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This thesis presents several almost-independent studies in the dynamics of slender struc-

tures. In particular, we are concerned with small vibrations of structures with one inde-

pendent spatial coordinate along with the usual independent coordinate of time. Slender

structures are commonly used in engineering, e.g., beams, columns, struts, chains, and ca-

bles. In this thesis we consider only such slender one-dimensional structures. In addition

to their practical importance, such slender structures are excellent for purposes of intro-

duction to the dynamics and vibrations of continuous structures in general. Here, we will

address several interesting problems involving such structures which have not appeared in

either the usually available textbooks or the research literature.

The first problem deals with nonlinear rate independent material damping which is com-

mon in structural dynamics. The most common rate independent1 models are hysteresis

models. An extremely popular rate independent hysteresis model used in structural dy-

namics is the Bouc-Wen model. In the Bouc-Wen model, there are slope discontinuities

at each reversal of the rate of deformation. When a refined finite element model is made

for a structure with such damping, mesh refinement introduces the further complication

of very high natural frequencies. When we attempt to compute dynamic responses for

1The energy dissipated during a forcing cycle is independent of the forcing frequency.



iv

such structures, we run into the double difficulty of potential numerical instabilities due to

high frequencies as well as numerical difficulties due to the nonsmooth Bouc-Wen model.

Here, we propose a semi-implicit time marching algorithm where the structural part is

integrated implicitly, and the nonanalytic hysteresis is integrated explicitly. For systems

with very many degrees of freedom, we propose a model order reduction technique. Both

good stability and good accuracy are obtained, as is demonstrated with several examples.

In the next problem, we examine the short time response of an undamped beam subjected

to an instantaneous impulse. In prior work linear impulses, or impulsive forces, have been

considered. Here we investigate the response of a beam with rotary inertia effects included,

to a concentrated instantaneous moment impulse (or angular impulse). Our study has

a reasonable practical motivation, e.g., when a spinning motor with significant inertia,

mounted on a long beam, is suddenly brought to a stop. Here, we idealize the problem as a

simply supported beam subjected to a moment impulse at its mid span. The time response

obtained is an anharmonic2 series, and we present a detailed asymptotic calculation for

the short time approximation of the response. A power series in nondimensionalized time

is obtained and verified through detailed direct FEM simulations.

Next, we study the catenary, which is an inextensible chain with zero bending rigidity.

We can think of it as a limiting case of an inextensible beam or elastica. We study small

in-plane oscillations of a slack catenary suspended between two points under gravity. Due

to the pointwise inextensibility, the displacement components are not independent. We

expand the vertical displacement component using assumed modes and calculate the hor-

izontal displacement from the inextensibility criterion. The distal end fixity (i.e. the zero

displacement condition at the far end) of the obtained displacement is enforced as a con-

straint on the system, within the Lagrangian approach. Deriving the linearized equations,

we observe that the restoring force originates from the end fixity rather than the gravi-

tational potential energy term in the Lagrangian. This problem offers some uncommon

2In this context: a series of sinusoidal functions where the frequencies are not integer multiples of a
fundamental frequency.
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insights into the assumed modes method and constraints in Lagrangian mechanics. It also

leads to the next two problems studied, which involve an elastica.

Finally, we consider small motions of an inextensible slender beam with large initial deflec-

tion, also known as an elastica. We study the small vibrations of an elastica in pre-bent

and constrained configurations. We consider two such problems. In one problem, the elas-

tica is held fixed at one end, then bent and tied to a taut inextensible string at its distal

end, fixing that end’s distance from a point in space. In the second problem an elastica,

pinned at both ends, is bent to form an arch. We use assumed modes and the Lagrangian

approach with constraints for both the elastica problems. Excellent performance (as in

rapid convergence of the first few natural frequencies) is obtained with a few assumed

modes. The role of constraints provides some extensions to the insights obtained from the

catenary problem.

In summary, the problems studied in this thesis successively involve non-analytic non-

linear damping, short-time asymptotics, assumed mode approximations, and nontrivial

constrained behavior that requires special treatment. Each problem is simplified and ide-

alized, but springs from a practical application. An attempt is made to combine numerical

accuracy, analytical rigor, and physical insights in the assessment of each problem.
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Chapter 1

Introduction

1.1 Motivation

Mechanics of slender structures has a centuries-old strong theoretical foundation. Struc-

tural members like beams, chains, and columns have a wide range of applications in various

fields, and they are analyzed using well established theories. Such structures very often

involve phenomena/situations like rate-independent damping, counter-intuitive transient

responses1, and motion constraints2 for which the analysis is not straightforward. In such

cases conventional methods of analysis may be insufficient. Some such problems are taken

up in this thesis.

In this thesis, we present five almost-independent problems involving the dynamics of

slender structures. These problems involve hysteretic dissipation, reduced order modeling

of nonsmooth high-dimensional systems, the short time impulse response behaviour of

slender beams, and vibration characteristics of a slack catenary and as well as two pre-

bent elasticas. The novelty and the academic interest in these problems are described in

the next section.

1A finite jump discontinuity in the response while its analytical expression is a series of continuous
functions.

2Constraints forced upon the state variables of a dynamic system.
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1.2 Contribution of this thesis

The first problem taken up in this thesis involves hysteretic dissipation in structures.

Structural damping is often empirically rate-independent wherein the dissipative part of

the stress depends on the history of deformation but not its rate of change. Hysteresis

models are popular for rate-independent dissipation; and a popular hysteresis model is the

Bouc-Wen model. If such hysteretic dissipation is incorporated in a refined finite element

model, then the model involves the usual structural dynamics equations3 along with non-

linear nonsmooth ordinary differential equations for a large number of internal hysteretic

states at Gauss points4 used within the virtual work calculation. For such systems, nu-

merical integration is difficult due to both the distributed non-analytic nonlinearity5 of

hysteresis as well as large natural frequencies in the finite element model. Here we offer

two contributions. First, we present a simple semi-implicit integration approach where

the structural part is handled implicitly based on the work of Piché, while the hysteretic

part is handled explicitly. A cantilever beam example is solved in detail using high mesh

refinement. Convergence is good for lower damping and a smoother hysteresis loop. For

a less smooth hysteresis loop and/or higher damping, convergence is noted to be roughly

linear on average. Encouragingly, the time step needed for stability is much larger than

the time period of the highest natural frequency of the structural model. Subsequently,

data from several simulations conducted using the above semi-implicit method are used to

construct reduced order models of the system, where the structural dynamics is projected

onto a few modes and the number of hysteretic states is reduced significantly as well.

Convergence studies of error against the number of retained hysteretic states show very

good results. The above study of a hysteretically damped beam is presented in chapter 2

of this thesis.

Chapter 3 of this thesis considers the short-time transient response of a finite-sized vi-

brating structure. In the dynamics of linear structures, the impulse response function is

3Equations of motion written in terms of inertia, stiffness, damping, and forcing.
4Gauss point approximation is a method to evaluate integrals in FEA. In the treatment of hysteretic

dissipation, a local hysteretic variable is continuously computed at the Gauss points.
5Hysteresis is non-smooth in nature as there is a slope change in every reversal of the local strain rate.
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of fundamental interest. In some cases one examines the short term response wherein the

disturbance is still local and the boundaries have not yet come into play, and for such

short-time analysis the geometrical extent of the structure may be taken as unbounded6.

Here we examine the response of slender beams to angular impulses. The Euler-Bernoulli

model, which does not include rotary inertia of cross sections, predicts an unphysical

and unbounded initial rotation at the point of application. A finite length Euler-Bernoulli

beam, when modeled using finite elements, predicts a mesh-dependent response that shows

fast large-amplitude oscillations setting in very quickly. The simplest introduction of ro-

tary inertia yields the Rayleigh beam model, which has more reasonable behavior including

a finite wave speed at all frequencies. If a Rayleigh beam is given an impulsive moment

at a location away from its boundaries, then the predicted behavior has an instantaneous

finite jump in local slope or rotation, followed by smooth evolution of the slope for a

finite time interval until reflections arrive from the boundary, causing subsequent slope

discontinuities in time. We present a detailed study of the angular impulse response of a

simply supported Rayleigh beam, starting with dimensional analysis, followed by modal

expansion including all natural frequencies, culminating with an asymptotic formula for

the short-time response. The asymptotic formula is obtained by breaking the series solu-

tion into two parts to be treated independently term by term, and leads to a polynomial in

time. The polynomial matches the response from refined finite element (FE) simulations.

In particular, the coefficients of the polynomial depend upon L, the length of the beam,

but rapidly approach constant values as L increases.

In the fourth chapter we study a problem in oscillations wherein the assumed modes

method offers some theoretical peculiarities. Specifically, we study small in-plane oscil-

lations of a slack catenary, or a sagging inextensible chain fixed at both endpoints. The

horizontal and vertical displacements cannot be approximated independently because of

pointwise inextensibility in the chain. Moreover, the potential energy is a linear function of

the generalized coordinates, and does not directly cause oscillations. Using assumed modes

for the vertical displacements only, integrating from one endpoint to compute the required

6An infinitely long structure.
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horizontal displacements, treating the horizontal fixity at the distal end7 as an added

scalar constraint, and obtaining linearized equations, we construct an eigenvalue problem

which contains a Lagrange multiplier. For generic assumed modes, the Lagrange multi-

plier is determined by enforcing equilibrium in the undeflected shape. However, when the

modes thus determined are reinserted in the assumed mode expansion and the calculation

done afresh, then the Lagrange multiplier is indeterminate at first order. Upon retaining

terms at the next order, the distal end fixity constraint introduces quadratic terms into

a Lagrangian without constraints. Results from these two approaches match perfectly.

Our approach offers nontrivial insights into both oscillations and Lagrangian mechanics.

It is also potentially applicable to other problems with inextensibility in one-dimensional

slender members, and we turn to such a problem next.

An elastica is an inextensible slender beam that can have large deflections. An elastica

“robot” consists of an elastica, fixed at one end with a taut inextensible string tied to

its other end with for actuation [1]. In the fifth chapter of this thesis we study the small

in-plane oscillations of an elastica robot in a given configuration. We compute natural

frequencies and mode shapes of small oscillations of a pre-bent elastica robot where the

string remains taut. We use an assumed mode expansion for the slope angle of the beam

and formulate the problem as a system with a scalar constraint. Using the Lagrangian

formulation, we derive the equations of motion and discuss the role of the constraint in

dynamics of this system. In particular, we point out how the choice of a curvilinear

coordinate makes this system a little easier to handle than the catenary where Cartesian

coordinates were used.

In the sixth chapter, we study the in plane oscillations of an inextensible elastica pinned

at both ends, pre-bent to form an arch. We consider an assumed mode expansion for the

perturbation about the equilibrium configuration. This system has two fixity constraints

at the distal end making it different from the previous two cases. Now the linearized

equations of motion have two unknown Lagrange multipliers. Physical arguments suggest

7The horizontal displacement component at the distal end is zero.
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that the approximate solution strategy, and numerical results bear out the validity of the

same.

Finally, in chapter 7, we present some concluding remarks.



Chapter 2

Semi-implicit Integration and

Model Reduction in Structural

Dynamics with Hysteresis

2.1 Introduction

Modelling of damping in materials is a classical problem in structural dynamics, and not a

fully solved one. The high dimensionality of structural finite element models combine with

the non-analyticity of physically realistic damping models to produce numerical challenges

in dynamic simulation. This work makes two contributions in this area. The first con-

tribution, which concerns simple but effective numerical integration, leads to the second

contribution, which is in data-driven model order reduction.

Although the linear viscous damping model is simple and convenient, it is not always

correct. For many materials subjected to periodic loading, the internal dissipation per

cycle is frequency-independent [2]. In the linear viscous damping model the dissipation

per cycle is proportional to frequency. Hysteretic dissipation, which is a rate-independent

[3] mechanism, is preferred by many structural dynamicists because it is more realistic.

6
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However, hysteresis involves nonanalytic behavior with slope changes at every reversal of

loading direction. Numerical integration for structural dynamics with hysteretic damping

needs more care than with linear viscous damping. The difficulty grows greatly with finite

element models wherein mesh refinement leads to high structural frequencies requiring

tiny time steps; and wherein the nonanalytic hysteretic damping is finely resolved in space

as well.

In this chapter1 we first consider time integration of the vibration response for beams2 with

distributed hysteretic damping, and then consider model order reduction by projecting the

dynamics onto a few vibration modes. Model order reduction is not trivial in this case

because the distributed hysteresis needs to be projected onto lower dimensions as well.

Initial numerical solutions of the full system, using a semi-implicit integration scheme

developed in this chapter, are subsequently used to construct lower order models with

hysteretic damping. Our newly introduced integration scheme provides an efficient way to

generate the data needed for the second part of the chapter. In principle, other integration

methods could be used as well, but they are either more complicated or more slow.

2.1.1 Explicit, implicit, and semi-implicit integration

A key idea in numerical integration of ordinary differential equations (ODEs) is outlined

here for a general reader.

We consider ODE systems written in first order form, ẏ = f(y, t), where y is a state

vector and t is time. In single-step methods, which we consider in this study, we march

forward in time by a step h using some algorithm equivalent to

y(t+ h) = y(t) + h ·H(t, h,y(t),y(t+ h)). (2.1)

Equation 2.1 is merely used to communicate an idea. Hence, we consider y, H, t, and h

dimensionless to avoid unnecessary complications. The specific form of H above is derived

1Work presented in chapter 2 has been published in [62].
2Our approach extends directly to frames modeled using beam elements. The approach may eventually

be generalized to two or three dimensional elements.
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from the form of f(y, t) and depends on the integration algorithm. The actual evaluation

of H may involve one or multiple stages, but that is irrelevant: the method is single-step

in time. For smooth systems, H is guided by the first few terms in Taylor expansions

of various quantities about points of interest in the current time step. In such cases, as

h→ 0, the error in the computed solution goes to zero like hm for some m > 0. If m > 1,

the convergence is called superlinear. If m = 2, the convergence is called quadratic. Values

of m > 2 are easily possible for smooth systems with moderate numbers of variables: see,

e.g., the well known Runge-Kutta methods [4]. Unfortunately, for large structural systems,

for the asymptotic hm rate to hold, h may need to be impractically small. For example,

the highest natural frequency of a refined finite element (FE) model for a structure may

be, say, 106 Hz. This structure may be forced at, say, 10 Hz. A numerical integration

algorithm that requires time steps that resolve the highest frequency in the structure, i.e.,

time steps much smaller than 10−6 seconds in this example, is impractical. A high order

of convergence that requires time steps smaller than 10−6 seconds is of little use. We seek

accurate results with time steps much smaller than the forcing period, but much larger

than the time period of the highest natural frequency of the FE model of the structure,

e.g., 10−2 or 10−3 seconds. To develop such practically useful algorithms, we must consider

the stability of the numerical solution for larger values of h, i.e., 10−6 < h < 10−2, say.

Now consider the nature of H. If H does not depend explicitly on y(t+h), the algorithm

is explicit. Otherwise it is implicit. For nonlinear systems, H is a nonlinear function of its

y-arguments. Then each implicit integration step requires iterative solution for y(t+ h).

For linear dynamics, with H linear in its y-arguments, the y(t+ h) can be moved over to

the left hand side and integration proceeds without iteration, although usually with matrix

inversion. The algorithm is still called implicit in such cases: implicitness and iteration

are not the same. An algorithm can be neither fully implicit nor fully explicit, and we will

present one such algorithm in detail.
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2.1.2 Contribution of this study

We present a semi-implicit approach that can be used for high dimensional finite element

models with distributed hysteresis. For simplicity, we adopt the popular Bouc-Wen model

[5, 6, 7] as our damping mechanism. After presenting and validating our numerical inte-

gration method, we present a way to obtain useful lower order models for the structure,

starting from a refined FE model. A key issue is that the refined or full FE model com-

putes hysteretic variables at a large number of Gauss points in the structure, and a smaller

subset needs to be used for the model order reduction to be practical.

Thus, our contribution is twofold. First, we present a simple semi-implicit algorithm for

a structural FE model with distributed hysteresis and demonstrate its convergence and

utility. Second, we use this algorithm to compute some responses of the structure and use

those responses to construct accurate lower order models with reduced numbers of both

vibration modes and hysteretic variables. These lower order models can be used later for

quick simulations under similar initial conditions or loading.

2.1.3 Representative literature review

We begin with a review of some numerical integration methods that are available in popular

software or research papers.

Structural systems with Bouc-Wen hysteresis continue to be studied in research papers

using algorithms that are not as efficient as the one we will present below. For example,

as recently as 2019, Vaiana et al. [8] considered a lumped-parameter model and used an

explicit time integration method from Chang’s family [9]. That method requires tiny time

steps: the authors used one hundredth of the time period of the highest structural mode.

Such small time steps are impractical for refined FE models. Our algorithm allows much

larger time steps. Thus, in the area of FE models with distributed hysteresis, our work

makes a useful contribution.
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Next, we acknowledge that the commercial finite element software Abaqus [10] allows users

to specify complex material responses and also to choose between explicit and implicit

numerical integration options. For many nonlinear and nonsmooth dynamic problems,

explicit integration needs to be used in Abaqus. As outlined above, implicit or semi-

implicit algorithms can be useful for somewhat simpler material modeling and in-house

FE codes.

Considering general purpose software for numerical work, many analysts dealing with

hysteresis may begin with Matlab [11]. Matlab’s built in function ode15s is designed for

stiff systems but not specifically for systems with hysteresis. We have found that ode15s

can handle ODEs from FE models with a modest number of elements and with hysteresis,

but it struggles with higher numbers of elements because its adaptive time steps become

too small. In this work we will use ode15s to obtain numerically accurate solutions for

systems of moderate size. Results obtained from our own algorithm will then be validated

against ode15s results. Subsequently, for larger systems, our algorithm will continue to

work although ode15s freezes and/or crashes.

For those programming their own integration routines in structural dynamics, the well

known Newmark method [12] from 1959 remains popular (see, e.g., [13, 14]), although it

cannot guarantee stability and may require tiny time steps as noted in, e.g., [15]. In that

paper [15] of 1977, Hilber, Hughes and Taylor modified the Newmark method and showed

unconditional stability for linear structural problems. However, their method (known as

HHT-α) can show spurious oscillations of higher modes even without hysteretic damping

(see, e.g., Fig. 7 of the paper by Piché [32], which we will take up below).

An appreciation of the issues faced for full three-dimensional (3D) simulation with hys-

teretic damping can be gained, e.g., from the work of Triantafyllou and Koumousis [16].

Their formulation is actually based on plasticity in 3D; they compare their solutions with

those from Abaqus; and they include dynamics through the Newmark algorithm. Their

algorithm is rather advanced for a typical analyst to implement quickly. Note that our

present application is easier than theirs because we have only one-dimensional Bouc-Wen
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hysteresis. Additionally, our primary application here is in model order reduction. And

so we develop for our current use a numerical integration approach that is simpler than

that in [16].

Finally, readers interested in hybrid simulations (with an experimental structure in the

loop) may see, e.g., Mosqueda and Ahmadizadeh [17, 18] who used a modified version

of the HHT-α for calculating the seismic response of a multi-degree-of-freedom structure.

Purely simulation-based studies such as the present one can hopefully provide theoretical

inputs into planning for such hybrid simulations in future work.

We close this section with a brief discussion of model order reduction. While there are

very many papers on the topic, we make special note of the condensation approaches of

Guyan [19] and Irons [20], wherein finding normal modes of the full system was avoided.

With growth in computational power, system eigenvectors become more easily available,

and direct modal projection has become common. For a recent discussion of this and re-

lated methods, see [21]. We will use straightforward modal projection for our displacement

degrees of freedom. However, we will also have a large number of internal hysteretic state

variables. We will present a sequential approach to selecting a subset of these hysteretic

variables, using an algorithm which is related closely to a method called “QR with column

pivoting” in [22]. Minor differences from [22] here are that we work with rows and not

columns, and our data matrix is not rank deficient: we separately impose a termination

criterion.

Note that modal reduction, without the added complication of hysteretic damping, is well

known. For example, Stringer et al. [23, 24] successfully applied modal reduction to rotor

systems, including ones with gyroscopic effects. Other recent examples in dynamics and

vibrations can be seen in [25, 26]. Proper Orthogonal Decomposition (POD) [27] based

reduced order models are often used in fluid mechanics: a representative sample may be

found in [28, 29, 30, 31].
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2.1.4 Overview of our approach

We will begin by adopting an existing implicit scheme for linear structural dynamics

without hysteresis that is both simple and significantly superior to both the Newmark and

HHT-α methods. Our adopted scheme, due to Piché [32], is an L-stable method from

the Rosenbrock family (see [33] and references therein) which is stable, implicit without

iteration for linear structures, and second order accurate. For smooth nonlinear systems

of the form

Mẍ+ f(x, ẋ) = 0,

Piché suggests a one-time linearization of f at the start of each time step. We will not

use that linearization step because hysteresis is nonsmooth.

Here we extend Piché’s formulation to include hysteretic damping in the otherwise-linear

structural dynamics. In our method the stiffness and inertia terms are integrated im-

plicitly (without iteration, being linear) and the nonsmooth hysteresis is monitored at

Gauss points [34] and treated with explicit time-integration. Thus, overall, our method is

semi-implicit. Our proposed approach, when applied to a refined FE model of an Euler-

Bernoulli beam with distributed Bouc-Wen hysteretic damping, is easy to implement and

can be dramatically faster than Matlab’s ode15s. In fact, it continues to work well beyond

refinement levels where ode15s stops working.

We emphasize that ode15s is not really designed for such systems. We use it here because

it has adaptive step sizing and error estimation: when it does work, it can be highly

accurate. For this reason, to examine the performance of our algorithm for modest numbers

of elements, we will use results obtained from ode15s with a tight error tolerance. With

higher number of elements, ode15s fails to run because the time steps required become

too small.

Having shown the utility of our proposed semi-implicit integration algorithm, we will turn

to our second contribution of this chapter, namely model order reduction. Such Reduced

Order Models (ROMs) can save much computational effort. In the physical system, if
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only a few lower modes are excited, the displacement vector can be approximated as a

time-varying linear combination of those modes only. A remaining issue here is that the

number of Gauss points used for the hysteresis can be reduced too, and that is where we

offer an additional contribution.

In recent work related to ours, for an Euler-Bernoulli beam with hysteretic dissipation,

Maity et al. [34] used the first few undamped analytically obtained modes to approximate

the solution and performed the virtual work integration using a few Gauss points chosen

over the full domain. However, they used a different hysteresis model motivated by dis-

tributed microcracks. Furthermore, in our finite element model, virtual work integrations

are performed over individual elements and not the whole domain. The number of Gauss

points in the finite element model increases with mesh refinement. When we project the

response onto a few modes, we can explicitly reduce the number of Gauss points retained

as well, and a practical method of doing so is one of the contributions of this chapter.

In what follows, we present the finite element model in section 2.2, outline the numerical

integration algorithm in section 2.3, develop the approach for model order reduction in

section 2.4, and present our results in section 2.5.

2.2 Governing equations and Finite Element formulation

Figure 2.1: A cantilever beam.

The governing equation of the deflection u(x, t) of a cantilever beam (shown in Fig. 2.1)

with a dissipative bending moment Md = γhz(x, t) is

ρA
∂2u

∂t2
+

∂2

∂x2

(
EI

∂2u

∂x2
+ γhz

)
= 0, (2.2)
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where the beam’s material density, cross section and flexural rigidity are ρ, A and EI

respectively. The parameter γh is the strength of hysteretic dissipation. The hysteretic

damping variable z is defined at each x-location along the beam length, is governed point-

wise by the Bouc-Wen model, and is driven pointwise by the local curvature

χ(x, t) ≈ ∂2u

∂x2

in the governing equation

ż =
(
Ā− α sign (χ̇ z) |z|nh − β |z|nh

)
χ̇ (2.3)

where the Bouc-Wen model parameters satisfy

Ā > 0, α > 0, β ∈ (−α, α) and nh > 0. (2.4)

The parameters in Eq. 2.4 and the hysteretic variable z are dimensionless. The dissipation

strength parameter γh has units of Nm (i.e., units of moments).

The FE model involves beam elements for displacement variables, virtual work calculations

for the hysteretic moment through domain integrals based on Gauss points within each

element, and ODE solution in time. We use the Galerkin method wherein we look for an

admissible solution û(x, t) so that the residual,

R(û) = ρA
∂2û

∂t2
+

∂2

∂x2

(
EI

∂2û

∂x2
+ γhz

)
, (2.5)

is orthogonal to basis functions for the space of û. Mathematically,

< R(û), ϕi >=

∫
Ω
R(û)ϕi(x) dΩ = 0, (2.6)

where

< f1, f2 >=

∫
Ω
f1(x)f2(x) dΩ
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is the inner product between two functions, Ω is the spatial domain over which the basis

functions are defined, and ϕi is the i
th basis function.

2.2.1 Element matrices and virtual work integrals

The elemental stiffness and inertia matrices are routine and given in many textbooks:

each beam element has two nodes, and each node has one translation and one rotation.

The hysteresis variable z is a scalar quantity distributed in space. However, it enters the

discretized equations through integrals, and so z values only need to be known at Gauss

points within each element. The evolution of z at the Gauss points is computed using

Eq. 2.3, and is thus driven by displacement variables. Some further details are given in

appendix A.

2.2.2 Global equations

In this section we first present the global equations, and then we introduce the variables

and constants that appear in those equations. The element level formulation details are

given in appendix A.

After assembly we obtain a system of equations of the form

M q̈
Mass

+ K q
Stiffness

+ A z
Hysteresis

= f0(t)
Forcing

, (2.7a)

where A ∈ RN×ngne , q ∈ RN , and z ∈ Rngne . The hysteresis rate equations are given by

ż = (Ā− α sign(χ̇ ◦ z) ◦ |z|◦nh − β |z|◦nh) ◦ χ̇, χ = B q, (2.7b)

where B ∈ Rneng×N and the different symbols mean the following:

1. q is a column vector of nodal displacements and rotations for ne beam elements,

with N = 2ne for a cantilever beam,
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2. M and K are mass and stiffness matrices of size 2ne × 2ne,

3. z is a column vector of length ngne from ng Gauss points per element,

4. (· ◦ ·) and (·)◦ (·) denote elementwise multiplication and exponentiation,

5. A is a matrix of weights used to convert z values into virtual work integrals,

6. χ is a column vector of curvatures at the Gauss points,

7. B maps nodal displacements and rotations q to curvatures χ at the Gauss points,

and

8. f0(t) incorporates applied forces.

In Eq. 2.7a above we can include viscous damping by adding C q̇, for some suitable C, on

the left hand side. As this work focuses on hysteretic damping, we have taken C = 0.

2.3 Time integration

We will develop a semi-implicit method adapted from Piché’s [32] work. Equation 2.7a

has a structural part (stiffness and inertia) and a hysteresis part. The structural part is

integrated implicitly (section 2.3.1) and the hysteresis part marches in time, following an

explicit algorithm which takes care of the nonsmooth slope changes due to zero-crossing

of the time derivative of the curvature (section 2.3.2). In section 2.4, our semi-implicit

algorithm will be used to generate a large amount of data which will be used to construct

reduced order models.

2.3.1 Implicit integration for the structural part

Piché’s algorithm uses a numerical parameter 1 − 1√
2
which is written as γ for compact

presentation. The symbol should not be confused for Euler’s constant. We now proceed

as follows. This subsection presents implicit integration for the structural part alone: the
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hysteretic variable vector z is not integrated in an implicit step: this compromise simplifies

the algorithm greatly.

1. Define

z(t0) = z0, F 0 = −Az0 + f0(t0),

y0 = q(t0), v0 = q̇(t0), χ̇0 = Bv0,

ż0 =
(
Ā− α sign(χ̇0 ◦ z0) ◦ |z0|◦nh − β |z0|◦nh

)
◦ χ̇0,

Ḟ 0 = −Aż0 +
d

dt
f0(t)

∣∣∣∣
t=t0

,

r0 = Ky0 +Cv0

(The Cv0 is dropped if linear viscous damping is no included.)

2. Define

M̃ = M+ γhC+ (γh)2K.

3. Define (first stage)

ẽ = h M̃−1
(
F 0 − r0 + hγ(Ḟ 0 −Kv0)

)
.

d̃ = h(v0 + γẽ).

4. Define (second stage)

F 1
2
= −A

(
z0 +

h

2
ż0

)
+ f0

(
t0 +

1

2
h

)
,

r 1
2
= K

(
y0 +

1

2
d̃

)
+C

(
v0 +

1

2
ẽ

)
,

e = hM̃−1

(
F 1

2
− r 1

2
+ (hγ)

(
2γ − 1

2

)
Kẽ+ γCẽ

)
,

and

d = h

(
v0 +

(
1

2
−γ
)
ẽ+ γe

)
.
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5. Finally

y(t0 + h) = y0 + d, v(t0 + h) = v0 + e.

6. Define

χ̇1 = χ̇(t0 + h) = B(v0 + e)

Note that the assignment of χ̇1 to χ̇(t0 + h) above is tentative at this stage; if there is a

sign change, we will make a correction, as discussed in the next subsection.

2.3.2 Explicit integration for the hysteretic part

Due to the nonanalyticity of hysteresis models, we integrate the hysteresis part using an

explicit step. There are slope changes in the hysteretic response whenever χ̇ at any Gauss

point crosses zero in time. We will accommodate the sign change of χ̇ within an explicit

time step in a second sub-step, after first taking a time step assuming that there is no

sign change. Since each żi depends on χ̇i only, accounting for zero crossings can be done

individually for individual Gauss points and after such a preliminary step.

Figure 2.2: Zero-crossing of χ̇ at any particular Gauss point within a time step. For
details on associated quantities shown, see the main text.

We first check elementwise and identify the entries of χ̇0 and χ̇1 that have same sign,

and construct sub-vectors χ̇0u and χ̇1u out of those entries. The corresponding elements

from the vector z0 are used to construct a sub-vector z0u. Here the subscript “u” stands

for “unchanged”. These elements can be used in a simple predictor-corrector step for
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improved accuracy as follows.

s1 =
(
Ā− α sign(χ̇0u ◦ z0u) ◦ |z0u|◦nh − β |z0u|◦nh

)
◦ χ̇0u,

ziu = z0u + hs1,

s2 =
(
Ā− α sign(χ̇1u ◦ ziu) ◦ |ziu|◦nh − β |ziu|◦nh

)
◦ χ̇1u,

and

z1u = z0u + h
(s1 + s2)

2
. (2.8)

Next, we address the remaining entries of χ̇0 and χ̇1, those that have crossed zero and

flipped sign. We construct sub-vectors χ̇0f and χ̇1f out of them, where the “f” subscript

stands for “flipped”. The corresponding elements from the vector z0 are used to construct

sub-vector z0f. Using linear interpolation to approximate the zero-crossing instants within

the time step, we use

h0 = −h χ̇0f

(χ̇1f − χ̇0f)
(defined elementwise).

We define

s1 =
(
Ā− α sign(χ̇0f ◦ z0f) ◦ |z0f|◦nh − β |z0f|◦nh

)
◦ χ̇0f,

and

zmf = z0f + h0 ◦
s1
2
,

which is consistent with Eq. 2.8 because χ̇ = 0 at the end of the sub-step. Next we

complete the step using

s2 =
(
Ā− α sign(χ̇1f ◦ zmf) ◦ |zmf|◦nh − β |zmf|◦nh

)
◦ χ̇1f

and

z1f = zmf + (h− h0) ◦
s2
2
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where h is a vector of the same dimensions as h0 and with all elements equal to h. Finally,

having the incremented values z1 at all locations, those with signs unchanged and those

with signs flipped, we use

z(t0 + h) = z1.

We clarify that the explicit integration of the hysteretic variables, as outlined in this

subsection, is a compromise adopted to avoid difficulties due to the nonanalyticity of the

hysteresis model. Continuing to integrate the inertia and stiffness parts implicitly will still

allow us to use usefully large steps, as will be seen in section 2.5.

Having the numerical integration algorithm in place, however, we must now turn to the

second contribution of this chapter, namely model order reduction.

2.4 Model order reduction

For reduced order modeling, we must reduce both the number of active vibration modes

as well as the number of Gauss points used to compute the hysteretic dissipation. Of these

two, the first is routine.

2.4.1 Reduction in the number of vibration modes

The undamped normal modes and natural frequencies are given by the eigenvalue problem

(K− ω2M)v = 0 (2.9)

for N eigenvector-eigenvalue pairs (vi, ωi). In a finely meshed FE model, N is large.

In such cases, we may compute only the first several such pairs using standard built-in

iterative routines in software packages.

The N dimensional displacement vector q is now approximated as a linear combination

of r ≪ N modes. To this end, we construct a matrix R with the first r eigenvectors as
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columns so that

q(t) ≈
r∑

k=1

vk ξk(t) = R ξ(t), (2.10)

where R = [v1 v2 . . . vr], and where the elements of ξ(t) are called modal coordinates.

Substituting Eq. 2.10 in Eq. 2.7a and pre-multiplying with the transposed matrix R⊤, we

obtain

R⊤MR ξ̈ +R⊤KR ξ +R⊤A z = R⊤f0(t), (2.11)

obtaining equations of the form

M̃ ξ̈ + K̃ ξ +R⊤A z = R⊤f0(t), (2.12a)

ż = (Ā− α sign(χ̇a ◦ z) ◦ |z|
◦nh − β |z|◦nh) ◦ χ̇a, χ̇a = BRξ̇. (2.12b)

In the above, due to orthogonality of the normal modes, the matrices M̃ and K̃ are

diagonal. Also, χa is an approximation of the original χ because we have projected onto

a few vibration modes, but it still has the same number of elements as χ and requires

numerical integration of the same number of nonsmooth hysteresis equations. A reduction

in the number of hysteretic variables is necessary.

2.4.2 Reduction in the number of hysteretic variables

The system still has a large number (ngne) of hysteretic damping variables. These are

arranged in the elements of z in Eq. 2.7a. Selecting a smaller set of basis vectors and

projecting the dynamics of the evolving z onto those has analytical difficulties. Here we

adopt a data-driven approach to select a submatrix of z, say

zs = [zj1 zj2 . . . , zjm ]
⊤, m≪ ngne. (2.13)

The indices j1, j2, . . . jm must now be chosen from the set {1, 2, . . . , neng}, along with a

matrix P, such that

Pzs(t) ≈ R⊤A z(t). (2.14)
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Working with that reduced set of hysteretic variables, we will be able use a reduced set of

driving local curvatures

χ̇s = [χ̇aj1
χ̇aj2

. . . χ̇ajm ]⊤, (2.15)

a submatrix of χ̇a. In other words, we will work with a subset of the original large number

of Gauss points used to compute virtual work integrals for the hysteretic dissipation. In our

proposed data-driven approach, selection of the indices j1, j2, . . . jm is the only significant

issue. The matrix P can then be found by a simple matrix calculation.

However, for implementing our approach, we must first generate a sufficiently large amount

of data using numerical integration of the full equations with representative initial condi-

tions and/or forcing.

These initial conditions are randomly generated as follows. The hysteretic states are

uniformly distributed random numbers in the interval (0, 0.1). For the displacement and

rotation degrees of freedom, the initial conditions have nonzero values along only the first

three modes. These initial conditions, in all cases, are scaled to make the tip displacement

to be 2 cm. The three modal coordinate values are three randomly chosen, positive,

independent and identically distributed numbers, subsequently rearranged so that the first

mode had the largest displacement and the third mode had the smallest displacement. The

initial values of the velocity degrees of freedom are taken to be zero. In applications, users

who have other preferred criteria for choosing representative initial conditions can freely

use them with no consequences for the rest of the algorithm.

Having selected initial conditions, we must simulate the system by integrating the equa-

tions forward in time. To that end, we use the semi-implicit integration method presented

in section 2.3.

The data generation process is relatively slow, but once it is done and the reduced order

model is constructed, we can use it for many subsequent quicker calculations. Beyond its

academic interest, our approach is practically useful in situations where the reduced order

model will be used repeatedly after it is developed.
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2.4.2.1 Selecting a subset of hysteretic variables

For data generation, we numerically integrate the full system, over some time interval

[0, T ] with Nt points in time. This process is carried out Ns times with different random

representative initial conditions as described above. The integration duration T is chosen

as 1 second, which gives several cycles of oscillation of the lowest mode along with some

significant decay in oscillation amplitude. For each such solution with a random initial

condition, upon arranging the z variables’ solutions side by side in columns, a matrix of

size ng ne×Nt is generated. This matrix is divided by its Frobenius norm, i.e., the square

root of the sum of squares of all elements. We stack Ns such normalized matrices, one

from each simulation, side by side to form a bigger matrix Z of size ng ne ×NtNs. Clearly,

the dimension of the row-space of Z is at most ngne, because that is the total number of

rows. Identification of a useful subset of hysteretic variables is equivalent to identifying

a useful subset of the rows of Z. Therefore the problem we face now is that of selecting

rows of Z which contain a high level of independent information.

Selecting a finite subset of the rows of Z is a combinatorial optimization problem. For

example, if we start with ngne = 900 and want to select a subset of size, say, 100, then

the total number of subsets possible is extremely large and only a modest number of them

can realistically be checked. Sometimes low-rank approximations to data matrices can be

obtained using the proper orthogonal decomposition (POD) [27], but that technique is not

useful here because it does not select a subset of rows.

Here, for a simple practical solution, we use a greedy algorithm that is closely related to

a use of the QR decomposition (rank deficient least squares solutions) discussed in [22].

Although it is not guaranteed to give the best solution, we will see that it does give a

reasonably good solution.

1. Of all the rows of Z, we first select the one with the largest 2-norm and set it aside; we

also record its index (or row number), which we call j1. We scale the jth1 row to unit
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norm, calculate its inner products with the rest of the rows of Z, and subtract from

them their respective components along the jth1 row direction, yielding a modified Z.

2. Next, of all the so far unselected rows of the modified Z, we select the one with

the largest 2-norm; we record its row number in the original Z, and call it j2. We

normalize the row and subtract its component along the still-remaining rows. This

yields a further modified Z.

3. To clarify, we now have two indices selected (j1 and j2); and ngne − 2 rows of Z

remaining in contention, where for each of these remaining rows their components

along the already-selected rows have been removed.

4. Proceeding as above, we select a third row (largest 2-norm among the ngne−2 rows).

We record its row number (call it j3), normalize the row, and remove its component

from the remaining ngne − 3 rows.

5. We proceed like this for as many rows as we wish to include in the reduced order

model. A termination criterion based on the norm of the remaining part can be used

if we wish.

6. In the end, we are interested only in the selected indices j1, j2, · · · , jm. What remains

of the matrix Z is discarded.

7. In the above description, we could have removed the rows from Z after selecting

them. That would leave a remaining matrix Z with progressively fewer rows as

the calculation proceeded. That alternative algorithm is outlined below for ease of

understanding.

For intuitive understanding through a simple example, we now describe the above proce-

dure using small hypothetical numbers. The data matrix has, say, 10 rows (for simplicity).

Let the 4th row have the largest 2-norm. Let this row be denoted by r4. We select the

fourth row, remove it from the data matrix, and obtain a new matrix with 9 rows. We

divide r4 by its 2-norm to obtain a unit vector, say e4. We take the inner product of e4
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with each of the 9 remaining rows, and subtract from these rows their components along

e4. The new data matrix has rows that are all orthogonal to e4. Let the 5th row of this

remaining matrix have the largest 2-norm. We must remember that this index, namely

5, was actually 6 in the original 10-row data matrix. With that caveat, we are back to

the second line of this paragraph, only with 9 rows instead of 10. We proceed in this way

for as many rows as we wish to select, or until the 2-norms of the remaining rows become

small enough. A numerical example is given in Appendix B .

2.4.2.2 Finding matrix P

With the indices chosen, a submatrix Zs is assembled using the (j1, j2, . . . , jm)th rows ofthe

original (and not the reduced) Z. We now solve the straightforward least squares problem,

P = argmin
P̂∈Rr×m

||R⊤AZ− P̂Zs||F, (2.16)

where ||·||F denotes the Frobenius norm. The above problem, upon taking matrix trans-

poses, is routine in, e.g., Matlab. The final reduced order model becomes

M̃ξ̈ + K̃ξ +Pzs = R⊤f0(t). (2.17a)

żs =
(
Ā− α sign(χ̇s ◦ zs) ◦ |zs|◦nh − β |zs|◦nh

)
◦ χ̇s, χ̇s = BsR ξ̇, (2.17b)

where Bs is a submatrix of B constructed by retaining the (j1, j2, . . . , jm)th rows of the

latter.

Equations 2.17a and 2.17b are equivalent to a 2r + m dimensional system of first order

equations (r modes and m hysteretic variables). Note that the right hand side of Eq.

2.17a may seem like it has a large number of elements, but in practice for many problems,

external forcing is restricted to a few locations or can be reduced to a few effective locations

(e.g., if the forces acting at several nodes maintain fixed proportions to each other). We do

not investigate this aspect of size reduction because we have so far not made simplifying

assumptions about f0(t). When the forcing is zero, of course, the right hand side is zero.
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We now turn to the results obtained using, first, our integration routine; and then our

approach for developing reduced order models.

2.5 Results

Our main aim is accurate simulation of hysteretic dissipation, which is most easily seen in

the unforced decaying response of the structure. So we will first consider some unforced

transient responses of the structure to examine both stability and numerical accuracy

of our semi-implicit integration algorithm. Subsequently we will present reduced order

models and show their efficacy compared to the full model.

In the results from direct numerical integration using our proposed semi-implicit algorithm,

we will check for three things: (i) the theoretically expected power law decay for small

amplitude vibrations, (ii) the absence of instabilities arising from higher modes, and (iii)

overall accuracy.

For error calculations with low dimensional systems, i.e., when the number of elements in

the FE model is small, we will use Matlab’s ode15s for comparison with both the absolute

and relative error tolerances set to 10−10; this is because ode15s has built-in adaptive

step sizing and is accurate when it works. For high dimensional systems ode15s does not

work and we will use the proposed semi-implicit algorithm itself with a very small step

size
(
h = 2−23

)
for error estimates.

We now select some parameter values to be used in the simulation.

2.5.1 Choice of parameter values

We consider a cantilever beam with Young’s modulus E = 200 GPa and density ρ =

7850 kgm−3; of length 1m and square cross section of 2 cm× 2 cm. This yields a flexural

rigidity EI = 2666.7Nm2 and mass per unit length m̄ = 3.14 kgm−1.
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For many metals, 0.2% strain is near the border of elastic behavior. For the beam pa-

rameters above, if the beam is statically deflected under a single transverse tip load, then

0.2% strain at the fixed end of the beam corresponds to a tip deflection of 6 cm, which is

taken as a reasonable upper bound for the vibration amplitudes to be considered in our

simulations below.

Next, we consider the hysteretic damping itself. The index nh in the Bouc-Wen model is

primarily taken to be 0.5 for reasons explained a little later. A larger value is considered

in subsection 2.5.4, and only in subsection 2.5.4, to clarify an issue in convergence. The

parameters α and β are somewhat arbitrary; we have found that the values α = 0.8 and

β = 0.5 yield hysteresis loops of reasonable shape. It remains to choose the Bouc-Wen

parameter Ā.

It is known that for small amplitude oscillations, the Bouc-Wen dissipation follows a power

law. An estimate for the upper limit of forcing amplitude in the Bouc-Wen model, below

which the power law should hold, is given in [36] as

χmax =

(
2

Ā2−2nh (1 + nh) (1 + 2nh) (2 + 3nh)

(2nh2α2 + 4nhα2 − nhβ2 + 2α2) (2 + nh)

) 1
2nh

. (2.18)

Choosing χmax to correspond to the abovementioned 0.2% strain at the fixed end, in turn

corresponding to a static free-end deflection of 6 cm for the above beam, we find from Eq.

(2.18) that

Ā = 0.065.

Only one physical model parameter remains to be chosen, namely γh. To choose this

parameter value, we note that the amplitude decay in free vibrations with Bouc-Wen

hysteretic dissipation is not exponential. Thus, the idea of percentage of damping is only

approximately applicable. Upon looking at the reduction in amplitude after a certain

number of oscillations (sayM), an equivalent “percentage damping” can be approximated

using the formula

ζequiv ≈ 1

2πM
ln

(
A1

A1+M

)
. (2.19)
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Metal structures often have 1-2% damping [35]. We will choose values of the hysteretic

dissipation γh (recall Eq. (2.2)) to obtain 0.01 ≤ ζequiv ≤ 0.02. Numerical trial and error

show that

γh = 3000Nm

is a suitable value (see figure 2.3). From here, to the end of this chapter, the unit of time

is second.
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Figure 2.3: Tip displacement (m) for γh = 3000 and nh = 0.5 shows an approximate
equivalent damping of about 1.6%, as per Eq. (2.19). Here 10 beam elements were used,
with 3 hysteresis Gauss points per element. Time integration was done using Matlab’s

ode15s with error tolerances set to 10−10.

2.5.2 Semi-implicit integration: stability and accuracy

Before we examine the performance of our proposed semi-implicit integration method, we

will verify that the FE model indeed displays power law damping at small amplitudes, as

predicted by theoretical analyses of the Bouc-Wen model.

The small amplitude dissipation per cycle of the Bouc-Wen model is proportional to am-

plitude to the power nh + 2 [36]. Since the energy in the oscillation is proportional to
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amplitude squared, we should eventually observe small amplitude oscillations in the most

weakly damped mode with amplitude A obeying

AȦ = O
(
Anh+2

)
whence for nh > 0

A = O
(
t
− 1

nh

)
. (2.20)

For the Bouc-Wen model, letting nh → 0 produces hysteresis loops of parallelogram-like

shape, and so we prefer somewhat larger values of nh; however, to have a significant decay

rate even at small amplitudes, we prefer somewhat smaller values of nh. As a tradeoff, we

have chosen nh = 1
2 . We expect an eventual decay of vibration amplitudes like 1/t2.

For our beam model, with 10 elements and 3 Gauss points per element, and with our semi-

implicit numerical integration algorithm3, the computed tip displacement asymptotically

displays the expected power law decay rate, as seen on linear axes in Fig. 2.4(a) and more

clearly in the logarithmic plot of Fig. 2.4(b). The frequency of the residual oscillation is

close to the first undamped natural frequency of the beam. Higher modes are not seen in

the long-term power law decay regime.

Having checked the asymptotic power law decay rate, we next ensure that the semi-implicit

algorithm does not produce spurious oscillations in higher modes within the computed

solution. This issue is important because, with increasing mesh refinement in the FE

model, very high frequencies are unavoidable. While those high frequency modes exist in

principle, their response should be small if any external excitation is at low frequencies

and initial conditions involve only the lower modes. To examine this aspect, we denote the

time period of the highest mode present in the structural model by Tmin. As the number

of elements increases, Tmin decreases, as indicated in Fig. 2.5(a).

We now use our semi-implicit method to simulate an FE model with 100 elements and

with nonzero initial conditions along only the first 3 modes. In the computed solution,

3Matlab’s ode15s struggles with such long simulations on a small desktop computer; our algorithm
works quickly.
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Figure 2.4: The long term oscillation in the beam tip response (m) shows very slow
power law decay when nh = 1

2 . A small portion of the solution is shown zoomed within
the left subplot. The aim of this simulation is to show that the model and numerical
integration method together retain the correct asymptotic behavior far into the small-

amplitude regime.
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Figure 2.5: (a) Variation of Tmin (second) with ne and (b) Frequency content of the
transient tip displacement response when the first three modes are disturbed in a uniform

FE model with 100 elements with nh = 0.5.

we expect to see frequency content corresponding to the first three modes only. Figure

2.5(b) indeed shows only three peaks. Spurious responses of the higher modes are not

excited. Note that this simulation was done with a time step of h = 10−4 s, which is more

than 275 times larger than the time period of the highest mode for ne = 100, which is

Tmin = 3.6×10−7 sec (see Fig. 2.5(a)). It is the implicit part of the code that allows stable
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numerical integration with such a large step size.

Having checked that spurious oscillations in very high modes are not excited, it remains

to check that accurate results are obtained with time steps h which are sufficiently small

compared to the highest mode of interest. To this end, the convergence of the solution

with decreasing h is depicted in Fig. 2.6. For the beam modeled using 10 elements, the

first five natural frequencies are

16.3, 102.2, 286.2, 561.3, and 929.3 Hz.

Numerical simulation results using our semi-implicit algorithm are shown in Fig. 2.6 for

h = 10−3 s, 10−4 s, and 10−5 s. The overall solution is plotted on the left, and a small

portion is shown enlarged on the right. Only 10 elements were used for this simulation to

allow use of Matlab’s ode15s, which has adaptive step sizing and allows error tolerance to

be specified (here we used 10−10). It is seen in the right subplot that although all three

solutions from the semi-implicit method are stable, the one with h = 10−3 s does not do

very well in terms of accuracy; the one with h = 10−4 s is reasonably close and may be

useful for practical purposes; and the one with h = 10−5 s is indistinguishable at plotting

accuracy from the ode15s solution. The match between our semi-implicit integration with

h = 10−5 s and Matlab’s ode15s with error tolerances set to 10−10 indicates that both

these solutions are highly accurate.

2.5.3 Order of convergence

Using simulations with relatively few elements and over relatively short times, we can

compare the results obtained from our semi-implicit method (SIM) with ode15s, and

examine convergence as h is made smaller. Figure 2.6 shows the tip response for an FE

model with 10 elements for different time step sizes and compares them with the ode15s

solution. Here we will use two different error measures.
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Figure 2.6: Tip displacement response (m) calculated using different time steps (second)
(compared to ode15s) with nh = 0.5.

2.5.3.1 RMS error

We choose a fairly large number (NE = 128) of points evenly spaced in time, and for each

h we calculate the response at those instants of time. The overall time interval was chosen

to be [0,1]. Clearly, h can be successively halved in a sequence of simulations to ensure

that the solution is always computed at exactly the NE time instants of interest (along

with other intermediate points).

We define our RMS error measure as

erms(h) =

√√√√ 1

NE

NE∑
k=1

(yh(tk)− yaccurate(tk))
2, NE = 128. (2.21)

In the above, when the number of elements is modest (e.g., ne = 10), we use the highly

accurate solution obtained from ode15s as the “accurate” one. With larger numbers

of elements, ode15s cannot be used for validation. Having seen the overall accuracy of

the semi-implicit method (SIM) with fewer elements when compared with ode15s, we

use the SIM solution with extremely small time steps as the “accurate” one for error

estimation with larger number of elements (e.g., ne = 30). Results are shown in Fig. 2.7.

It is seen that for relatively smaller values of γh, a significant regime of approximately
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quadratic convergence is obtained (Fig. (2.7(a), 2.7(c))). It means that for lightly damped

structures the performance of the semi-implicit algorithm is excellent. For larger values of

γh, however, the convergence plot is more complicated, and there is no significant regime

of quadratic convergence (Fig. (2.7(b), 2.7(d))). This is because the damping model is

strongly non-analytic, and strong damping makes the role of that non-analyticity stronger.

However, over a significant regime and in an average sense, it appears that the convergence

is superlinear (i.e., the average slope exceeds unity in a loglog plot), and so the integration

algorithm still performs well. A larger value will be considered in subsection 2.5.4.
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Figure 2.7: Time step (second) vs. RMS error (128 equispaced points in time) for
ne = 10 and 30 with nh = 0.5.

The role of nonanalyticity in the Bouc-Wen model, and the way in which it is handled in
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our semi-implicit algorithm, are worth emphasizing. See Fig. 2.8. In the figure, point A
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Figure 2.8: Hysteresis loop for the z1 driven by χ1 (at Gauss point “1” near the fixed
end).

shows a discontinuous slope change due to the sign change of the driving term, χ̇. This

point is handled with an explicit attempt to locate the instant of change in direction, with

one integration step taken on each side of that instant. Point B indicates a sign change

in z1. Our proposed algorithm does not separately identify sign changes of z within one

time step, in the interest of simplicity. Due to nonanalyticity at both points A and B,

integration errors increase when the nonsmoothness dominates (high γh and/or small nh).

A larger value will be considered in subsection 2.5.4.

2.5.3.2 Error at a fixed instant of time

We now consider the absolute value of error at some fixed instant of time t = τ ,

eτ (h) = |yh(τ)− yaccurate(τ)|. (2.22)

Here, we use τ = 1.

Straight line fits on loglog plots of eτ (h) versus h in Fig. (2.9(a), 2.9(b)) show average

slopes that slightly exceed unity. While these slopes are not rigorously proved to exceed
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Figure 2.9: Error at t = 1 sec, for FE models with 10 and 30 elements with nh = 0.5.

unity, the overall convergence rate of the integration algorithm may be considered roughly

linear (on average) over a sizeable range of step sizes. It is emphasized that these error

computations are done in a regime where (i) Matlab’s ode15s does not work at all, (ii)

explicit methods are unstable unless extremely small time steps are used, (iii) properly

implicit algorithms are both complex and not guaranteed to converge, and (iv) nh = 0.5

in the Bouc-Wen model is relatively small. Considering these four difficulties, the semi-

implicit method (SIM) proposed in this chapter may be said to be simple, effective, and

accurate.

2.5.4 Larger nh

Everywhere in this chapter except for this single subsection, we have used nh = 0.5. In

this subsection only, we consider nh = 1.5. Due to the greater smoothness of the hysteresis

loop near the point B of Fig. 2.8, we expect better convergence for this higher value of nh.

Some parameter choices must be made again. Using the yield criteria used in section 2.5.1,

for nh = 1.5, we find we now require

Ā = 608.9 .
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Subsequently, we find an approximate equivalent damping ratio ζequiv = 0.015 for γh = 0.3.

It is interesting to note that with the change in nh and for the physical behavior regime

of interest, Ā and γh have individually changed a lot but their product has varied only

slightly (195 Nm for about 1.6% damping in the nh = 0.5 case, and 183 Nm for about

1.5% damping in the nh = 1.5 case).

The decay of tip response amplitude (Fig. 2.10) for these parameters (with nh = 1.5) looks

similar to the case studied in the rest of this chapter (nh = 0.5, with attention to Fig. 2.3).

0 0.2 0.4 0.6 0.8 1
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Figure 2.10: Tip displacement (m) for γh = 0.3 and nh = 1.5 shows an approximate
equivalent damping of about 1.5%, as per Eq. 2.19. Here 10 beam elements were used,
with 3 hysteresis Gauss points per element. Time integration was done using Matlab’s

ode15s with error tolerances set to 10−10.

The main point to be noted in this subsection is that with nh = 1.5, Ā = 608.9, γh = 0.3,

and all other parameters the same as before, we do indeed observe superior convergence

over a significant range of step sizes: see Fig. 2.11 for FE models with 10 and 30 elements,

and compare with Fig. 2.7. For the case with 10 elements, the convergence is essentially

quadratic. With 30 elements the convergence is slightly slower than quadratic, but much

faster than linear. Note that these estimates are from numerics only: analytical estimates

are not available.
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Figure 2.11: Time step (sec) vs. RMS error (128 equispaced points in time) for ne = 10
and 30 with nh = 1.5. The linear fit for 10 elements has slope 2.0. The linear fit for 30

elements has slope 1.9; another line with slope 2 is shown for comparison.

As mentioned above some of the difficulty with accurate integration of hysteretically

damped structures comes from the zero crossings of the hysteretic variable z itself. In

this study, for simplicity, we have avoided special treatment of these zero crossings. How-

ever, the results of this subsection show that the effect of these zero crossings is milder if

nh is larger.

We now turn to using results obtained from this semi-implicit integration method to

develop data-driven lower order models of the hysteretically damped structure.

2.5.5 Reduced order models

In our beam system, we have 2 degrees of freedom per node (one displacement and one

rotation). Let the total number of differential equations being solved, in first order form,

be called ND. If there are ne elements, we have ND = 4ne + neng first order differential

equations. In a reduced order model with r modes and m Gauss points, we have ND =

2r + m first order differential equations. Although the size of the problem is reduced

significantly in this way, the accuracy can be acceptable.
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For demonstration, we consider two FE models of a cantilever beam, with hysteresis, as

follows:

(i) 100 elements with 3 Gauss points each (ND = 700).

(ii) 150 elements with 3 Gauss points each (ND = 1050).

For each of the two systems above, the datasets used for selecting the subset of hysteretic

states (or Gauss points) were generated by solving the full systems 60 times each for the

time interval 0 to 1 with random initial conditions and time step h = 10−4, exciting only

the first 3 modes (r = 3). Data from each of these 60 solutions were retained at 1000

equispaced points in time (Nt = 1000; recall subsection 2.4.2.1).

All reduced order model (ROM) results below are for r = 3 retained modes. Further, the

number of hysteresis Gauss points is denoted by m. Results for m = ne are shown in Fig.

(2.12(a), 2.12(c)).

We now quantitatively assess the accuracy of the ROMs. To this end, we write y
(m)
tip(ROM)(t)

and ytip(FM)(t) for the ROM and full model outputs respectively. We then compute the

error measure

Erms =

√√√√ 1

NE

NE∑
k=1

(
y
(m)
tip(ROM)(tk)− ytip(FM)(tk)

)2
, NE = 10001, (2.23)

for different values of m and for an integration time interval [0, 1] (with h = 10−4). The

variation of Erms with m, for both models, is shown in Fig. 2.13. This error measure is

not normalized. If we wish to normalize it, then we should use the quantity obtained

when we set y
(m)
tip(ROM)(t) identically to zero: that quantity is 0.006 for both models. Thus,

reasonable accuracy is obtained for m ≥ 50, and good accuracy (about 1% error) is

obtained only for m > 100. These numbers refer to a specific case with random initial

conditions; however, Fig. 2.13 is representative for other, similar, initial conditions (details

omitted).
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Figure 2.12: Comparison between ROM and full model, for two cases (see text for
details). Tip displacements (left) and hysteresis curve (right) are shown. In subplots (b)
and (d), the retained hysteresis Gauss point closest to the fixed end of the beam has been

selected for display.

Finally, we report on run times needed on a modest laptop computer with the different

levels of modeling described above. A representative initial conditions similar to the above

was selected. The simulation duration was chosen to be 1 second, and the time step taken

was 10−4 seconds. The following results were obtained after averaging run times for 4

runs each. (i) The full simulation with our algorithm took an average of 27.22 seconds per

run. (ii) After projecting on to 3 normal modes but retaining all 450 hysteretic states,

each run took an average of 1.3 seconds. (iii) Finally, with 3 normal modes and hysteretic

states reduced from 450 to 150, each run took an average of 0.84 seconds. Note that we



Chapter 2. Semi-implicict method for structural dynamics with hysteresis 40

0 20 40 60 80 100 120
10

-5

10
-4

10
-3

10
-2

0 50 100 150
10

-5

10
-4

10
-3

10
-2

Figure 2.13: Error convergence of ROM with increasing number of Gauss points re-

tained. For comparison, if y
(m)
tip(ROM)(t) is set identically to zero, the error measure ob-

tained is 0.006 for both models. Thus, for reasonable accuracy, m ≥ 50 may be needed.

could save further run time by taking larger time steps after model order reduction and/or

retaining even fewer hsyteretic states.

2.6 Conclusions

Structural damping is nonlinear and, empirically, dominated by rate-independent mech-

anisms. Hysteresis models are therefore suitable, but present numerical difficulties when

used in large finite element models. Fully implicit numerical integration of such highly

refined FE models presents difficulties with convergence in addition to algorithmic com-

plexities. With this view, we have proposed simpler but effective approaches, in two

stages, to simulations of such structural dynamics. The first stage consists of a semi-

implicit integration routine that is relatively simple to implement, and appears to give

linear convergence or better. Moreover, the time steps required for stability can be much

larger than the time period of the highest mode in the FE model. Subsequently, we have

used the results from that semi-implicit integration to develop data-driven reduced order

models for subsequent rapid case studies or other simulations.



Chapter 2. Semi-implicict method for structural dynamics with hysteresis 41

Thus, our contribution is twofold: first, we present a simple and practical numerical in-

tegration method that can be easily implemented; second, we use the results from that

integration algorithm to further reduce the size of the model.

Although we have worked exclusively with a cantilever beam in this chapter, our approach

can be directly extended to frames that can be modeled using beam elements. We hope

that future work will also examine ways in which the present approach can be extended

to genuinely two- or three-dimensional structures. While we have not worked such cases

out yet, we are hopeful that the issues addressed in the present study will help to tackle

such higher-dimensional problems.

We now address some limitations of our work. First of all, hysteresis is scalar at a point.

That is because, in a slender beam, the stress is predominantly uniaxial. In a structure

with three dimensional state of stress, the development of the numerical algorithm may

have to be done afresh. Secondly, some hysteresis models have larger number of internal

states. There again, the algorithm will have to be extended. Third, for the reduced

order model, the dataset has to be generated in advance. Perhaps future work will find a

completely different algorithm where this initial data generating step will not be required.

Now, we move on to the second contribution of this thesis. In the next chapter we discuss

the short-time dynamics of a linear beam subjected to an impulsive moment.



Chapter 3

Short Time Angular Impulse

Response of Rayleigh Beams

3.1 Introduction

Beams are ubiquitous structural members in engineering, especially civil and mechanical

engineering, and also encountered in applied physics, micro- and nano-mechanics. The

mathematical study of these flexural members dates back to the 16th century [37] in the

works of Jacob Bernoulli, followed by Euler. The basic assumptions with regard to the

deformation kinematics, warp-free planes, planes perpendicular to the neutral axis, etc.,

come from the works of Euler and Bernoulli. The Euler-Bernoulli beam model is taught

and studied widely owing to its simplicity and applicability for beams where either the

length or the wavelength (in case of traveling waves) is large compared to the radius of

gyration of the beam cross section. Many engineering beam structures obey this theory for

many types of loading. One drawback of the Euler-Bernoulli beam is that the phase speed

cp ∝
√
ω is unbounded for large ω, where ω is the frequency of the wave [38]. A slightly

more advanced beam model was proposed by Lord Rayleigh [39], who added rotary inertia

of cross sections to the Euler-Bernoulli beam model without adding new field variables.

Unlike the Timoshenko beam which adds shear deformations [40, 41], the Rayleigh beam

42
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model is almost as easily tractable as the Euler-Bernoulli beam and has only one field

variable, namely the transverse displacement u(x, t). For the Rayleigh beam model, cp

approaches a finite limit as ω → ∞ [38].

In this chapter we take up the Rayleigh beam model because it is the simplest classical

beam model that predicts bounded responses to an instantaneous angular impulse, i.e.,

an impulsive moment concentrated in both space and time. As we will show below, the

response has several aspects of fundamental academic interest. Our results have practical

value as well, because the impulse response function (IRF) forms the basis for evaluating

the response to any arbitrary excitation using a convolution integral [42].

A basic element of the analytical treatment for such problems lies in assuming that bound-

aries are far enough away so that reflections of sufficient strength do not arrive too quickly,

and an analysis of the short term response can be carried out by assuming either an un-

bounded structure or a finite structure with analytically convenient boundary conditions.

A study of the response of an Euler-Bernoulli beam to a linear impulse gives interesting

bounded results [43]. However, the Euler-Bernoulli beam model predicts unbounded re-

sponses to angular impulses. This is the motivation for taking up the Rayleigh beam for

study in this chapter: it is the simplest model that incorporates rotary inertia and gives

physically plausible results.

While our study is theoretical and limited to an ideal concentrated impulsive moment

on an ideal Rayleigh beam, it will shed useful light on some practical situations as well.

For example, the response of the beam to a localized angular impulse may be useful in

computing the short time structural behavior upon the rapid stopping of a motor mounted

on a beam with long span.

As indicated above, the transient response of beams excited by linear impulses (as opposed

to angular impulses) is a well researched topic. A representative review of the literature

follows. An early and clever article by Zener [44] studied the response of a thin plate

subjected to a linear impulse for durations short enough that the effect of waves reflected

from the boundaries can be neglected. Schwieger [45, 46] adapted Zener’s analysis to



Chapter 3. Short time angular impulse response of Rayleigh beams 44

an Euler-Bernoulli beam, found the now well known
√
t behavior in the linear impulse

response, and conducted an experimental investigation that bore out the approximation.

The detailed responses of an infinite beam as well as a simply supported beam were studied

by Chatterjee [43] (2004), and some time later a large part of that work was developed

independently by Meijaard [47] (2007). The
√
t nature of the response of the infinite beam

was used in computing detailed ball-impact responses in [48]. A symbolic calculation for

plates subjected to impulses was presented by Claeyssen et al. [49] (2002). Numerous finite

element (FE) studies of beam responses are available. Roy et al. [50] (1995) used an FE

model of a beam and investigated the short time response under viscous damping with the

impact at different locations along the beam. Impulse response studies have been carried

out for more complicated structural members, accounting for viscoelastic layers [51] and

composites [52]. There are also papers on related topics like vibro-impacting beams [53]

and vibration-dominated impacts [54]. Finally, digressing from transversely acting linear

impulse loading, Kenny et al. [55] (2000) studied the dynamic buckling of slender beams

subjected to axial impulse loading and validated the results using FE analysis.

As the foregoing literature review indicates, there are many studies that examine the

behavior of beams subjected to linear impulses, but not angular impulses. In this chapter

we will study the transient behaviour of a beam subjected to an impulsive moment. We

will have to abandon the Euler-Bernoulli beam model because its lack of rotary inertia

leads to unbounded rotations; and we will take up instead the Rayleigh beam model,

which has the same kinematics and strain energy, but in which the kinetic energy includes

a contribution from the rotations of cross sections.

3.2 Euler-Bernoulli beams under impulsive moments

With reference to Fig. 3.1, consider a simply supported Euler-Bernoulli beam of length

L, flexural rigidity EI, material density ρ, and cross sectional area A. Let this beam be

subjected to an impulsive moment M0 at its midpoint. The governing equation for the
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Figure 3.1: A slender beam subjected to a impulsive moment applied at the midpoint.

transverse displacement u is

ρAu,tt + EI u,xxxx = −M0 δ,x

(
x− L

2

)
δ(t), (3.1)

where x is the spatial coordinate along the beam, t is time, subscripts denote partial

derivatives, and δ(·) denotes the Dirac delta function1.

Let us approach this problem using dimensional analysis [56]. The angular rotation at the

impulse location, namely u,x
(
L
2 , t
)
, is a function of five quantities, namely EI, ρA, M0,

L, and t. If we are interested in the short time response of the beam, we may tentatively

assume that the beam length does not affect the solution because reflections of sufficient

magnitude have not yet traveled back from the ends of the beam. By this assumption, the

rotation must be a dimensionless function of EI, ρA, M0, and t. These four quantities

(three parameters and one variable) allow formation of a dimensionless variable, which we

take to be

π1 = (EI)a (ρA)b tcMd
0 . (3.2)

However, since the system is linear, and starts from zero initial conditions, the response

must be proportional toM0, which means d = 1. Using routine calculations, the remaining

constants must be

a = −3

4
, b = −1

4
, and c = −1

2
. (3.3)

In the above, c = −1/2 implies that the short time response is proportional to 1/
√
t, which

is unbounded as t→ 0. Mathematically, this unbounded response is due to non-inclusion

1The term δ,x(·) has dimension L−1. The quantity M0 is a Moment applied per unit length. So, its
dimension is MLT−2. Hence the dimension of RHS of Eq. 3.1 is MT−2.
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of rotary inertia in the Euler-Bernoulli beam model. Furthermore, for a finite-length beam,

the assumption that reflections from the boundary are negligible is seen to be invalid. See

Fig. 3.2. In FE simulations of a beam with unit length with large numbers of elements

(we used 640 and 1280) and an implicit integration algorithm which damps out super-high

frequencies, the computational result shows a short period of 1/
√
t behavior before high

frequency oscillations appear. However, with the number of elements held fixed (at 640,

which is high enough), if the time step is reduced, the duration of the 1/
√
t behavior

shrinks as well. In the exact solution for a finite-length Euler-Bernoulli beam, reflections

from the boundaries play a significant role immediately after application of the angular

impulse.

With the above motivation we turn to the Rayleigh beam model, which incorporates rotary

inertia but retains the simple deformation kinematics of the Euler-Bernoulli beam model

[39, 57]. From an analytical perspective, the Rayleigh beam model is the preferred first

step as compared to the Timoshenko beam model, which both includes rotary inertia

and allows shear deformation. We hope that an analysis of the Timoshenko beam model

may be undertaken in future work. In this chapter, we focus on developing asymptotic

approximations for the short time angular impulse response of Rayleigh beams.

3.3 Rayleigh beams

We now consider the same elastic beam as in Fig. 3.1, but include rotary inertia equal to

ρI per unit length in the mathematical model. In this formulation, for an angular impulse

M0 applied at the midpoint of the beam, the beam deflection u(x, t) is governed by the

equation

ρAu,tt + EI u,xxxx − ρI u,ttxx = −M0 δ,x

(
x− L

2

)
δ(t), (3.4)

where subscripts denote partial derivatives. It is interesting to note that an Euler-Bernoulli

beam incorporating nonlocal2 effects based on Eringen’s stress gradient theory [59, 58]

2In constitutive relations where the gradient of stress or strain is involved, the corresponding terms
introduce a new length scale in the material model, and such models are called nonlocal.
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Figure 3.2: Computed response of a simply supported Euler-Bernoulli beam with L = 1,
EI = 1, and ρA = 1, to a central angular impulse for different mesh refinements and time
steps. The 0.2 coefficient in the 1/

√
t response is numerically fitted. Between subplots

(a) and (b), only the time scale is changed for visibility; so also for subplots (c) and (d).
Subplots (a) and (b) show that, for a fixed time step, higher mesh refinement has no
effect. Subplots (c) and (d) show that, for high enough mesh refinement, the duration
of the computationally obtained 1/

√
t behavior shrinks as the time step is reduced. This

1/
√
t behavior is an artifact of implicit integration, which offers stability but damps out
super-high modes, in turn removing super-quick reflections from boundaries.

assumes a similar governing equation as that of the Rayleigh beam model. However, the

rotary inertia ρI per unit length of the Rayleigh beam model is replaced by the nonlocal

scaling parameter ρA(e0ac)
2 in a nonlocal beam, e0 is the nonlocal material parameter

and ac is the internal characteristic length.



Chapter 3. Short time angular impulse response of Rayleigh beams 48

3.3.1 Dimensional analysis

Proceeding along similar lines as in the previous section, and again dropping L because

we are interested in the short time response, we recognize that the angular response is a

function of M0, EI, ρA, ρI, and t. There are now two dimensionless quantities, and we

include M0 in one of them and t in the other, to write

η1 = (EI)a1 (ρI)b1 (ρA)c1 (M0)
d1 and η2 = (EI)a2 (ρI)b2 (ρA)c2 (t)d2 . (3.5)

Setting d1 = d2 = 1 for definiteness, using routine methods, we obtain

a1 = b1 = −1

2
, c1 = 0, and a2 = c2 =

1

2
, b2 = −1, (3.6)

or

η1 =
M0

I
√
Eρ

, η2 = t

√
EA

ρI
. (3.7)

Accordingly, the short-time rotational response at the midpoint of the beam, being dimen-

sionless, is of the form

u,x

(
L

2
, t

)
= f

(
M0

I
√
Eρ

, t

√
EA

ρI

)
. (3.8)

Linearity of Eq. 3.4 implies the response is proportional to M0, so we must have

u,x

(
L

2
, t

)
=

M0

I
√
Eρ

f0

(
t

√
EA

ρI

)
, (3.9)

where f0 is to be determined as a function of nondimensional time τ = t
√
EA/ρI. Since

we have neglected reflections from the ends by dropping L from this dimensional analysis,

Eq. 3.9 is expected to hold for 0 < τ ≪ 1, and L large.

Next, we consider the exact solution using a modal expansion.
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3.3.2 Modal solution

It may be verified that the differential operator of the Rayleigh beam is self-adjoint [57, 42]

and the eigenfunctions of the resulting eigenvalue problem are orthonormal. By direct

substitution, for a simply supported Rayleigh beam, the eigenfunctions are seen to be

pure sines. Again assuming simple supports at both ends of the beam, and expanding the

solution using the beam’s eigenfunctions [57], we write

u(x, τ) =

∞∑
n=1

qn(τ) sin
(nπx
L

)
, (3.10)

where the time-varying coefficients qn(τ) satisfy qn(0) = 0.

With suitable choice of units of mass, length, and time, we can make ρA = 1, ρI = 1, and

EI = 1. Now L can be treated as dimensionless. Substituting Eq. 3.10 in Eq. 3.4 yields

∞∑
n=1

sin(pnx)
(
q′′n(1 + p2n) + p4n qn

)
= −δ,x

(
x− L

2

)
δ(τ), (3.11)

where pn = nπ/L, and the prime (·)′ indicates a τ -derivative. Multiplying both sides with

sin(pkx) for positive integers k, and integrating over the length of the beam as usual, we

obtain

q′′k + ω2
k qk =

2 pk cos
(
pk L
2

)
L
(
1 + p2k

) δ(τ), (3.12)

where ωk = p2k/
√
1 + p2k. For zero initial conditions, the solution of Eq. 3.12 is

qk(τ) =
2 pk cos

(
k π
2

)
L (1 + p2k)ωk

sin(ωk τ), (3.13)

yielding

u(x, τ) =
2

L

∞∑
k=1

cos
(
k π
2

)
pk

√
1 + p2k

sin(pkx) sin

 p2k√
1 + p2k

τ

 . (3.14)
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Terms containing odd k drop out of the above sum, and the rotation at x = L/2 is then

u,x

(
L

2
, τ

)
=

2

L

∞∑
k=1

1√
1 + 4 k2 a2

sin

(
4 k2 a2√
1 + 4 k2 a2

τ

)
, (3.15)

where a = π/L. Taking a τ -derivative term by term, the angular velocity at x = L/2 is

formally

u,xτ

(
L

2
, τ

)
=

2

L

∞∑
k=1

4 k2 a2

1 + 4 k2 a2
cos

(
4 k2 a2√
1 + 4 k2 a2

τ

)
, (3.16)

but the series in Eq. 3.16 diverges at τ = 0 3. We need more careful analysis.
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Figure 3.3: Angular impulse response at the midpoint of a Rayleigh beam of length
L = π calculated with a step size h = 4×10−4, from an FE model with 1280 elements and
the series given in Eq. 3.15 summed to 105 terms. The series solution shows discontinuities
at τ = 0 and τ = π. The discontinuity at τ = π is because of the arrival of high frequency
reflections from the ends of the beam. The high frequency oscillations in the FE solution

are numerical artifacts (see the main text).

The series solution in Eq. 3.15 for the slope at the center of the beam of length π exhibits

a discontinuity at τ = 0 (shown in Fig. 3.3), but the behavior is bounded unlike that

of the Euler-Bernoulli beam. The discontinuity arrives some time later at points slightly

separated from the point of application of the moment impulse. Further, the response is

3At τ = 0, Eq. 3.16 yields the series 2
L

∑∞
k=1

4 k2 a2

1+4 k2 a2 = 2
L

∑∞
k=1

(
1− 1

1+4 k2 a2

)
, which diverges.
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discontinuous at τ = π as well. This is because of two reasons. First, for a beam length π,

the travel distance from the center of the beam to either end and back is π. Second, with

physical parameters set to unity as above, the phase velocity as a function of frequency

ω approaches unity from below as ω → ∞. For this reason, infinitely many frequencies

return after reflection as τ → π. We evaluate the series solution by summing 105 terms,

and demonstrate the first two discontinuities. The series for longer times shows subsequent

discontinuities at integer multiples of π (not displayed for brevity).

Finite element (FE) analysis of a Rayleigh beam with 1280 fixed-length elements (see

details in Appendix C) yields results that match the series solution including the dis-

continuity at τ = π, except for some high-frequency oscillations near the discontinuities.

We believe the oscillations are artifacts of the level of mesh refinement, the chosen time

step, and the implicit integration algorithm used. The analytical series solution is correct

in principle, but should be verified by an independent calculation: the FE solution, which

matches over a large region, provides that verification.

Equation 3.4 is a linear PDE which has been solved using a series expansion. In Fig. 3.3,

the response of a beam of length π has been plotted to show the arrival of reflected waves

from the boundary. However, in order to get physically more meaningful results, we should

consider L≫ 1. This is because both ρA and ρI have been set to unity above, and so the

lateral dimensions of the beam are of O(1). Hence, we must choose L large compared to

unity so that the assumptions of a slender beam are valid.

For beams with L ≫ 1, the short time impulse response is independent of the point of

application of the load. Let us denote the rotational response at a point x at time τ due

to an angular impulse applied at point x0 by v(x, x0, τ). Figure 3.4 shows the responses

of a beam of length L = 12 subjected to an angular impulse at x = L/2 and at x = L/4.

Figure 3.4 establishes that the short time response is independent of the point of ap-

plication of the load provided the beam is somewhat long and the load is not applied

too close to one of the ends. For subsequent calculations, we choose the midpoint of the

beam for analytical convenience because then half the terms drop out of the series solution
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Figure 3.4: Responses v(x0, x0, τ) of a Rayleigh beam with L = 12 for x0 = L/2 and
x0 = L/4. The two responses are clearly the same.

(Eq. 3.15). The series solution of Eq. 3.15 must now be treated analytically to obtain an

asymptotic description of its behaviour for small τ .

We now come to the main academic research contribution of this chapter. We will show

below that

∞∑
k=1

1√
1 + 4 k2 a2

sin

(
4 k2 a2√
1 + 4 k2 a2

τ

)
=

π

4 a
−
π coth

(
π
2 a

)
4 a

τ +
3π

16 a
τ2

+
π
(
π − 5 a sinh

(
π
a

))
48 a2

(
cosh

(
π
a

)
− 1
) τ3 +O

(
τ4
)
,

a =
π

L
, and 0 < τ ≪ 1. (3.17)

3.4 Short time asymptotic solution

We begin with the infinite sum in Eq. 3.15,

S(τ) =

∞∑
k=1

1√
1 + 4 k2 a2

sin

(
4 k2 a2√
1 + 4 k2 a2

τ

)
for 0 < τ ≪ 1. (3.18)
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It is an anharmonic4 series, and if differentiated term by term it diverges. Let us consider

a large number N ≈ 1/
√
τ , and split S(τ) as follows

S(τ) =
N∑
k=1

f(k, τ) +
∞∑

k=N+1

f(k, τ), where f(k, τ) =
1√

1 + 4 k2 a2
sin

(
4 k2 a2√
1 + 4 k2 a2

τ

)
.

(3.19)

We now state a basic result which we will use in our approximations. A formal proof is

given in Appendix D.

Lemma 1 Consider a function g(y) : R → R. Let all its derivatives tend to 0 as y → ∞,

with higher derivatives being asymptotically smaller than lower derivatives as y → ∞; and

assume further that the sum
∑∞

k=N+1 g(k) and the integral
∫∞
N g(y) dy exist. Then

∞∑
k=N+1

g(k) =

∫ ∞

N
g(y) dy − g(N)

2
− g′(N)

12
+
g′′′(N)

720
− g(5)(N)

30240
+
g(7)(N)

1209600
· · · . (3.20)

This result will be used repeatedly below. The known sums of some infinite series are

given in Appendix E, which will be used below as well.

We now treat the two terms in the RHS of Eq. 3.19 separately.

3.4.1 First term of Eq. 3.19

Considering the first sum on the right hand side of Eq. 3.19, the argument of the ‘sin’

function, namely 4 k2 a2√
1+4 k2 a2

τ , is small for all k < N for τ ≪ 1. Thus, termwise Taylor

series expansion is allowed, and it yields

S1(τ) =
N∑
k=1

f(k, τ) =
N∑
k=1

4 k2 a2 τ

4 k2 a2 + 1
−

N∑
k=1

32 k6 a6 τ3

3 (4 k2 a2 + 1)2
+

N∑
k=1

128 k10 a10 τ5

15 (4 k2 a2 + 1)3
+ h.o.t.

(3.21)

4In this context: a series of sinusoidal functions where the frequencies are not integer multiples of a
fundamental frequency.
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The first term on the right hand side of Eq. 3.21 can be written as

S1,1 =
N∑
k=1

4 k2 a2 τ

4 k2 a2 + 1
= Nτ − τ

N∑
k=1

1

4 k2 a2 + 1
= Nτ − τ

∞∑
k=1

1

4 k2 a2 + 1

+ τ
∞∑

k=N+1

1

4 k2 a2 + 1
, (3.22)

and therefore (see Appendix E)

S1,1 = Nτ + τ

∞∑
k=N+1

1

4 k2 a2 + 1
−

(
π coth

(
π
2 a

)
4 a

− 1

2

)
τ. (3.23)

By Lemma 1, we can write

∞∑
k=N+1

1

1 + 4 k2 a2
∼
∫ ∞

N

dx

1 + 4x2 a2
− 1

8N2a2 + 2
+

2Na2

3 (4N2a2 + 1)2

− 64N3a6

15 (4N2a2 + 1)4
+

8Na4

15 (4N2a2 + 1)3
+ · · ·

=
π − 2 tan−1(2Na)

4 a
− 1

8N2a2 + 2
+

2Na2

3 (4N2a2 + 1)2
+

− 64N3a6

15 (4N2a2 + 1)4
+

8Na4

15 (4N2a2 + 1)3
+ · · · . (3.24)

Substituting N = 1/
√
τ and expanding in a series for small τ ,

∞∑
k=N+1

1

1 + 4 k2 a2
≈ 1

4 a2
√
τ − τ

8 a2
+

(
− 1

48 a4
+

1

24 a2

)
τ

3
2

+
τ2

32 a4
+

(
1

320 a6
− 1

48 a4
− 1

120 a2

)
τ

5
2 − τ3

128 a6
+O

(
τ

7
2

)
. (3.25)

Substituting Eq. 3.25 in Eq. 3.23, we obtain

S1,1 =

N∑
k=1

4 k2 a2 τ

4 k2 a2 + 1
≈

√
τ +

(
−
π coth

(
π
2 a

)
4 a

+
1

2

)
τ +

τ
3
2

4 a2

− τ2

8 a2
+

(
− 1

48 a4
+

1

24 a2

)
τ

5
2 +

τ3

32 a4
+O

(
τ

7
2

)
. (3.26)
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Next, the second term on the right hand side of Eq. 3.21, using partial fractions, takes the

form

S1,2 = −
N∑
k=1

32 k6 a6 τ3

3 (4 k2 a2 + 1)2
= τ3

N∑
k=1

(
−2k2 a2

3
+

1

3
− 1

(8 k2 a2 + 2)
+

1

6 (4 k2 a2 + 1)2

)
,

(3.27)

which yields,

S1,2 = τ3

{
2N

9

(
3

2
−
(
N2 +

3N

2
+

1

2

)
a2
)
+

∞∑
k=1

(
− 1

(8 k2 a2 + 2)
+

1

6 (4 k2 a2 + 1)2

)}

− τ3
∞∑

k=N+1

(
− 1

(8 k2 a2 + 2)
+

1

6 (4 k2 a2 + 1)2

)
, (3.28)

which further yields (see Appendix E)

S1,2 = τ3
2N

9

{
3

2
−
(
N2 +

3N

2
+

1

2

)
a2
}
+

τ3

96 a2

{(
coth

( π
2 a

))2
π2 + 16 a2

}
+

τ3

96 a2

(
−10π coth

( π
2 a

)
a− π2

)
− τ3

∞∑
k=N+1

(
− 1

(8k2 a2 + 2)
+

1

6 (4k2 a2 + 1)2

)
. (3.29)

Using Lemma 1 (Eq. 3.20), we can approximate the sum after evaluating the integral,

∞∑
k=N+1

− 1

(8k2 a2 + 2)
+

1

6 (4k2 a2 + 1)2
= −20N2π a2 − 40N2 arctan (2Na) a2 + 4N a

(192N2a2 + 48) a

− 5π − 10 arctan (2Na)

(192N2a2 + 48) a
+

1

(16N2a2 + 4)
− 1

12 (4N2a2 + 1)2

− 4Na2

3 (8N2a2 + 2)2
+

2Na2

9 (4N2a2 + 1)3
+ · · · . (3.30)
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Substituting Eq. 3.30 in Eq. 3.29 followed by letting N = 1/
√
τ , and expanding for small

τ yields

S1,2 = −2 a2

9
τ

3
2 − a2τ2

3
+

(
1

3
− a2

9

)
τ

5
2

+
τ3

96 a2

{
π2
(
coth

( π
2 a

))2
− 10π coth

( π
2 a

)
a− π2 + 16 a2

}
+O

(
τ

7
2

)
. (3.31)

The last term on the right hand side of Eq. 3.21 can be expressed in partial fractions as

well, to yield

S1,3 =
N∑
k=1

128 k10 a10τ5

15 (4 k2 a2 + 1)3

= τ5
N∑
k=1

(
2 a4k4

15
− a2k2

10
+

1

20
− 1

48 a2k2 + 12
− 1

120 (4 a2k2 + 1)3
+

1

24 (4 a2k2 + 1)2

)
= τ5

[
2N

75

{
15

8
+

(
N4 +

5N3

2
+

5N2

3
− 1

6

)
a4 +

(
−5N2

4
− 15N

8
− 5

8

)
a2
}]

+ τ5
2016N4 arctan (2 aN) a4 − 1008N4π a4 − 272N3a3 + 1008N2 arctan (2 aN) a2

3840 (4N2a2 + 1)2 a

+ τ5
−504N2π a2 − 60 aN + 126 arctan (2 aN)− 63π

3840 (4N2a2 + 1)2 a
− τ5

∞∑
k=1

1

12 (4 k2 a2 + 1)

− τ5
∞∑
k=1

1

120 (4 k2 a2 + 1)3
+ τ5

∞∑
k=1

1

24 (4 k2 a2 + 1)2
+ τ5

∞∑
k=N+1

1

12 (4 k2 a2 + 1)

τ5
∞∑

k=N+1

1

120 (4 k2 a2 + 1)3
− τ5

∞∑
k=N+1

1

24 (4 k2 a2 + 1)2
. (3.32)

Again using Lemma 1, evaluating the relevant integrals, considering N = 1/
√
τ , and

expanding for small τ , we obtain

S1,3 ≈
2 a4

75
τ

5
2 +

a4τ3

15
+O

(
τ

7
2

)
. (3.33)
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Finally, the first term of Eq. 3.19 for small τ is

S1(τ) ≈ S1,1 + S1,2 + S1,3 =
√
τ +

τ

4 a

(
−π coth

( π
2 a

)
+ 2 a

)
+

(
1

4 a2
− 2 a2

9

)
τ

3
2

+

(
− 1

8 a2
− a2

3

)
τ2 +

(
− 1

48 a4
+

1

24 a2
+

1

3
− a2

9
+

2 a4

75

)
τ

5
2

+

[
1

32 a4
+

1

96 a2

{(
coth

( π
2 a

))2
π2 − 10 coth

( π
2 a

)
π a− π2 + 16 a2

}
+
a4

15

]
τ3+O

(
τ

7
2

)
.

(3.34)

3.4.2 Second term of Eq. 3.19

Considering now the second term of Eq. 3.19, we will again write it as an integral plus a

sum of discrete terms (Lemma 1). For the integral, writing y in place of k, treating y as

large and τ as small, we obtain

1√
1 + 4 y2 a2

sin

(
4y2 a2√
1 + 4 y2 a2

τ

)
≈ sin (2 a τ y)

2 a y
− cos (2 a τ y) τ

8 a2y2

+
1

y3

(
−sin (2 a τ y)

16 a3
− sin (2 a τ y) τ2

64 a3

)
+

1

y4

(
cos (2 a τ y) τ

64 a4
+

cos (2 a τ y) τ
(
τ2 + 18

)
768 a4

)

+
1

y5

(
3 sin (2 a τ y)

256 a5
+

sin (2 a τ y) τ2

512 a5
+

sin (2 a τ y) τ2
(
τ2 + 72

)
12288 a5

)
+ h.o.t. (3.35)

The first term in the RHS of Eq. 3.35, when integrated over [N,∞), can be expressed as

∫ ∞

N

sin (2 a τ y)

2 a y
dy =

∫ ∞

0

sin (2 a τ y)

2 a y
dy−

∫ N

0

sin (2 a τ y)

2 a y
dy =

π

4 a
−
∫ N

0

sin (2 a τ y)

2 a y
dy.

(3.36)

A trick used in Eq. 3.36 may be noted. Although the integrand has been obtained using

a large-y expansion, as far as the integral itself goes, Eq. 3.36 is exact. In Eq. 3.36, y is

simply a dummy variable of integration. In particular, the last integral uses small values

of the argument of the sine. In that final integral, since yτ is small for all y ∈ (0, N), series

expansion of sin(2ayτ)/2ay and then term by term integration is possible (details omitted

for brevity). The rest of the terms in the right hand side of Eq. 3.35 can be routinely
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integrated by parts to obtain asymptotic approximations (see page 252 of Bender and

Orszag [60] for examples).

Accordingly, the integral on the right hand side of Eq. 3.35 with the limits N = 1/
√
τ to

∞ results in

∫ ∞

1√
τ

1√
1 + 4y2 a2

sin

(
4 a2 y2√
1 + 4 a2 y2

τ

)
dy =

π

4 a
−
√
τ−−1981808640 a4 + 2229534720

8918138880 a2
τ

3
2

+
3π τ2

16 a
− 1

8918138880 a4

(
2972712960 a4 − 185794560 +

1189085184 a8

5

)
τ

5
2 +O

(
τ

7
2

)
.

(3.37)

The second term of Eq. 3.19 requires us to subtract some discrete terms as well:

(
1

2
f(N, τ) +

1

12

∂f(y, τ)

∂y

∣∣∣∣
y=N

− 1

720

∂3f(x, τ)

∂x3

∣∣∣∣
x=N

)∣∣∣∣
N= 1√

τ

=
τ

2
−
τ2
(
480 a4 + 180

)
1440 a2

− 160 a4 − 60

1440 a2
τ

5
2 −

τ3
(
−96 a8 − 240 a4 − 45

)
1440 a4

+O
(
τ

7
2

)
. (3.38)

Hence,

S2(τ) ≈
π

4 a
−
√
τ − τ

2
+

3

16 a4

(
32 a6

27
− 4 a2

3

)
τ

3
2 +

3 τ2

16 a4

(
16 a6

9
+ π a3 +

2 a2

3

)
+
−18816 a10 + 78400 a8 − 235200 a6 − 29400 a4 + 14700 a2

705600 a6
τ

5
2+

3 τ3

16 a4

(
−16 a8

45
− 8 a4

9
− 1

6

)
+O

(
τ

7
2

)
. (3.39)

We now have both terms needed for Eq. 3.19. Adding them up, Eq. 3.18 for small τ yields

S(τ) =
π

4 a
− π

4 a
coth

( π
2 a

)
τ +

3π τ2

16 a
+

(
π2 − 5π a sinh

(
π
a

))
cosh

(
π
a

)
− 1

τ3

48 a2
+O

(
τ4
)
for small τ.

(3.40)

Therefore, the central slope or rotation of the simply supported Rayleigh beam of length

L, with all other parameters set to unity, and with a unit angular impulse acting at x = L
2 ,
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is

u,x

(
x =

L

2
, τ

)
=

2

L
S(τ) =

2 a

π
S(τ) =

1

2
−

coth
(

π
2 a

)
2

τ +
3

8
τ2+

(
π − 5 a sinh

(
π
a

))(
cosh

(
π
a

)
− 1
) τ3

24 a

+O
(
τ4
)
for small τ. (3.41)

For long beams, a = π
L → 0, and the response any point x is asymptotically given by

u,x(x, τ) =
1

2
− τ

2
+

3

8
τ2 − 5

24
τ3 +O

(
τ4
)
. (3.42)

Now, if a less violent moment M(τ) acts there for some short time interval, then the

angular rotation at that location will be given by the convolution integral

2

L

∫ τ

0
M(τ − ξ)S(ξ) dξ. (3.43)

In particular, if M(τ) =M0, a constant, then we have

2M0

L

∫ τ

0
S(ξ) dξ =M0

(
τ

2
−

coth
(

π
2 a

)
4

τ2 + · · ·

)
. (3.44)

For a long beam, coth
(

π
2 a

)
→ 1, and we have

M0

(
τ

2
−

coth
(

π
2 a

)
4

τ2 + · · ·

)
→M0

(
τ

2
− 1

4
τ2 + · · ·

)
. (3.45)

We note that the response to a suddenly applied constant moment causes a sudden change

in angular velocity but not in rotation, and so it involves bounded strains in the beam.

3.5 Numerical verification

The accuracy of the asymptotic approximation in Eq. 3.41 is displayed in Fig. 3.5. It is

clear that the match is good for small τ .
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Figure 3.5: The series solution (105 terms) of ux (L/2, τ) and its asymptotic approxima-
tion for small τ when L = π. Both plots show both quadratic and cubic approximations.

The plot on the right shows a smaller time interval to ease comparison for small τ .

To verify numerically that all terms computed in Eq. 3.41 are correct, we subtract the

asymptotic expression from the series solution (with 105 terms). The remaining error

term should be proportional to τ4. A plot of that error against τ4 for small τ4 should be

close to a straight line passing through zero. Such is indeed the case, as seen in Fig. 3.6.

The spike seen Fig. 3.6 for super-small τ is actually not from the asymptotic approximation

but from fast Gibbs oscillations in the truncated series solution. We conclude that, from

the numerical evidence, the series computed indeed is correct up to O(τ3).
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Figure 3.6: Numerical verification of S(τ) up to cubic term.
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3.6 Results and discussion

The prior literature contains several papers on the short time response of some slender

structures to linear impulses, or impulsive forces, concentrated at points in space. However,

the rotational response of slender structures to angular impulses has not been studied. The

simplest slender structure, namely the Euler-Bernoulli beam, predicts strongly unphysi-

cal responses to angular impulses. The infinite beam has an instantaneously unbounded

rotational response, while a finite-length beam shows strong arrivals of high frequency

reflections from the boundary.

In contrast to the Euler-Bernoulli beam (which does not incorporate cross-sectional rotary

inertia), the Rayleigh beam incorporates rotary inertia and yet retains simplicity because

it uses the same kinematics. This gives more physically reasonable results under impulsive

moments. Interestingly the Rayleigh beam and an Eringen stress gradient theory based

beam are governed by the same equation. A study of such structures under impulsive

moments can have some practical value in that it may shed light on peculiarities observed

in some experimental situations like long beams on which a motor is suddenly braked to

a halt. However, in this case our interest has been primarily academic. Using dimen-

sional analysis followed by asymptotic approximations, we have computed the short-time

response of such a beam to an angular impulse. The response is found to contain an instan-

taneous finite jump (unlike an unbounded jump for the Euler-Bernoulli beam), followed

by regular behavior well described by a polynomial in nondimensional time for a finite

duration, until simultaneous arrival of multi-frequency reflections from boundaries causes

further discontinuities in the response. We note that, although the rotational response to

the angular impulse is bounded as t → 0, the resulting strain in the beam is unbounded.

As a result, for realistic modeling of beams with such an angular impulse, a nonlinear

material model will be needed. However, if the actual moment applied is in fact a smooth

function of time, and the impulse response computed above is used merely as a Green’s

function, then finite responses with finite strains will occur. Recall, e.g., Eq. 3.44. With

these thoughts, we acknowledge that nonlinearity may play a role in some situations with
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some loadings for some problems. But our basic elastic solution has its own fundamental

theoretical validity, and is the main contribution of this paper.

We have investigated this problem using dimensional analysis, modal expansion, series

solutions, finite element simulations, and asymptotic approximations for the short-time

polynomial behavior. Agreement between solutions obtained using different means has

been excellent. This work provides new theoretical results for a problem that has not been

examined before. These results shed some light on some peculiarities of the response as

explained above. Moreover, we hope that that methods used here will be of interest to a

general readership interested in both asymptotic analyses as well as structural vibrations.

We now move on to the next contribution of this thesis. A catenary is a limiting case of

a beam where the flexural rigidity goes to zero. In the next chapter, the dynamics of a

slack catenary will be discussed.



Chapter 4

Small In-plane Oscillations of a

Slack Catenary using Assumed

Modes

4.1 Introduction

The dynamics of hanging chains has been studied by several authors over more than a

century. Routh [63] wrote equations for the uniform chain but provided analytical solutions

for a non-uniform chain whose equilibrium shape is a cycloid. The equilibrium shape of a

sagging inextensible chain with uniform mass per unit length is in fact a hyperbolic cosine

(see, e.g., [64]). Pugsley [65] conducted experiments and gave semi-empirical expressions

for first three natural frequencies of a catenary. Saxon and Cahn [66] studied the problem

analytically and gave an asymptotic solution for small sag to span ratio. Their results

were in agreement with Pugsley [65]. An approximate solution of equations from Routh

[63] and Saxon et al. [66] was found by Goodey [67]. The expressions obtained were close

to the empirical formulas of Pugsley [65].

63
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The catenary with small sag to span ratio leads to an apparent contradiction, as noted by

Irvine and Caughey [68]. For very small sag to span ratios, the first mode is antisymmetric.

However, for a flat and taut string, the first mode is symmetric. The contradiction arises

because at extremely small sag, the tension is very high, and an extensible-chain treatment

is needed to obtain the flat-string behavior. However, in this chapter, we are not interested

in that regime: we examine the catenary in the regime where the sag to span ratio is neither

very small nor very large.

With newer computational techniques, more detailed studies of more complex chain sys-

tems were possible. Simpson [69] used a transfer matrix approach to study a multi-span

transmission line. Finite Element Analysis (FEA) was used as well [70, 71]. Karoumi [72]

examined a model with catenary cables supporting a bridge deck.

Rega [73, 74] has presented a detailed discussion of the dynamics of extensible cables be-

ginning from a continuum mechanics framework and considering both various analytical

simplifications as well as detailed solution aspects only obtainable using numerical meth-

ods. The reader may refer to these two excellent papers for many more references relevant

to the dynamics of a catenary and related problems.

In contrast to the above papers which either allow extensibility, or assume small sag, or

discretize the system using finite elements and move to a fully numerical treatment, in this

study we address the strictly inextensible catenary, with large sag, using the Lagrangian

approach and assumed modes1. The assumed modes approach has enjoyed wide adoption

in mechanics because of its conceptual simplicity, ease of refinement to useful accuracy,

focus on essential kinematics, sidestepping of natural boundary conditions, and direct

use in the Lagrangian approach. The interested reader may see a few examples in the

following papers: drum vibrations in [75], rotor dynamics in [76, 77], flexible multibody

systems in [78], an application in piezoelectric energy harvesting in [79], and the dynamics

of flexible robots in [80], among many more in the literature. We note that the catenary

itself continues to appear in research papers devoted to more complicated interactions,

1The assumed modes approach is also called the Rayleigh-Ritz approach.
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such as cable robots [81] and catenary risers in marine applications [82]. However, we

have not found any assumed-mode treatment of the catenary in literature.

Following the above discussion, we can now introduce the problem studied in this chap-

ter and point out its interesting features to motivate our work. We study small in-plane

oscillations of an inextensible catenary with considerable sag, i.e., a slack catenary. We

begin with the well known static equilibrium configuration of the catenary. We use the

horizontal spatial coordinate as an independent variable during the initial setup of the

problem. After introducing assumed modes for small vertical displacements of the chain,

as is usual within the Lagrangian formulation, we retain only time as an independent

variable. The pointwise inextensibility of the chain relates small vertical and horizontal

displacements through a differential equation, which we can integrate to obtain the hori-

zontal displacements. Taking one endpoint of the chain to be fully fixed and the vertical

location of the other, or distal, endpoint to be fixed as well, it is convenient to impose the

horizontal location of the distal endpoint through an explicit scalar constraint equation

which introduces a Lagrange multiplier. A key aspect of this approach is that the potential

energy of the system is linear and not quadratic in the displacements, and so the equations

of motion obtained using the Lagrangian approach have some nonzero terms, including

the Lagrange multiplier, that survive even when the displacements are set to zero. Since

zero displacement represents equilibrium, these nonzero terms must necessarily add up

to zero. Setting their sum to zero determines the Lagrange multiplier. Physically, this

means the frequency remains indeterminate until horizontal fixity of the second endpoint

of the chain is enforced. Furthermore, in a subsequent calculation, when we do not use

arbitrary shape functions in the assumed modes and instead use the correct modes as

determined in the first part, then those erstwhile nonzero terms become identically zero

and the Lagrange multiplier becomes indeterminate within the linear approximation. In

this case, retaining quadratic terms in a nonlinear treatment leads to a potential energy

which includes quadratic terms, and the problem becomes determinate. In this way, this

seemingly simple classical problem leads to clear, potentially useful, and in our opinion

pleasing academic insights into both oscillations as well as the role of constraints within
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Lagrangian mechanics.

4.2 Problem setup

Figure 4.1: A slack catenary hanging from two fixed points. Gravity acts downward.
Without loss of generality, we take h ≥ 0.

We consider an inextensible, slack catenary (Fig. 4.1) of length L and a uniform mass m̄

per unit length, hanging from two fixed ends A and B. We use a coordinate system with

origin at A. The end B is at the point (b, h), with h ≥ 0. Gravity acts along the negative

y direction. The tangent to the equilibrium curve at location x makes an angle θ(x) with

the positive x direction. Denoting the equilibrium shape as y(x), we have

y(0) = 0 and y(b) = h. (4.1)

By nondimensionalization or by choice of units, we take L = 1, m̄ = 1, and g = 1.

Although our treatment is general, analytical intractability forces us to use numerical

integrals. So we will study two cases in detail: h = 0 and h = 0.1, with b = 0.6 in both

cases.
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4.2.1 Equilibrium

If T is the spatially varying tension in the chain, equilibrium requires

d

dx
(T cos(θ)) = 0, and (4.2)

d

dx
(T sin(θ)) = m̄ g sec(θ). (4.3)

From Eq. 4.2, T cos(θ) = T0, a constant, whence Eq. 4.3 yields

d2y

dx2
=

1

W

√
1 +

(
dy

dx

)2

=
1

W
sec(θ), where W =

T0
m̄ g

. (4.4)

Solution of Eq. 4.4 with y(0) = 0 yields

y = −W cosh(C) +W cosh
(
C +

x

W

)
, (4.5)

where W and C are constants to be determined numerically from the boundary condition

y(b) = h and the length condition

∫ b

0
sec(θ) dx =

∫ b

0

√
1 +

(
dy

dx

)2

dx = L. (4.6)

For example, with b = 0.6 and h = 0, we have W = 0.1631683 and C = −1.8385927; and

with b = 0.6 and h = 0.1, we have W = 0.1640525 and C = −1.7283471.

4.2.2 Inextensibility constraint

Let u(x, t) and v(x, t) be the displacement components along x and y directions respec-

tively. The length of a small element, even after displacement, remains unchanged. In Fig.

4.2, the endpoints P and Q of an element of length ds move to P′ and Q′. Inextensibility

requires

ds2 = dx2 + dy2 =

(
1 +

∂u

∂x

)2

dx2 +

(
dy

dx
+
∂v

∂x

)2

dx2. (4.7)
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Figure 4.2: An element of length ‘ds’ in equilibrium and displaced configuration.

Using subscripts and primes to denote partial and ordinary derivatives with respect to x,

we obtain the pointwise differential constraint

1 + y′
2
= (1 + ux)

2 +
(
y′ + vx

)2
= (1 + ux)

2 + y′
2
+ 2 y′ vx + v2x. (4.8)

Therefore

(1 + ux)
2 = 1− 2 y′ vx − v2x, (4.9)

which simplifies to

ux =
√

1− 2 y′ vx − vx2 − 1, (4.10)

where the sign on the square root is chosen to ensure that u is infinitesimal when v is

infinitesimal. Note that, if v is expanded using assumed modes, then u can be found by

integration with respect to x so that inextensibility is obeyed pointwise.

4.2.3 Horizontal fixity of the right endpoint

In an assumed modes approach, we can easily enforce v(0, t) = v(b, t) = 0 by using, e.g.,

a truncated Fourier sine series. Substituting that expression into Eq. 4.10, we can in

principle integrate with respect to x to obtain u(x, t). Enforcing u(0, t) = 0 is done by

taking the lower limit of the integral to be x = 0. However, for a general assumed modes

expansion, u(b, t) = 0 is not guaranteed and must be enforced as an additional constraint.
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Since we are interested in small oscillations of the chain, we assume u, v, and their spatial

derivatives to be small. For small vx, Eq. 4.10 has a Taylor series approximation, i.e.,

ux = −y ′ vx −
1

2

(
1 + y′

2
)
vx

2 + · · · . (4.11)

Integrating Eq. 4.11 in space, the horizontal component u can be approximated using

u =

∫ x

0

(
− y′(ξ) vξ −

1

2

(
1 + y′(ξ)

2
)
vξ

2 + · · ·
)
dξ. (4.12)

We now introduce our assumed modes

v(x, t) =
N∑
k=1

ak(t) sin

(
kπx

b

)
, (4.13)

as mentioned above. The corresponding horizontal displacement u does not automatically

satisfy u(b, t) = 0. We therefore include the constraint

u(b, t) =

∫ b

0

(
− y′(x) vx −

1

2

(
1 + y′(x)

2
)
vx

2 + · · ·
)
dx = 0. (4.14)

Although the constraint is holonomic, we do not use it to eliminate a degree of freedom

because we do not wish to make a priori assumptions about which term in the Fourier

sine series can be eliminated. We now proceed to write equations of motion.

4.3 Equations of motion

The kinetic energy of the catenary is

T =
1

2

∫ b

0
m̄
(
u̇2 + v̇2

)
sec(θ) dx (4.15)

where the overdot denotes a partial derivative with respect to time, and the potential

energy of the catenary, after subtracting a constant corresponding to the equilibrium
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configuration, is

V =

∫ b

0
m̄ g v sec(θ) dx. (4.16)

The Lagrangian

L = T − V, (4.17)

and the equations of motion are

d

dt

(
∂L
∂ȧk

)
− ∂L
∂ak

= λ
∂

∂ak
(u(b, t)) , k = 1, 2, . . . , N. (4.18)

In the above, u(b, t) stands for the definite integral in Eq. 4.14, and λ is to be determined

as part of the solution. For small oscillations, we want equations that are correct up to

first order in the generalized coordinates ak. This means that for computing the kinetic

energy in Eq. 4.15, the integral of Eq. 4.12 must be evaluated only up to first order in the

ak. However, because the expression for u(b, t) in the constraint equation is differentiated

once, the integral of Eq. 4.14 must be evaluated up to second order in the ak. The latter

takes the form

u(b, t) = a⊤q +
1

2
a⊤Ba+ · · · = 0, (4.19)

where a = [a1, a2, . . . , aN ]⊤ and B is a constant symmetric matrix of size N × N , or

B ∈ RN×N . Then Eqs. 4.18 take the form

M ä+ p = λ q + λBa, (4.20)

where the constant vectors p and q are generally nonzero (the degenerate case will be

discussed in Section 4.5). Since a is zero at equilibrium, the terms in p and q must cancel

exactly at equilibrium. We therefore expect that p and q are parallel, as indeed they are

(see appendix F). In Eq. 4.20, M is a symmetric positive definite matrix of size N ×N .

We must now determine λ correct up to linear terms. Considering equilibrium in Eq. 4.20,

let a = 0, and λ = λ0. Then

p = λ0 q. (4.21)
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If the vectors p and q are nonzero, their parallelism ensures that a unique λ0 can be

determined. Having determined λ0, we can consider small motions. For small a, let

λ = λ0 + η, (4.22)

where η is of the same order of magnitude as ||a||. Substituting Eq. 4.22 in Eq. 4.20, and

using Eq. 4.21, we obtain up to first order,

M ä = η q + λ0Ba. (4.23)

Linearizing Eq. (4.19), we see that the vector a must lie on X , the (N − 1) dimensional

subspace of RN that is orthogonal to q. Hence, we write

a = Q ζ, (4.24)

where the matrix Q, of size N × (N −1), provides a basis for X . Note that in the software

package Matlab, such a Q can be easily obtained using the “qr” decomposition. We now

have

Q⊤q = 0. (4.25)

The vector ζ = [ζ1, ζ2, . . . , ζN−1]
⊤ contains time varying coordinates in the new basis.

Substituting Eq. 4.24 in Eq. 4.23, and premultiplying with Q⊤, we obtain

M̃ ζ̈ = λ0 B̃ ζ, (4.26)

where M̃ = Q⊤MQ and B̃ = Q⊤BQ, and M̃, B̃ ∈ R(N−1)×(N−1).

The finally obtained equation (Eq. 4.26) yields an eigenvalue problem which can be solved

for ζ. Subsequently, N − 1 physical mode shapes can be found from Eq. 4.24.
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4.4 Numerical results

We now present numerical results for two cases mentioned in Section 4.2. Numerical

calculations were carried out to several digits more than those displayed.

4.4.1 Case 1: h = 0

This case refers to a catenary which is symmetrically suspended between two points. We

obtain

M =



3.4764 2.5342 1.6515 2.2369

2.5342 3.3974 1.7375 2.4056

1.6515 1.7375 2.3715 1.5337

2.2369 2.4056 1.5337 3.1275


, B =



−38.9759 0 −55.2220 0

0 −127.3652 0 −125.5176

−55.2220 0 −262.1130 0

0 −125.5176 0 −447.1589


,

(4.27)

and

p =



0.5195

0

0.3562

0


, q =



3.1838

0

2.1830

0


. (4.28)

From Eq. 4.21, λ0 = 0.1631682. The first three angular frequencies are found to be 2.4294,

4.3590, and 6.1950. The corresponding mode shapes are shown in Fig. 4.3.
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4.4.2 Case 2: h = 0.1

This case refers to a catenary which is asymmetrically suspended between two points. We

obtain

M =



3.2559 2.1171 1.2612 2.0685

2.1171 2.9911 1.1606 2.0895

1.2612 1.1606 1.9750 0.9706

2.0685 2.0895 0.9706 2.9150


, B =



−39.1116 10.7499 −55.2174 9.7637

10.7499 −127.8014 27.0240 −125.5289

−55.2174 27.0240 −263.1210 49.8938

9.7637 −125.5289 49.8938 −449.0069


,

(4.29)

and

p =



0.5205

−0.0435

0.3551

−0.0268


, q =



3.1725

−0.2650

2.1648

−0.1636


. (4.30)

From Eq. 4.21, λ0 = 0.1640525. The first three angular frequencies are 2.4375, 4.3952,

and 6.2196. The corresponding mode shapes are shown in Fig. 4.4.
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Figure 4.3: First three mode shapes of the in-plane oscillations of the catenary with
h = 0. The solid lines show the equilibrium shape.
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Figure 4.4: First three modes of the asymmetrically suspended catenary with h = 0.1.
The solid lines show the equilibrium shape.
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4.5 Degeneracy encountered with actual modes

In usual applications of the Rayleigh Ritz approach (or assumed modes), exact results

are obtained when the exact mode shape is used. In this problem, however, use of the

mode shapes obtained above leads to an interesting degenerate condition. Specifically,

the constraint Eq. 4.19 is satisfied to first order, which means q is zero. There is no

inconsistency, and p is zero as well. However, now Eq. 4.21 cannot be solved for λ0.

In other words, when the very modes obtained above are used in the assumed modes

calculation in the form

v = a1 ψ1 + a2 ψ2 + a3 ψ3 + · · · , (4.31)

then we obtain

M ä = λBa, (4.32)

with the vectors p and q becoming individually zero. Now λ is indeterminate2 within the

linear formulation.

The reason for this loss of the λ-determining vectors p and q is not that mode shapes

are used. In fact, any shape v which satisfies the fixity condition of both endpoints, i.e.,

which satisfies the constraint Eq. 4.14, will lead to this situation. The reason is that these

displacements are measured from the equilibrium position; and the equilibrium position is

at minimum potential energy. Thus, any displacement that satisfies the essential boundary

conditions (fixities at both ends) must necessarily show no change in potential energy at

first order. Near the equilibrium position, every displacement must be accompanied by a

locally quadratic rise in potential energy.

Thus, if we use assumed modes that satisfy Eq. 4.19, e.g., if we use the approximate mode

shapes determined above as the assumed modes to begin with, then a nonlinear treatment

is needed. We now develop the same. A full expansion is tedious, with a large number

of terms to handle, so we demonstrate the idea by doing a nonlinear treatment of an

expansion close to one of these already-determined modes from Sections 4.3 and 4.4.

2The leading order term of λ in Eq. 4.32 cannot be determined. Compare with Eq. 4.20, where
substisuting a = 0 leaves behind p = λ0q, and λ0 can be determined.
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4.6 Nonlinear treatment using one mode

In the previous sections we have calculated the mode shapes (to a very good approxima-

tion), and have observed that an expansion using the modes themselves, as in Eq. 4.31,

satisfies the constraint (Eq. 4.14) up to first order of the a’s. We now consider a v which

is primarily along a single mode, but with a small correction term that is needed to sat-

isfy the boundary condition upto second order in an appropriate expansion. Using ε as a

bookkeeping parameter to keep track of sizes, we write

v = ε α(t)ψ(x) + ε2 v̄(x, t) (4.33)

where ψ(x) is a mode (as obtained above: technically an approximation, but a good one),

α(t) is the primary time-varying coordinate associated with ψ(x), and the v̄(x, t) a correc-

tion that satisfies the zero boundary conditions of vertical displacement at both endpoints3.

If we calculate the potential energy Ṽ from Eq. 4.16, there is no direct contribution from

the ψ(x) part, as explained above. Hence, the potential energy depends on the second

order correction term,

Ṽ = mg ε2
∫ b

0
v̄ sec(θ(x)) dx. (4.34)

We now turn to the horizontal displacement constraint, Eq. 4.14, which after integration

by parts yields

u(b, t) =

∫ b

0

{
y′′(x) v − 1

2

(
1 + y′(x)

2
)
vx

2 + · · ·
}
dx. (4.35)

In the above, from Eq. 4.4,

y′′(x) =
1

W
sec(θ(x)),

and so (as explained using the potential energy calculation),

∫ b

0
y′′(x)ψ(x) dx = 0.

3Note that the horizontal displacements induced by this choice of v will be required to vanish at both
endpoints also.
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Therefore, correct up to second order, we have

u(b, t) = ε2
∫ b

0

{
1

W
sec(θ(x)) v̄ − 1

2

(
1 + y′(x)

2
)
α2ψ′(x)

2
}
dx = 0. (4.36)

The first term in the integrand above is related to the integrand in the expression for the

potential energy in Eq. 4.34, and we directly obtain

Ṽ =
W mg ε2

2

∫ b

0

(
1 + y′(x)

2
)
α2ψ′(x)

2
dx = C1ε2α2. (4.37)

For the kinetic energy to be evaluated correct up to second order, v̄ can be dropped from

Eq. 4.33. So the function v̄ need not be determined at this order, after all, and we have

T̃ =
1

2

∫ b

0
m̄
(
u̇2 + v̇2

)
sec(θ(x)) dx = C2 ε2 α̇2. (4.38)

Now the Lagrangian

L̃ = T̃ − Ṽ = C2 ε2 α̇2 − C1 ε2 α2, (4.39)

yielding

α̈+ ω̃2
1 α = 0, (4.40)

where

ω̃1 =

√
C1
C2
,

which upon evaluating the integrals turns out to be 2.4294 for the symmetric case, match-

ing perfectly (recall section 4.4.1).

4.7 Conclusions

A catenary, or an inextensible chain suspended from two endpoints, has the shape of

a hyperbolic cosine at equilibrium. Due to pointwise inextensibility, the vertical and

horizontal displacement components are related by a differential equation. An assumed

mode solution for small oscillations of a slack catenary presents some challenges and has
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been missing from the literature. Here, starting with an assumed mode expansion for the

vertical displacement, the horizontal displacement was obtained using the inextensibility

condition. The horizontal fixity at the distal end was enforced using an additional scalar

constraint. Subsequently, a Lagrangian formulation was used. One of the interesting

aspects of this problem is that, in the Lagrangian formulation, the potential energy is

linear in the generalized coordinates. Enforcement of the constraint through a Lagrange

multiplier makes the oscillation frequencies determinate. Further, when these same modes,

or any other assumed modes that satisfy the fixity constraint up to first order, are used to

expand the vertical displacement, then degeneracy is encountered at first order. However,

adding a small perturbation to that assumed mode, and carrying out the calculation to

second order, gives the usual harmonic oscillator equation and a fully satisfactory solution.

The method used here is semi-numerical and can be implemented in software like Matlab

and Maple. The treatment here helps to provide interesting insights that may carry over

to some other problems, such as the vibrations of a pre-bent elastica.



Chapter 5

Small In-plane Oscillations of an

Elastica Robot

5.1 Introduction

This is the first of two short chapters on the vibration of pre-bent elasticas. In this chapter

we discuss the vibration characteristics of an elastica robot [1] which is basically an elastica,

fixed at one end, and with a taut inextensible string tied to the other end for actuation. By

varying the tension in the string, the tip of the beam can be moved. In the literature, such

systems are also called continuum robots, and the string, sometimes, is called a ‘tendon’

[83]. Elastica robots have applications in cases where the working space is limited and

constrained in such a way that using a traditional robot with arms and joints turns out

to be inconvenient. That is how the word ‘robot’1 earns a mention in its name.

In the existing literature, a great deal of theoretical work has been carried out on the

mechanics of elasticas for centuries. Mathematicians like Jacob Bernoulli, Daniel Bernoulli,

and Euler [84] paved the way for modern day researchers. As per Euler’s definition [85],

an elastica is a large deflection beam that can only have deformation due to bending,

1The control aspects have not been studied in this work, so our system could also be called an elastica
actuator.
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and the curvature at a point is proportional to the locally experienced moment. Love

[84] (1944) derived the linearized equations of small curvature elasticas. Motivated by the

work of Antman and Kennedy [86] (1981) on large buckling of Kirchhoff rods, Calfisch and

Maddocks [87] (1984) presented a nonlinear approach to elastica theory using Lyapunov’s

technique. Several studies on elasticas have been conducted in the light of Cosserat theory

[88, 89]. Several interesting studies [90, 91] on elasticas, bent to form an arch, have been

conducted. An elastica arch will be discussed in the next chapter.

Introducing further complexities to the elastica problems, researches have shown interest

in cases with constraints. Arreaga and Capovilla [92] studied the stability of the shapes of

inextensible elastica loops with constant area and proved the existence of equilibria with

self-intersections. Donoël and Detourney [93] studied an elastica inserted in a conduit using

an Eulerian approach. During compression, metal sheets often get folded and make con-

tacts with compressing plates. This phenomenon was addressed by Pocheau and Roman

[94] who considered a case where an elastica is constrained inside a box and investigated

the uniqueness of solutions/shapes obtained. In our work, we consider a pre-bent can-

tilever elastica beam where the distal end is tied to a taut string, enforcing a displacement

constraint on the system.

The string actuated tip-control of an elastica is a well-researched problem. Bayo [95], in

1987, suggested a control approach in which the elastica was modeled using Euler beam

theory, and FEA was used to formulate the equation. Catto [96] conducted a detailed

study, both numerically and experimentally. He used FEM for studying small lateral

vibrations of the elastica robot (called an “elasticarm” in his thesis). One of the interesting

findings of his work was that out of plane transverse vibration of the elastica robot does

not induce in-plane vibrations. Handral and Rangarajan [1] proposed a mechanics-based

tip manipulation approach of a planar nonlinear elastica robot just by varying the string

tension.

Finally, coming to applications, elastica robots are popular for their applications in fields
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like pipe inspection [97], robot-assisted surgery [98] etc., where high maneuverability is de-

sired in a closed and constrained work space. Armanini et al. [99] analyzed the dynamics of

an elastica catapult with a motivation for applying them in building soft robotic limbs. In

biomechanics, elastica theory has been used to understand the imbalance between closing

and tethering forces on the mitral valve [100]. As was the case with catenary oscillations,

an assumed-modes treatment of planar oscillations of a constraint elastica is absent from

the literature.

We describe our system in section 5.2, obtain the pre-bent equilibrium solution in section

5.3, introduce the assumed mode expansion in section 5.4, derive the governing equations

in sections 5.5 and 5.6, and present our results in 5.7.

5.2 The system

We consider a weightless elastica of length L, flexural rigidity EI, and mass per unit length

m̄. The beam has one end fixed at point O (see Fig. 5.1), and the other end (point P) is

tied to a string of constant length Ls. We set up a coordinate system having its origin at

O.

Figure 5.1: An elastica robot in a pre-bent configuration.
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The other end of the string is attached to a fixed point Q (0,−h). The string is taut and

the beam is in a pre-bent configuration. We use the the arclength s as the independent

spatial variable. The shape of the beam is determined by its slope angle θ̄(s). The abscissa

and the ordinate of a point on the beam at location s is given by

x̄(s) =

∫ s

0
cos θ̄(ξ) dξ, and ȳ(s) = −

∫ s

0
sin θ̄(ξ) dξ. (5.1)

5.3 The pre-bent equilibrium solution

Initially the beam is in a pre-bent equilibrium state. There is a moment MO and a force

at the fixed end that balance the string tension applied at the distal end. The bending

Figure 5.2: Free body diagram.

moment at a cross section at s satisfies M = EI dθ̄/ds. Let the tension of the string have

components A and B along −y and −x direction. As the beam is free from any external

loading over its length span, there is no change in the force experienced at different cross

sections along the length. We write the angular momentum balance equation for an

element of infinitesimal length ds (see Fig. 5.2), which simplifies easily to

EI
d2θ̄

ds2
= −

(
A cos θ̄ +B sin θ̄

)
. (5.2)

As one end of the beam is fixed at point O,

θ̄(0) = 0 (5.3)



Chapter 5. Small in-plane oscillations of an elastica robot 84

is an essential boundary condition. The other end of the beam has no bending moment.

Hence

dθ̄

ds

∣∣∣∣
s=L

= 0. (5.4)

The point P always maintains a distance Ls from point Q. Hence

x̄(L)2 + (h+ ȳ(L))2 = L2
s . (5.5)

And finally, as the tension on the string is along PQ, we can infer

h+ ȳ(L)

x̄(L)
=
A

B
. (5.6)

In order to solve Eq. 5.2, we must know the initial condition dθ̄
ds

∣∣
s=0

, and the string tension

components A and B. So we adjust these three quantities such that the three constraints

(Eq. 5.4, 5.5, and 5.6) are satisfied. This is a routine numerical calculation and a minor

variant of a two-point boundary value problem.

5.4 Assumed mode expansion

For small oscillations of the pre-bent elastica robot we consider small perturbations added

to the equilibrium solution obtained in section 5.3 and define

θ(s, t) = θ̄(s) +
N∑
k=1

ak(t)ϕk(s) = θ̄(s) + Φa (5.7)

where the ϕ’s are assumed modes satisfying the essential boundary condition, i.e., ϕk(0) =

0, ∀k ∈ {1, 2, · · · , N}, and the a’s are generalized coordinates. The matrix Φ = [ϕ1(s), ϕ2(s), · · · , ϕN (s)],

and the vector a = [a1(t), a2(t), · · · , aN (t)]⊤, allow compact notation. The abscissa and
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ordinate of a point on the beam at arclength s in the perturbed configuration are given by

x(s, t) =

∫ s

0
cos θ(ξ, t) dξ =

∫ s

0
cos

(
θ̄(ξ) +

N∑
k=1

ak(t)ϕk(ξ)

)
dξ

=x̄(s)−
N∑
k=1

ak(t)

∫ s

0
sin θ̄(ξ)ϕk(ξ) dξ

− 1

2

N∑
k=1

N∑
j=1

ak(t) aj(t)

∫ s

0
cos θ̄ (ξ)ϕk(ξ)ϕj(ξ) dξ +O

(
||a||3

)
. (5.8)

and

y(s, t) =−
∫ s

0
sin θ(ξ, t) dξ = −

∫ s

0
sin

(
θ̄(ξ) +

N∑
k=1

ak(t)ϕk(ξ)

)
dξ

=ȳ(s)−
N∑
k=1

ak(t)

∫ s

0
cos θ̄(ξ)ϕk(ξ) dξ

+
1

2

N∑
k=1

N∑
j=1

ak(t) aj(t)

∫ s

0
sin θ̄ (ξ)ϕk(ξ)ϕj(ξ) dξ +O

(
||a||3

)
. (5.9)

5.5 Lagrangian formulation with constraints

The kinetic and potential energy of the system are given by

T =
1

2

∫ L

0
m̄

{(
∂x

∂t

)2

+

(
∂y

∂t

)2
}
ds, and V =

1

2

∫ L

0
EI

(
∂θ

∂s

)2

ds. (5.10)

and the Lagrangian

L = T − V. (5.11)

Gravity is not included. During small oscillations, the string always remains taut, and the

point P always maintains a distance Ls from the point Q, which imposes the constraint

G (a) = x(L, t)2 + (h+ y(L, t))2 − L2
s = 0 (5.12)
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on the system. The Euler-Lagrange equation is

d

dt

(
∂L
∂ȧ

)
− ∂L
∂a

= λ
∂G
∂a

, (5.13)

where λ is the unknown multiplier.

5.6 Equations of motion

Linearization of Eq. 5.13 yields

M ä+Ka+ p = λ q + λNa (5.14)

where M, K, and N are known symmetric matrices, the vectors p and q are parallel, and

λ is an unknown multiplier. We recall that the equilibrium (a = 0) is a solution to Eq.

5.14. Say for a = 0, λ = λ0. Hence

p = λ0 q. (5.15)

As the vectors p and q are parallel, λ0 is uniquely determined from Eq. 5.15. For small

a, λ has a small deviation from λ0. So, substituting λ = λ0 + η in Eq. 5.14, and retaining

only the leading order terms yield

M ä+Ka = η q + λ0Na, (5.16)

where ||a|| and η have the same order of magnitude. As the RHS of Eq. 5.14 originates

from the gradient of Eq. 5.12 we can write

G(a) = a⊤q +
1

2
a⊤Na+O

(
||a||3

)
= 0. (5.17)

In order to satisfy the constraint (Eq. 5.17) to the leading order, a must lie in the (N − 1)

dimensional vector space X which is orthogonal to q. Hence we can write

a = Q ζ, (5.18)
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where the matrix Q contains the basis for X , and vector ζ has the coordinates in the new

basis. Substituting Eq. 5.18 in Eq. 5.16, premultiplying with Q, we obtain

M̃ ζ̈ + K̃ ζ = λ0 Ñ ζ, (5.19)

where M̃ = Q⊤MQ, K̃ = Q⊤KQ, and Ñ = Q⊤NQ. The mode shapes and the

frequencies can be calculated from Eq. 5.19.

The finally obtained equation (Eq. 5.19) yields an eigenvalue problem which can be solved

for ζ. Subsequently, N − 1 physical mode shape can be found from Eq. 5.18.

5.7 Results

With suitable choice of units we take EI = 1 and m̄ = 1, and we choose L = 1, h = 1,

and Ls = 1. We use two sets of basis functions or assumed modes that satisfy the essential

boundary condition.

(1) : ϕk(s) = sin

(
(2 k − 1)πs

2L

)
and (2) : ϕk(s) =

( s
L

)k
, k = 1, 2, · · · , N. (5.20)

The first five natural frequencies obtain using these sets of assumed modes are given in

table 5.1. The fist set of basis functions, apart from satisfying the essential boundary

Table 5.1: Frequencies (in rad s−1) for two sets of basis functions.

(1) (2)

ω1 13.55 13.53

ω2 47.29 47.11

ω3 100.91 102.71

ω4 177.47 189.07

ω5 274.01 637.43

condition, meet the condition of zero bending moment on the distal end of the elastica

and are expected to yield more accurate results than the polynomials of the second set

of basis functions. The line ST in Fig. 5.3 is the tangent at point P on the circular arc

centered at Q with radius Ls. While calculating the mode shapes we integrate Eqs. 5.8 and
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Figure 5.3: The first three mode shapes and a magnified view of the region near point
P. The dashed line in the magnified view is a portion of the circular arc OP and the solid

line ST is a tangent to that arc at point P.

5.9 considering only terms linear in the a’s. For this reason the mode shapes terminate on

the tangent line.

5.8 Conclusions

An elastica robot consists of an elastica, fixed at one end, with a taut and inextensible

string tied to the other end for actuation. We study small planar oscillatory motions of

the elastica robot near such a pre-bent configuration. We use an assumed mode expansion

for small motions of the beam near the equilibrium. Using the Lagrangian approach,

equations are derived where the contributions of the distal end constraint appear with an

unknown multiplier. Using the fact that the equilibrium satisfies the equations of motions,

we can compute the leading order term of the multiplier, which allows subsequent solution

via an eigenvalue problem.

While the elastica has bending rigidity and the catenary does not, the elastica robot has

been formulated with a scalar constraint at its distal end, and so the formulation has

similarities with that of the catenary.

In the next chapter we study a different elastica problem that involves two scalar con-

straints, requiring slightly different treatment.



Chapter 6

Small In-plane Oscillations of an

Elastica Arch

6.1 Introduction

Slender structures bent to form arch shapes are frequently used in various applications

for their load-bearing ability. These structural members, already in a pre-stressed config-

uration, are susceptible to oscillations. In this chapter, we study the small motions of an

elastica arch about its pre-bent equilibrium. Gravity is included.

Love [84] (1944) presented an analysis for shallow elastica arches in the linear regime. As

an extension of that, the dynamic stability of a shallow elastica arch under impulsive load-

ing was studied by Hsu [90] (1967). Several studies [101, 102, 103] have been conducted

on buckling, post-buckling, and large deformations of heavy elasticas due to self-weight.

Perkins [91] (1990) analytically studied the linear planar vibrations of a pre-bent extensi-

ble elastica arch, pinned at both end, and subjected to a steady end load. The governing

PDEs were derived using the Hamiltonian approach, and variable-separable trial solutions

like ‘U(s) exp(iωt)’ were used to find the eigenfunctions where s is the arclength coordi-

nate. Experimental validation of theoretically obtained results was also provided by the

author. It was experimentally shown by Pippard [104] that a centrally loaded elastica can
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lose stability by a symmetric plunging or an asymmetric displacement in the sideways.

Following the work of Pippard, the small motions of a centrally loaded elastica arch was

studied by Patŕıcio et al. [105] (1998). In this paper, the authors used the Lagrangian

formulation with two end fixity constraints, and followed the continuum approach. The

PDEs were solved using variable separable functions similar to [91]. In our work, despite

using the Lagrangian approach with two distal end fixity constraints, we discretize in ad-

vance using an inextensible assumed-modes expansion for small motions near the pre-bent

equilibrium, which yields a set of ODEs to work with, and find the Lagrange multipliers

to the leading order by using the fact that the equilibrium is a solution to the obtained

set of equations.

6.2 The system

We consider an elastica of length L in a pre-bent arch configuration and pinned at the

ends O and Q. The flexural rigidity of the beam is EI, and it has a uniform mass per

unit length m̄. We set up a coordinate system with the origin at O. The coordinate of the

point Q is (b, h) where we can consider b > 0 and h > 0 without loss of generality. Gravity

acts along the negative y direction. For our analysis, we use the arc length s ∈ [0, L] as

the independent variable. For an equilibrium configuration (see Fig. 6.1), the slope angle

at a point at an arc length s is given by θ̄(s).

The abscissa and the ordinate of a point at an arc length s in the equilibrium configuration

are given by

x̄(s) =

∫ s

0
cos θ̄(ξ) dξ, ȳ(s) =

∫ s

0
sin θ̄(ξ) dξ. (6.1)

The bending moment at a section is given by M = EI dθ̄/ds. As the ends are pinned, the

bending moment there is zero.

We consider a small element of length ds and write the linear and angular momentum

balance equations for that.
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Figure 6.1: A pre-bent elastica arch pinned at both ends.

Figure 6.2: The free body diagram of a small element of length ds.

The linear momentum balance equations (along x and y direction) yield (at equilibrium)

dB

ds
= 0,

dA

ds
= −m̄ g

whence B is a constant, and A(s) = A0 − m̄ g s where A0 is a constant. The angular

momentum balance equation yields

EI
d2θ̄

ds2
= (A0 − m̄ g s) cos θ̄ −B sin θ̄. (6.2)

We consider Eq. 6.2 as an initial value problem although θ̄(0) and the constants A0, B are
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not known yet. Regarding the boundary condition, we say that both the end experience

zero bending moment as they are pinned, and the coordinate of the end point of the arch

is (b, h) which can be mathematically expressed by

dθ̄

ds

∣∣∣∣
s=L0

= 0,
dθ̄

ds

∣∣∣∣
s=L

= 0, x̄(L) = b, ȳ(L) = h.

Hence we adjust the values of θ̄(0), A0, and B in such a way that the boundary conditions

at the distal end are satisfied.

We solve Eq. 6.2 and obtain the equilibrium shape θ̄(s) for the arch. We now proceed

towards studying small oscillations about the obtained equilibrium.

As noted above, in [105] the oscillatory solutions were studied without the simplifying

a priori assumed-modes discretization used here.

6.3 Small oscillations about equilibrium

We consider small planar perturbations about the pre-bent equilibrium of the arch in terms

of a set of assumed basis functions

θ(s, t) = θ̄(s) +
N∑
k=1

ak(t)ϕk(s) = θ̄(s) + Φa, (6.3)

where the ϕ’s are assumed modes and the a’s are generalized coordinates associated with

them. As Eq. 6.2 is not constrained by any essential boundary condition, the choice of

ϕk, k ∈ {1, 2, · · · , N}, in this case, can be arbitrary. The matrix Φ = [ϕ1, ϕ2, · · · , ϕN ] and

the vector a = [a1, a2, · · · , aN ]⊤ are introduced for compact notation. The abscissa and

ordinate of a point in the perturbed configuration are given by (similar to the preceding
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chapter)

x(s, t) =

∫ s

0
cos

(
θ̄(ξ) +

k=N∑
k=1

ak(t)ϕk(ξ)

)
dξ

= x̄(s)−
N∑
k=1

ak

∫ s

0
sin θ̄ ϕk dξ − 1

2

N∑
k=1

N∑
j=1

ak aj

∫ s

0
cos θ̄ ϕk ϕj dξ +O

(
||a||3

)
,

(6.4)

and

y(s, t) =

∫ s

0
sin

(
θ̄(ξ) +

k=N∑
k=1

ak(t)ϕk(ξ)

)
dξ

= ȳ(s) +

N∑
k=1

ak

∫ s

0
cos θ̄ ϕk dξ − 1

2

N∑
k=1

N∑
j=1

ak aj

∫ s

0
sin θ̄ ϕk ϕj dξ +O

(
||a||3

)
.

(6.5)

6.4 Lagrangian formulation

The kinetic and potential energy of the system are given by

T =
1

2

∫ L

0
m̄
(
ẋ(s, t)2 + ẏ(s, t)2

)
ds, and V =

1

2

∫ L

0
EI

(
∂θ

∂s

)2

ds+ m̄ g

∫ L

0
y(s, t) ds,

(6.6)

where the overdot stands for a derivative with respect to time. The Lagrangian

L = T − V. (6.7)

The system is subjected to the scalar constraints

G1(a) = x(L, t)− b = 0, and G2(a) = y(L, t)− h = 0. (6.8)

The Euler-Lagrange equation is

d

dt

(
∂L
∂ȧ

)
− ∂L
∂a

= λ1
∂G1

∂a
+ λ2

∂G2

∂a
, (6.9)
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where λ1 and λ2 are unknown multipliers.

6.5 Equations of motion

Linearizing Eq. 6.9, we obtain

M ä+Pa+ p = λ1 q1 + λ1B1 a+ λ2 q2 + λ2B2 a, (6.10)

whereM, P, B1, andB2 are symmetric matrices of sizeN , and the vectors p, q1, q2 ∈ RN .

As the system is perturbed from the equilibrium configuration, zero displacement or a = 0

must be a solution to the equation of motion (Eq. 6.10). Consequently, the static part

of the equation, evaluated at equilibrium, must vanish. Thus, we expect λ1 = λ10, and

λ2 = λ20 when a = 0. Then we obtain

p = λ10 q1 + λ20 q2. (6.11)

For N > 2, Eq. 6.11 appears overdetermined. It has exact and unique solutions for λ10

and λ20 if and only if the vector p is a linear combination of q1 and q2. Indeed it is

numerically found that

p ∈ span{q1, q2},

and unique λ10 and λ20 exist that satisfy Eq. 6.11.

For small a, let us assume λ1 and λ2 to have small perturbations from their respective

values at equilibrium, i.e.,

λ1 = λ10 + η1, and λ2 = λ20 + η2 (6.12)

where η1, η2, and ||a|| have the same order of magnitude. Substituting Eq. 6.12 in Eq.

6.10 and neglecting the higher order terms, we obtain

M ä+Pa = η1 q1 + η2 q2 + λ10B1 a+ λ20B2 a, (6.13)
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in which η1 and η2 remain undetermined. The indeterminacy can be removed by looking

for a solution, consistent with the constraints, in an appropriate subspace of RN .

The coefficients of λ1 and λ2 in Eq. 6.10 are the gradients of the constraints G1 and G2

(Eq. 6.8) respectively with respect to a. Hence, we can rewrite the them up to second

order as

G1(a) = a⊤q1 + a⊤B1 a = 0 and G2(a) = a⊤q2 + a⊤B2 a = 0. (6.14)

In order to satisfy Eq. 6.14 up to first order, a must be orthogonal to both the vectors q1

and q2. Thus, a must lie in an N −2 dimensional vector space X such that for any v ∈ X ,

v⊤q1 = v⊤q2 = 0. Consequently, we can expand

a(t) = R ζ(t), R ∈ RN×(N−2), (6.15)

where R contains N − 2 basis vectors1 of X and the vector ζ contains new generalized

coordinates. Substituting Eq. 6.15 in Eq. 6.13 and pre-multiplying R⊤ on both sides yields

M̃ ζ̈ + P̃ ζ = λ10 B̃1 ζ + λ20 B̃2 ζ (6.16)

where

M̃ = R⊤MR, P̃ = R⊤PR, B̃1 = R⊤B1R, and B̃2 = R⊤B2R.

The finally obtained equation (Eq. 6.16) yields an eigenvalue problem which can be solved

for ζ. Subsequently, N − 2 physical mode shapes can be obtained from Eq. 6.15.

6.6 Results

Using nondimensionalization or with suitable choice of units we can take L = 1, m̄ = 1,

and EI = 1. We choose b = 0.3 and h = 0.15 to have an arch-shaped pre-bent initial

1MATLAB command qr([q1, q2]) can be used to find a basis to expand a.
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configuration. The acceleration due to gravity, g, is now understood to be nondimen-

sional and can in principle take arbitrary positive values depending on the actual physical

parameters of the elastica.

As the system is not constrained with further essential boundary conditions, we are allowed

to choose any arbitrary basis for the oscillatory displacements. We select the Legendre

polynomials as the assumed modes, and use an expansion for θ(s, t) (Eq. 6.3) with N = 6.

Disregarding the effects of gravity the first three natural frequency obtained are 13.458,

64.739, and 244.996 radian per unit time (nondimensional). The first three mode shapes

of small oscillations have been shown in Fig. 6.3.

For investigating the effect of moderate gravity, we do not consider buckling as studied in

[105]. We note that for higher nondimensional g, the equilibrium shape of the arch gets

more flattened. We calculate the frequencies and mode shapes for g = 20. The first three

obtained frequencies are 10.788, 62.348, and 239.372 radian per unit time. The first three

mode shapes of small oscillations under the influence of gravity have been shown in Fig.

6.4.
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Figure 6.3: First three mode shapes when gravity is not considered. The black lines
show the equilibrium configuration and the red dashed lines show the mode shapes of

small oscillation of the elastica arch near the equilibrium.
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Figure 6.4: First three mode shapes under the influence of gravity. The black dashed
lines show the equilibrium when gravity is not considered. The blue lines show the
equilibrium under the influence of gravity. The red dashed lines are the mode shapes

of small oscillation of the elastica arch near the equilibrium influenced by gravity.
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6.7 Conclusions

We have presented a semi-numerical method for obtaining natural frequencies and mode

shapes of small, in plane oscillations of a pre-bent elastica arch. In particular, as also in

the previous two chapters, we have used the assumed modes method to obtain eigenvalue

problems of small size. We began with finding the equilibrium shape of the beam, and

then considered small, in plane perturbations about it in terms of assumed modes. We

then used the Lagrangian approach with two scalar constraint equations, unlike in the

previous two chapters.



Chapter 7

Concluding Remarks

This thesis delineates solution approaches to five loosely related problems in slender struc-

tures addressing applications like the modeling of nonanalytic and nonsmooth damping in

structures, model order reduction for such systems with large numbers of state variables,

the short-time angular impulse response of Rayleigh beams, and small oscillations of struc-

tures subjected to end constraints. For such problems, the existing theoretical framework

has its limitations. This thesis presents some unconventional approximate methods that

offer reasonably good results and satisfying insights as well. The first problem (Chapter

2) offers a time integration algorithm and a model order reduction technique. The sec-

ond problem (Chapter 3) contributes a unique asymptotic approximation technique. The

third, fourth, and fifth problems (Chapters 4, 5, and 6) have similarity in terms of the

solution approach. These problems exploit the assumed-modes method to determine the

vibration characteristics of constrained slender structures, and also offer useful insights on

the role of constraints in Lagrangian mechanics.

In the study on integrating structures with nonsmooth hysteresis (given in Chapter 1),

there are two contributions. First of all, acknowledging the merit of Piché’s [32] time

integration algorithm, which should be more popular for its outstanding ability to remove

numerical instabilities due to higher modes in the structure, we provide a nontrivial mod-

ification of it for integrating nonsmooth systems relevant to hysteretic damping. More
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generally, referring this part of the work, similar extensions of Piché ’s algorithm can be

contemplated for systems where apart from the dynamic equations there are first order rate

equations that govern the system (e.g., structures with thermoelastic damping [106]). As

the second contribution of this work, we propose a model order reduction technique. The

modal projection method has been historically effective in substantially reducing the num-

ber of dynamic variables (displacements and velocities). We propose a technique which,

along with modal reduction, reduces the number of additional state variables (hysteretic

variables in our case) using an initial set of simulation data.

The study on the short-time behaviour of slender beams (Chapter 3) subject to angular

impulse has somewhat counter intuitive findings. The traditional methods of modal ex-

pansion and dimensional analysis lead us to an anharmonic sine series as the obtained

response. The functional value of the series at t = 0 is 0, and at the same point of time

there is a finite jump discontinuity. We introduce an asymptotic expansion (valid for a

small times) which breaks the series into two parts (consisting of terms in sequence) and

treats them differently. The place where the series is broken, depends on the smallness

of the time duration being considered, but in the end it drops out of the results which

depends only on the time.

For the last three problems, i.e., the slack catenary, the elastica robot, and the elastica arch

(Chapters 4, 5, and 6), the solution approaches are similar. The last of these three prob-

lems differs in the number of scalar end-fixity constraints. We have used the Lagrangian

formulation with constraints, and have utilized assumed-modes to discretize the system in

order to obtain governing ODEs. These problems offer insights into both assumed-modes

approximations as well as constraints in Lagrangian Mechanics.



Appendix A

Finite element formulation details

Starting with

û(e) =
4∑

k=1

ψ(e)k
(x)q(e)k(t), (A.1)

recalling Eqs. (2.2, 2.6) and performing the integrals over an element, we obtain

M(e)q̈(e) +K(e)q(e) +Q(e) = 0, (A.2)

where M(e)ij
=
∫ he

0 ρAψ(e)i
(x)ψ(e)j

(x) dx, K(e)ij
=
∫ he

0 EIψ
′′

(e)i
(x)ψ

′′

(e)j
(x) dx. The gener-

alised force corresponding to the coordinate q(e)i(t) is given by

Q(e)i
= γh

∫ he

0
z(e)(x, t)ψ

′′

(e)i
(x) dx.
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Letting x = he
2 (1 + ζ),

Q(e)i
=
γhhe
2

∫ 1

−1
z(e)

(
he

1 + ζ

2
, t

)
ψ

′′

(e)i

(
he

1 + ζ

2

)
dζ

=
γhhe
2

∫ 1

−1
z(e)(ζ, t)ψ

′′

(e)i
(ζ) dζ

=
γhhe
2

ng∑
p=1

wp z(e)(ζp, t) ψ
′′

(e)i
(ζp) (Gauss quadrature)

=
γhhe
2

ng∑
p=1

ψ
′′

(e)i
(ζp) z(e)p wp (A.3)

where z(e)(ζ, t) = z(e)

(
he

1+ζ
2 , t

)
, z(e)p = z(e)(ζp, t), ψ

′′

(e)i
(ζ) = ψ

′′

(e)i

(
he

1+ζ
2

)
. The ζp and

wp (p = 1, 2, . . . ng) are the Gauss integration points and their corresponding weights.

The dynamics of hysteretic dissipating moments at the Gauss points within an element

are governed by the equations

d

dt
z(e)p =

(
Ā− α sign

(
z(e)p

d

dt
χ(e)p

) ∣∣∣z(e)p∣∣∣nh

− β
∣∣∣z(e)p∣∣∣nh

)
×

d

dt
χ(e)p

, p ∈ {1, 2, . . . , ng} (A.4)

where χ(e)p
=
∑4

i=1 ψ
′′

(e)i
(ζp)q(e)i(t) is the curvature at the pth Gauss point.

Q(e) = A(e)z(e), χ(e) = Ψ(e)
⊤
q(e), A(e) =

γh he
2

Ψ(e) W, (A.5)

where

[
Ψ(e)

]
ip
= ψ

′′

(e)i
(ζp), W = diag([ζ1, ζ2, . . . , ζng ]),

z(e) = [z(e)1, z(e)2, . . . , z(e)ng
]⊤, i ∈ {1, 2, 3, 4}, and

p ∈ {1, 2, . . . , ng}. (A.6)



Appendix B

A numerical example for the

algorithm proposed in 2.4.2.1

In this abstract we present a numerical example to demonstrate the algorithm described

in section 2.4.2.1. The variables introduced here are not related to the analyses presented

in the main body of the thesis.

Let us consider a 4× 6 input matrix of normally distributed numbers.

A =



0.5377 0.3188 3.5784 0.7254 −0.1241 0.6715

1.8339 −1.3077 2.7694 −0.0631 1.4897 −1.2075

−2.2588 −0.4336 −1.3499 0.7147 1.4090 0.7172

0.8622 0.3426 3.0349 −0.2050 1.4172 1.6302


.

The row numbers chosen according to the algorithm are stored in the row matrix s which

is the output of this algorithm. For now, s is empty. After every iteration of the algorithm,

an integer denoting a row number is appended to s. As the matrix A has 4 rows, s will

finally have 4 elements.
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The row norms of A are

RA =



3.7667

4.0527

3.1816

3.8444


.

We see that the second row has the largest norm. Hence, we assign

s = [2].

Rearranging the rows of A according to the descending order of row norms, we get the

matrix

A1 =



1.8339 −1.3077 2.7694 −0.0631 1.4897 −1.2075

0.8622 0.3426 3.0349 −0.2050 1.4172 1.6302

0.5377 0.3188 3.5784 0.7254 −0.1241 0.6715

−2.2588 −0.4336 −1.3499 0.7147 1.4090 0.7172


.

In the matrix A1, the rows of matrix A are arranged in the order

p = [2 4 1 3], (B.1)

and the first row of A1, say rmax, has the highest norm. In the next step we subtract from

the rest of the rows their respective components along rmax, i.e.,

A1(k, :) → A1(k, :)−
(A1(k, :) · rmax)

||rmax||2
rmax, k = 2, 3, 4.

The matrix A1, after the row operations, transforms into

A1 =



1.8339 −1.3077 2.7694 −0.0631 1.4897 −1.2075

−0.2202 1.1144 1.4004 −0.1678 0.5380 2.3429

−0.5161 1.0702 1.9870 0.7617 −0.9801 1.3654

−1.5748 −0.9214 −0.3170 0.6912 1.9646 0.2668


.
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The row norms of the transformed A1 is

RA1 =



4.0527

3.0097

2.9606

2.7996


.

We can see that the second row of A1 has the second largest row norm which corresponds

to the fourth row of the main matrix A (see Eq. B.1). Hence, we modify

s = [2, 4].

Similar steps have to be followed to find the rest of the entries of s.



Appendix C

Finite element analysis of a

Rayleigh beam

For the finite element analysis of the Rayleigh beam, the effect of rotary inertia is to be

incorporated in the mass matrix. However, the stiffness matrix remains same as that of

Euler-Bernoulli beams. For the ith element of size ℓ(i), the element mass and stiffness

matrices are given by

M(i) =
ρA

420



156 ℓ(i) 22 ℓ2(i) 54 ℓ(i) −13 ℓ2(i)

22 ℓ2(i) 4 ℓ3(i) 13 ℓ2(i) −3 ℓ3(i)

54 ℓ(i) 13 ℓ2(i) 156 ℓ(i) −22 ℓ2(i)

−13 ℓ2(i) −3 ℓ3(i) −22 ℓ2(i) 4 ℓ3(i)


+
ρI

30



36 3 ℓ(i) −36 3 ℓ(i)

3 ℓ(i) 4 ℓ2(i) −3 ℓ(i) −ℓ2(i)

−36 −3 ℓ(i) 36 −3 ℓ(i)

3 ℓ(i) −ℓ2(i) −3 ℓ(i) 4 ℓ2(i)


(C.1)
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K(i) =
EI

ℓ3(i)



12 6 ℓ(i) −12 6 ℓ(i)

6 ℓ(i) 4 ℓ2(i) −6 ℓ(i) 2 ℓ2(i)

−12 −6 ℓ(i) 12 −6 ℓ(i)

6 ℓ(i) 2 ℓ2(i) −6 ℓ(i) 4 ℓ2(i)


(C.2)

The assembly of the global mass (M) and stiffness (K) matrices is routine [61]. We consider

ne equal-length elements for simplicity. The assembled non-homogeneous equations are of

the form

M ÿ +Ky = f , (C.3)

where y is the global nodal coordinate vector. In our problem the forcing vector f has all

elements equal to zero except δ(τ) (Dirac delta function) at the nodal entry corresponding

to the rotational degree of freedom at x = L
2 . Alternatively, we can formulate an equivalent

homogeneous equation of motion

M ÿ +Ky = 0 (C.4)

with initial conditions

y(0) = 0, and ẏ(0) = M−1 f̂ (C.5)

where the vector f̂ has all elements zero except a ‘1’ at the nodal entry corresponding to

the rotational degree of freedom at x = L
2 . For time integration of Eq. C.4, we have used

the implicit time marching algorithm of Piché [32]. We mention that that algorithm has

given very good results in some other recent work with slender structures [62].



Appendix D

Proof of Lemma 1

Let us consider a real valued, several-times differentiable function g with the properties

g(x) → 0 as x → ∞. Moreover, successive derivatives of g go to zero faster and faster as

x→ ∞. Then

∫ ∞

N
g(y) dy =

∞∑
k=N

∫ k+1

k
g(y) dy

∼
∞∑

k=N

∫ k+1

k

(
g(k) + (y − k)g′(k) +

1

2
(y − k)2g′′(k) +

1

6
(y − k)3g′′′(k) + · · ·

)
dy

=

∞∑
k=N

g(k) +
1

2

∞∑
k=N

g′(k) +
1

6

∞∑
k=N

g′′(k) +
1

24

∞∑
k=N

g′′′(k) +
1

120

∞∑
k=N

g′′′′(k) + · · · .

Rearranging,

∞∑
k=N

g(k) =

∫ ∞

N
g(y) dy− 1

2

∞∑
k=N

g′(k)− 1

6

∞∑
k=N

g′′(k)− 1

24

∞∑
k=N

g′′′(k)− 1

120

∞∑
k=N

g′′′′(k)+ · · · .

(D.1)

The same equation can be used recursively on the sums on the right hand side; the ad-

vantage in such cases is that the antiderivatives are obvious. More terms can be retained

easily if we wish. In this way, we obtain Eq. 3.20.
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Infinite series and their sum

Some infinite series are listed below. They can be obtained using some tricks with Fourier

series; and they can also be obtained from symbolic algebra packages like Maple. Proofs

are omitted.

∞∑
k=1

1

1 + 4 k2 a2
=

1

4 a

(
−2 a+ π coth

( π
2 a

))
(E.1)

∞∑
k=1

1

(1 + 4 k2 a2)2
=

1

16 a2

(
π2
(
coth

( π
2 a

))2
− 8 a2 + 2π coth

( π
2 a

)
a− π2

)
(E.2)

∞∑
k=1

1

(1 + 4 k2 a2)3
=

1

64 a3

((
coth

( π
2 a

))3
π3 + 3

(
coth

( π
2 a

))2
π2a− 32 a3

)
+

1

64 a3

(
−coth

( π
2 a

)
π3 + 6π coth

( π
2 a

)
a2 − 3π2a

)
(E.3)
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Parallelism of vectors p and q

The leading order term of Eq. 4.14 is

∫ b

0
−y′(x) vx dx = −y′(x) v

∣∣∣∣b
0

+

∫ b

0
y′′(x) v dξ

=

∫ b

0
y′′(x) v dx

=

∫ b

0

1

W
sec(θ(x)) v dx (referring Eq. 4.4)

=
1

W

∫ b

0
sec(θ(x)) v dx. (F.1)

The potential energy is

V =

∫ b

0
m̄ g v sec(θ(x)) dξ = m̄ g

∫ b

0
sec(θ(x)) v dξ. (F.2)

Since the same v appears in both integrals above, they differ only up to a multiplicative

constant. This is why p and q are parallel.
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