Ph.D. Comprehensive Exam: Mathematics, 2016-17 Ist Semester. (100 Marks)

Problem 1 (Vector Calculus): (10+10 Marks)
(i) Consider the vector field $\mathbf{h}=\alpha R^{-2} \mathbf{e}_{R}$, where α is a constant, R is the distance from origin, and \mathbf{e}_{R} is the spherical coordinate basis vector pointing out from the origin. Determine the gradient, the divergence, and the curl of this vector field.
(ii) Let \mathbf{v} be a smooth vector field defined on a simply-connected region Ω of the threedimensional Euclidean space. A region is simply-connected if any closed curve contained in it can be continuously shrunk to one of its point without leaving the region. Show that the curl of \mathbf{v} is zero if and only if there exists a smooth scalar field ϕ on Ω such that $\mathbf{v}=\nabla \phi$, where ∇ represents the gradient.

Problem 2 (Linear Algebra): ($10+10$ Marks)
(i) Apply Gauss elimination to the following real system of equations, decide if it is solvable, and if so determine its solution set:

$$
\begin{array}{r}
x_{1}-x_{2}+2 x_{3}-3 x_{4}=7 \\
4 x_{1}+3 x_{3}+x_{4}=9 \\
2 x_{1}-5 x_{2}+x_{3}=-2 \\
3 x_{1}-x_{2}-x_{3}+2 x_{4}=-2
\end{array}
$$

(ii) Let V be the real vector space of twice differential functions $f: \mathbb{R} \rightarrow \mathbb{R}$ defined on the domain $[-1,1]$ such that $f(1)=f(-1)=0$. Determine all the eigenvalues and the eigenvectors of the second derivative

$$
\frac{d^{2}}{d x^{2}}: V \rightarrow V
$$

Problem 3 (ODE): ($8+8+6$ Marks)
(i) The integrating factor of the following first order ODE

$$
2 x y d x+3 x^{2} d y=0, \quad(y>0)
$$

is y^{2}. Using this integrating factor, find the solution of the above ODE.
(ii) The general solution of the homogeneous part of the following second order non-homogeneous ODE with constant coefficients

$$
y^{\prime \prime}+2 y^{\prime}-35 y=12 e^{5 x}+37 \sin 5 x
$$

is given by

$$
y_{h}=C_{1} e^{5 x}+C_{2} e^{-7 x}
$$

where C_{1} and C_{2} are constants. Find the particular solution of the ODE.
(iii) Find the solution of the following first order ODE:

$$
e^{x} y^{\prime}=2(x+1) y^{2}
$$

Problem 4 (PDE): (20 Marks)

For a string of length π units fixed at both the ends and excited only by some initial displacement, the hyperbolic $\mathrm{PDE}+\mathrm{BC}+\mathrm{IC}$ governing the displacement $u(x, t)$ are:

PDE: $\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial t^{2}}=0, \quad\left(c_{w}=1\right)$.
$\mathrm{BC}: \quad(a) u(0, t)=0, \quad(b) u(\pi, t)=0, \quad$ for $t \geq 0$.
$\mathrm{IC}:(c) u(x, 0)=\delta(\sin x-0.5 \sin 2 x)$,
(d) $\frac{\partial u}{\partial t}(x, 0)=0, \quad$ for $0 \leq x \leq \pi$.

Obtain the solution of the problem, i.e., the expression for $u(x, t)$.

Problem 5 (Numerical Methods): (8 Marks)

In an experiment, two non-dimensional parameters (x, y) were measured at five instances. The data is as follows:

Instance i	x_{i}	y_{i}
1	0	1.8
2	1	1.6
3	2	1.1
4	3	1.5
5	4	2.3

The investigator believes that the variation of y with x is linear, i.e. $y=a+b x$. Applying the least square method to the above data, find the constants a and b.

Problem 6 (Statistics): (10 Marks)
If the probability of producing a defective screw is $p=0.01$, what is the probability that a lot of 100 screws will contain more than 2 defectives? [Hint: Use Poisson distribution]

