
Pentagonal and trigonal quasilattices and their approximants

Anandh Subramaniam*, I and E. A. LordII

I Regional Research Laboratory, Bhopal-462026, India
II Indian Institute of Science, Department of Metallurgy, Bangalore-560012, India

Received June 4, 2002; accepted October 22, 2002

Abstract. The Strip Projection Method is used to gener-
ate pentagonal and trigonal 2-dimensional quasilattices as
rational approximants to the icosahedral quasilattice.
Further, 3-dimensionally periodic structures are generated
as rational approximants to these 2-dimensional quasilat-
tices. A simplified approach based on uniform distortions
of perpendicular space is put forth for the analyses.

1. Introduction

The Strip Projection Method has proved to be a powerful
method to generate quasilattices and their approximants
(Kramer and Neri, 1984; Duneau and Katz, 1985; Bak,
1986, Elser, 1986; Katz and Duneau, 1986). Generation
and investigation of various types of 3-D quasilattices
have been limited essentially to icosahedral quasilattices
(IQL) (Conway and Knowles, 1986; Kupke and Trebin,
1993) and hitherto no detailed studies of their approxi-
mant lattices have been done.

In the current work approximations to
tð¼ ð1þ

ffiffiffi
5

p
Þ=2Þ are made in the perpendicular space

(E?) (Ishii, 1991), thus retaining the original ‘fat’ and
‘thin’ rhombohedrons to tile 3-dimensional space (Ek).
The approximants generated here are thus QC approxi-
mants.

In this investigation, for generation of quasiperiodic
and rational approximant tilings, the software developed
by Ramakrishnan (1999) is used. The program is based on
the modified version of the algorithm by Vogg and Ryder
(1996) and uses the powerful matrix equation solution
method of Lord, Sen and Venkaiah (1990).

In section 2 we generate a quasilattice with pentagonal
symmetry and derive its approximants. Section 3 is de-
voted to the trigonal quasilattice (TQL) and its approxi-
mants. The periods are calculated by the methods intro-
duced by Ishii (1991).

2. Pentagonal quasilattice (PQL) as rational
approximant to the icosahedral lattice

2.1 Matrix formulation

For the icosahedral quasilattice (IQL) the orthogonal
6� 6 matrix that generates the hypercubic lattice in 6D
can be split into a 3� 6 matrix A (corresponding to the
projection on Ek) and a 3� 6 matrix B (corresponding to
the projection on E?):

A ¼
1 0 t 0 t 	1
t 1 0 	1 0 t
0 t 1 t 	1 0

2
4

3
5 ; ð1Þ

B ¼
	t 0 1 0 1 t
1 	t 0 t 0 1
0 1 	t 1 t 0

2
4

3
5 : ð2Þ

Where, t ¼ ð1þ
ffiffiffi
5

p
Þ=2 is the Golden mean (number).

In the current form, the six columns in the B matrix
refer to the six fivefold axes of an icosahedron and ap-
proximation of t by p=q will produce a cubic approximant
(the term approximant and rational approximant are inter-
changeably used in this work). It is to be noted at the out-
set that an overall factor in any row of the B matrix will
not affect the pattern produced in Ek by the strip projec-
tion method, since any such factor corresponds to a scal-
ing of the coordinate axis in E?. Accordingly, it is permis-
sible and convenient to work with an integer matrix B. In
the work of Ishii (1991) this point was not recognized.
The six columns in the A matrix refer to the six fivefold
axes of an icosahedron in Ek; these remain unchanged, so
that the rhombohedral units of the approximants will be
the same as those for the IQL.

2.2 Construction of a quasilattice
with pentagonal symmetry

To construct a quasilattice with pentagonal symmetry the
2-fold axes are chosen perpendicular to a1 (ai and bi refer
to the column vectors of the A and B matrices respec-
tively):

a2 þ a4, a3 	 a6, 	a2 þ a5, 	a3 	 a4 and 	a5 þ a6 .

Three orthogonal vectors can be chosen according to one
of the following two alternatives:
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Scheme I:
a1, a4 þ a2, (a3 þ a6) 	 (	a5 þ a6) ¼ a3 þ a5 	 2a6

Scheme II:
a1, a4þ a2, (a5 	 a2)	 (	a3 	 a4)¼	a2þ a3þ a4þ a5 .
The choice of mutually orthogonal basis vectors ac-

cording scheme II is shown in Fig. 1.

The transformation matrices (T or T	1) which act upon
B for the two schemes are:

½b1 b4 þ b2 b3 þ b5 	 2b6� ¼ TI ¼
	t 0 	2t	1

1 0 	2
0 2 0

2
4

3
5 ;

½b1 b4þ b2 	 b2 þ b3 þ b4þ b5� ¼TII ¼
	t 0 2
1 0 2t
0 2 0

2
4

3
5:

Eliminating overall factors from the rows of the inverses,

T	1
I ¼

t 	1 0
0 0 1
1 t 0

2
4

3
5 and T	1

II ¼
t 1 0
0 0 1
1 t 0

2
4

3
5 :

ð3Þ
Giving,

T	1BI ¼ B0
I ¼

	
ffiffiffi
5

p
1 1 	1 1 1

0 1 	t 1 t 0
0 	t t	1 t t	1 2

2
4

3
5

and T	1BII ¼ B0
II ¼

	1 	1 1 1 1
ffiffiffi
5

p

0 1 	t 1 t 0
0 	t t	1 t t	1 2

2
4

3
5 :

The pentagonal quasilattice is periodic along b1 and
hence, replacing

ffiffiffi
5

p
by a rational p=q (the details of the

approximation scheme are worked out in appendix I) but
leaving the second and third row in B unchanged, we get:

B0
I½p=q; t; t� ¼

	p q q 	q q q
0 1 	t 1 t 0
0 	t t	1 t t	1 2

2
4

3
5 and

B0
II½p=q; t; t� ¼

	q 	q q q q p
0 1 	t 1 t 0
0 	t t	1 t t	1 2

2
4

3
5 : ð4Þ

In scheme I:

b2 	 b4 ¼
2q
0

	2t

2
4

3
5; b3 þ b5 ¼

2q
0

2t	1

2
4

3
5; b6 ¼

q
0
2

2
4

3
5 :

Therefore,

ðb2 	 b4Þ þ ðb3 þ b5Þ þ b6 ¼
5q
0
0

2
4

3
5 ¼ 	 5q

p
b1 :

Hence,

5qb1 þ p(b2 þ b3 	 b4 þ b5 þ b6) ¼ 0 .

If p not divisible by 5, the period is [5qa1 þ p(a2 	 a4 þ
a3 þ a5 þ a6)]

) period (I) ¼ [(5q þ p
ffiffiffi
5

p
) a1] . (5)

If p is divisible by 5, the period is:

period (I) ¼ [(qþ p/
ffiffiffi
5

p
) a1] . (6)

A three-dimensionally periodic structure is obtained by ap-
proximating the surds in the second and third rows of
equation 4 with p2/q2 and p3/q3 respectively; i.e., using
B0
I [p/q, p2/q2, p3/q3].
To determine the period along the V2 direction (i.e.,

along a2 þ a4), using scheme I we get:

p2(b2 þ b4) þ q2(b3 	 b5) ¼ 0 .

Hence, the period along V2 is:

p2(a2 þ a4) þ q2(a3 	 a5) ¼ (p2 þ t1q2) (a2 þ a4) . (7)

For the period along V3 ¼ a3 þ a5 	 2a6 ¼ t(	a2 þ a3 þ
a4 þ a5), t and t1 the third row of B0

I are approximated
with p3/q3 and p3/q3 	 1 respectively, to get:

2(2p3	q3) (b3þ b5	 2b6)þ5q3(	b2þ b3þ b4þ b5)¼ 0.

Hence, the period along V3 is:

2(2p3 	 q3) (a3 þ a5 	 2a6) þ 5q3(	a2 þ a3 þ a4 þ a5)

¼ [4p3 þ (5t 	 7) q3] (a3 þ a5 	 2a6) . (8)

It is to be noted that the period is halved if q3 is even.
For scheme II:

b2 	 b4 ¼
	2q
0

	2t

2
4

3
5; b3 þ b5 ¼

2q
0

2t	1

2
4

3
5; b6 ¼

p
0
2

2
4

3
5 :

Therefore,

ðb2 	 b4Þ þ ðb3 þ b5Þ þ b6 ¼
p
0
0

2
4

3
5 ¼ 	 p

q
b1 :

Therefore,

pb1 þ qðb2 	 b4 þ b3 þ b5 þ b6Þ ¼ 0

) period (II) ¼ ½ðpþ q
ffiffiffi
5

p
Þ a1� : ð9Þ

As for scheme I, periods along V2 and V3 can be derived.
The pentagonal quasilattice arising from scheme II is illus-
trated here. The symmetry of these pentagonal quasilat-
tices is �55m. Three indices in curly brackets are used to re-
present the rational approximant. Subscript ‘P’ is used
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Fig. 1. Choice of basis vectors (Vi) in Ek for the pentagonal quasilat-
tice and its approximants. The numbers refer to the vertex vectors.
This corresponds to scheme II described in the text.



outside the curly bracket to emphasize that the pentagonal
approximant is being referred to. Figs. 2, 3 show the var-
ious aspects of the pentagonal quasilattice. The pentagonal
symmetry in perspective is seen in Fig. 2. The periodic di-
rection is inclined at an angle of tan	1(t), when projected
along [0 0 1] (? [1 t 0]) (Fig. 3). The periodicity along
[1 t 0] increases with increasing order of the approximant,
approaching the IQL in the limit. For the case of the
f1=1 t tgP and f2=1 t tgP approximants, using equation 9:

Period f2 t tg
Period f1 t tg ¼ 2þ

ffiffiffi
5

p

1þ
ffiffiffi
5

p � 1:3 :

2.3 Approximants to the PQL

A series of RA to the pentagonal quasilattice can be gen-
erated by approximations along the remaining two quasi-
periodic basis directions. These RA include: f1=1 1=1 tgP,
f1=1 2=1 tgP, f2=1 2=1

2=1gP, f3=2 2=1
1=1gP, etc. It is impor-

tant to note that the second (V2) and third (V3) directions/

indices are equivalent (but not identical); the first index
has a different role and approximations are to be made
keeping this in view. Fig. 4 shows the f1=1 1=1

1=1gP RA to
the pentagonal quasilattice. The space group of this ap-
proximant is C2=m. The detailed consideration of the
symmetry of the approximants will be published else-
where. The pseudo-pentagonal symmetry is seen in the
figure. Similarly, pseudo-trigonal symmetry is revealed in
the [1 1 1] perspective. Unlike the cubic and orthorhombic
RA to the IQC, where square or rectangular cells are ob-
served in [0 0 1] projection; here a parallelogram unit cell
is observed in the [0 0 1] projection. As an interesting ex-
ercise ‘inverse’ approximants like ft 1=1

1=1gP can be envi-
saged, where periodic planes with approximate 5-fold
symmetry are stacked aperiodically.

3. Trigonal quasilattice (TQL)

3.1 Construction of the trigonal quasilattice

First, the following identities amongst the ai vectors are
noted:

	(a4 þ a5 þ a6) ¼ t3(a1 þ a2 þ a3) ,

a6 	 a5 ¼ t(a2 	 a3) ,

a6 	 a4 ¼ t(a1 	 a3) .

The choice of basis vectors for generation of the trigonal
quasilattice and its approximants is shown in Fig. 5.

The corresponding relations amongst the bi are:

b1 þ b2 þ b3 ¼
s

s

s

2
64

3
75; b6 	 b5 ¼

	s

1

	t

2
64

3
75;

b6 	 b4 ¼
t

	t	1

	1

2
64

3
75 :
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Fig. 2. The f1=1 t tgP Pentagonal quasilattice showing a perspective
view along the [1 t 0] direction. The quasilattice has a �55m point
group symmetry.

Fig. 3. The f1=1 t t}P Pentagonal quasilattice showing the [0 0 1]
projection with periodic direction at an inclination of t. The structure
consists of quasiperiodic planes stacked periodically.

Fig. 4. The f1=1 1=1
1=1gP RA to the pentagonal quasilattice showing a

perspective view along the [1 t 0] direction. Pseudo-pentagonal symme-
try is seen in the approximant. The approximant has a C2=m symmetry.



Where, s ¼ (1�
ffiffiffi
5

p
)/2 ¼ �t1.

The transformation matrix T is written as:

T ¼
1 �s t
1 1 s
1 �t �1

2
4

3
5; T�1 ¼ 1

6

2 2 2
�t�2 t2 �

ffiffiffi
5

p

t2 �
ffiffiffi
5

p
�t�2

2
4

3
5:

(10)

The modified projection matrix B0 is:

T�1B ¼ B0 ¼
s s s t2 t2 t2

�t 2t �t �1 2 �1
2t �t �t 2 �1 �1

2
4

3
5: ð11Þ

In general for different approximations pi/qi (i ¼ 1, 2, 3)
along the basis directions:

B0 p1
q1

;
p2
q2

;
p3
q3

� �

¼
q1 � p1 q1 � p1 q1 � p1 p1 þ q1 p1 þ q1 p1 þ q1

�p2 2p2 �p2 �q2 2q2 �q2

2p3 �p3 �p3 2q3 �q3 �q3

2
64

3
75

(12)

Assuming pi/qi ¼ p/q for the present:

b1 þ b2 þ b3 ¼
3ðq� pÞ

0

0

2
64

3
75; b6 � b5 ¼

0

�3q

0

2
64

3
75;

b6 � b4 ¼
0

0

3q

2
64

3
75

b4 þ b5 þ b6 ¼
3ðqþ pÞ

0

0

2
64

3
75; b2 � b3 ¼

0

3p

0

2
64

3
75;

b1 � b3 ¼
0

0

3p

2
64

3
75 :

Hence, the periods are:

ðpþ qÞ ða1 þ a2 þ a3Þ þ ðp� qÞ ða4 þ a5 þ a6Þ
¼ fpþ q� t3ðp� qÞg ða1 þ a2 þ a3Þ
pða6 � a5Þ þ qða2 � a3Þ ¼ ðpt þ qÞ ða2 � a3Þ
pða6 � a4Þ þ qða1 � a3Þ ¼ ðpt þ qÞ ða1 � a3Þ

9>>>>=
>>>>;
:ð13Þ

The period along the axis (a1 þ a2 þ a3) is halved if
(p þ q) and (p� q) are both even, i.e.: if p and q are both
odd.

The c=a ratio is given by:

c=a ¼ t2n�2ffiffiffi
3

p : ð14Þ

Fig. 6 shows the [1 1 1] perspective of the trigonal quasi-
lattice, designated as f1=1 t tgT. This structure, as in the
case of the pentagonal quasilattice, can be visualized as
quasiperiodic planes stacked in a periodic fashion. The
symmetry of the trigonal quasilattices is �33m. Again, as in
the pentagonal case a series of trigonal quasilattices can
be obtained with increasing periodicity along [1 1 1]; ap-
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Fig. 5. Choice of basis vectors (Vi) in Ek for the trigonal quasilattice
and its approximants. The numbers refer to the vertex vectors.

Fig. 6. The trigonal quasilattice f1=1 t tgT showing the perspective
along [1 1 1]. Three-fold symmetry is observed in the figure. The
point group symmetry of the quasilattice is �33m.

Fig. 7. Projection along [�22 1 1] direction of the f1=1 t tgT trigonal qua-
silattice with mutually perpendicular periodic and aperiodic directions.
The structure consists of quasiperiodic planes stacked periodically.



proaching the icosahedral quasilattice in the limit. Fig. 7
shows the [2 1 1] projection with periodic and QP direc-
tions perpendicular to one another.

3.2 Approximants to the TQL

Various kinds of RA to the trigonal quasilattice can be
envisaged with varying order of approximation along the
three basis directions keeping in mind the equivalence of
second and third directions/indices. These include:
f1=1 1=1 tgT, f1=1 2=1 tgT, f1=1 1=1

2=1gT, f1=1 2=1
3=2gT, etc.

Pseudo-trigonal symmetry is seen in the [1 1 1] perspec-
tive of the f1=1 1=1

1=1gT approximant. The symmetry of
this approximant is P�33m1. Fig. 8 shows the projection
along this direction. The aperiodicity observed in the
[0 �11 1] projection of TQL is lost and a rectangular cell is
observed in the case of the f1=1 1=1

1=1gT approximant.

4. Conclusions

Uniform distortions in E?, in the form of removal of fac-
tors from the B matrix, do not affect the pattern in Ek.
Quasilattices with pentagonal and trigonal symmetry have
been generated using the same prototiles as those in the
IQL and their approximants have been obtained. As ap-
proximations have been done in E? the directions of pseu-
dosymmetries in the rational approximant lattices are the
same as those of the true symmetries in the corresponding
quasilattices.
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Appendix I

Approximating
ffiffiffi
5

p
for the Generation of the PQL

The recursion relation for the general Fibonacci sequence
with multipliers m and n can be written as:

Fn½m; n
 ¼ mFn�1 þ nFn�2 :

For starting terms a and b the sequence is:

F½m; n; a; b
 � a; b; mbþ na; ðmnÞaþ ðm2 þ nÞ b;
ðm2nþ n2Þ aþ ðm3 þ 2mnÞ b;
ðm3nþ 2mn2Þ aþ ðm4 þ 3m2nþ n2Þ b . . . :

Hence, the standard Fibonacci sequence is:

F½1; 1; 1; 1
 � 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; . . .

The sequence of ratio of successive terms (R) can be writ-
ten as:

R½1; 1; 1; 1
 � 1=1;
2=1;

3=2;
5=3;

8=5;
13=8;

21=13;
34=21;

55=34; . . . t (in the limit) :

The usual rational approximants are considered in the
R[1, 1; 1, 1] sequence. In the present case the irrational
number

ffiffiffi
5

p
has to be approximated.

To approximate
ffiffiffi
5

p
there are two basic options:

(a) Fibonacci based approximation (Rn(
ffiffiffi
5

p
))

Rn(
ffiffiffi
5

p
) ¼ 2Rn(t) � 1. Where Rn(t) are the approxi-

mants to the Fibonacci sequence.
(b) Continuous fraction based approximation
Coefficients of continuous fraction expansion of

ffiffiffi
5

p
�

f2, 4, 4, 4, 4, 4 . . .g
Successive approximants �

2;
9

4
;
38

17
;
161

72
;
682

305
;
2889

1292
; . . .

� �
:

The rapid convergence of the continued fraction based ap-
proximants may make it look vastly different from Fibo-
nacci based approximants. Actually, the sequence of con-
tinued fraction based approximants is obtained by taking
every third term in the sequence of Fibonacci based ap-
proximants. Also, two Fibonacci type sequences can be
constructed (F[4, 1; 1, 2] and F[4, 1; 0, 1]), the ratios of
whose corresponding terms give the sequence of approxi-
mants based on the continued fraction.
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Fig. 8. The f1=1 1=1
1=1gT trigonal approximant showing a hexagonal

cell ABCDEF in the [1 1 1] projection. The symmetry of the approx-
imant is P�33m1.


