Semester II, 2017-18
Department of Physics, IIT Kanpur

PHY103A: Lecture \# 3

(Text Book: Intro to Electrodynamics by Griffiths, $3^{\text {rd }}$ Ed.)

Anand Kumar Jha
08-Jan-2018

Notes

- The first tutorial is tomorrow (Tuesday).
- Updated lecture notes will be uploaded right after the class.
- Office Hour - Friday 2:30-3:30 pm
- Phone: 7014(Off); 962-142-3993(Mobile) akjha@iitk.ac.in; akjha9@gmail.com
- Tutorial Sections have been finalized and put up on the webpage.
- Course Webpage: http://home.iitk.ac.in/~akjha/PHY103.htm

Summary of Lecture \# 2:

Gradient of a scalar ∇T

$$
\nabla T \equiv \frac{\partial T}{\partial x} \widehat{x}+\frac{\partial T}{\partial y} \widehat{y}+\frac{\partial T}{\partial z} \hat{\mathbf{z}}
$$

Divergence of a vector $\boldsymbol{\nabla} \cdot \mathrm{V}$

$$
\boldsymbol{\nabla} \cdot \mathbf{V}=\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}\right)
$$

Curl of a vector $\nabla \times \mathbf{V}$

$$
\begin{aligned}
\boldsymbol{\nabla} \times \mathbf{V} & =\left|\begin{array}{ccc}
\widehat{\boldsymbol{x}} & \widehat{\boldsymbol{y}} & \hat{\mathbf{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right| \\
& =\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) \hat{\boldsymbol{x}}+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) \hat{\boldsymbol{y}}+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) \hat{\mathbf{z}}
\end{aligned}
$$

Integral Calculus:

The ordinary integral that we know of is of the form: $\int_{a}^{b} f(x) d x$ In vector calculus we encounter many other types of integrals.

Line Integral:

If the path is a closed loop then the line integral is written as

$$
\oint \mathbf{V} \cdot d \mathbf{l}
$$

- When do we need line integrals?

Work done by a force along a given path involves line integral.

Example (G: Ex. 1.6)

$\mathrm{Q}: \mathbf{V}=y^{2} \widehat{\boldsymbol{x}}+2 x(y+1) \hat{\boldsymbol{y}}$? What is the line integral from A to B along path (1) and (2)?

Along path (1) We have $\boldsymbol{d} \boldsymbol{l}=d x \widehat{\boldsymbol{x}}+d y \widehat{\boldsymbol{y}}$.
(i) $\boldsymbol{d} \boldsymbol{l}=d x \hat{\boldsymbol{x}} ; \quad y=1 ; \quad \int \mathbf{V} \cdot \boldsymbol{d} \boldsymbol{l}=\int y^{2} d x=1$
(ii) $\boldsymbol{d} \boldsymbol{l}=d y \widehat{\boldsymbol{y}} ; \quad x=2 ; \int \mathbf{V} \cdot \boldsymbol{d} \boldsymbol{l}=\int_{1}^{2} 4(y+1) d y=10$

Along path (2): $\boldsymbol{d} \boldsymbol{l}=d x \widehat{\boldsymbol{x}}+d y \widehat{\boldsymbol{y}} ; \quad x=y ; \quad d x=d y$

$$
\int \mathbf{V} \cdot \boldsymbol{d} \boldsymbol{l}=\int_{1}^{2}\left(x^{2}+2 x^{2}+2 x\right) d x=10
$$

$$
\oint \mathbf{V} \cdot \boldsymbol{d} \boldsymbol{l}=11-10=1
$$

This means that if \mathbf{V} represented the force vector, it would be a non-conservative force

Surface Integral:

or

- For a closed surface, the area vector points outwards.
- For open surfaces, the direction of the area vector is decided based on a given problem.
- When do we need area integrals?

Flux through a given area involves surface integral.

Example (Griffiths: Ex. 1.7)

$\mathrm{Q}: \mathbf{V}=2 x z \widehat{\boldsymbol{x}}+(x+2) \widehat{\boldsymbol{y}}+y\left(z^{2}-3\right) \hat{\boldsymbol{z}}$? Calculate the Surface integral.
"upward and outward" is the positive direction
(i) $x=2, d \boldsymbol{a}=d y d z \widehat{\boldsymbol{x}} ; V \cdot d \boldsymbol{a}=2 x z d y d z=4 z d y d z$

$$
\int \boldsymbol{V} \cdot d \boldsymbol{a}=\int_{0}^{2} \int_{0}^{2} 4 z d y d z=16
$$

(ii) $\int \mathbf{V} \cdot d \mathbf{a}=0$
(iii) $\int \mathbf{V} \cdot d \mathbf{a}=12$
(iv) $\int \mathbf{V} \cdot d \mathbf{a}=-12$
(v) $\int \mathbf{V} \cdot d \mathbf{a}=4$
(vi) $\int \mathbf{V} \cdot d \mathbf{a}=-12$

$$
\oint \mathbf{V} \cdot d \mathbf{a}=16+0+12-12+4-12=8
$$

Volume Integral:

$$
\int T(x, y, z) d \tau
$$

- In Cartesian coordinate system the volume element is given by $d \tau=d x d y d z$.
- One can have the volume integral of a vector function which \mathbf{V} as

$$
\int \mathbf{V} d \tau=\int \mathbf{V}_{x} d \tau \widehat{\boldsymbol{x}}+\int \mathbf{V}_{y} d \tau \widehat{\boldsymbol{y}}+\int \mathbf{V}_{z} d \tau \hat{\mathbf{z}}
$$

Example (Griffiths: Ex. 1.8)

Q: Calculate the volume integral of $T=x y z^{2}$ over the volume of the prism

We find that z integral runs from 0 to 3 . The y integral runs from 0 to 1 , but the x integral runs from 0 to $1-y$ only. Therefore, the volume integral is given by

$$
\int_{0}^{1-y} \int_{0}^{1} \int_{0}^{3} x y z^{2} d x d y d z=\frac{3}{8}
$$

The fundamental Theorem of Calculus:

The integral of a derivative over a region is given by the value of the function at the boundaries

Example

$$
\int_{a}^{b} x d x=\int_{a}^{b} \frac{d\left(\frac{x^{2}}{2}\right)}{d x} d x=\left[\frac{x^{2}}{2}\right]_{a}^{b}=\frac{b^{2}-a^{2}}{2}
$$

- In vector calculus, we have three different types of derivative (gradient, divergence, and curl) and correspondingly three different types of regions and end points.

The fundamental Theorem of Calculus:

$$
\int_{a}^{b} \frac{d f}{d x} d x=f(b)-f(a)
$$

The integral of a derivative over a region is given by the value of the function at the boundaries

The fundamental Theorem for Gradient:

$\int_{a}^{b} \nabla T \cdot d \mathbf{l}=T(b)-T(a) \quad$| The integral of a derivative (gradient) |
| :--- |
| over a region (path) is given by the |
| value of the function at the boundaries |
| (end-points) |

The fundamental Theorem for Divergence (Gauss's theorem):
$\int_{\text {Vol }}(\nabla \cdot \mathbf{V}) d \tau=\oint_{\text {Surf }} \mathbf{V} \cdot d \mathbf{a}$
The integral of a derivative (divergence) over a region (volume) is given by the value of the function at the boundaries (bounding surface)

The fundamental Theorem
$\int_{\text {Surf }}(\nabla \times \mathbf{V}) \cdot d \mathbf{a}=\oint_{\text {Path }} \mathbf{V} \cdot d \mathbf{l}$
The integral of a derivative (curl) over a region (surface) is given by the value of the function at the boundaries (closedpath)

Spherical Polar Coordinates:

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta
$$

A vector in the spherical polar coordinate is given by

$$
\mathbf{A}=\mathrm{A}_{\boldsymbol{r}} \hat{\boldsymbol{r}}+\mathrm{A}_{\boldsymbol{\theta}} \widehat{\boldsymbol{\theta}}+\mathrm{A}_{\boldsymbol{\phi}} \widehat{\boldsymbol{\phi}}
$$

$$
\hat{\boldsymbol{r}}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}}
$$

$$
\widehat{\boldsymbol{\theta}}=\cos \theta \cos \phi \hat{\mathbf{x}}+\cos \theta \sin \phi \hat{\mathbf{y}}-\sin \theta \hat{\mathbf{z}}
$$

$$
\widehat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}
$$

The infinitesimal displacement vector in the spherical polar coordinate is given by
$d \mathbf{l}=d l_{\boldsymbol{r}} \hat{\boldsymbol{r}}+d l_{\boldsymbol{\theta}} \widehat{\boldsymbol{\theta}}+d l_{\boldsymbol{\phi}} \widehat{\boldsymbol{\phi}} \quad$ (In Cartesian system we have $d \mathbf{l}=d x \widehat{\boldsymbol{x}}+d y \widehat{\boldsymbol{y}}+d z \widehat{\boldsymbol{z}}$)

Spherical Polar Coordinates:

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta
$$

A vector in the spherical polar coordinate is given by

$$
\mathbf{A}=\mathrm{A}_{\boldsymbol{r}} \widehat{\boldsymbol{r}}+\mathrm{A}_{\boldsymbol{\theta}} \widehat{\boldsymbol{\theta}}+\mathrm{A}_{\boldsymbol{\phi}} \widehat{\boldsymbol{\phi}}
$$

$$
\hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}}
$$

$$
\widehat{\boldsymbol{\theta}}=\cos \theta \cos \phi \hat{\mathbf{x}}+\cos \theta \sin \phi \hat{\mathbf{y}}-\sin \theta \hat{\mathbf{z}}
$$

$$
\widehat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}
$$

Griffiths: Prob 1.37
The infinitesimal displacement vector in the spherical polar coordinate is given by

$$
\begin{aligned}
& d \mathbf{l}=d l_{\boldsymbol{r}} \hat{\boldsymbol{r}}+d l_{\boldsymbol{\theta}} \widehat{\boldsymbol{\theta}}+d l_{\boldsymbol{\phi}} \widehat{\boldsymbol{\phi}} \quad \text { (In Cartesian system we have } d \mathbf{l}=d x \widehat{\boldsymbol{x}}+d y \widehat{\boldsymbol{y}}+d z \hat{\mathbf{z}} \text {) } \\
& d \mathbf{l}=d r \hat{\boldsymbol{r}}+r d \theta \widehat{\boldsymbol{\theta}}+r \sin \theta d \phi \widehat{\boldsymbol{\phi}}
\end{aligned}
$$

The infinitesimal volume element: $d \tau=d l_{\boldsymbol{r}} d l_{\boldsymbol{\theta}} d l_{\boldsymbol{\phi}}=r^{2} \sin \theta d r d \theta d \phi$

The infinitesimal area element (it depends):

$$
d \mathbf{a}=d l_{\boldsymbol{\theta}} d l_{\boldsymbol{\phi}} \hat{\boldsymbol{r}}=r^{2} \sin \theta d \theta d \phi \hat{\boldsymbol{r}}
$$

(over the surface of a sphere)

Cylindrical Coordinates:

The infinitesimal displacement vector in the cylindrical coordinates is given by
$d \mathbf{l}=d l_{s} \hat{\boldsymbol{s}}+d l_{\boldsymbol{\phi}} \widehat{\boldsymbol{\phi}}+d l_{z} \hat{\boldsymbol{z}}$
(In Cartesian system we have $d \mathbf{l}=d x \widehat{\boldsymbol{x}}+d y \widehat{\boldsymbol{y}}+d z \widehat{\mathbf{z}}$)

Cylindrical Coordinates:

$$
x=\mathrm{s} \cos \phi, \quad y=s \sin \phi, \quad z=z
$$

A vector in the cylindrical coordinates is given by

$$
\mathbf{A}=\mathrm{A}_{\boldsymbol{s}} \hat{\boldsymbol{s}}+\mathrm{A}_{\boldsymbol{\phi}} \widehat{\boldsymbol{\phi}}+\mathrm{A}_{\mathbf{z}} \hat{\boldsymbol{z}}
$$

$$
\begin{aligned}
& \hat{\mathbf{s}}=\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}} \\
& \widehat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}} \\
& \hat{\mathbf{z}}=\hat{\mathbf{z}}
\end{aligned}
$$

The infinitesimal displacement vector in the cylindrical coordinates is given by

$$
\begin{aligned}
& d \mathbf{l}=d l_{\boldsymbol{s}} \hat{\boldsymbol{s}}+d l_{\boldsymbol{\phi}} \widehat{\boldsymbol{\phi}}+d l_{\mathbf{z}} \hat{\mathbf{z}} \\
& d \mathbf{l}=d s \widehat{\boldsymbol{s}}+s d \phi \widehat{\boldsymbol{\phi}}+d z \hat{\mathbf{z}}
\end{aligned}
$$

$$
\text { (In Cartesian system we have } d \mathbf{l}=d x \widehat{\boldsymbol{x}}+d y \widehat{\boldsymbol{y}}+d z \widehat{\mathbf{z}} \text {) }
$$

The infinitesimal volume element:
$d \tau=d l_{s} d l_{\phi} d l_{z}=s d s d \phi d z$
The infinitesimal area element (it depends): $d \mathbf{a}=d l_{\phi} d l_{\mathbf{z}} \hat{\boldsymbol{s}}=s d \phi d z \hat{\boldsymbol{s}}$
(over the surface of a cylinder)

Gradient, Divergence and Curl in Cartesian, Spherical-polar and Cylindrical Coordinate systems:

- See the formulas listed inside the front cover of Griffiths

