ME Dept., Ph.D. Comprehensive Exam: Mathematics, 2015-16 II Semester. (1 hr 30 mins)

Problem 1 (Linear Algebra): (20 Marks) Show that the equations

$$\omega x_1 + 3x_2 + x_3 = 5$$

$$2x_1 - x_2 + 2\omega x_3 = 3$$

$$x_1 + 4x_2 + \omega x_3 = 6$$

possess a unique solution when $\omega \neq \pm 1$, that no solution exists when $\omega = -1$, and that infinitely many solutions exist when $\omega = 1$.

Problem 2 (Statistics):

Problem 3 (Vector Analysis): (10+10 Marks) (i) Let \mathbf{u} be a smooth vector field over $\Omega \in \mathbb{R}^3$. Show that grad $\mathbf{u} - (\text{grad } \mathbf{u})^T$ is a skew-symmetric tensor (superscript T denotes the transpose) with axial vector curl \mathbf{u} . Hence, or otherwise, show that

$$\int_{\partial\Omega} \mathbf{n} \times \mathbf{u} \, da = \int_{\Omega} \operatorname{curl} \mathbf{u} \, dv, \tag{1}$$

where **n** the outward unit vector normal to the boundary $\partial \Omega$ of Ω .

(ii) A smooth scalar field ζ is harmonic if $\Delta \zeta = 0$, where Δ denotes the Laplacian. If ζ is harmonic, then show that (for some $\Omega \in \mathbb{R}^3$)

$$\int_{\Omega} |\nabla \zeta|^2 \, dv = \int_{\partial \Omega} \zeta (\nabla \zeta \cdot \mathbf{n}) \, da, \tag{2}$$

where **n** is the normal to $\partial\Omega$. As a consequence, prove that ζ will be constant in Ω if it is harmonic and if its normal derivative on $\partial\Omega$ vanishes.

Problem 4 (ODE): (8+6+6 Marks) (I) Show that the following 1^{st} order ODE is *exact* and solve it:

$$ye^x dx + (2y + e^x)dy = 0$$

(II) Find the integrating factor of the following 1^{st} order ODE:

$$(y+1)dx - (x+1)dy = 0, (x > 0).$$

(III) Find the general solution of the following Euler-Cauchy equation:

$$x^2y'' - 4xy' + 6y = 0.$$

Problem 5 (PDE): (20 Marks) The *parabolic* PDE governing the temperature u(x, t) is

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0, \quad (c_T = 1).$$

For a rod of length 1 unit *insulated at both the ends* and having some initial temperature distribution, the BC and IC are:

(i)
$$\frac{\partial u}{\partial x}(0,t) = 0$$
, (ii) $\frac{\partial u}{\partial x}(1,t) = 0$, for $t \ge 0$;
 $u(x,0) = a\cos(\pi x)$, for $0 \le x \le 1$.

Obtain the solution of the problem, i.e., the expression for u(x,t).

Problem 6 (Numerical Methods): (10 Marks) Perform three Newton-Raphson iterations to find a root of the following non-linear algebraic equation:

$$f(x) = (4 - x)e^{-x} - 2.$$

Use the initial guess of 0.5. Retain at least 5 decimal digits in all your calculations.