of even or odd
bandlimited pulses. Moreover, these pulses are bandlimited
and can be ordered according to their energy concentration
as defined by (2). In subsequent sections, we use these
eigenpulses to obtain pulses with desired characteristics.

Time domain expression of the resulting pulse ge(t) and
go(t) are given in (15) and (16) respectively where ψ(t) is
the inverse Fourier transform of Ψ(f) and Re(·) and Im(·)
represents the real and imaginary parts respectively.

D. Linear Combination of Eigenpulses

The individual eigenpulses that are highly concentrated in
time, i.e. λ close to 1, may not have high MATP. Hence, we
consider the linear combination of eigenpulses to obtain pulses
maximized for MATP. As shown by the following lemma, the
concentration of the linear combination of eigenpulses can be
ensured to be greater than λ if the eigenpulses with concen-
tration greater than λ are considered for the combination.

Lemma 2: The concentration of the linear combination of
eigenpulses is lower bounded by the minimum eigenvalue of
the constituent eigenpulses.

Proof: Let us consider the linear combination of m or-
dered eigenpulses with generalized eigenvalues {λ1, · · · , λm}.
Then the linear combination of the eigenvectors is given as
p = V a, where V = [p1 · · ·pm] represents the eigenvectors
used for linear combination. The vector containing the coeffi-
cients used in the linear combination is a = [a1, · · · , am]t.
Substituting p = V a in (9), we get µ = atV tAV a

atV tCV a . The
maximum and minimum values of µ occur when the gradient
of µ equals zero. The gradient can be found as in (11) and
consequently the maximum and minimum values of µ occur
at eigenvectors with maximum and minimum eigenvalues of
the matrices (V tAV, V tCV ). It can be seen that the eigen-
values of (V tAV, V tCV ) are λk, k = {1, · · · ,m} with the
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TABLE I

EIGENVALUES OBTAINED FOR We AND Wo

T = 0.46ns T = 1.0ns
Even Odd Even Odd
1.0000e − 0 1.0000e − 0 1.0000e − 0 1.0000e − 0
9.9995e − 1 9.9997e − 1 9.9998e − 1 9.9998e − 1
9.9953e − 1 9.9909e − 1 9.9993e − 1 9.9993e − 1
9.8773e − 1 9.8377e − 1 9.9980e − 1 9.9980e − 1
7.9664e − 1 8.9746e − 1 9.9953e − 1 9.9956e − 1
5.6262e − 1 3.2219e − 1 9.9903e − 1 9.9905e − 1
5.6829e − 2 1.4458e − 2 9.9817e − 1 9.9826e − 1
8.4345e − 3 6.2616e − 3 9.9667e − 1 9.9671e − 1
5.1222e − 4 6.0798e − 5 9.9417e − 1 9.9468e − 1
3.4947e − 6 3.0567e − 7 9.8741e − 1 9.7995e − 1

corresponding eigenvectors as ak = [αij ]n×1 where αij = 1
if (i, j) = (k, 1) and αij = 0 otherwise.

E. Mask Fitting

Another aspect of design is that the linear combination of
eigenpulses has to fit the FCC mask. In (3), if an additional
condition is imposed that Ψ(f) is a monotonic function and
Ψ(f) = 1−Ψ(1− f) then it can be easily observed from (3)
and (5) that Ge(f) and Go(f)/j become piecewise monotonic
functions. This means that in any given interval (fi, fi+1), they
are either increasing or decreasing. Let us assume that the
mask is piecewise constant which is true for the case of FCC
mask. Also, let F necessarily include all the points where the
mask is discontinuous and some additional points for more
flexibility in design. Then ensuring that |G(fi)|2/Tb for all
fi ∈ F lie at or below the mask also ensures that |G(f)|2/Tb

lies at or below the mask for all frequencies. Thus the mask
constraints on PSD are given by |G(fi)|2

Tb
≤ M(fi), fi ∈ F

where M(f) represents the mask on PSD. Equivalently, using
Γ[P (fi)] =

√
TbP (fi) and (5), the constraints can be written

as |P (fi)|2 ≤ M(fi), fi ∈ F . Hence, using p = V a, the
constraints in terms of a are given by

−s ≤ V a ≤ s (17)

where V is the matrix of chosen eigenvectors and s =
[
√
M(f1), · · · ,

√
M(fn)]. Thus it can be observed that the

selection of the subspace (3) has reduced the mask fitting
constraint to a set of finite number of linear inequalities.

F. Optimization

The linear combination of eigenpulses can be easily opti-
mized for MATP. From Section III.A, the transmit power of
the truncated pulse is 1

Tb

∫ T/2

−T/2
g2(t)dt = 2ptAp. Then, by

using p = V a, the optimization problem can be written as

maximize 2atV tAV a

subject to −s ≤ V a ≤ s (18)

Since A is positive definite, (V a)tA(V a) > 0, hence V tAV is
also a positive definite matrix. Hence, 2atV tAV a is a convex
function in a. We show in Appendix that the inequalities
in (18) define a bounded polyhedron. So, the problem is to

TABLE II

TRADE-OFF BETWEEN PULSE WIDTH AND MATP FOR We

T Number of MATPs MATPp

in ns eigenpulses in mW in mW

0.35 2 0.575 0.327
0.46 3 0.601 0.461

4 0.846
4 0.772

0.60 5 0.822 0.417
6 0.865
7 0.866
6 0.886

0.80 7 0.926 0.440
8 0.928
7 0.910

1.00 8 0.935 0.336
9 0.940

maximize a convex function in a bounded polyhedron and
hence, the maximum will occur at one of the vertices of the
polyhedron [13]. The vertices of the polyhedron defined by
the inequalities can be found using Vertex Enumeration for
Convex Polytopes and Arrangements Package of MATHE-
MATICA. The function (2atV tAV a) is then evaluated at all
the vertices obtained and the vertex with the maximum value
of function is the desired solution.

In [14], a basis of the space of bandlimited functions was
derived and the first few basis members were shown to be
highly concentrated in time. However, considering their linear
combination for optimization of MATP seems intractable as
it leads to an infinite number of mask constraints. This is
because, while optimization, we will have to ensure that the
linear combination lies at or below the mask at every frequency
value in contrast to a finite number of frequency values for the
subspace based approach.

IV. DESIGN EXAMPLES

Using the discussed approach, pulses can be designed for
any mask that is piecewise constant. Hence, we can design
pulses that satisfy the indoor FCC mask or those that satisfy
the outdoor FCC mask [4]. In this paper we design pulses for
the indoor FCC mask. The vector F considered is

F = {fk|fk = 2.6 + 0.5(k − 1), k = 1, · · · , 23}GHz (19)

Also, let fL = 2.1GHz and fH = 14.1GHz so that the
pulse (untruncated) obtained is bandlimited between 2.1GHz
to 14.1GHz. This choice of fL and fH includes the band
[3.1, 10.6]GHz where FCC has allowed a higher PSD. More
points in F provide better design at the cost of computa-
tional complexity. For illustration, we consider Ψ(f) to be
(1 − f) ∀f ∈ [0, 1]. Then, using (12) we can compute the
generalized eigenvalues and generalized eigenvectors of the
matrices (A,C) for values of pulse width T . The time domain
expression of the pulse g(t) can be found by substituting ψ(t)
and the corresponding pulse vector in (15) or (16) where ψ(t)
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Fig. 1. First three normalized eigenpulses for T = 0.46ns

is given by

ψ(t) =
1
2

sinc2(t) − j

2πt
(1 + sinc(2t)) (20)

Table I gives the eigenvalues obtained for two different
values of T , 0.46ns and 1.0ns, both for We and Wo. Only the
first 10 ordered eigenvalues are shown. It can be re-emphasized
that by choosing ρ(·, ·) from (8) or (10), we can choose
the pulse to be even or odd respectively. After truncation,
the designed pulse is likely to fit the mask if it is highly
concentrated in time [−T/2, T/2]. Lemma 2 shows that the
concentration of the designed pulse is lower bounded by the
minimum eigenvalue of its constituent eigenpulses. Hence it
is desirable to combine eigenpulses with high concentration,
µ.

As can be noted from the table, the first few eigenvalues
are close to 1 implying that the corresponding eigenpulses are
highly concentrated in time [−T/2, T/2]. It can be noted that
the eigenvalues become significantly small after the first few.
This behaviour is similar to that observed in [14]. Also, the
number of eigenvectors with eigenvalues close to 1 is more
for T = 1.0ns than when T = 0.46ns. This implies that for
a higher pulse width T , we have more vectors that can be
combined and hence more flexibility in design as the eigen-
pulses are linearly independent (Lemma 1). For T = 0.46ns,
normalized eigenpulses, gi(t)/max(|gi(t)|), for the first three
eigenvalues are shown in Fig. 1. Here, max(|gi(t)|) represents
the maximum value of |gi(t)|. The high concentration of the
first three eigenpulses as shown in Table I can be corroborated
by Fig. 1.

A. Comparisons

Table II shows the MATP of the designed pulses for
different pulse widths along with the number of eigenpulses
used for linear combination. All the pulses shown in the table
have a concentration µ > 99.9% and satisfy the FCC mask
after truncation to [−T/2, T/2]. The values of MATP shown
in the table are for pulses truncated to [−T/2, T/2]. For a
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−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

Frequency (in GHz)

P
S

D
 (i

n 
dB

m
 / 

M
H

z)

FCC Indoor Mask  
PSD (untruncated)
PSD (truncated)  

Fig. 2. PSD of the pulse shape designed by linearly combining first four
ordered eigenvectors for T = 0.46ns
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Fig. 3. Time domain of normalized pulse shapes designed by linearly
combining first four ordered eigenvectors for T = 0.46ns

given T , it can be observed that the MATP is higher when
more number of eigenpulses are linearly combined. We have
shown the comparisons for even pulses. Similar results hold
for odd pulses also. The obtained results are compared with
the Prolate Spheroidal pulses (PS) [8] for the same values of
T . In [8], multiple pulses can be designed for a given T . In
Table II, MATPp is the maximum MATP obtained from all
the PS pulses that can be designed for the given T . It can be
seen that the new pulses outperform the PS pulses in MATP.
The performance of subspace based pulses is also better than
that of the popularly used Gaussian 4th and 5th monocycles
[9], [6]. Both these pulses have pulse width T = 0.46ns. The
MATP of Gaussian 4th monocycle is 0.629mW and that of
Gaussian 5th monocycle is 0.482mW. Newly designed pulse
has a higher MATP of 0.846mW for the same pulse width.

We can also observe that as T for the proposed pulses in-
creases, MATP increases. However, the potentially achievable
maximum data rate, Rmax, decreases with increase in T . Thus,
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there exists a trade-off between MATP and Rmax. Attempts
to get pulses with more MATP have been done in [6], [7]. The
pulse designed for FCC mask in [6] has an MATP of 0.560mW
and 0.6ns pulse width. The subspace based design approach
allows us to achieve a higher MATP of 0.866mW for the same
pulse width. In [7], for a pulse width of 1.3ns, the MATP
obtained was 0.910mW. We have obtained a higher MATP of
0.940mW for a lower pulse width of 1.0ns by combining the
first 9 ordered eigenpulses. Recently, in [3], pulses have been
designed for UWB using B-Spline functions. The MATP of
these pulses, referred to as B-Spline pulses, are 0.213mW and
0.281mW and the pulse width is 1.6ns. As is clear from Table
II, our approach yields pulses with much higher MATP even
at lower pulse widths. It can be noted that unlike the proposed
approach, none of the design procedures in [6], [3] give the
freedom to decide the pulse width while designing. However,
in [3] and [8], multiple orthogonal pulses can be designed.

Fig. 2 depicts the PSD of the untruncated even pulse
designed for T = 0.46ns by combining the first four ordered
eigenpulses as given in Table II, along with the FCC mask.
Also shown is the PSD of this pulse when truncated in
[−0.23, 0.23]ns. It can be easily observed that the PSD of
the truncated pulse is below the FCC mask. This can be
attributed to the high concentration of the untruncated pulse
in [−0.23, 0.23]ns. Fig. 3 shows the normalized even and
odd pulses, g(t)/max(|g(t)|), designed for T = 0.46ns by
combining the first four ordered eigenpulses. It should be
noted that even and odd pulses are orthogonal and hence can
be used for increasing the data rate of the same user.

The BER for BPM as given in (1) can also be expressed in
terms of transmit power Pt as

Pe = Q



√

2α2TbPt

No




For a given Tb, No and α2, the lower bound on Pe for a
particular pulse can be obtained by replacing Pt with MATP
of that pulse. If different pulses are transmitted at the same
data rate 1/Tb and under same transmission conditions, that
is, same α and No, then it is evident from the BER expression
that since proposed pulses have higher MATP, they will have
a lower BER.

V. CONCLUSION

In this paper we have proposed a subspace based approach
to pulse design with applications to UWB. A subspace of
bandlimited functions has been found to make the MATP
optimization easier, which otherwise seems intractable due
to mask constraints. We find a basis to this subspace and
choose the members of the basis which are concentrated in
time. Linear combination of these members is optimized for
MATP subject to mask constraints. The obtained pulses have
been found to have higher MATP than the existing pulses for
the same pulse width. It is observed that for the subspace
considered, there exists a tradeoff between the pulse width
and MATP. We also show that for a fixed data rate, a lower

BER than that of the existing pulses can be achieved using
the proposed pulses. The proposed approach is applicable to
the FCC mask or any other piecewise constant mask that may
be proposed in future.
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APPENDIX

Using the fact that V = [p1 · · ·pm], the set of inequalities
in (18) can also be written as

−s ≤ [p1 p2 · · · pm]a ≤ s (21)

All the m columns of matrix V are independent as the columns
pi, i = {1, · · · ,m} are eigenvectors which have been proved
to be independent. Hence, there will be m independent rows
in V , say r1, · · · , rm ∈ �1×m. Since a ∈ �m×1, at can
be represented as the linear combination of m independent
rows of V . From (21), ria is bounded for all i = 1, · · · ,m.
Let R = [r1t, · · · , rmt]t and Ra = Λ. Since R is a m ×m
matrix with m independent rows, R−1 exists. Therefore, a can
be expressed as a = R−1Λ. As Λ is bounded, all the entries
of R−1Λ are also bounded. So, ‖a‖ is bounded.
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