ME Dept., Ph.D. Comprehensive Exam: Mathematics, 2015-16 II Semester.

 (1 hr 30 mins)Problem 1 (Linear Algebra): (20 Marks) Show that the equations

$$
\begin{aligned}
& \omega x_{1}+3 x_{2}+x_{3}=5 \\
& 2 x_{1}-x_{2}+2 \omega x_{3}=3 \\
& x_{1}+4 x_{2}+\omega x_{3}=6
\end{aligned}
$$

possess a unique solution when $\omega \neq \pm 1$, that no solution exists when $\omega=-1$, and that infinitely many solutions exist when $\omega=1$.

Problem 2 (Statistics):

Problem 3 (Vector Analysis): $\left(10+10\right.$ Marks) (i) Let \mathbf{u} be a smooth vector field over $\Omega \in \mathbb{R}^{3}$. Show that grad $\mathbf{u}-(\operatorname{grad} \mathbf{u})^{T}$ is a skew-symmetric tensor (superscript T denotes the transpose) with axial vector curl u. Hence, or otherwise, show that

$$
\begin{equation*}
\int_{\partial \Omega} \mathbf{n} \times \mathbf{u} d a=\int_{\Omega} \operatorname{curl} \mathbf{u} d v \tag{1}
\end{equation*}
$$

where \mathbf{n} the outward unit vector normal to the boundary $\partial \Omega$ of Ω.
(ii) A smooth scalar field ζ is harmonic if $\Delta \zeta=0$, where \triangle denotes the Laplacian. If ζ is harmonic, then show that (for some $\Omega \in \mathbb{R}^{3}$)

$$
\begin{equation*}
\int_{\Omega}|\nabla \zeta|^{2} d v=\int_{\partial \Omega} \zeta(\nabla \zeta \cdot \mathbf{n}) d a \tag{2}
\end{equation*}
$$

where \mathbf{n} is the normal to $\partial \Omega$. As a consequence, prove that ζ will be constant in Ω if it is harmonic and if its normal derivative on $\partial \Omega$ vanishes.

Problem 4 (ODE): ($8+6+6$ Marks) (I) Show that the following $1^{\text {st }}$ order ODE is exact and solve it:

$$
y e^{x} d x+\left(2 y+e^{x}\right) d y=0
$$

(II) Find the integrating factor of the following $1^{\text {st }}$ order ODE:

$$
(y+1) d x-(x+1) d y=0,(x>0) .
$$

(III) Find the general solution of the following Euler-Cauchy equation:

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 .
$$

Problem 5 (PDE): (20 Marks) The parabolic PDE governing the temperature $u(x, t)$ is

$$
\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial u}{\partial t}=0, \quad\left(c_{T}=1\right) .
$$

For a rod of length 1 unit insulated at both the ends and having some initial temperature distribution, the BC and IC are:

$$
\text { (i) } \begin{aligned}
\frac{\partial u}{\partial x}(0, t) & =0, \quad \text { (ii) } \frac{\partial u}{\partial x}(1, t)=0, \text { for } t \geq 0 ; \\
u(x, 0) & =a \cos (\pi x), \text { for } 0 \leq x \leq 1
\end{aligned}
$$

Obtain the solution of the problem, i.e., the expression for $u(x, t)$.

Problem 6 (Numerical Methods): (10 Marks) Perform three Newton-Raphson iterations to find a root of the following non-linear algebraic equation:

$$
f(x)=(4-x) e^{-x}-2 .
$$

Use the initial guess of 0.5 . Retain at least 5 decimal digits in all your calculations.

