Department of Mechanical Engineering, Indian Institute of Technology Kanpur Ph.D Comprehensive Examination (Mathmatics)- Written part: November 2016 Time: 2 hours

Maximum Marks: 100

Problem 1 (Linear Algebra): ($10+10$ Marks)
(i) For what values of ω will the following system of equations posses a non-trivial solution? Why?

$$
\begin{aligned}
& \omega x_{1}+x_{2}=0 \\
& x_{1}+\omega x_{2}-x_{3}=0 \\
& -x_{2}+\omega x_{3}=0 .
\end{aligned}
$$

(ii) Determine the eigenvalues and the associated eigenspaces for the following matrices:
(a) $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and (b) $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Also determine the geometric and the algebraic multiplicity in each case.

Problem 2 (Vector Analysis): ($8+4+4+4$ Marks)
(i) Let \mathbf{v} be a vector field such that curl $\mathbf{v}=\mathbf{0}$ in a three-dimensional domain Ω. Use Stokes' theorem to show that the evaluation of line integral

$$
\int_{\mathbf{X}_{0}}^{\mathbf{Y}} \mathbf{v} \cdot d \mathbf{X}
$$

is independent of the path between two points \mathbf{X}_{0} and \mathbf{Y} in Ω. In other words, it depends only on the initial and the final point. Use this result to infer that there exists a scalar field ϕ such that $\mathbf{v}=\nabla \phi$. Here ∇ indicates the gradient.
(ii) Let $\mathbf{e}(\mathbf{x})=\mathbf{x} /|\mathbf{x}|$. Calculate $\nabla \mathbf{e}$.
(iii) Let $\mathbf{u}(\mathbf{x})=\mathbf{x} /|\mathbf{x}|^{3}$. Show that \mathbf{u} is harmonic (that is, its Laplacian is zero).
(iv) Let \mathbf{w} and \mathbf{v} be vector fields. Show that $\operatorname{div}(\mathbf{w} \times \mathbf{v})=\mathbf{v} \cdot \operatorname{curl} \mathbf{w}-\mathbf{w} \cdot \operatorname{curl} \mathbf{v}$.

Problem 3 (ODE): ($7+6+7$ Marks)
(i) (a) Find the solution of the following first order ODE:

$$
y^{\prime}=x\left(\frac{1}{y}-y\right), \quad(y \geq 2)
$$

(b) Evaluate the constant of integration from the initial condition $y(0)=2$.
(ii) (a) Find the integrating factor of the following first order ODE:

$$
\left(2 \cos y+4 x^{2}\right) d x+(-x \sin y) d y=0, \quad(x>0)
$$

(b) Multiply the above ODE by the integrating factor found in part (a), and show that the resulting ODE is an exact differential equation.
(iii) Find the general solution of the following second order homogeneous ODE with constant coefficients:

$$
9 y^{\prime \prime}-30 y^{\prime}+25 y=0
$$

In case of a double root of the characteristic equation, use the method of reduction of order to find the second independent solution.

Problem 4 (PDE): (20 Marks)
A square plate of side 12 units is held at $0^{\circ} \mathrm{C}$ temperature at three boundaries: (i) $x=0$, $x=12$, and $y=0$. The temperature at the boundary $y=12$ varies with $x: T=\sin (\pi x / 4)$. Thus, the temperature is governed by the following boundary value problem consisting of an elliptic PDE and boundary conditions:

$$
\begin{aligned}
& \mathrm{PDE}: \quad \frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=0 \\
& \mathrm{BC}: \quad(i) T(0, y)=0, \quad(i i) T(12, y)=0, \quad \text { for } 0 \leq y \leq 12 \\
& \quad(i i i) T(x, 0)=0, \quad(i v) T(x, 12)=\sin (\pi x / 4), \quad \text { for } 0 \leq x \leq 12
\end{aligned}
$$

Obtain the solution of the problem, i.e., the expression for $T(x, y)$.

Problem 5 (Numerical Methods): (10 Marks)
Retain at least 5 significant digits in your calculation.
(a) Carry out 5 steps, using the step size of $h=0.1$, of the Euler method for the following initial value problem:

ODE: $y^{\prime}=-0.1 y$,
IC: $y(0)=2$.
(b) The exact solution of the above problem is $y=2 e^{-0.1 x}$. Find the error at each step.

Problem 6 (Statistics): (5+5 Marks)
(i) Find the mean and the variance of a random variable with probability density function $f(x)=2 e^{-2 x},(x \geq 0)$.
(ii) The breakage strength of a certain type of plastic block is normally distributed with a mean of 1250 Kg and a standard deviation of 55 Kg . What is the maximum load such that we can expect no more than 5% of the blocks to break?

