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Abstract

Rotordynamics is an important area in mechanical engineering. Many machines contain

rotating parts. It is well known that rotating components can develop large amplitude

lateral vibrations near certain speeds called critical speeds. This large amplitude vibration

is called rotor whirl. This thesis is about rotor whirl.

Conventional treatments in rotordynamics use what are called gyroscopic terms and

treat the rotor as a one-dimensional structure (Euler-Bernoulli or Timoshenko) with or

without rigid masses added to them. Gyroscopic terms are macroscopic inertial terms that

arise due to tilting of spinning cross-sections. This approach, while applicable to a large

class of industrially important rotors, is not applicable to a general rotor geometry.

In this thesis we develop a genuine continuum level three dimensional formulation

for rotordynamics that can be used for many arbitrarily shaped rotors. The key insight that

guides our formulation is that gyroscopic terms are macroscopic manifestations of the pre-

stress induced due to spin of the rotor. Using this insight, we develop two modal projection

techniques for calculating the critical speed of arbitrarily shaped rotors. These techniques

along with our prestress based formulation are the primary contributions of the thesis.

In addition, we also present two different nonlinear finite element based implementations

of our formulation. One is a laborious load-stepping based calculation performed using

ANSYS (a commercially available finite element package). The other uses our nonlinear

finite element code. The latter two techniques are primarily developed to provide us with
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an accurate answer for comparison with the results obtained using the modal projection

methods.

Having developed our formulation and the subsequent modal projection approxi-

mations, we proceed to validation. First, we analytically study several examples whose

solutions can be easily obtained using routine methods. Second, we consider the problem

of a rotating cylinder under axial loads. We use a semi-analytical approach for this prob-

lem and offer some insights into the role played by the chosen kinematics for our virtual

work calculations. The excellent match with known results obtained using Timoshenko

theory validates the accuracy of our formulation. Third, we consider several rotors of arbi-

trary shape in numerical examples and show that our modal projection methods accurately

estimate the critical speeds of these rotors.

After validation, we consider efficiency. For axisymmetric rotor geometries, we im-

plement our formulation using harmonic elements. This reduces the dimension of our

problem from three to two and considerable savings in time are obtained.

Finally, we apply our formulation to describe asynchronous whirl and internal vis-

cous damping phenomena in rotors.
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Chapter 1

Introduction and literature survey

Rotordynamics is an important area in mechanical engineering. Many machines contain

rotating parts. It is well known that rotating components develop large amplitude lateral

vibrations near certain speeds called critical speeds. This large amplitude vibration is called

rotor whirl. This thesis is about rotor whirl. Most of the thesis will deal with synchronous

whirl, but towards the end we will consider asynchronous whirl as well.

1.1 A brief account of the rotor literature

The rotordynamics literature is vast. A good summary of early rotordynamics history is

given in [3] and a good account of the development in modeling procedures is given in [4].

To motivate this thesis, we consider three possible scenarios in rotordynamics analy-

sis. In the first case, the rotor geometry consists of several heavy, nearly rigid discs attached

to slender shafts, as shown in figure 1.1 (a). In this case one can get very good results by

treating the shaft as a slender beam (Euler-Bernoulli or Timoshenko) without considering

its mass (or considering its mass in any reasonable approximate sense) and by treating the

discs as rigid masses attached to the shafts. Many standard techniques in rotordynamics

like the transfer matrix method (developed by Prohl [5]; used for rotordynamics analysis in,

e.g., Flack and Rooke [6], Sakate et al. [7] and Hsieh et al. [8]) or the finite element method

using beam elements can then be used to describe the dynamics of the rotor. Several pa-

1
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Shaft

Rigid discs

Bearing

ShaftBearing

(a)

(b)

(c)

Bearing

Figure 1.1: Three rotor geometries.

pers on rotors have concentrated on finite beam elements of various kinds (e.g., conical

or tapered). These include Rouch and Kao [9], Nelson [10], Greenhill et al. [11], Genta

[12, 13], Edney et al. [14] and Gmür and Rodrigues [15].

In the second case, figure 1.1 (b), the mass of the shaft is no longer negligible. The

mass and gyroscopic effects of each cross section need to be taken into account. Timoshenko

theory is good for this case [16].

In the final case, figure 1.1 (c), the rotor geometry is complicated and the usual

approximations of beam theory and treatment of the shaft as massless are no longer appro-

priate. We need a genuine three dimensional treatment of the rotor. Very few papers in the

literature consider genuine three dimensional treatment of rotors. Among them, Stephen-

son and Rouch [17] use harmonic elements to analyse arbitrary axisymmetric rotors. Their

approach, while applicable to any axisymmetric rotor, is based upon separately deriving

and adding a gyroscopic matrix to the usual modal analysis.

However, to write equations at the continuum level, one must abandon the gyro-

scopic term based approach (as will be discussed in detail later) and look for alternatives.

One such alternate approach is presented by Nandi and Neogy [18]. They present a gen-
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uine three dimensional approach for analysis of rotors whose cross sections have two axes of

symmetry. However, their method is not derived from continuum level equations. Rather,

a crucial step in their method is an ad hoc addition of an inertia term. Thus, even though

their method goes one step beyond the usual analysis, it is not derived from a continuum

formulation.

While presently available rotordynamics analyses are capable of handling most com-

mon rotor geometries, there is still the need for a method based on genuine three dimen-

sional continuum level treatment of rotors. It is this need that we address in this thesis.

We develop a new prestress based formulation for analysing rotors of arbitrary shape.

Our formulation is different from conventional treatments in that we do not use any explicit

gyroscopic term. Instead, we begin with continuum level equations, account for the spin-

induced prestress, and implicitly capture all the gyroscopic effects. Our formulation applies

to rotors of non-axisymmetric shape and we will consider one such case in chapter 8.

However, most of our other examples will be axisymmetric for simplicity and greatest

relevance.

1.2 Some rotordynamics phenomena

1.2.1 Synchronous whirl

In this thesis we will mostly deal with synchronous forward whirl which is a special motion

at a special speed. Viewed in a rotating coordinate system that spins about the undeformed

axis at that special speed, synchronous forward whirl gives a static, bent configuration. Fig-

ure 1.2 illustrates the synchronous forward and backward whirling motion. In engineering

practice, the synchronous forward whirl speed is usually the most important among the

rotor’s critical speeds.
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Whirl

Shaft spin

Forward whirl

Whirl

Shaft spin

Backward whirl

Figure 1.2: Synchronous (forward) whirl and backward whirl (adapted from [1]).

1.2.2 Campbell diagram

An important way to look at rotordynamics is through the Campbell diagram illustrated

in figure 1.3 [16]. This is a plot of variation of the natural frequency of the rotor as a

function of the spin speed. The natural frequency is, for many rotors, a slowly increasing

function of the spin speed. The critical speed is defined as that speed of rotation at which

Spin speed Ω

N
a

tu
ra

l 
fr

e
q

u
e

n
c
y

ω

X=Y

Y

X

x

Critical speed

Figure 1.3: A typical Campbell diagram.

the natural frequency of the rotor is numerically equal to the spin speed. This point is
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located by drawing a line at 45 degrees, as shown in figure 1.3, and the intersection point

is the critical speed. At this speed any disturbance through unbalance gets excited at the

natural frequency and causes large amplitude motions or whirling.

1.2.3 Gyroscopic terms

Gyroscopic terms arise due to tilting of spinning cross-sections. Conventional methods in

rotordynamics incorporate gyroscopic moments (i.e., terms of the form Ω×I ·Ω), which are

macroscopic inertial terms (disk-elementwise or ring-elementwise as opposed to continuum

pointwise).

Figure 1.4: Gyroscopic moments arise due to tilting of spinning cross-sections.

However, a continuum element level treatment cannot incorporate gyroscopic terms

since these are macroscopic effects. Figure 1.5 shows three different rotor elements; a disc,

a ring and an infinitesimal cuboidal element. We will compare the order of magnitude of

inertia and gyroscopic terms for each of these elements. The net inertia force is of the order

of ≈
∫

V

ρ a dV =

∫

V

a dm = mtota in all cases, where a is the acceleration. The gyroscopic

terms are of the form Ω × I · Ω and their magnitude is of the order of Ω2 ‖ Icm ‖. For

disc and ring elements this term is proportional to

∫

V

r2 dm ∝ mtotr
2. However, for the

infinitesimal element, this term becomes

∫

V

|∆x|2 dm→ 0 as the element size goes to zero,

i.e., the gyroscopic terms vanish at the continuum level.
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(a) Disc (b) Ring (c) Infinitesimal

     Element

Figure 1.5: Three possible discretizations of rotor.

The question then is, what is the continuum level equivalent of the macroscopic

gyroscopic terms? The answer to this question is the key insight that motivates this thesis:

commonly used macroscopic gyroscopic terms arise due to the effect of the spin-induced

prestress at the continuum level in the rotor. We will show that by incorporating the effect

of this prestress at the continuum level we can obtain the correct equations of motion

governing the rotor.

1.3 Contributions of this thesis

In this thesis we develop a new prestress based formulation for describing rotor whirl.

Our formulation, developed from a continuum level, offers a genuine three dimensional

treatment of rotors. This three dimensional formulation can be directly implemented using

finite elements; but can also be implemented more simply using modal projections. Here,

we do both. The direct finite element implementation of the formulation is done using a

commercially available finite element package (ANSYS) as described in chapter 2 as well

as with our own nonlinear finite element code (described in chapter 9 using isoparametric

elements and in appendix A using hybrid elements). However, these laborious methods,

perhaps novel in rotor applications, are developed merely to provide accurate answers for

comparison for arbitrarily shaped rotor geometries.

Our main contribution in this thesis is our formulation, developed in chapter 4, and

its implementation using modal projections, described in chapter 5. We develop two modal
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projection techniques for finding the forward synchronous whirl speed of arbitrarily shaped

rotors. The validity of these methods is established with a number of analytical (chapters

6,7) and numerical (chapter 8) examples.

Having established methods for computing critical speeds of arbitrary rotors, we

consider ways of exploiting symmetry. For axisymmetric rotors, we apply our formulation

with harmonic elements in chapter 10. These essentially two dimensional elements are

capable of describing deformation of an axisymmetric structure under non-axisymmetric

loading. With these elements our formulation, applied to arbitrary axisymmetric rotors,

reduces to two dimensions with significant savings in computational effort.

Although much of the thesis focuses on finding the synchronous whirl speed, we

consider asynchronous whirl in chapter 11. Finally, we consider the effects of internal

viscous damping in chapter 12.

It is mentioned here that the work presented in chapter 3, 4, 5, 6 and 8 has already

been published in Proceedings of the Royal Society A [19]. The buckling calculations in

chapter 7 have been presented in NaCoMM 2007 [20]. The problem of axially loaded

cylindrical rotor, presented in chapter 7 using three dimensional elasticity solution based

kinematics has been submitted to a journal.



Chapter 2

Laborious load-stepping

Before we move to the main contribution of the thesis, we present a simpler but more

laborious calculation in rotordynamics. The primary goal of this thesis is to develop a three

dimensional continuum level method for calculating the critical speeds of arbitrary rotors.

For simple rotor geometries, the validity of our approach can be checked against analytical

formulas; for complex rotor geometries, where an analytical solution is not available, we

need alternative methods to provide reliable answers for comparison. To this end, we now

present a load-stepping based method for computing the critical speed using ANSYS. This

method in itself is perhaps new in rotor applications in that we have not seen it reported

elsewhere. However, it is laborious and computationally expensive and is presented only

for cross checking the results obtained using our main method.

2.1 Load-stepping method using ANSYS

ANSYS can compute geometrically nonlinear static solutions for objects in steadily rotating

frames of reference. Analysing a perfect rotor in this way gives only the radial expansions

associated with the centrifugal loading. However, on putting a small imperfection in the ro-

tor, the whirling speed can be estimated indirectly. The idea is illustrated in figure 2.1. The

imperfection destroys the bifurcation, and there may be other solutions as well; but these

issues are not relevant here. Note that continuum equations of nonlinear elastodynamics

are solved directly by ANSYS; there is no need for explicitly and separately incorporating

8
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gyroscopic effects.
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Figure 2.1: Central displacement vs. spinning speed of a perfect and imperfect rotor.

We illustrate the procedure for a cylinder (length 2 m, radius 0.25 m). The material

properties for all geometries considered here are Young’s modulus E = 210 Gpa, Poisson’s

ratio ν = 0.25 and density ρ = 7800 kg/m3. The actual analysis proceeds as follows. The

rotor is meshed, at an adequate level of refinement, using 10 noded tetrahedral elements as

shown in figure 2.2. A simple support condition is approximately enforced by constraining

all nodes on either endface to have axial displacements only; and furthermore constraining

axial motions of the central node of the rotor.

Figure 2.2: Left: mesh. Right: fundamental lateral vibration mode.

Routine modal analysis gives the fundamental mode shape φ (see figure 2.2, right)

and the natural frequency ωf = 1498.7 rad/s.

Next, each node in the mesh is displaced by some small number b times the vector



Chapter 2. Laborious load-stepping 10

1400 1450 1500 1550 1600
0

0.05

0.1

0.15

Speed (rad/s)

D
is

pl
ac

em
en

t o
f a

 c
en

tr
al

 n
od

e 
(m

)

1400 1450 1500 1550 1600
0

1

2

3
x 10

−3

Speed (rad/s)

S
lo

pe
 d

a/
dω

Critical sped            
 ω

c
 = 1548.9 rad/s 

Figure 2.3: Left: central displacement a vs. speed ω. Right: slope da/dω vs. ω.

value of the mass-normalized mode shape at that node (we arbitrarily used b = 0.03). The

new mesh represents a slightly bent, or imperfect, rotor.

To this new finite element model we apply an inertial loading corresponding to a spin

speed of ω = 1420 rad/s (sufficiently low, but otherwise arbitrary). The statics problem is

solved with full nonlinear options in ANSYS. Using the results as an initial guess, we then

obtain the solution at a slightly higher speed ω (using the “restart” option in ANSYS). In

this way, we proceed until ω = 1600 rad/s.

The displacement a of a surface node near the midplane of the rotor is plotted

against ω in figure 2.3 (left). In the absence of imperfection, the upward bend in the curve

would be a kink. With this thought, the speed at which the slope da/dω is greatest is taken

as the critical speed ωc of the shaft, giving ωc = 1548.9 rad/s. The slope is numerically

estimated via cubic spline interpolation of the displacements.

2.2 Results for two other geometries

We now present results for two other geometries analysed with the above method. These

geometries will be considered again later and the results obtained below will be used for
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comparison.

2.2.1 A truncated cone

The cone considered is 2 m long with the radius varying from 0.5 m at one end to 0.2 m at

the other end. Ten noded tetrahedral elements are again used for the mesh (see figure 2.4).

A simple support condition is approximately enforced by constraining all nodes on either

endface to have axial displacements only; and furthermore constraining axial motions of

a node on the left face of the rotor. The critical speed is calculated as described above.

Figure 2.4: Mesh of the truncated cone.

The fundamental frequency of lateral vibration of the cone is ωf = 969.13 rad/s. For

the nonlinear load-stepping calculation the speed is varied from 950 rad/s to 1030 rad/s.

The results are plotted in figure 2.5. The critical speed of the truncated cone geometry is

estimated as 990.7 rad/s.

2.2.2 A bottle

We now consider a bottle like geometry. The exact details of the geometry are given in

chapter 8 where this rotor is considered again. Here, we just mention the results obtained

using the load-stepping calculation. The mesh of the geometry is shown in figure 2.6. The

end face of the neck of the bottle is constrained (held fixed) in all three directions. The
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Figure 2.5: Left: central displacement a vs. speed ω. Right: slope da/dω vs. ω.

Figure 2.6: Mesh of the bottle geometry.

fundamental frequency of lateral vibration of the bottle is ωf = 362.97 rad/s. For this

case, the speed for the load-stepping calculation is varied from 332 rad/s to 390 rad/s. The

results are plotted in figure 2.7 where the critical speed is estimated as 381.18 rad/s.

2.3 Scope of the load-stepping calculation

The laborious load-stepping method presented in this chapter provides a way to calculate

the synchronous forward whirl speed of any arbitrarily shaped rotor. However, we em-

phasize that this calculation is devised and described only for cross checking the results
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Figure 2.7: Left: central displacement a vs. speed ω. Right: slope da/dω vs. ω.

obtained using our main method to be described in chapter 5. The load-stepping calcula-

tion is not our recommended method for finding the critical speed. Also, the load-stepping

method uses a finite size imperfection and consequently the critical speeds obtained using

this method only serve as a good approximation and are not an accurate estimate. A

more accurate estimate using ‘proper’ nonlinear finite elasticity calculation using the finite

element method were also done as a part of this work (with the help of Prof. C. S. Jog)

and have been reported in our paper [19] and is also presented in appendix A. Finally,

avoiding the hybrid elements of that approach we present an isoparametric element based

nonlinear finite element calculation in chapter 9. The load-stepping method described in

this chapter is the easiest to implement for an engineer with access to a nonlinear finite

element package like ANSYS.



Chapter 3

An incorrect but instructive modal

projection

Whirling is, in a sense, like buckling. In Euler buckling of columns [21], a linear eigenvalue

problem is used to determine the buckling load. Nevertheless, the problem is nonlinear. The

deformed and undeformed configurations are distinguished (unlike in linear elasticity); the

equilibrium equation includes a term that is the product of load and displacement (equiva-

lent to stress times strain, which would be treated as second order in linear elasticity); even

past the buckling load, the unbuckled solution continues to coexist with the buckled solu-

tion (uniqueness results of linear elasticity preclude such solutions). In the same way, one

can expect the whirling speed to be determined by some sort of linear eigenvalue problem.

Nevertheless, we will distinguish between the whirling and non-whirling solutions; we will

retain terms linear in the whirling-associated displacements but quadratic in the rotation

speed (displacement times velocity squared is technically a third order term); and even

past the whirling speed, the whirling and nonwhirling solutions will coexist. Papers on

whirling rotors typically do not discuss this nonlinearity (a good discussion in the limited

context of Timoshenko rotors is given by Choi et al. [22]). To clarify some aspects of this

nonlinearity, we begin with a naive modal projection. Much of the discussion will carry

over to the subsequent, correct, calculation.

We assume that the deformed configuration (or shape) of the shaft can be expressed

as a linear combination of a few of its lateral vibration mode shapes, and illustrate the

calculation by taking only one mode φ (the fundamental).

14
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The key advantage of describing the deformed whirling shape in terms of vibration

mode shapes is that if the displacement is given by a vibration mode shape φ, then it

involves a stress state τ such that

∇ · τ = −ρω2
f φ , (3.1)

where ρ is the material density and ωf the natural angular frequency of vibration in that

mode. We will use this below, except that in place of τ we will use the second Piola-

Kirchhoff stress S because S and τ are the same up to first order in displacements, and we

will retain first order terms only.

3.1 Dynamic equilibrium

We start with the dynamic equilibrium equation in reference coordinates (see, e.g., [23],

[24]),

∇ · (FS) = ρ0
∂2χ

∂t2
.

Here, F is the deformation gradient, S is the second Piola-Kirchhoff stress, ρ0 is the un-

deformed density, and χ is the position vector of the material point of interest. We will

project this equation on to a single mode, linearize the resulting equation, and obtain the

incorrect answer that will lead to the correct method. Also note that this naive modal pro-

jection method will be used later in one of our modal projection methods, in conjunction

with an ANSYS based calculation, to give the correct critical speeds.

Consider a material point initially at position vector X in a rotating frame that

spins at the rotor speed. The displacement of this point is taken as

u = aφ ,

where a is an infinitesimal coefficient and φ is the mass-normalized eigenvector.

We adopt the St. Venant-Kirchhoff stress-strain relation for nonlinear calculations,

although here we will linearize immediately:

S = λ (tr E) I + 2µE,
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where λ and µ are Lame constants and E is the Green strain tensor given by

E =
1

2

(
∇u + ∇uT + ∇uT

∇u
)

= a
1

2

(
∇φ + ∇φT

)
+O

(
a2
)
.

The deformation gradient is

F = I + ∇u = I + a∇φ.

3.2 Virtual work

Considering a virtual displacement of δaφ, we have for synchronous whirl

δa

∫

V

(∇ · (FS)) · φ dV = δa

∫

V

ρ0 (Ω × Ω × (X + u)) · φ dV,

where V is the volume in the reference configuration and the angular velocity Ω is directed

along the undeformed centerline of the rotor.

The δa’s cancel out; we get a linear equation in a; and nonuniqueness of the whirling

solution requires the coefficient of a to be zero (in a multi-mode projection, we would look

for a singular coefficient-matrix). Setting Ω = Ωc in the zero-coefficient condition, we get

∫

V

(∇ · S) · φ dV =

∫

V

ρ0 (Ωc × Ωc × φ) · φ dV. (3.2)

The term on the left hand side, by Eq. 3.1, gives

∫

V

(∇ · S) · φ dV = −ω2
f

∫

V

ρ0φ · φ dV = −ω2
f ,

because the eigenvector is mass-normalized. Substituting this in Eq. 3.2 we get

−ω2
f =

∫

V

ρ0 (Ωc × Ωc × φ) · φ dV. (3.3)

The predicted critical speed then is

Ω2
c =

−ω2
f

∫

V

ρ0 (n̂ × n̂ × φ) · φ dV
, (3.4)
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where the unit vector n̂ is along the undeformed rotor centerline.

In Eq. 3.4 the natural frequency ωf and mode shape φ can be determined using solid

elements in a commercial finite element package (we used 10 noded tetrahedral elements

in ANSYS). The integral is evaluated separately in MATLAB.

It turns out Eq. 3.4 is incorrect. We will illustrate this using a simple example

from Ewins [25] shown in figure 3.1. This rotor is considered in greater detail using our

formulation in chapter 6. Here, we will just reproduce some results to show that our naive

modal projection method is wrong.

X

Y

Z

k

k

Ω

L

R

Figure 3.1: A heavy disk rigidly attached to a massless shaft and supported by two springs

at the end. The shaft and disk system spins at a speed of Ω. The unloaded end of the

shaft is constrained in a ball and socket joint.

The critical speed of this rotor calculated using routine methods (details in chapter

6) is

Ωc =

√

k

M(1 −R2/4L2)
,

where M is the mass of the disc. The natural frequency of the non-spinning rotor is

ωf =
√

(kL2/I0) (I0 = MR2/4+ML2, is the mass moment of inertia of the disc about the

X or Y axis) and the corresponding mass normalized mode shape is

φ =

[
L√
I0

0 − x√
I0

]T

.
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Substituting these values into Eq. 3.4 the critical speed from our naive modal projection

method is

Ωc =

√

k

M
,

which is wrong. The reason for this error is that we have not included a key term in our

formulation. In the next chapter, we will present the correct formulation that includes this

key term.



Chapter 4

A new prestress based formulation

In this chapter we derive the central formulation of this thesis. We show that, by considering

the effect of prestress due to spin, the correct governing equations of motion of a rotor can

be derived from the continuum level. Explicit gyroscopic terms need not be added. The

spin-induced stress is the key term that was missing in chapter 3.

We mention that the main premise of this chapter is sufficiently novel and surprising

to at least some members of the rotordynamics community that our paper [19] got two

strongly and rigidly negative reviews and went to an adjudicator before eventual acceptance!

4.1 Why explicit gyroscopic terms are not needed

Conventional formulations of rotor dynamics use gyroscopic terms as discussed in chapter

1. A key aspect of our formulation is that it does not involve explicit incorporation of these

gyroscopic terms, but still obtains correct results, as explained below.

The general governing equation for nonlinear elastodynamics of an arbitrarily mov-

ing body must remain true whether or not the body is a spinning rotor. Therefore, a

correct three dimensional continuum formulation for a spinning elastic rotor must implic-

itly capture any and all effects of the so called gyroscopic terms commonly encountered

in rotor-specific formulations. Such a continuum formulation is presented here. It will be

clear that gyroscopic effects are duly and correctly accounted for.

19
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4.2 Simplifying insights

We observe that Timoshenko rotor theory incorporates gyroscopic moments (i.e., terms of

the form Ω × I · Ω), which are macroscopic inertial terms (disk-elementwise as opposed

to continuum pointwise). It is possible to model the same whirling rotor in ANSYS, and

we have also modeled it using our own nonlinear finite element code. Both ANSYS (see

chapter 2) and our own code, as described in our paper [19] and appendix A, however, use

continuum equations and nonlinear displacement and stress terms, but not macroscopic

inertial terms. Yet, all three approaches, as we shall see later, agree on results.

In our search for the bifurcation point (see discussion in chapter 2), since incipient

whirling involves truly infinitesimal bending displacements, terms quadratic in them may

be rigorously dropped. Moreover, terms nonlinear purely in the spin-induced displacements

are likely to have a negligible physical effect, if the spin-induced geometry changes are small

(at any rate, no radial expansion is considered in the Timoshenko theory). Note that this

is a genuine physical approximation appropriate for the specific physical problem, although

these terms are technically of order unity, i.e., finite and nonzero. Finally, terms that

couple the spin-induced displacements with the bending displacements are technically of

first order in infinitesimals and some of them may play a crucial role in determining the

whirling speed.

The spin-induced displacements appear to be important not because they are sig-

nificant compared to the physical dimensions of the rotor, but because they are associated

with a significant stress state that is in dynamic equilibrium when the rotor is straight. On

infinitesimal bending, this stress state is infinitesimally disturbed from dynamic equilibrium

and plays an infinitesimal but non-negligible role in the infinitesimal bending dynamics.

Incidentally, since the divergence of the spin-induced stress field is simply a cen-

tripetal body force field (countering an inertial force), it is intuitively if not explicitly seen

how the inertial-gyroscopic terms of Timoshenko rotor theory might be captured in our

nonlinear displacement and stress based formulation. Moreover, for those using commer-

cial code, the spin-induced stress field is easy to find by a single axisymmetric analysis;

and the effects of this stress field can be largely incorporated by retaining it as a prestress

while finding bending modes and frequencies.
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These thoughts will be used to develop our formulation below.

4.3 The prestress based formulation

We start again with dynamic equilibrium in reference coordinates,

∇ · (FS) = ρ0
∂2χ

∂t2
. (4.1)

As before, F is the deformation gradient, S is the second Piola-Kirchhoff stress, ρ0 is the

density in the undeformed configuration and χ is the absolute displacement vector of the

material point of interest.

Unlike in chapter 3 we now include spin-induced displacements (call them u0), and

the displacement of a material point X in the rotating frame is taken as

u = εu0 + aφ , (4.2)

where ε and a are bookkeeping coefficients and φ is the displacement of the rotor due to

bending.

As mentioned in chapter 3, we are interested in the coefficient matrix of terms

linear in a (when that coefficient matrix is singular, infinitesimal whirling displacements

are possible). This thought will guide our simplifications below.

Starting again with the St. Venant-Kirchhoff stress strain relation, the second Piola-

Kirchhoff stress is written as

S = λ (tr E) I + 2µE,

where λ and µ are Lame constants and E is the Green strain tensor given by

E =
1

2

(
∇u + ∇uT + ∇uT

∇u
)
.

However, as discussed in section 4.2, the key nonlinear physical effect that con-

tributes to the whirling speed is that of an infinitesimal disturbance (bending) of a pre-

existing significant stress state (spin-induced). This disturbance is accounted for by F in
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Eq. 4.1. Strain terms that are nonlinear in the displacement, in our opinion, play an insignif-

icant role; and so S in Eq. 4.1 is here approximated using linear terms only1. Accordingly,

we take E = E0 + E1 where

E0 =
ε

2

(
∇u0 + ∇uT

0

)
, and E1 =

a

2

(
∇φ + ∇φT

)
.

We can then split S, the second Piola-Kirchhoff stress, into bending and spinning compo-

nents. The spinning component is given by

S0 = λ (tr E0) I + 2µE0,

the bending component is given by

S1 = λ (tr E1) I + 2µE1,

and

S = S0 + S1. (4.3)

We now turn to the deformation gradient

F = I + ∇u = I + ε∇u0 + a∇φ.

As discussed in section 4.2, the key term of interest involves the bending-induced distur-

bance of the spin-induced stress state S0. This, consistent with neglect of spin-induced

changes in geometry, lets us ignore u0 and write

F = I + a∇φ. (4.4)

Thus the governing equation, retaining terms only till O(a) and dropping the bookkeeping

parameters ε and a,is

∇ · S0 + ∇ · S1 + ∇ · (∇φS0) = ρ0
∂2χ

∂t2
. (4.5)

Equation 4.5 is the central formulation of the thesis. Derivation of this equation for rotor

applications is novel; rotor problems have not been viewed from the angle of prestress

caused by spin. However, Bolotin derives a similar equation (Eq. 1.34 pp. 46 of [26]) from

a different perspective in his book on elastic stability where he considers buckling.

1 Interestingly, the dropped strain terms nonlinear in the displacements turn out to be identical to terms

representing the effect of spin-induced configuration changes, which we also drop in Eq. 4.4, in line with

section 4.2.



Chapter 5

Modal projection methods for our

formulation

In the previous chapter we described the central formulation of this thesis and derived the

governing equations of a rotor at the continuum level. However, to find the critical speed

of a given rotor, we need to solve the governing equations over the rotor geometry. There

are several ways of achieving this. We first develop the simple method of modal projections

to solve the problem. Modal projections are widely used in several approximation meth-

ods in structural mechanics. Here, the lateral vibrating mode shapes of the non-spinning

rotor serve as a good approximation to the whirling configuration and reasonably accurate

answers can be obtained with only a few modes (Bolotin [26] does the same for buckling

problems). In this chapter, we show how the modal projection method can be used along

with our formulation to solve for the critical speeds of arbitrary rotors. We will finally

present two different modal projection methods. One is non-iterative and involves comput-

ing two volume integrals in addition to conducting modal analysis (e.g., in ANSYS). The

other is iterative, needs computation of one volume integral along with a prestressed modal

analysis (e.g., in ANSYS). We end this chapter by comparing our method with two other

formulations for arbitrary axisymmetric rotors (Stephenson and Rouch [17], and Nandi and

Neogy [18]).

23
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5.1 Modal projection method 1

We begin with Eq. 4.5, reproduced below

∇ · S0 + ∇ · S1 + ∇ · (∇φS0) = ρ0
∂2χ

∂t2
.

We now apply the principle of virtual work to the above equation. Considering a virtual

displacement δv = δaφ, we have

δa

∫

V

(∇ · S0 + ∇ · S1 + ∇ · (∇φS0)) · φ dV = δa

∫

V

ρ0 (Ω × Ω × (X + u)) · φ dV,

where the acceleration is written, in a rotating coordinate system, for a rotor performing

synchronous whirl; X is the position vector of the point in the reference configuration and

u is its displacement given by Eq. 4.2. The δa’s cancel out; and retaining terms only linear

in a we get our modal projection

∫

V

(∇ · (∇φS0)) · φ dV
︸ ︷︷ ︸

A

+

∫

V

(∇ · S1) · φ dV
︸ ︷︷ ︸

B

= Ω2
c

∫

V

ρ0 (n̂ × n̂ × φ) · φ dV, (5.1)

where Ωc is the critical speed and n̂ is along the undeformed rotor axis.

Term B in Eq. 5.1, by Eq. 3.1, is known in terms of the natural frequency of vibration,

as in chapter 3:

B =

∫

V

(∇ · S1) · φ dV = −ω2
f

∫

V

ρ0φ · φ dV = −ω2
f .

Finally, we consider term A in Eq. 5.1. This term, consistent with the qualitative

discussion of section 4.2, constitutes the only difference between Eq. 5.1 and the incorrect

prediction of Eq. 3.4.

Term A involves derivatives of second order, and so direct evaluation would be

possible if we used finite elements of sufficiently high order shape functions (e.g., 20 noded

brick). Here, we transform the term for easier evaluation. For any second order tensor field

T, and any vector field v, we have the identity

∇ ·
(
TTv

)
= T : ∇v + v · (∇ · T) .
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Using this and the divergence theorem, we have A as
∫

V

∇ · (∇φS0) · φ dV =

∫

V

∇ ·
[

(∇φS0)
T

φ
]

dV −
∫

V

∇φS0 : ∇φ dV

=

∫

S

[

(∇φS0)
T

φ
]

· n dS −
∫

V

∇φS0 : ∇φ dV, (5.2)

where the unit vector n (distinct from n̂ used previously) is normal to the surface of the

rotor.

The surface S bounding the domain V can in some problems be split into a dis-

placement specified surface Su and a traction specified St. On Su, φ is zero and hence the

surface integral term corresponding to Su is zero. On the traction free surface St, we have
[

(∇φS0)
T

φ
]

· n = φ · (∇φS0)n = φ · ∇φ (S0n) = 0,

because S0n is zero there.

Under more general restraints on the rotor, this surface term may turn out to be

important, and need accurate evaluation.

Now that all the terms in our modal projection (Eq. 5.1) are known, Ωc can be

found. The validity of this equation will be demonstrated with several analytical examples

in chapter 6. The numerical application of this method will be demonstrated with seven

different rotor geometries in chapter 8.

5.2 Multi-mode projections (method 1)

The previous calculations involved a single mode projection. However, the method can be

easily extended to multiple modes. We write the displacement of the rotor as (corresponding

to Eq. 4.2)

u = εu0 +
m∑

k=1

akφk.

Here φk is the kth retained mode of vibration (lateral or otherwise) and ak is an un-

determined coefficient. Using m different virtual displacements, δakφk, we would get m

equations. Mass orthogonality of the mode shapes would give some simplifications. Eventu-

ally, the critical speed Ωc would be found by solving an m-dimensional eigenvalue problem.
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For example, consider a two mode projection involving modes φ1 and φ2. Taking virtual

displacements δa1φ1 and δa2φ2, the virtual work equations are

a1

∫

V

(∇ · (∇φ1S0)) · φ1 dV + a2

∫

V

(∇ · (∇φ2S0)) · φ1 dV + a1

∫

V

(∇ · S1) · φ1 dV+

:0

a2

∫

V

(∇ · S2) · φ1 dV = Ω2
ca1

∫

V

ρ0 (n̂ × n̂ × φ1)·φ1 dV +Ω2
ca2

∫

V

ρ0 (n̂ × n̂ × φ2)·φ1 dV,

and

a1

∫

V

(∇ · (∇φ1S0)) · φ2 dV + a2

∫

V

(∇ · (∇φ2S0)) · φ2 dV +

:0

a1

∫

V

(∇ · S1) · φ2 dV+

a2

∫

V

(∇ · S2) ·φ2 dV = Ω2
ca1

∫

V

ρ0 (n̂ × n̂ × φ1) ·φ2 dV +Ω2
ca2

∫

V

ρ0 (n̂ × n̂ × φ2) ·φ2 dV,

where the terms crossed out are zero from the mass orthogonality of the chosen mode

shapes, since ∇ · S1 = −ρω2
1 φ1 and similarly for φ2. Writing in matrix notation we get

the following eigenvalue problem for calculating the critical speed

Ax = Ω2
c Bx,

where x = [ a1 a2 ]T , and A and B are coefficient matrices obtained from the above equa-

tions. For a modal projection involving m modes, we get m equations and the square

matrices A and B are of size m×m.

5.3 Modal projection method 2

The foregoing discussion allows us to present an alternative, iterative technique suitable for

working with commercial codes like ANSYS. We start with an initial guess for the critical

speed. We might, for example, start with Ωc,0 equal to the fundamental frequency of lateral

vibrations of the non-spinning rotor. At the kth iteration, let the working guess be Ωc,k.

The iteration proceeds as follows.

1. We do an axisymmetric and linear elastic calculation for the rotor in pure spin at a

speed Ωc,k. This gives a stress state which we call τ k.

2. We specify τ k as a prestress (this step finds wide industrial use) in the non-spinning

rotor, and find new bending frequencies ωf and mode shapes φ.
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3. Using these, we conduct the modal projection of chapter 3 (i.e., Eq. 3.4) to obtain a

new estimate of the whirling speed, Ωc,k+1.

4. We stop when Ωc,k+1 is acceptably close to Ωc,k.

Note that inclusion of the prestress makes this calculation different from that in

chapter 3, although the steps in the calculation are similar. It can be shown that this

iterative procedure is in principle equivalent to carrying out the modal projection of the

previous section, except that the boundary term of Eq. 5.2 is not retained; and that in

this case the mode shapes correspond to a prestressed (though stationary) rotor, and may

differ from those of the unstressed rotor. An interesting point is that this iterative solution

will only find real whirling speeds, while the modal projection of section 4.3 finds some

imaginary whirling speeds as well (which correspond to imaginable whirling modes that are

in fact suppressed due to the gyroscopic effects). For example, in Ewins’s rotor described

in chapter 3, the critical speed is given by

Ωc =

√

k

M(1 −R2/4L2)
,

and this is imaginary if R2/4L2 > 1.

5.4 Comparisons with other formulations

5.4.1 Comparison with Nandi and Neogy’s method

Nandi and Neogy [18] initially presented governing equations (their Eq. 4) which in prin-

ciple match our own initially attempted (incorrect) modal projection method of chapter

3. However, they subsequently added on an inertial term which we believe can give good

results, but which is ad hoc in that it is not derived from underlying continuum equations.

Our incorrect modal projection method’s predicted critical speed is (from Eq. 3.4)

Ω2
c =

−ω2
f

∫

V

ρ0 (n̂ × n̂ × φ) · φ dV
.
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Assuming that the rotor is spinning about the Z axis, the angular velocity is Ωck̂. In

this case the denominator of the above expression becomes (dropping the inconsequential

0 subscript in ρ) ∫

V

ρ
(

k̂ × k̂ × φ
)

· φ dV.

Writing φ = φx̂i + φy ĵ + φzk̂, the above equation becomes

−
∫

V

ρ
(
φ2

x + φ2
y

)
dV.

It can be shown that Nandi and Neogy’s method is equivalent to adding a correction term

to the above expression. Their equation for critical speed after incorporating the correction

term is

Ω2
c =

−ω2
f

−
∫

V

ρ
(
φ2

x + φ2
y − φ2

z

)
dV

.

The critical speed as predicted by our modal projection method 1 (from Eq. 5.1) can be

written as

Ω2
c =

−ω2
f

−
∫

V

ρ
(
φ2

x + φ2
y

)
dV −

∫

V

∇ ·
(

∇φS̃0

)

· φ dV
,

where S̃0 is the stress induced due to a spin of 1 rad/s. Thus Nandi and Neogy’s method

is equivalent to our modal projection method 1 if
∫

V

ρφ2
z dV = −

∫

V

∇ ·
(

∇φS̃0

)

· φ dV. (5.3)

As far as we know, the above condition does not always hold. However, for a long uniform

isotropic elastic cylinder, with the assumption that plane sections remain plane with no

in-plane deformation, the displacement of a point located at (x, y, z) on the cross section is

φ =







u(z)

v(z)

−xψ1(z) + yψ2(z)







,

where ψ1 and ψ2 are rotations of the cross section about the Y and X axis respectively.

Substituting this φ in Eq. 5.3 and taking S̃0 from the expression for stress in a rotating

elastic cylinder (spin speed = 1 rad/s) in plane strain:

S̃0 =







ρ

8
(−y2 − 3x2 + 3R2) −ρ

4
xy 0

−ρ
4
xy

ρ

8
(−3y2 − x2 + 3R2) 0

0 0 0






,
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where R is the radius of the cylinder, and (x, y) are points on the cylinder measured in the

rotating coordinate system, we finally get

−
∫

V

∇ ·
(

∇φS̃0

)

·φ dV =

∫

V

ρ (−xψ1(z) + yψ2(z)) · (−xψ1(z) + yψ2(z)) dV =

∫

V

ρφ2
z dV.

Thus our method is equivalent to Nandi and Neogy’s method under these assumptions.

However, for a general case it is difficult to make a legitimate comparison. We conclude

that Nandi and Neogy’s ad hoc method may often give accurate results. However, our

method, derived from a continuum based formulation, continues to hold true even for

arbitrary rotors with more general deformation.

5.4.2 Comparison with Stephenson and Rouch

Stephenson and Rouch [27], [17], who used axisymmetric harmonic elements, added a

separately calculated matrix of gyroscopic terms (much in the spirit of the Timoshenko

rotor analysis of Choi et al. [22]). Our approach differs from that of adding on element-level

gyroscopic terms (as in the work of Stephenson and Rouch) in several significant ways. The

idea of adding on such gyroscopic (inertial) terms is shown to be correct using a verifying

finite-strain calculation for Timoshenko rotors by Choi et al. [22]. However, as far as we

know, such terms have not been derived starting from continuum level formulations; rather,

these terms are added on based on engineering insights, and lead to specialized finite element

formulations that are not included with typical commercial finite element packages. Here, in

contrast with Stephenson and Rouch, we have offered a continuum point-level, stress based

treatment that both keeps track of all terms dropped or retained, as well as provides some

fresh physical insights. Moreover, while they adopt a matrix reduction technique based on

explicit choice of master and slave degrees of freedom, we have adopted the simpler strategy

of projecting the governing equations directly on to a small number of lateral vibration

modes. While they present a single approach for solution and compare their results with

known formulas for cylindrical shafts, we will consider several non-cylindrical geometries

and cross-check our results using several different methods of solution. Lastly, while they

further compare their calculations with experimental results for a particular rotor with

bearing compliance and damping effects, we will restrict our attention to computations for

the ideal case but present more detailed analytical and numerical comparisons.
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5.5 Concluding remarks

Whirling speeds of arbitrary rotors have been considered in this chapter. The aim has been

to estimate these speeds accurately using modal projections that can be used with routinely

available commercial finite element packages. Two such modal projection methods have

been presented, both based on a single and simple new insight, which is that the gyroscopic

terms commonly used in rotor dynamics analyses may be viewed as arising out of a state of

prestress caused by the nonzero spin rate. Having developed the methods, we now proceed

to validate them with some analytical examples in the next chapter.



Chapter 6

Analytical examples

In this chapter we validate our formulation using several analytical examples. We emphasize

that all of the problems considered here can be solved using conventional methods. These

examples have been included here just to demonstrate the validity of our formulation.

Before considering rotor examples, we briefly revisit some classical buckling prob-

lems. Solving buckling problems with a prestress based formulation is not novel. Bolotin

[26] has considered such problems. Nevertheless these examples serve to illustrate the

fundamental similarity between rotor whirl and buckling.

We then return to rotors and consider a detailed analytical example of a rigid spin-

ning disc attached to a massless rod and supported by springs (Ewins’s rotor). We consider

both synchronous and asynchronous whirl. Results from our method will match those ob-

tained using the conventional gyroscopic matrix based approach, providing an analytical

verification of our formulation.

We then derive the equations of a spinning torque free rigid cylinder using our for-

mulation and derive the classical equations of motion with gyroscopic terms. This provides

further analytical validation of the equivalence between the prestress based approach and

the gyroscopic term based approach.

We end this chapter by solving a different type of rotor problem; a rotating cantilever

beam (like a helicopter blade). The most basic model of foreshortening encountered in such

systems is recovered from our formulation

31
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6.1 Some classical buckling problems

6.1.1 The basic equation of Euler-Bernoulli buckling

We now consider an Euler-Bernoulli column of rigidity modulus EI and subjected to an

axial compressive load P . We start with Eq. 4.5 derived in chapter 4, choose a virtual

displacement δw and perform virtual work to get

∫

V

(∇ · ∇φS0) · δw dV +

∫

V

(∇ · S1) · δw dV = 0, (6.1)

where φ and S1 have their usual meaning and S0 is now the prestress due to the axially

applied compressive load on the column. Note that, since there is no motion involved in a

buckling calculation, the acceleration is zero. Let the displacement of the column, bending

Z

EI

P

a

(a)

X

P

EI

a

(b)

Figure 6.1: Buckling of columns: Case (a) pinned-pinned (b) fixed-fixed.
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in the X-Z plane, be φ. Under Euler-Bernoulli assumptions

φ =







u

0

−xdu
dz






, (6.2)

where u is the displacement in the X direction. Ignoring Poisson’s effects the displacement

in the Y direction is taken as zero. The prestress S0 in the column arises from the axial

load P and the components of this stress are

S0 =







0 0 0

0 0 0

0 0 −P/A






, (6.3)

where A is the cross sectional area. The stress S1 is due to infinitesimal bending and the

components of this stress are given by

S1 =








0 0 0

0 0 0

0 0 −Exd
2u

dz2







, (6.4)

where E is the Young’s modulus of the material. Substituting these values in Eq. 6.1 and

taking the virtual displacement as

δw =








δw

0

−xd(δw)

dz







, (6.5)

we get
∫

V

(

−P
A

d2u

dz2
· δw +

(

E − P

A

)

x2d
3u

dz3
· d(δw)

dz

)

dV = 0,

or ∫ l

0

∫

Ā

(

−P
A

d2u

dz2
· δw +

(

E − P

A

)

x2d
3u

dz3
· d(δw)

dz

)

dĀ dz = 0.

where Ā represents the cross sectional area as a domain of integration, distinct from A,

which we use to denote the numerical value of the total cross sectional area. Since none of

the variables u, z and w vary across the cross section, the above integral becomes

∫ l

0

(

−P d
2u

dz2
· δw +

(

E − P

A

)

I
d3u

dz3
· d(δw)

dz

)

dz = 0,
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where I is the area moment of inertia of the cross section. Integrating by parts the second

term in the above integrand, imposing boundary conditions, and noting specifically that

for free ends we require
d3u

dz3

∣
∣
∣
∣
l

= 0, we obtain with no further restrictions:

∫ l

0

(

−P d
2u

dz2
+

(
P

A
− E

)

I
d4u

dz4

)

δw dz = 0. (6.6)

Now since δw is arbitrary, the term in the brackets in the above integrand must be

identically zero, giving the governing equation for buckling of a beam subjected to an axial

compressive load P . Since the Young’s modulus E � P/A for the problems of interest1,

the above equation reduces to

EI
d4u

dz4
+ P

d2u

dz2
= 0,

which is the familiar equation governing buckling of Euler-Bernoulli beams. We emphasize

that the above equation can be obtained using the classical strength of materials approach;

the interesting thing here is merely that, starting from nonlinear elasticity, a continuum

formulation, and an intuitive interpretation that lets us simplify the continuum formulation,

we have in fact obtained the same equation.

Although we were able to obtain the governing differential equation for buckling

of Euler-Bernoulli columns, in this thesis we are strongly interested in modal projections.

Accordingly, we will use modal projections to solve the problem, i.e., we will assume a

functional form for the displacement function u = af(z), set the virtual displacement

δw = δa f(z), and use Eq. 6.6 to obtain the buckling load. We consider two sets of

boundary conditions.

(a) A pinned-pinned beam.

For this case, shown in figure 6.1a, we take

u = a sin
(πz

l

)

,

where l is the length of the beam and a is the maximum displacement occurring at

the center of the beam. Substituting this into Eq. 6.6 and letting δw = δa sin
(

πz
l

)
,

1In all subsequent buckling calculations in this chapter, P/A has consistently been dropped in compar-

ison with E.
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integrating and solving for P we get

Pcr =
π2EI

l2
.

This matches the classical result.

(b) A fixed-fixed column.

For this case, shown in figure 6.1c, we let

u = a

(

1 − cos

(
2πz

l

))

.

This satisfies the essential boundary conditions at the fixed ends. Now a is the

displacement of the center. Again proceeding as before, we obtain

Pcr =
4π2EI

l2
,

matching the classical result.

6.1.2 Columns with Other Loading

EI

P

a

(a)

X

Z

EI
a

(b)

q

P

Figure 6.2: (a) Buckling of a pinned-pinned column with lateral elastic support. (b) Buck-

ling of a pinned-pinned column under its own weight.
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6.1.2.1 A simply supported column under axial load and with elastic lateral

support

Consider a pinned-pinned beam with an elastic lateral support (as in [28]) of stiffness k,

as shown in figure 6.2 a, and subjected to an axial compressive force P . In this case,

in addition to the axial stresses due to infinitesimal bending, there will be compressive

stresses due to elastic forces from the side. For this problem, there is non-zero traction on

the lateral surface which will contribute to the virtual work. Hence Eq. 6.1, modified to

take into account the work done by traction forces, is

∫

V

(∇ · (∇φS0)) · δw dV +

∫

V

(∇ · S1) · δw dV +

∫

S

t · δw dS = 0.

The traction force per unit length is t = ku i, where i is the unit vector along the X

direction. Adding the work done by this term we get the governing equation for buckling

of a column with elastic lateral supports as

∫

V

(∇ · (∇φS0)) · δw dV +

∫

V

(∇ · S1) · δw dV −
∫ l

0

ku i · δw dz = 0. (6.7)

Assuming the displacement along the X direction to be

u = a sin
(πz

l

)

,

φ is obtained from Eq. 6.2. The virtual displacement is taken as δw = (δa/a)φ. Substi-

tuting δw, φ, Eq. 6.3 and Eq. 6.4 into Eq. 6.7, the critical buckling load P is obtained

as

Pcr =
π2EI

l2

(

1 +
kl4

EIπ4

)

.

This again matches the classical result (see [28], equation 2-37, with m = 1).

6.1.2.2 A simply supported column under axial load and self weight

Let the column have a mass density of q/g per unit length, where g is the acceleration due

to gravity; in other words, the self weight per unit length is q. In this section we derive the

critical value of axial load P for a given q (see figure 6.2 b). Including the effects of axial



Chapter 6. Analytical examples 37

load as well as self weight, the prestress S0 in this case is given by

S0 =







0 0 0

0 0 0

0 0 −P
A

+
q

A
(z − l)






.

Using this, Eq. 6.5 and taking S1 and φ from Eq. 6.2 and Eq. 6.4 respectively and substi-

tuting in Eq. 6.1 we get the following equation

∫ l

0

(

EI
d4u

dz4

)

· δw +

(

P
d2u

dz2
− q(z − l)

d2u

dz2
− q

du

dz

)

δw dz = 0. (6.8)

Now, for easy comparison with the results in [28], we take q =
π2EI

l3
and calculate Pcr, for

comparison with the classical result,

Pcr =
4.77EI

l2
.

Using as a first approximation u = a sin
(πz

l

)

, we use Eq. 6.8 and obtain

Pcr =
4.93EI

l2
.

The small mismatch is due to the fact that the actual buckled shape does not coincide with

our assumed u. We can improve the accuracy by taking two terms,

u = a sin
(πz

l

)

+ b sin

(
2πz

l

)

.

In this case we obtain two equations by letting δw in Eq. 6.8 to be δa sin
(πz

l

)

and

δb sin
(πz

l

)

respectively. The critical load is obtained by setting the determinant of the

resulting matrix of coefficients to zero so that buckling solutions are possible. The matrix

obtained is






π2(18Pl2 + 9ql3 − 18EIπ2)

36l3
20q

9

20q

9

π2(18Pl2 + 9ql3 − 72EIπ2)

9l3






.

Substituting q =
π2EI

l3
and setting the determinant of the above matrix to zero, we calcu-

late the critical load as

Pcr =
4.77EI

l2
,
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which matches the classical result to the number of significant digits shown. Alternatively,

by setting P = 0 we can calculate the critical q at which the column will buckle as

qcr =
1.88EI

l3
,

which again matches the classical result (an interpolation is required between discrete values

given in table 2.8 of [28]).

6.1.3 Buckling of a Ring

In this section we derive the critical buckling load for a thin ring subjected to a uniform

external radial loading (or external “pressure”; see figure 6.3). The classical solution is

[28, 29]

q =
3EI

R3
,

where E is the Young’s Modulus of the material, I is the area moment of inertia of the

cross section and R is the radius of the ring.

q

R

Figure 6.3: A uniformly loaded thin ring.

As in the case of the example of a column with lateral elastic support, the externally

applied pressure will do work in a virtual displacement. We modify Eq. 6.1 to account for

this work and obtain
∫

V

(∇ · ∇φS0) · δw dV +

∫

V

(∇ · S1) · δw dV + δWq = 0, (6.9)

where φ is the displacement of a point on the ring, S0 is the prestress due to the uniform

pressure loading, S1 is the stress due to infinitesimal bending from the original configura-

tion, δWq is the virtual work done by the externally applied pressure q and δw is a virtual

displacement.
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The displacement of the ring contains a radial component w as shown on the right

of figure 6.4. Cross sections rotate, and there is a tangential displacement as well (to

preserve inextensibility along the neutral axis). No displacement is taken in the z direction,

perpendicular to the plane of the ring (Poisson’s ratio ν = 0). The radial displacement of

the ring is taken as w = a cos(2θ). Using this, the displacement φ of a point on the ring in

a cylindrical coordinate system is given by

φ = a cos(2θ) êr + 2a
( r

R
− 1
)

sin(2θ) êθ,

where êr and êθ are unit vectors along the radial and tangential directions respectively.

Rewriting using matrix notation, we have

φ =







a cos(2θ)

2a( r
R
− 1) sin(2θ)

0






.

S S
S =qR

q

w

θ ρ

Figure 6.4: Force and displacement.

Next we calculate the prestress S0 due to the uniformly applied pressure q. Due to

the uniform pressure q a compressive force S develops in the ring. This force is assumed to

be uniform along the cross section. From a free body diagram of half the ring (see figure

6.4 left) the magnitude of the force S can be calculated as

S = qR.

Thus the prestress expressed in cylindrical coordinates is

S0 =







0 0 0

0 −qR
A

0

0 0 0






,
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where A is the cross sectional area of the ring and the negative sign indicates compressive

stress.

Next, we calculate the stress induced due to the infinitesimal bending of the ring.

We consider a small fiber along the neutral axis of the ring of length Rdθ. After bending

the radius of curvature changes to ρ and the subtended angle changes to dψ. Since the

fiber along the neutral axis does not change in length

Rdθ = ρdψ.

For a typical fiber away from the neutral axis, the change in length can be calculated as

follows. Let the fiber be at a distance y = r − R from the neutral axis. Then its original

length is

L0 = (R + y)dθ,

and the length after bending is

L = (ρ+ y)dψ.

The elongation strain in the fiber is

εθ =
L− L0

L0

= y

(
1

ρ
− 1

R

)

.

The tangential stress therefore is

σθ = Eεθ = Ey

(
1

ρ
− 1

R

)

.

Using the well known relation between change in curvature and radial displacement w (see

[28]) and using y = r −R we get

σθ = E(r −R)

(
1

R2

d2w

dθ2
+

w

R2

)

.

We will use φ corresponding to w = a cos(2θ) as indicated above. The bending stress

components in cylindrical coordinates is

S1 =







0 0 0

0 σθ 0

0 0 0






.
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The virtual displacement is taken as

δw =







δa cos(2θ)

δa2 ( r
R
− 1) sin(2θ)

0






.

For this choice of virtual displacement, the virtual work done by the externally

applied radial pressure q (assuming thickness of the ring is accounted in q) becomes

δWq =

∫ 2π

0

qRδa cos 2θ dθ = 0.

Substituting the above expressions for S1, S0 and φ along with the formulas for

calculating gradient of vectors and divergence of a second order tensor in cylindrical coor-

dinates as given in Appendix B.1 into Eq. 6.9 we get

∫ 2π

0

∫ R+c2

R−c1

g (R, q, E, θ, r) r dr dθ = 0, (6.10)

where the function g is given in the appendix B.2 and, c1 and c2 are the distances of

the extreme fibers from the neutral axis. Upon performing the integration and assuming

R � c1, c2 we get for the critical load

qcr =
3EI

R3
,

matching the classical result.

6.2 Ewins’s rotor

We consider a rotor from Ewins [25], shown here in figure 6.5. Note that this simple

system is easily treated using rigid body mechanics. We select Ewins’s rotor because it is

the simplest rotor system we know on which our ideas can be tested analytically.

The massless rigid shaft serves only to kinematically couple the disk’s translation

and tilt.
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X

Y

Z

k

k

Ω

L

R

Figure 6.5: A heavy disk rigidly attached to a massless shaft and supported by two springs

at the end. The shaft and disk system spins at a speed of Ω. The unloaded end of the

shaft is constrained in a ball and socket joint.

6.2.1 Ewins’s solution (including explicit gyroscopic terms)

The equations of motion in lab-fixed coordinates are [25]

[

I0/L 0

0 I0/L

]{

Ẍ

Ÿ

}

+

[

0 JΩ/L

−JΩ/L 0

]

︸ ︷︷ ︸

G

{

Ẋ

Ẏ

}

+

[

kL 0

0 kL

]{

X

Y

}

=

{

0

0

}

,

(6.11)

where I0 is the mass moment of inertia of the system about the X- or Y -axis, J is the polar

mass moment of inertia of the disk-shaft system, and the mass of the disk is M . Matrix G

above is the gyroscopic matrix. The natural frequencies of the system at any spin speed,

Ω, are obtained by Ewins from Eq. 6.11 as

ω1 = ω
Ω
− 1

2
γ Ω,

ω2 = ω
Ω

+
1

2
γ Ω,

where

γ =
J

I0
; ω2

Ω
=
kL2

I0
+

1

4
(γ Ω)2 = ω2

0 +
1

4
(γ Ω)2 .
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In particular the forward synchronous whirl speed is

Ωc =
ω0

√

(1 − γ)
=

√

k

M(1 −R2/4L2)
.

Note that for the case when R > 4L, the critical speed becomes imaginary indicating

suppression of whirling by gyroscopic effects.

6.2.2 Our formulation (no explicit gyroscopic terms)

Our governing equation (Eq. 4.5) is

∇ · S0 + ∇ · S1 + ∇ · (∇φS0) = ρ0
∂2χ

∂t2
. (6.12)

From dynamic equilibrium of the rotor in pure spin we have (using linear elasticity)

∇ · S0 = ρ0 (Ω × Ω × r) ,

where r is the reference position vector of the point under consideration.

Choosing any virtual displacement δw, the virtual work equation is

∫

V

{

∇ · S0 + ∇ · S1 + ∇ · (∇φS0) − ρ
∂2χ

∂t2

}

· δw dV = 0, (6.13)

where the inconsequential zero subscript in ρ has been dropped.

Following our procedure, we first determine the natural frequency and mode shape

of the non-spinning system. For vibrations in the X-Z plane, the governing equation is

(I0/L)ẍ+ kLx = 0,

The natural frequency is ωf =
√

(kL2/I0). The mode shape is shown in figure 6.6. The

natural frequency and mode shape of vibration in the Y -Z plane is similar to that in the

X-Z plane.

Next, we need the spin-induced stresses (S0) in the disk. The disk is treated as

a stiff but isotropic elastic body with Young’s modulus E and Poisson’s ratio ν = 0 (for
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ψ

Z

X

Figure 6.6: Lateral vibration mode of the system.

simplicity). The plane stress solution for a spinning disk is given in polar coordinates by

Timoshenko and Goodier (1970, pp. 81) [30]. The stress components are rewritten in

Cartesian coordinates using formulas given in the same book (pp. 67). At a point (x, y)

on the disk, we have

S0,xx =
ρΩ2

8
(3R2 − 3x2 − y2),

S0,xy = −1

4
ρΩ2xy,

S0,yy =
ρΩ2

8
(3R2 − x2 − 3y2),

S0,xz = S0,yz = S0,zz = 0.

The displacements and stresses are uniform through the thickness of the disk, which for

integration purposes may be taken as unity.

6.2.2.1 Calculation of critical speed

We now use Eq. 5.1 to calculate the critical speed. Since φ is itself a vibrational mode

(being a linear combination of two modes with the same frequency), we have (as discussed

in chapter 5, as also in [26])

∫

V

(∇ · S1) · φ dV = −ω2
f

∫

V

ρφ · φ dV,
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as described. Taking

φ =







L/
√
I0

0

− x√
I0







as the displacement of a point (x, y) on the disk ensures that
∫

V

ρφ · φ dV = 1.

Eq. 5.1 becomes
∫

V

(∇ · (∇φS0)) · φ dV
︸ ︷︷ ︸

A

−ω2
f

∫

V

ρφ · φ dV
︸ ︷︷ ︸

=1

= Ω2
c

∫

V

ρ
(

k̂ × k̂ × φ
)

· φ dV, (6.14)

where k̂ is the unit vector along the Z-axis; and V is the volume of the disk only, since the

contribution from the massless shaft is zero. The integral A in Eq. 6.14 becomes (taking

the disk thickness as unity for purposes of integration)

∫ R

−R

∫
√

R2
−y2

−

√
R2

−y2

(∇ · (∇φS0)) · φ dx dy =

∫ R

−R

∫
√

R2
−y2

−

√
R2

−y2

−ρΩ
2
cx

2

I0
dx dy = −MR2Ω2

c

4I0
.

The integral on the right hand side of Eq. 6.14 becomes

ρΩ2
c

∫ R

−R

∫
√

R2
−y2

−

√
R2

−y2

(

k̂ × k̂ × φ
)

· φ dx dy = −ρL
2Ω2

c

I0

∫ R

−R

∫
√

R2
−y2

−

√
R2

−y2

dx dy = −ML2Ω2
c

I0
.

Substituting these values in Eq. 6.14 we get the critical speed as

Ωc =

√

k

M(1 −R2/4L2)
,

which matches the result of Ewins.

6.2.2.2 Equations of motion at a general speed

At a general speed the special kinematics of synchronous whirl is lost and the whirling

speed is different from the shaft spin speed. In this case, we take

φ =







ψL

−θL
−ψ x+ θ y







= ψ







L

0

−x







+ θ







0

−L
y







, (6.15)
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where θ and ψ are small rotations about the X and Y axis respectively (see figure 6.6).

The acceleration
∂2χ

∂t2
of the material point under such conditions is given by [31]

∂2χ

∂t2
=
d2φ

dt2

∣
∣
∣
∣
r.f.

+ 2Ω × dφ

dt

∣
∣
∣
∣
r.f.

+ Ω × Ω × (r + φ) ,

where the subscript r.f. refers to the derivative taken in the rotating frame. The book

keeping parameter a has been dropped from this equation because ψ and θ are understood

to be small. The velocity and acceleration of the point as seen in the rotating frame are

dφ

dt

∣
∣
∣
∣
r.f.

=







dψ

dt
L

−dθ
dt
L

−dψ
dt
x+

dθ

dt
y







and
d2φ

dt2

∣
∣
∣
∣
r.f.

=







d2ψ

dt2
L

−d
2θ

dt2
L

−d
2ψ

dt2
x+

d2θ

dt2
y







.

Using the above expressions and substituting angular velocity Ω = [ 0 0 Ω ]T , we get

∂2χ

∂t2
=







d2ψ

dt2
L+ 2 ΩL

dθ

dt
− Ω2 (x+ ψ L)

−d
2θ

dt2
L+ 2 ΩL

dψ

dt
− Ω2 (y − θ L)

−d
2ψ

dt2
x+

d2θ

dt2
y







.

We consider two independent virtual displacements corresponding to variations δψ and δθ.

From Eq. 6.15 these virtual displacements are

δw1 = δψ







L

0

−x







and δw2 = δθ







0

−L
y







.

Substituting the above relations into Eq. 6.13, taking the two virtual displacements

separately and carrying out the resulting two integrations, we get the following two equa-

tions (arranged in matrix form)

[

I0R
2 + 4L2I0 0

0 I0R
2 + 4L2I0

] {

ψ̈

θ̈

}

+

[

0 8L2I0Ω

−8L2I0Ω 0

] {

ψ̇

θ̇

}

+
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[

Ω2I0 (R2 − 4L2) + kL2 (R2 + 4L2) 0

0 Ω2I0 (R2 − 4L2) + kL2 (R2 + 4L2)

]{

ψ

θ

}

=

{

0

0

}

.

(6.16)

The above equations are written in a coordinate system rotating at the shaft spin rate. Sub-

stituting θ = −y/L and ψ = x/L, and transforming x and y to the stationary coordinates

X and Y , measured in a lab-fixed frame, using

{

X

Y

}

=

[

cos(Ωt) − sin(Ωt)

sin(Ωt) cos(Ωt)

]{

x

y

}

,

we get

[

I0 (R2 + 4L2) 0

0 I0 (R2 + 4L2)

]{

Ẍ

Ÿ

}

+

[

0 2I0R
2Ω

−2I0R
2Ω 0

]{

Ẋ

Ẏ

}

+

[

kL2R2 + 4L4k 0

0 kL2R2 + 4L4k

]{

X

Y

}

=

{

0

0

}

.

Dividing each of the above two equations by the constant

(
R2 + 4L2

)
L,

we obtain

[

I0/L 0

0 I0/L

]{

Ẍ

Ÿ

}

+







0

(
2I0R

2

R2 + 4L2

)
Ω

L

−
(

2I0R
2

R2 + 4L2

)
Ω

L
0







{

Ẋ

Ẏ

}

+

[

kL 0

0 kL

]{

X

Y

}

=

{

0

0

}

. (6.17)

Finally, we note that J = MR2/2, and I0 = MR2/4 +ML2, whence

2I0R
2

R2 + 4L2
=
MR2

2
= J.

Substituting the above into Eq. 6.17, we get Eq. 6.11, showing analytically, for this example,

that our formulation exactly captures any and all gyroscopic effects, at any and all speeds,

and also describes asynchronous whirl and other related motions.
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6.3 Beam plus rigid body models

So far we have considered examples for which analytical solutions exist for comparison with

our formulation. We will now consider another example which is analytically tractable;

similar examples will be revisited in chapter 8.

In this section we consider models which consist of a large rigid body connected

to one end of a small beam which is fixed at its other end (see figure 6.7). The beam

has no kinetic energy and the rigid body has no potential energy. We will illustrate the

calculation with a beam-cylinder model. This model has six degrees of freedom: three

coordinates (X,Y, Z) of the point O (see figure 6.7), and 1-2-3 Euler angles (θ, φ, ψ)

describing the orientation of the cylinder.

L
1

L
2

d

Z', Z

X X'

Y

Y'

Beam

Cylinder

O

R

Ω

Figure 6.7: Beam cylinder model.

We first describe a general rotation matrix that will be used in the derivation.

Consider a rigid body fixed at a point P. Let r be the vector from P to any other point on

the rigid body. Upon rotation of the rigid body by an angle α about a unit vector n, the

vector r is mapped to a new vector r′. The rotation matrix R(n, α) relates r and r′ (r, r′
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and all other vectors are taken as 3×1 column matrices of components) through

r′ = R(n, α) r. (6.18)

The rotation matrix is defined2 as (see, e.g., [33])

R(n, α) = nnT + cosα
(
I − nnT

)
+ sin(α) · S (n) ,

where S (n) is the skew-symmetric matrix defining cross products with n, i.e.,

n× a = S (n) a,

where a is any vector.

We will use a rotating frame (X ′Y ′Z ′) to write our equations. This frame spins

about the inertial Z axis at the rate Ω. Viewed in this rotating frame, the point O at the

tip of the cantilever beam attached to the rigid body has the coordinates (X,Y, Z). Let e1,

e2, e3 be the unit vectors in the rotating frame along X ′, Y ′ and Z ′ directions respectively.

We will define the orientation of the rigid body as seen in the rotating frame using the

following rotation matrices.

R1 = R (e1, θ)

defines the rotation about e1 by an angle θ. Next, we define the rotation matrix R2 that

rotates the rigid body by an angle φ about the rotated e2 axis

R2 = R (R1e2, φ) .

Similarly

R3 = R (R2R1e3, ψ)

defines the rotation about the twice rotated e3 axis (once by R2 and once by R1) by an

angle ψ.

Finally, the rotation matrix that takes the rigid body from its initial configuration,

as seen in the rotating coordinate system, to the current configuration is given by

Rnet = R3R2R1.

2Goldstein uses a similar formula in his book [32]; but he holds the body to be fixed and the coordinate

system to rotate in the opposite direction. His formula can be obtained by changing the sign of the angle

in our formula 6.18 above.
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These matrices will be used below in our derivation. Note that we will finally be using

small deflection assumption and linearize the equations. Here, we have adopted a rotation

matrix based approach due to its transparency and compactness.

Angular velocity of the rigid body with respect to the rotating frame is

ωcylinder/rot = [ R2R1e3 R1e2 e1 ][ ψ̇ φ̇ θ̇ ]T .

The total angular velocity of the rigid body, as seen in a fixed frame, is then

ω = ωcylinder/rot + ωrot/fixed,

where ωrot/fixed = [ 0 0 Ω ]T .

Now we consider the potential energy of the small beam. We will be considering

only small deformations and hence the bending, stretching and twisting motions are all

decoupled. Consider the in-plane X ′-Z ′ bending of the small cantilever beam. The degrees

of freedom of the point O (figure 6.7) consist of the displacement in the X ′ direction and

rotation φ about the Y ′ axis. The stiffness matrix of the beam for in-plane bending is given

by (see, e.g., [34])

[K ] =








12
EIy
l3

−6
EIy
l2

−6
EIy
l2

4
EIy
l







,

where E is the Young’s modulus and Iy is the area moment of inertia of the cross section

of the beam. Potential energy due to bending in the X ′-Z ′ plane is, therefore,

PEx =
1

2
[X φ][K ][X φ]T .

Since the beam is assumed axisymmetric and the in-plane bending in the two perpendicular

planes are decoupled, the same stiffness matrix holds for bending in the Y ′-Z ′ plane also.

Hence the potential energy due to bending in the Y ′-Z ′ plane is given by

PEy =
1

2
[Y − θ][K ][Y − θ]T ,

where the degrees of freedom are now the displacement in the Y ′ direction and rotation

about the X ′ axis. Potential energy due to stretching and twisting are given by

PEs =
EAcZ

2

2l
and PEt =

GIpψ
2

2l
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respectively, where Ip is the polar area moment of inertia of the beam cross section, Ac is

the cross-sectional area of the beam and G is the shear modulus.

Now we consider the kinetic energy of the system. We define a reference configu-

ration for the cylinder where its symmetry axis is aligned along the Z ′ axis as drawn in

figure 6.7. The mass moment of inertia matrix about the center of mass, written in that

reference configuration, is (using the symmetry of the cross section)

Icm−ref =







IXX 0 0

0 IXX 0

0 0 IZZ






.

The rotation matrix Rnet maps the rigid body from the reference configuration to the

current orientation. Thus, the mass moment of inertia matrix of the system about the

center of mass, written in the current configuration after deformation, is

Icm = [Rnet ][ Icm−ref ][Rnet ]T .

Similarly, the location of the center of mass in the reference configuration is

rcm−ref = [ 0 0 L/2 ]T .

After deformation, the location of the center of mass (current configuration) is

rcm = [ X Y Z ]T + [ R3R2R1 ]rcm−ref .

Using the formula for the derivative of a vector in a rotating frame [31]

vfixed =

(
dr

dt

)

fixed

=

(
dr

dt

)

rotating

+ ω × r

we get the velocity of the center of mass in the current configuration as

vcm =
d

dt
rcm + S(Ω) rcm.

Total kinetic energy of the system is then

KE =
1

2
M |vcm|2 +

1

2
ωT [ Icm ]ω.

Total potential energy of the system is

PE = PEx + PEy + PEt + PEs.
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The Lagrangian of the system is L = KE−PE. Using Lagrange’s equations, the linearized

equations of motion for this system are obtained as

φ̈ =
1

IXX l3

(

6 EIyLX − 3EIyLl φ− IXX Ω l3θ̇ + IXX Ω2l3φ− IZZ Ω2l3φ

+6EIyl X − 4EIyl
2 φ+ IZZ Ωl3 θ̇ − IXX Ωl3 θ̇

)

, (6.19)

θ̈ = − 1

IXX l3

(

−IXXΩ l3 φ̇− IXXΩ2l3 θ + IZZ Ωl3 φ̇+ 4EIyl
2 θ + IZZ Ω2l3θ

+3EIyLl θ − IXX Ωl3 φ̇+ 6EIyl Y + 6EIyLY
)

, (6.20)

Ẍ =
1

2IXX Ml3

(

2 IXX MΩ2l3X + 4 IXX MΩl3 Ẏ + IXX MΩ2Ll3 φ+ 12 IXX EIyl φ

− 6ML2EIy X + 3ML2EIyl φ−MLl3IXXΩ θ̇ − 24 IXX EIy X −MLl3IXX Ω2φ

+MLl3IZZ Ω2φ− 6MLlEIy X + 4MLl2EIy φ−MLl3IZZΩ θ̇ +MLl3IXXΩ θ̇
)

, (6.21)

Ÿ =
1

2Ml3IXX

(

−24EIyIXX Y −MΩLl3IXX φ̇+MLIXXΩ2l3 θ −MLl3IZZΩ φ̇

−4MEIyLl
2 θ−MLIZZ Ω2l3θ−3MEIyL

2l θ+MLIXX Ωl3 φ̇−6MEIyLl Y −6MEIyL
2 Y

−4MIXXΩl3 Ẋ + 2MIXXΩ2l3 Y − 12 IXXEIyl θ −MIXXΩ2Ll3θ
)

, (6.22)

ψ̈ = −GIp ψ
IZZ l

, (6.23)

Z̈ = −EAc Z

Ml
. (6.24)

Notice that the equations for ψ and Z are decoupled. Synchronous whirl, as seen in

the rotating frame, involves no rates. Hence we set θ̇, φ̇, Ẋ and Ẏ to zero in Eqs. 6.19 to

6.22. The determinant of the resulting coefficient matrix is set to zero to find the critical

speed. This is the method used to solve for the critical speeds for beam-rigid-body examples

considered in chapter 8. We will also use this method in our next analytical example.
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6.4 A spinning torque free cylinder

6.4.1 Governing equations

L

Z', Z

X
X'

Y

Y'

O

R

Ω

Figure 6.8: Spinning cylinder.

We now consider a rigid spinning cylinder. This is a simplified version of the beam

cylinder model considered in section 6.3. There is no potential energy in this case. The

equations of motion can be obtained by substituting E = 0 and taking IXX =
MR2

4
+
ML2

12

and IZZ =
MR2

2
in Eqs. 6.19 through 6.22 (we do not consider twist) as

d2θ

dt2
=

Ω

(

2L2

(
dφ

dt

)

− 3 ΩR2θ + ΩL2θ

)

3R2 + L2
, (6.25)

d2φ

dt2
= −

Ω

(

3R2Ωφ− ΩL2 φ+ 2L2

(
dθ

dt

))

3R2 + L2
, (6.26)

d2X

dt2
=

Ω

(

−3LR2

(
dθ

dt

)

+ 3LΩR2φ+ 2 (3R2 + L2)
dY

dt
+ Ω (3R2 + L2) X

)

3R2 + L2
, (6.27)
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d2Y

dt2
=

Ω

(

−3LR2

(
dφ

dt

)

− 3LΩR2θ − 2 (3R2 + L2)
dX

dt
+ ΩY (3R2 + L2)

)

3R2 + L2
. (6.28)

We will now obtain these equations using our formulation.

6.4.2 Torque free cylinder: prestress based formulation

We start with Eq. 4.5. We note that in this case the stress in the cylinder S1 is zero (rigid

body mode). We will choose a rotating frame spinning at the rate Ω about the Z ′ axis and

write the equations in this frame. S0 is taken to represent a rotating elastic cylinder in

plane strain:

S0 =







S0,xx S0,xy 0

S0,xy S0,yy 0

0 0 S0,zz






, (6.29)

where,

S0,xx =
ρΩ2 (y2 + 2νy2 − 3R2 + 3x2 + 2R2ν − 2νx2)

8 (ν − 1)
,

S0,yy =
ρΩ2 (3y2 + 2νx2 − 3R2 + x2 + 2R2ν − 2νy2)

8 (ν − 1)
,

S0,xy =
−ρΩ2 (2ν − 1)xy

4 (ν − 1)
,

S0,zz =
ρΩ2ν (−3R2 + 2R2ν + 2x2 + 2y2)

4 (ν − 1)
.

Here ρ is the material density, ν is the Poisson’s ration, R is the radius of the cylinder,

and (x, y) are points on the cylinder measured in the rotating coordinate system. The

displacement of a point on the cylinder is obtained by adding the displacements due to

translation and rotation. We ignore the axial displacement and twist of the cylinder. Thus

setting Z = 0 and ψ = 0 we get the displacement of a point (x, y, z) of the cylinder, viewed

in the rotating coordinate system, as

φ =







X

Y

0







+R2R1







x

y

z







−







x

y

z







,
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where R2 and R1 are the rotation matrices as defined earlier in section 6.3. Since we are

concerned with small motions about the equilibrium point we linearize immediately and

obtain

φ =







X + φ z

Y − θz

−φx+ θy







and ∇φ =







0 0 φ

0 0 −θ
−φ θ 0






.

Choosing a virtual displacement δw, virtual work gives

∫

V

{

∇ · S0 + ∇ · (∇φS0) − ρ0
∂2χ

∂t2

}

· δw dV = 0. (6.30)

The acceleration of a point (x, y, z) on the cylinder is given by

d2χ

dt2
=
d2φ

dt2

∣
∣
∣
∣
r.f.

+ 2Ω × dφ

dt

∣
∣
∣
∣
r.f.

+ Ω × Ω × (X + φ)

where X is the position vector of the point under consideration and the subscript r.f. refers

to the derivative taken in the rotating frame. The Ω × Ω × X part of the acceleration

is balanced by ∇ · S0 and these terms drop out of the equation. The remaining terms in

acceleration simplify to

=







d2X

dt2
+ z

d2φ

dt2
− 2 Ω

(
dY

dt
− z

dθ

dt

)

− Ω2 (X + zφ)

d2Y

dt2
− z

d2θ

dt2
+ 2 Ω

(
dX

dt
+ z

dφ

dt

)

− Ω2 (Y − zθ)

−xd
2φ

dt2
+ y

d2θ

dt2







.

The virtual displacements are taken by choosing the variation of one generalized coordinate

(out of X, Y , φ and θ) at a time and setting the remaining three variations to zero. For

example, for variations in X, the virtual displacement is

δw = [ δX, 0, 0 ]T .

Substituting this δw and the expressions for S0, ∇φ and
d2χ

dt2
into Eq. 6.30, we get the

following equation

∫

V

(

ρ
d2X

dt2
+ ρ

d2φ

dt2
− 2 Ωρ

(
dY

dt
− z

dθ

dt

)

− ρΩ2 (X + zφ)

)

· δX dV = 0.
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Carrying out the integration and using the arbitrariness of δX we get

L
d2X

dt2
+ L

d2φ

dt2
− 2 Ω

(

L
dY

dt
− L2

2

dθ

dt

)

− Ω2

(

XL+
L2

2
φ

)

= 0.

Similarly, substituting the other virtual displacements into Eq. 6.30 and carrying

out the integration over the volume of the cylinder, we get four equations involving
d2X

dt2
,

d2Y

dt2
,
d2θ

dt2
and

d2φ

dt2
. Solving these equations for the second derivatives we exactly recover

Eqs. 6.25 to 6.28.

6.5 Foreshortening

A rod rotating like a helicopter blade, about an end point, shows an increase in its natural

frequency due to a phenomenon called foreshortening. This has been treated, e.g., by

Hodges [35]. Here we consider the same problem using our prestress based modal projection

method and derive the governing differential equation.

A cantilever beam of length L is attached to a hub of radius R (see figure 6.9). It

rotates about the center of the hub with an angular speed Ω. We are interested in the

flapping mode of vibration, i.e., the lateral vibration in a plane perpendicular to the plane

of rotation.

R

L

Ω

X

Y

Z

Figure 6.9: A rotating cantilever beam.
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We again start with our governing equation, Eq. 4.5,

∇ · S0 + ∇ · (∇φS0) + ∇ · S1 = ρ
∂2χ

∂t2
.

We will write the equations in a frame rotating about the Z axis at the angular rate Ω.

Choosing a coordinate system, attached to this rotating frame, as shown in figure 6.9, the

prestress S0 due to rotation (about the Z axis) is

S0 =








ρΩ2 ((R + L)2 − x2)

2
0 0

0 0 0

0 0 0







.

Using Euler-Bernoulli assumptions, the displacement of a point at (x, y, z) is

φ =







−zdu
dx

0

u







and hence ∇φ =








−zd
2u

dx2
0 −du

dx
0 0 0
du

dx
0 0







.

The acceleration has two components: a centripetal component ac = −Ω2x along the

X direction and the vibration component av = −ω2u along the Z direction. The term

∇ ·S0 = −ρΩ2x = −ρ ac and the two terms cancel out from the governing equation, which

then reduces to

∇ · (∇φS0) + ∇ · S1 = ρ av.

Choosing a virtual displacement,

δw =







−zd(δu)
dx

0

δu







,

virtual work gives
∫

V

(∇ · (∇φS0) + ∇ · S1 − ρ av) · δw dV = 0. (6.31)

Substituting the expressions for S0, φ and ∇φ into Eq. 6.31 we get

∫

V

((

E +
ρΩ2

2

(
(R + L)2 − x2

)
)
d3u

dx3
− ρΩ2x

d2u

dx2

)

z2 · d(δu)
dx

+

(
ρΩ2

2

(
(R + L)2 − x2

) d2u

dx2
− ρΩ2x

du

dx
+ ρω2u

)

· δu dV = 0.
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The domain of the above integration is the volume V of the cantilever. This can be split

into an integral over the area and an integral over the length. Thus the above integral

becomes

∫ R+L

R

∫

Ā

((

E +
ρΩ2

2

(
(R + L)2 − x2

)
)
d3u

dx3
− ρΩ2x

d2u

dx2

)

z2 · d(δu)
dx

+

(
ρΩ2

2

(
(R + L)2 − x2

) d2u

dx2
− ρΩ2x

du

dx
+ ρω2u

)

· δu dĀ dx = 0,

where the integral over the length is taken from the base of the cantilever (x = R) to the tip

(x = R+L). Taking A to be the area of cross section of the beam and using

∫

Ā

z2 dĀ = Ix,

the area moment of inertia of the cross section, the above integral simplifies to

∫ R+L

R

((

E +
ρΩ2

2

(
(R + L)2 − x2

)
)
d3u

dx3
− ρΩ2x

d2u

dx2

)

Ix ·
d(δu)

dx

+

(
ρΩ2

2

(
(R + L)2 − x2

) d2u

dx2
− ρΩ2x

du

dx
+ ρω2u

)

A · δu dx = 0.

Using integration by parts for the terms multiplying
d(δu)

dx
and using the fact that at the

boundaries either δu = 0 or
d3u

dx3
=
d2u

dx2
= 0 (no shear force or moment at the beam tip),

the integral becomes

∫ R+L

R

(

−
(

E +
ρΩ2

2

(
(R + L)2 − x2

)
)

Ix
d4u

dx4
+ 2ρΩ2Ixx

d3u

dx3
+ ρΩ2Ix

d2u

dx2

+
ρAΩ2

2

(
(R + L)2 − x2

) d2u

dx2
− ρAΩ2x

du

dx
+ ρAω2u

)

· δu dx = 0.

Now we make the following simplification. The coefficient of the term Ix
d4u

dx4
is

E +
ρΩ2

2

(
(R + L)2 − x2

)

︸ ︷︷ ︸

A

.

For typical materials, operating speeds and length of the cantilever beam, the Youngs’s

modulus E � ρΩ2(R+L)2, hence we neglect the term marked A from the above expression.

Next, we compare the coefficients of the term
d2u

dx2
:

ρΩ2Ix +
ρAΩ2

2

(
(R + L)2 − x2

)
.
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This can be written as

ρΩ2A
(
k2 + (R + L)2 − x2

)
,

where k is the radius of gyration of the cross section. Since (R + L) � k for a beam

geometry, we drop the term ρΩ2Ix
d2u

dx2
from our equation. Finally we consider the term

2ρΩ2Ixx
d3u

dx3
. Now since the displacement of the beam is usually a smooth and continuous

function of the axial coordinate x, we have

O
(

x
d3u

dx3

)

≈ O
(
d2u

dx2

)

.

Thus the term 2ρΩ2Ixx
d3u

dx3
is of the same order of magnitude as the term ρΩ2Ix

d2u

dx2
and

hence we drop this term as well. Finally, we have

∫ R+L

R

(

−EIx
d4u

dx4
+
ρAΩ2

2

(
(R + L)2 − x2

) d2u

dx2
− ρAΩ2x

du

dx
+ ρAω2u

)

· δu dx = 0.

Since the variation δu is arbitrary, we get the governing equation of a rotating cantilever

beam as

EIx
d4u

dx4
− ρAΩ2

2

(
(R + L)2 − x2

) d2u

dx2
+ ρAΩ2x

du

dx
− ρAω2u = 0. (6.32)

In order to compare this equation with standard equations available in the literature, e.g.,

[35], we make a few change of variables. We define a nondimensionalized variable x̄ that is

0 at the root of the cantilever and 1 at its tip:

x̄ =
x−R

L
,

Further we define

ū =
u

L
, m = ρA and α =

R

L
.

Making these change of variables in Eq. 6.32 and rewriting we get

EIx
mΩ2L4

ū′′′′ − 1

2

(
1 + 2α− x̄2 − 2α x̄

)
ū′′ + (x̄+ α) ū′ − ω2

Ω2
ū = 0,

where (′) denotes differentiation with respect to x̄. Using

η =
EIx

mΩ2L4
and µ =

ω2

Ω2
,

and rewriting the above equation we finally get

η ū′′′′ −
(

1

2

(
1 − x̄2

)
ū′
)

′

− α ((1 − x̄) ū′)
′ − µ ū = 0,

which matches the governing equations as given by Eq. 1 in [35].
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6.6 Concluding remarks

In this chapter we checked the validity of our formulation using different analytical exam-

ples. We initially solved some classical buckling problems using our formulation, which was

originally derived for rotors. This showed the fundamental similarity between rotor whirl

and buckling. Then, we solved two rotor whirl problems. The problems were chosen so that

the gyroscopic effects were significant. The analytical match in each case proved that our

formulation is correct and that the gyroscopic terms are indeed macroscopic manifestations

of the effect of spin-induced prestress in the rotor. As a final example, and to show the

versatility of our formulation, we derived the governing equation of a rotating cantilever.

We now move on to another detailed analytical example; the problem of a spinning cylinder

under axial load.



Chapter 7

Axially loaded cylindrical rotors

In this chapter we find the critical speed of a solid circular simply supported cylindrical rotor

under axial load (see figure 7.1). It is a semi-analytical implementation of our approach

in that we use analytical expressions for displacement fields in the virtual work calculation

but solve the problem numerically. This problem has already been addressed by others

using the one-dimensional Timoshenko approach [22].

Our formulation here has two key parts. One part is the spin-induced stress state in

the non-whirling rotor, for which we use the elasticity solution for a long spinning circular

rod, neglecting end effects. The other key part is the choice of the three dimensional

displacement field in whirling, for applying the principle of virtual work. In this choice,

nominal Timoshenko kinematics (wherein cross sections do not warp) gives incorrect results.

An elasticity solution for a circular shaft under a transverse end load is, therefore, used to

develop suitable expressions for three dimensional displacement fields.

Before we move on to the axially loaded rotor problem, we first solve the simpler

problems of lateral vibrations and buckling of a simply supported cylinder. Subsequently,

straightforward application of our formulation to the axially loaded spinning cylinder prob-

lem gives results that compare well against Timoshenko theory based formulas in [22]. We

find only slight differences between the results, negligible for rotor lengths exceeding about

five diameters. We also rediscover Cowper’s [2] definition of the Timoshenko shear coeffi-

cient K.

61
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Z

P

P

X

Y
R

L

Ω

Figure 7.1: A solid circular rotor under axial load.

7.1 Nominal Timoshenko kinematics: no warping

In Timoshenko theory, plane sections remain plane after deformation. The deformation of

the beam at each point is characterized by two variables: the lateral displacement u and

the rotation ψ of the cross section. These are related as

du

dz
= χ+ ψ, (7.1)

where χ is the angle of shear of the cross section (see figure 7.2, where the material cross

χ ψ

u(z)

Z

A

A

A'

A'

B

B

Figure 7.2: Nominal kinematics of a Timoshenko beam.
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section AA rotates to A′A′, and BB is the normal to the deformed centerline). Both u and

ψ depend only on z. The displacement of a point located at a height x above the centroidal

line, assuming bending in the X-Z plane, is given by

[ u 0 − xψ ]T . (7.2)

The above non-warping kinematics, if used in our three dimensional formulation,

gives significantly erroneous answers. We can obtain useful results if we do part of the

calculation in three dimensions and the rest using Timoshenko beam-theory relations as

was shown by us in [36]. Here, seeking a fully three dimensional calculation, we turn instead

to a better choice of φ (with warping).

7.2 Kinematics from a 3D elasticity solution

7.2.1 Cylinder under a transverse end load

We first consider a solid cylindrical cantilever beam of length L and radius R, aligned

with the Z direction, and with a net transverse centroidal end load W acting along the X

direction. Assuming end conditions are consistent therewith, the displacements of a point

(x, y, z) on the beam are given by [37]

ũ =
W

EI

(
ν

2
(L− z)

(
x2 − y2

)
− z3

6
+
Lz2

2

)

, (7.3)

ṽ =
W

EI
ν (L− z)xy, (7.4)

w̃ = −W

EI

(

−3R2x

4
− νR2x

2
+
xy2

4
+
x3

4
+ x

(

Lz − z2

2

))

, (7.5)

where E is Young’s modulus, ν is Poisson’s ratio, and I is πR4/4.

7.2.2 3D kinematics for φ

The above solution applies for an end load only, while we need to write expressions for φ

that will incorporate effects of, among other things, variable shear along the rotor. To this
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end, let the lateral displacement averaged over the cross section be

U =
W

EI

(
Lz2

2
− z3

6

)

(7.6)

and define

ψ =
dU

dz
− W

AG
, (7.7)

where A = πR2 and G is the shear modulus. Observe here that, by direct computation

using Eqs. 7.3 and 7.5, the average shear strain across the cross section is

γ =
1

A

∫

A

(
∂ũ

∂z
+
∂w̃

∂x

)

dA =
W

AG
, (7.8)

whence ψ represents the cross section average of a quantity related to the rotation of the

cross section (compare with the similar, but not identical, Eq. 7.1).

Now the right hand side of Eq. 7.3 contains a term with W (L − z). Physically, in

the 3D elasticity solution we are using, W (L−z) is the bending moment at a cross section.

Motivated by this, differentiation of Eq. 7.7 gives

W (L− z)

EI
=
dψ

dz
.

Using the above, the displacements 7.3, 7.4 and 7.5 can be rewritten in terms of U and ψ

as

ũ = U +
ν

2

(
x2 − y2

) dψ

dz
, (7.9)

ṽ = νxy
dψ

dz
, (7.10)

w̃ = −xψ +
GA

EI

(
dU

dz
− ψ

)(
R2x

4
− xy2

4
− x3

4

)

. (7.11)

The above three equations represent an exact solution from the theory of elasticity

for constant W . However, if we now think of U and ψ therein as independent functions

of z, then we have a three-dimensional kinematics in which each section has two degrees

of freedom, and there is suitable (if not perfect) warping of cross sections. The difference

between the set of Eqs. 7.9, 7.10 and 7.11 and the nominal Timoshenko kinematics given

in Eq. 7.2 is crucial. We emphasize that U and ψ are now independent degrees of freedom

at each z, and Eqs. 7.6 and 7.7 (which were used to motivate our choice of kinematics) no

longer apply.



Chapter 7. Axially loaded cylindrical rotors 65

7.2.3 Connection with Cowper’s shear factor K

Our three dimensional formulation has no need for the shear factor K used in Timoshenko

beam theory, but we can make a connection with it here. In nominal Timoshenko kinematics

plane sections remain plane without warping. Hence the displacement of a point along the

Z direction is given by

uz = −xψ = −x
(
dU

dz
− χ

)

, (7.12)

where χ is the shear angle at a cross section.

From Eqs. 7.5 through 7.8,

w̃ = −xdU
dz

+
γ

2(1 + ν)R2

(
3R2x+ 2νR2x− xy2 − x3

)
, (7.13)

where γ =

(
dU

dz
− ψ

)

.

The best match between Eqs. 7.12 and 7.13 occurs when, in a suitably averaged

sense,
γ

2(1 + ν)R2

(
3R2x+ 2νR2x− xy2 − x3

)
≈ xχ.

Now in Timoshenko theory χ = W
KAG

, where K is the shear factor. By Eq. 7.8, we then

have
γ

2(1 + ν)R2

(
3R2x+ 2νR2x− xy2 − x3

)
≈ x

γ

K
,

which suggests that a best linear-in-x approximation of the left hand side is sought. Fol-

lowing the method of weighted residuals, multiplying both sides by x, integrating over the

circular cross section, and equating both sides, we obtain

K =
6 + 6ν

7 + 6ν
,

matching Cowper [2].

7.3 Results for lateral vibrations and buckling

Before studying the case of spin induced prestresses in whirling, we first see how Eqs. 7.9

through 7.11 work for lateral vibrations (no prestress) and buckling (no acceleration) as

compared, for convenience, against Timoshenko theory.



Chapter 7. Axially loaded cylindrical rotors 66

7.3.1 Lateral vibrations

We use a straightforward assumed modes approach. In Eqs. 7.9 through 7.11 we substitute

U = a sin
(πz

L

)

sin (ωt) and ψ = b cos
(πz

L

)

sin (ωt) , (7.14)

where a and b are undetermined coefficients and ω is the natural frequency sought. This

choice satisfies simply supported conditions.

Considering a laterally vibrating object. There is no prestress in this case. Hence

the principle of virtual work applied to Eq. 4.5 with S0 = 0 gives
∫

V

(∇ · S1 − ρ a) · δw dV = 0, (7.15)

where δw is an arbitrary virtual displacement. Using Eqs. 7.9 through 7.11, we take

φ =







U +
ν

2

(
x2 − y2

) ∂ψ

∂z

νxy
∂ψ

∂z

−xψ +
GA

EI

(
R2x

4
− xy2

4
− x3

4

)(
∂U

∂z
− ψ

)







(7.16)

and take δw as simply φ with U and ψ replaced by δU and δψ respectively. The acceleration

is

a =







∂2U

∂t2
+
ν

2

(
x2 − y2

) ∂3ψ

∂z∂t2

νxy
∂3ψ

∂z∂t2

−x∂
2ψ

∂t2
+
GA

EI

(
R2x

4
− xy2

4
− x3

4

)(
∂3U

∂z∂t2
− ∂2ψ

∂t2

)







. (7.17)

Substituting Eq. 7.14 into Eqs. 7.16 and 7.17, and then using Eq. 7.15, we get a

2 × 2 eigenvalue problem for ω. The smaller frequency, nondimensionalized, is plotted in

figure 7.3 against L/D (where D = 2R is the diameter). Corresponding predictions of

Timoshenko beam theory are plotted for comparison. The match is good1.

1This same virtual work calculation with nominal Timoshenko kinematics gives nonsensical results,

independent of R. Useful results with nominal Timoshenko kinematics could be obtained via Lagrange’s

equations, but our interest here is in the prestress-based formulation of chapter 4
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Figure 7.3: Nondimensionalized natural frequency (ωn/Ω̄) of a simply supported cylinder,

plotted against L/D. Here Ω̄ = 2π
√

ER2/ρL4. For Timoshenko theory, we used K =

(6 + 6ν)/(7 + 6ν) [2]. For numerical calculation, we used R = 0.25 m, E = 210 GPa,

ν = 0.25 and ρ = 7800 Kg/m3.
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7.3.2 Buckling load of a simply supported cylinder

As above, we will compare with Timoshenko theory. To this end, we note that there are

two ways to estimate the buckling load of a Timoshenko beam [28]. In one method (we call

this method 1) the shear force is resolved on a cross section perpendicular to the deformed

centroidal line. The buckling load from this formulation is ([28], pp. 133, Eq. 2.57)

Pcr =
Pe

1 + Pe/KAG
, (7.18)

where Pe =
π2EI

L2
. In the other method (we call this method 2) the shear force is resolved

along a physical or material cross section which was originally perpendicular to the unde-

formed centroidal line. The critical buckling load from this formulation is ([28], pp. 135,

Eq. 2.59)

Pcr =

√

1 + 4Pe/KAG− 1

2/KAG
. (7.19)

We now calculate the buckling load using our three dimensional kinematics. Virtual

work applied to Eq. 4.5 with acceleration set to zero gives

∫

V

(∇ · ∇φS0 + ∇ · S1) · δw dV = 0. (7.20)

The only nonzero component of prestress S0 in this case is S0,zz = −P/A. Hence

S0 =







0 0 0

0 0 0

0 0 −P/A






. (7.21)

Using Eq. 7.16 for φ, and using Eq. 7.14 without the sinωt for U and ψ in the

virtual work Eq. 7.20, we solve for the buckling load P . Figure 7.4 compares our results

with Timoshenko methods 1 and 2. Although method 2 is expected to be more accurate

as per the discussion in [28], our results are closer to those from method 1. However, for

L/D ≥ 5 all three results are close.
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Figure 7.4: Nondimensionalized buckling load P/Pe of a cylinder plotted against L/D.

Here Pe = π2EI
L2 . For Timoshenko theory we used K = (6 + 6ν)/(7 + 6ν). For numerical

calculations we used R = 0.25 m, E = 210 GPa, ν = 0.25 and ρ = 7800 Kg/m3.

7.4 Critical speed of a simply supported, axially loaded,

cylinder

We finally consider the problem of primary interest in this chapter, namely the first critical

speed of a simply supported, axially loaded, cylinder. For synchronous whirl at the critical

speed, the acceleration a is equal to Ω×Ω× (r + φ), where r is the position vector of the

point under consideration (with origin on the rotation axis). The prestress is composed of

two parts: S0 = S0,spin +S0,axial. Noting that ∇ ·S0,axial = 0 since the axial load is constant

and ∇ · S0,spin = ρ (Ω × Ω × r), virtual work gives

∫

V

(∇ · ∇φS0 + ∇ · S1 − ρ (Ω × Ω × φ)) · δw dV = 0. (7.22)

The prestress S0,axial is again given by Eq. 7.21, the same as in section 7.3.2. The prestress

S0,spin in this case is taken as the stress in a spinning cylinder under constant axial strain

such that the average axial stress across the section is zero. The nonzero components of
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S0,spin are

S0,xx =
ρΩ2 (y2 + 2νy2 − 3R2 + 3x2 + 2R2ν − 2νx2)

8 (ν − 1)
,

S0,yy =
ρΩ2 (3y2 + 2νx2 − 3R2 + x2 + 2R2ν − 2νy2)

8 (ν − 1)
,

S0,xy =
−ρΩ2 (2ν − 1)xy

4 (ν − 1)
,

S0,zz =
ρΩ2ν (−3R2 + 2R2ν + 2x2 + 2y2)

4 (ν − 1)
− νρΩ2R2

2
.

In the above, dropping the last term of the last equation gives the well known plane strain

solution for a spinning cylinder.

We again use Eq. 7.16 for φ and Eq. 7.14 (without the sinωt) for U and ψ. Sub-

stituting these into the virtual work equation (Eq. 7.22) we get an eigenvalue problem

that can be solved for the critical speed. The results for several L/D ratios are compared

with corresponding numerical solutions from Choi et al.’s formulation, which uses what we

called method 2 above in figure 7.5. Also plotted are the critical speeds obtained using an

alternative formulation based on what we called method 1 above. Our results are, again,

closer to those from method 1.

7.5 Concluding remarks

In this chapter we have analytically demonstrated the applicability of our formulation to

the case of a rotating cylinder under axial load. We have compared our answers with results

obtained using Timoshenko theory, which accurately models the system considered.

An important aspect of this study is the key role played by the assumed underly-

ing three dimensional kinematics in the present rotor formulation. Nominal (non-warping)

Timoshenko kinematics used with our formulation leads to large errors and is unsuitable

for this problem. Hence a better 3D kinematics with warping of cross sections was devel-

oped from a suitable elasticity solution for a cylinder under a transverse end load. This

kinematics was shown to perform very well.
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Figure 7.5: Nondimensionalized critical speed (Ωc/Ω̄) of a simply supported cylinder plotted

against L/D. The axial load applied is P = 0.7
π2EI

L2
in each case. Ω̄ = 2π

√

ER2/ρL4.

K = (6 + 6ν)/(7 + 6ν). For numerical calculations we used R = 0.25 m, E = 210 GPa,

ν = 0.25 and ρ = 7800 Kg/m3.
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Another interesting aspect of our results is that they seem closer to the first method

of studying buckling and whirling of Timoshenko rotors, while the second method is ex-

pected to be more accurate. Differences between results from these methods and ours are,

however, negligible for L/D ≥ 5. Better choice of kinematics may lead to a match with

method 2.
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Numerical examples

In this chapter we demonstrate the numerical computation of critical speeds of arbitrary

shaped rotors using our formulation and modal projection methods. We consider six ax-

isymmetric and one asymmetric geometry. The results predicted by our method are com-

pared against analytical results, when available, or against a detailed load-stepping based

calculation using ANSYS (chapter 2) and a direct nonlinear finite element method (appen-

dix A).

8.1 Results for axisymmetric geometries

We consider six different axisymmetric rotor geometries as shown in figure 8.1. The relevant

geometrical dimensions are

(a) Cylinder, L = 2 m, D = 0.5 m.

(b) Truncated cone, L = 2 m, D = 0.5 m, d = 0.2 m.

(c) Bottle, L = 1.0 m, h = 0.3 m, D1 = 0.5 m, D2 = 0.45 m, d = 0.2 m.

(d) Beam-Cylinder, L1 = 0.1 m, d = 0.003 m, L2 = 0.5 m, D = 1.0 m.

(e) Shell, L1 = 0.1 m, d = 0.003 m, L2 = 0.3 m, D1 = 1.6 m, D2 = 0.8 m, D3 = 0.8 m,

t = 0.03 m, t1 = 0.025 m.

73
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(f) Bell, L1 = 0.1 m, d = 0.003 m, L2 = 0.8 m, D1 = 1.8666 m, D3 = 0.8 m, t = 0.0416

m, t1 = 0.025 m.

The material properties specified are: Young’s modulus = 210 GPa, Poisson’s ratio = 0.25,

density = 7, 800 kg/m3. The first two rotors are modeled as having simply supported end

faces, approximately implemented in the finite element model by restricting endface nodes

to have axial displacements only; the last four have their left faces fully fixed, with no other

restraints.

(d) (f)
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Figure 8.1: Rotor geometries considered.

From the first modal projection method, we recall the first integral in Eq. 5.2 (a

surface term). A rough numerical estimate of this term, for the first rotor, worked out

to only about 8% of the second term in Eq. 5.2, and so a more accurate integration was

not carried out; and this surface term was dropped entirely for the second rotor. For the

remaining four rotors, the surface term is zero1.

1Our implementation of simple supports for the first two rotors, through restricting endface displace-

ments to be purely axial, causes artificial endface tractions when the rotor spins. An alternative modeling
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Rotor ωf Critical speed Ωc

rad/s ANSYS Our code Analytical Method 1 Method 2

(chap. 2) (appendix A) (if known) (sec. 4.3) (sec. 5.3)

1498.73 1548.9 1546.46 1545.38 1544.96 1544.63

Cylinder (1546.76)

969.13 990.70 991.48 – 990.38 990.20

Cone

362.97 381.18 380.05 – 380.18 380.12

Bottle

Table 8.1: Comparison of critical speeds from various methods. All speeds in rad/s. Note

that the difference between bending and whirling frequencies is relatively small (e.g., about

3% for the cylinder). Nevertheless, this small difference is captured to within about 4%.

Predicted whirling speeds from the two modal projections described above as well

as from verifying calculations done using both ANSYS (see chapter 2) as well as our own

nonlinear finite element code (see appendix A), for three of the six geometries, are given

in table 8.1.

For the cylinder (simply supported), Timoshenko theory is applicable, and the for-

mula of Zu and Han [38] with shear factor 0.9 gives a first mode bending frequency of

1497.52 rad/s; this matches our ωf in the table (from ANSYS) very well. The critical

speed of the cylinder from the analytical formula [38] is 1545.38 rad/s. This compares

well with the critical speeds obtained from all the methods. Among these, the result from

our code (1546.46) is here taken as the most accurate. The result from modal projection

method 1, not including the boundary term of Eq. 5.2, is slightly lower and is close to the

result from method 2, to which it is equivalent. Including the surface term in method 1,

we obtain the value in parentheses (1546.76), more closely matching our nonlinear code.

For the truncated cone, too, there are similarly small boundary terms, which we

have dropped; results obtained resemble those for the cylinder.

approach might be to allow the rotors to spin up without constraints, and to apply the simple support

conditions only for subsequent bending. The surface terms would then be zero for the first two rotors as

well.
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For the bottle (as for the remaining 3 rotors), the boundary terms of Eq. 5.2 are

known to be zero, because all points on the left faces of the rotors are held fixed in all three

directions.

The laborious load-stepping calculations of ANSYS (as described in section 2.1) are

slightly compromised due to the finite-sized imperfections used, and are presented here

only to ensure that the results from other methods are good. These calculations were only

carried out for the first three rotors. Also, only these same three rotors were studied using

our own code, which retains all terms while our interest here has been to identify the key

terms necessary so that simple modal projections will yield a good answer.

We now turn to the remaining three rotors. These extreme geometries involve dy-

namics where the bulk of the mass moves like a rigid body, and essentially all deformations

are restricted to narrow neck regions of negligible mass. These narrow necks may, for an-

alytical estimates, be thought of as massless beams, and the rest of the rotors thought of

as rigid bodies. The corresponding rigid body dynamics analysis has already been pre-

sented in section 6.3. The final numerical results from those analyses are used here for

cross-checking.

Figure 8.2: Meshes for beam-rigid-body models (10 noded tetrahedral elements).

The results obtained are given in table 8.2. All modal projections in this table were

done with 2 modes (actually, 4 modes in ANSYS, with 2 modes for each frequency due to

symmetry). Figure 8.2 shows the mesh used for analysing these geometries.

For each geometry, natural frequencies ωf as obtained from ANSYS are given in

the table, with the second beam-bending mode frequencies in parentheses. In each case,
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Rotor ωf Critical speeds Ωc

rad/s Analytical Method 1 Method 2

(sec. 6.3) (sec. 4.3) (sec. 5.3)

(Approximate)

0.125 0.234 0.234 0.234

Beam Cyl. (2.62) 1.98i 1.96i –

0.171 0.477i 0.462i –

Shell (4.06) 1.73 1.76 1.72

0.109 0.330 0.334 0.330

Bell (3.63) 1.55i 1.51i –

Table 8.2: Comparison of critical speeds from various methods. All speeds in rad/s. Modal

projections performed with two modes. The geometric properties of the rotor (mass moment

of inertia matrix, center of mass), required for the analytical evaluation of the critical speed

using the method discussed in section 6.3, were obtained using ANSYS.

there are two lateral vibration modes, but only one corresponding whirling mode. It is

also interesting to note that the whirl speed is approximately two, ten, and three times

the first bending frequencies for the three rotors, respectively; that is, the differences be-

tween the non-spinning vibration frequencies and the whirl frequencies are large. We note

that analytical estimates and modal projections give comparable but not identical results,

especially for the last two geometries; this is probably because one of them involves exter-

nal calculation of deformation gradients and the other does not, and so the calculations

differ in detail; and possibly because one involves mode shapes without prestress, and the

other involves mode shapes with prestress. The prestress based calculations are limited to

seeking real solutions only, and fail to capture the imaginary solutions (suppressed modes).

Overall, agreement is good.

Finally, a note on the imaginary critical speeds that have been obtained in the

case of beam rigid body models. These represent potential whirling modes that have been

suppressed due to gyroscopic effects. For example, consider again Ewins’s rotor of section
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6.2. The critical speed for this rotor was calculated as

Ωc =

√

k

M(1 −R2/4L2)
.

If the radius R > 2L, then the critical speed for this rotor becomes imaginary.

8.2 An asymmetric rotor example

We now calculate the critical speed of an asymmetric rotor using our modal projection

method 1. The rotor is taken to have a uniform scalene triangle cross-section with the

axis of spin passing through the centroid of the cross-section. The rotor is 4.0 m long and

the length of the sides of the triangle are 1.0 m, 0.5385 m and 0.9434 m respectively. The

Young’s modulus is 210 GPa, Poisson’s ratio is 0.25 and the density is 7800 Kg/m3. The

rotor is simply supported at both the ends and this is again enforced by constraining the

in-plane displacements of all the nodes on both end faces. One node on one of the faces

is further fixed in the axial direction to avoid rigid body modes. Ten noded tetrahedral

elements are again used for the mesh (see figure 8.3 left for details). The natural frequency

of the fundamental mode is calculated using ANSYS as 341.89 rad/s. The fundamental

bending mode is shown on the right of figure 8.3.

Figure 8.3: Left: mesh of the scalene triangular cylinder. Right: first mode shape.

The critical speed calculated using the two modal projections are compared with

that obtained using the laborious calculation in ANSYS (chapter 2) as well as our in-house
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Method Critical Speed

Modal 344.67

Projection 1

Modal 344.65

Projection 2

ANSYS 345.10

(Chapter 2)

ANSYS

(run with four times 344.48

smaller imperfection)

Our Code 344.42

(Chapter 9)

Table 8.3: Triangular cross-sectioned rotor: comparison of critical speeds obtained using

different methods. All speeds in rad/s.

code (Chapter 9). The results are given in table 8.3. Note that the surface term discussed

in section 5.1 has again been dropped from our calculation.

8.3 Concluding remarks

In this chapter we have used our modal projection methods to numerically compute the

critical speeds of seven different rotor geometries including an asymmetric geometry. The

results obtained provide further support for the formulation and also indicate how the

formulation can be done numerically.
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Nonlinear finite element calculation

In this chapter we describe a nonlinear finite element calculation based on isoparametric

elements for finding the critical speed of arbitrary shaped rotors. This method, itself new

for rotor applications, is developed primarily to check the results obtained using our modal

projection method.

9.1 Isoparametric nonlinear finite element solution

Our direct nonlinear analysis follows the approach and notation of Jog and Kelkar [39]

(except that they used hybrid elements; see appendix A). The strategy for this specific

rotor whirl application is to write equations in a rotating coordinate system; to compute

the nonlinear spin-induced expansion solution (in a 3-dimensional setting) as a function of

rotation speed; and to identify the particular speed at which new solutions exist which also

satisfy the governing equations. In other words, we seek the speed at which the whirling

solution bifurcates from the straight solution.

We now briefly describe the strong form of the governing equations and the displace-

ment based variational formulation that is used to derive the finite element equations. All

the equations are written with respect to the reference configuration V whose boundary Γ

is composed of two open, disjoint regions, Γ = Γu ∪ Γt. Γu is the region where the displace-

ment is specified and Γt is the region where traction is specified. The spatial variables in the

80



Chapter 9. Nonlinear finite element calculation 81

reference and deformed configurations are denoted by X and x, respectively, and within

the context of the static problems that we consider in this work, we assume a one-to-one

mapping χ that takes X to x, i.e., x = χ(X) = X +u, where u is the displacement field.

The deformation gradient is given by F := ∇χ = I + ∇u, where the gradient is with

respect to the material coordinates X.

We consider the following boundary value problem:

Find the displacements u, second-Piola Kirchhoff stress S, Green strain E and

tractions t0, such that

∇ · (FS) + ρ0b
0 = 0 on V, (9.1)

E = Ê(S) on V, (9.2)

E = Ē(u) :=
1

2
[(∇u) + (∇u)T + (∇u)T (∇u)] on V, (9.3)

t0 = FSn0 on Γ, (9.4)

t0 = t̄
0
, on Γt (9.5)

u = 0, on Γu, (9.6)

where ρ0 = (det F )ρ is the density in the reference configuration in terms of the density

ρ in the deformed configuration, n0 is the outward normal to Γ , t0 := ‖cof F ‖ t are the

tractions defined on the reference configuration in terms of the actual tractions t on the

deformed configuration, and b0(X) := b(χ(X)) = ρΩ2(X̃ + ũ) is the body force field on

the reference configuration, where X̃ and ũ are obtained by excluding the angular velocity

direction component from X and u, respectively (if the rotor nominally spins about the

Z-axis, this means the Z-component of these vectors is set to zero). We emphasize that

Eq. 9.2 does not imply that the stress-strain relation S = Ŝ(E) needs to be analytically

inverted – numerical inversion is acceptable.

The displacement based variational principle on which our finite element formulation

is based (here is where we depart from [39]) enforces Eqs. 9.1 and 9.5, and Eq. 9.3 in a

weak sense. Thus, if

Vu := {uδ : uδ = 0 on Γu}
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denotes the space of variations of the displacements, the variational formulation (after

carrying out an appropriate integration by parts of the first variational statement) is given

by

∫

V

S : Ēδ dV =

∫

V

ρ0uδ · b0dV +

∫

Γt

uδ · t0 dΓ ∀uδ ∈ Vu, (9.7)

where Ē is given by Eq. 9.3, and its variation Ēδ is given by

Ēδ(u,uδ) =
1

2
[(∇uδ) + (∇uδ)

T + (∇u)T (∇uδ) + (∇uδ)
T (∇u)].

To develop an iterative finite element scheme, we now linearize the variational state-

ments in Eq. 9.7. The superscripts k and k + 1 will now be used to denote the values of

the field variables at the k and k + 1th iterative steps, and let u∆ denote the increments

in the displacement and stress fields.

(
S : Ēδ

)k+1 ≈
(
S : Ēδ

)k
+Du

(
S : Ēδ

) (
uk
)
[u∆]

=
(
S : Ēδ

)k
+

1

2
S :
[

(∇uδ)
T (∇u∆) + (∇u∆)T (∇uδ)

]

=
(
S : Ēδ

)k
+ S :

[

(∇uδ)
T (∇u∆)

]

=
(
S : Ēδ

)k
+ [(∇uδ) S] : (∇u∆) .

For computer implementation, it is convenient to express second-order tensors as vectors

and fourth order tensors as matrices. Hence we define

Sc =















S11

S22

S33

S12

S23

S13















; (∇u∆)c =






















(∇u∆)11

(∇u∆)12

(∇u∆)13

(∇u∆)21

(∇u∆)22

(∇u∆)23

(∇u∆)31

(∇u∆)32

(∇u∆)33






















.
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Further we define

[

Ēδ

(

uk
)]

c
=
{

DĒ

(

uk
)

[uδ]
}

c
=















(∇uδ)11 +
(
∇uk

)

i1
(∇uδ)i1

(∇uδ)22 +
(
∇uk

)

i2
(∇uδ)i2

(∇uδ)33 +
(
∇uk

)

i3
(∇uδ)i3

(∇uδ)12 + (∇uδ)21 +
(
∇uk

)

i1
(∇uδ)i2 +

(
∇uk

)

i2
(∇uδ)i1

(∇uδ)23 + (∇uδ)32 +
(
∇uk

)

i2
(∇uδ)i3 +

(
∇uk

)

i3
(∇uδ)i2

(∇uδ)13 + (∇uδ)31 +
(
∇uk

)

i1
(∇uδ)i3 +

(
∇uk

)

i3
(∇uδ)i1















,

with the summation over i implied. The stress matrix is defined as

SM =






















S11 S12 S13 0 0 0 0 0 0

S12 S22 S23 0 0 0 0 0 0

S13 S23 S33 0 0 0 0 0 0

0 0 0 S11 S12 S13 0 0 0

0 0 0 S12 S22 S23 0 0 0

0 0 0 S13 S23 S33 0 0 0

0 0 0 0 0 0 S11 S12 S13

0 0 0 0 0 0 S12 S22 S23

0 0 0 0 0 0 S13 S23 S33






















,

and the engineering form of the material constitutive tensor as

Cc =















C1111 C1122 C1133 C1112 C1123 C1113

C2211 C2222 C2233 C2212 C2223 C2213

C3311 C3322 C3333 C3312 C3323 C3313

C1211 C1222 C1233 C1212 C1223 C1213

C2311 C2322 C2333 C2312 C2323 C2313

C1311 C1322 C1333 C1312 C1323 C1313















.

The incremental form of the variational statement is
∫

V

(∇uδ)
T
c Sk

M (∇u∆)c dΩ =

∫

V

ρ0u
T
δ b0 dV +

∫

Γt

uT
δ t0 dΓ

−
∫

V

{
DĒ

(
uk
)
[uδ]

}T

c
Sk

c dV ∀uδ ∈ Vu. (9.8)

To obtain the finite element matrices, we introduce the discretizations

u = Nû, uδ = Nûδ, u∆ = Nû∆.
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Using the above we have

{
DĒ

(
uk
)
[u∆]

}

c
= BLû∆,

{
DĒ

(
uk
)
[uδ]

}

c
= BLûδ,

(∇u∆)c = BNLû∆, (∇uδ)c = BNLûδ,

where BL = BL1 + BL2 and

BL1 =















N1,1 0 0 N2,1 0 0 . . .

0 N1,2 0 0 N2,2 0 . . .

0 0 N1,3 0 0 N2,3 . . .

N1,2 N1,1 0 N2,2 N2,1 0 . . .

0 N1,3 N1,2 0 N2,3 N2,2 . . .

N1,3 0 N1,1 N2,3 0 N2,1 . . .















,

and BL2 =













(
∇uk

)

11
N1,1

(
∇uk

)

21
N1,1

(
∇uk

)

31
N1,1 ...

(
∇uk

)

12
N1,2

(
∇uk

)

22
N1,2

(
∇uk

)

32
N1,2 ...

(
∇uk

)

13
N1,3

(
∇uk

)

23
N1,3

(
∇uk

)

33
N1,3 ...

(
∇uk

)

12
N1,1 +

(
∇uk

)

11
N1,2

(
∇uk

)

22
N1,1 +

(
∇uk

)

21
N1,2

(
∇uk

)

32
N1,1 +

(
∇uk

)

31
N1,2 ...

(
∇uk

)

13
N1,2 +

(
∇uk

)

12
N1,3

(
∇uk

)

23
N1,2 +

(
∇uk

)

22
N1,3

(
∇uk

)

33
N1,2 +

(
∇uk

)

32
N1,3 ...

(
∇uk

)

11
N1,3 +

(
∇uk

)

13
N1,1

(
∇uk

)

21
N1,3 +

(
∇uk

)

23
N1,1

(
∇uk

)

31
N1,3 +

(
∇uk

)

33
N1,1 ...














,

BNL =






















N1,1 0 0 N2,1 0 0 . . .

N1,2 0 0 N2,2 0 0 . . .

N1,3 0 0 N2,3 0 0 . . .

0 N1,1 0 0 N2,1 0 . . .

0 N1,2 0 0 N2,2 0 . . .

0 N1,3 0 0 N2,3 0 . . .

0 0 N1,1 0 0 N2,1 . . .

0 0 N1,2 0 0 N2,2 . . .

0 0 N1,3 0 0 N2,3 . . .






















.

Let

Q =

∫

V

BNLSk
MBNL dV,
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f∆ = Ω2

∫

V

ρ0Ñ
T
(X̃ + ũk) dV +

∫

Γt

NT t0 dΓ −
∫

V

BT
LSk

c dV, (9.9)

where Ñ is obtained by excluding the shape functions associated with the angular velocity

direction from N . Then the finite element equations are given by

(K − Ω2M)û∆ = f∆, (9.10)

where

K = Q +

∫

V

BT
LCcBL dV,

M =

∫

V

ρÑ
T
Ñ dV.

(9.11)

Note that the matrix K is itself a function of displacement ũk and hence a function of spin
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=1546.6 rad/s

Figure 9.1: Zoomed plot of reciprocal of condition number (MATLAB’s RCOND) against

speed for the cylinder geometry of chapter 8.

speed Ω. Thus Eq. 9.10 is solved iteratively till the norm of the residual force vector f∆ is

less than a prescribed tolerance. The critical speed of the rotor is the angular velocity Ω

at which the matrix (K − Ω2M ) becomes singular. For actual computation we start with
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an angular velocity Ω which is slightly less than the natural frequency of the fundamental

mode of lateral vibration. Then Ω is increased slowly and the reciprocal of the condition

number (MATLAB’s RCOND) of the matrix (K − Ω2M ) is monitored. RCOND steadily

decreases and then increases again. The spin speed at which it becomes zero is calculated by

extrapolation from either side and this speed is the critical speed. Results for the cylinder

geometry (length 2 m, radius 0.25 m) considered in chapter 8 are given in figure 9.1. Ten

noded tetrahedral elements were used for the mesh. For the cylinder example considered

the cylinder was meshed with 1164 elements with a total of 2030 nodes.

9.2 Concluding remarks

In this chapter we have presented a nonlinear finite element based solution for finding the

critical speed of a rotor. The method, itself novel for rotor applications, can be used for

rotors of any arbitrary shape (see section 8.2 of chapter 8). Having described this nonlinear

formulation, we will now return to the modal projections of chapter 5 in the next chapter

where we will describe the use of harmonic elements for axisymmetric rotors. This will

result in a dramatic reduction in the computational effort.



Chapter 10

Harmonic elements

We have, in chapter 8, used a three dimensional finite element method to perform the modal

projection of our formulation to find the critical speed of arbitrarily shaped rotors. In

chapter 9 we implemented a nonlinear finite element technique, without the approximation

of modal projections, to find the critical speed of arbitrary rotors. However, we now return

to our modal projection methods. For the case of axisymmetric rotors, we can dramatically

simplify the calculations involved by using harmonic elements instead of three dimensional

elements. This reduces the dimension of the problem from three to two. We now describe

the implementation of our modal projection method using harmonic elements

10.1 Introduction

Axisymmetric harmonic elements [34] are used when the geometry and material properties

are axisymmetric but the loading and/or the response is not. Using a Fourier series repre-

sentation for the loads and displacements, the model reduces to two dimensions with only

radial and axial coordinates. Harmonic elements can be used, for example, to find symme-

try breaking lateral vibration modes of an axisymmetric object. The use of axisymmetric

harmonic elements for rotor problems is not new. Stephenson and Rouch [17] have used

these elements in a formulation that uses an explicit gyroscopic matrix.

The main advantage of harmonic elements against full three dimensional finite ele-

87
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ments is large savings in time in both modeling and analysis. Harmonic elements are widely

used in industry for modal analysis of axisymmetric components. With the present work,

such modal analysis can be extended to critical speeds of arbitrary axisymmetric rotors.

In what follows we briefly describe the use of axisymmetric harmonic elements for

our calculation. We then present results for the six different axisymmetric rotors that were

considered in chapter 8.

10.2 General formulation

The general formulation follows the derivation of section 4.3 of chapter 5. The governing

equation for finding the critical speed of a rotor is, as given by Eq. 5.1 of chapter 5,
∫

V

(∇ · (∇φS0)) · φ dV +

∫

V

(∇ · S1) · φ dV = Ω2
c

∫

V

ρ0 (n̂ × n̂ × φ) · φ dV,

where Ωc is the critical speed and n̂ is along the undeformed rotor axis.

10.3 Axisymmetric harmonic elements

We use a four noded quadrilateral harmonic element (PLANE25 element in ANSYS) for

our analysis. Linear shape functions are used for interpolating the displacements as well as

the geometry. The degree of freedom at each node consists of the radial displacement u, the

tangential displacement v, and the axial displacement w. The variation of the displacement

components along the circumferential direction are given by Fourier series,

u =
∑

n

ūn cosnθ +
∑

n

¯̄un sinnθ, (10.1)

v =
∑

n

v̄n sinnθ −
∑

n

¯̄vn cosnθ, (10.2)

w =
∑

n

w̄n cosnθ +
∑

n

¯̄wn sinnθ, (10.3)

where the single-barred series represents the symmetric component (displacement sym-

metric about the θ = 0 plane) and the double-barred series represents the antisymmetric
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component. Axisymmetric problems are represented by the n = 0 term of the single-barred

series while pure torsion problems are represented by the n = 0 term of the double-barred

series. For n = 1, the case of interest here, the single-barred term represents displacements

of flexural modes in one plane while the double-barred term represents the same flexural

modes bending in a perpendicular plane. For further details see, e.g., [34].

In our calculation we need φ and S0 to calculate the critical speed. To evaluate

φ we perform modal analysis in ANSYS and extract the symmetric components of the

displacement by setting n = 1 (n is called in ANSYS as MODE). Thus

φ = ū1, and ū1 = [ ū1 cos θ v̄1 sin θ w̄1 cos θ ]T .

Note that the implementation in ANSYS requires a minor trick. Modal analysis

for the symmetric option does not output the circumferential displacement v (because it

happens to be zero on the θ = 0 plane). So one needs to perform modal analysis for the

antisymmetric option as well. The circumferential displacements obtained from the latter

can then be incorporated into the original symmetric-option mode after multiplying by

sin θ as per Eq. 10.2.

Once φ is obtained we evaluate ∇φ and S1. The spin induced prestress S0 is

obtained from an axisymmetric analysis (with n = 0). After ∇φ, S1 and S0 are evaluated,

the critical speed of the rotor is found using Eq. 5.1.

The volume integrals appearing in Eq. 5.1 are evaluated using cylindrical coordi-

nates. The expression for ∇φ evaluated in cylindrical coordinates is given in appendix B.1.

Also, the integration involving the θ coordinate is performed analytically over the circle

from θ = 0 to θ = 2π as described in the following section, while the integration in r and

z directions is numerically performed using a three point Gauss quadrature scheme over

each element.
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10.4 Analytical integration with respect to θ in the

volume integrals

We show here how the integration with respect to θ in the volume integrals is done ana-

lytically before the resulting surface integrals are numerically approximated using Gauss

quadrature. We illustrate the calculations for a single mode. Calculations for multiple

modes are similar.

10.4.1
∫

V S0 : ∇φT
∇φ dV

This integral evaluated over each element volume becomes

∫

Ve

S0 : ∇φT
∇φ dVe =

∫

Ae

∫ 2π

0

S0 : ∇φT
∇φ r dθ dAe.

The spin induces stress, obtained from an axisymmetric analysis, can be written as

S0 =







S0,11 0 S0,13

0 S0,22 0

S0,13 0 S0,33






,

with ‘12’ (or rθ) and ‘23’ (or θz) components of the stress being zero. The components of

φ for the harmonic element can be written as

φ = [ φr cos θ φθ sin θ φz cos θ ]T ,

where φr and φz are obtained from modal analysis corresponding to the symmetric-option-

mode (i.e., φr = ū1 and φz = w̄1) and φθ is obtained from the antisymmetric-option-mode

(φθ = ¯̄v1). Substituting for S0 and φ in the above integral we get

∫

Ae

∫ 2π

0

S0 : ∇φT
∇φ rdθ dAe =

∫

Ae

f (S0, φr, φθ, φz, r, z) r dAe,
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where

f (S0, φr, φθ, φz, r, z) = 2πS0,13

(
∂φθ

∂r

∂φθ

∂z
+
∂φr

∂r

∂φr

∂z
+
∂φz

∂r

∂φz

∂z

)

+ 4πS0,22
φθ

r

φr

r

+ πS0,11

((
∂φz

∂r

)2

+

(
∂φr

∂r

)2

+

(
∂φθ

∂r

)2
)

+ πS0,22

(

2

(
φθ

r

)2

+ 2

(
φr

r

)2

+

(
φz

r

)2
)

+ πS0,33

((
∂φθ

∂z

)2

+

(
∂φr

∂z

)2

+

(
∂φz

∂z

)2
)

,

and Ae is the area of the element under consideration. The above integral can be evaluated

using Gauss quadrature after mapping it back to the parent element. Thus

∫

Ae

f (S0, φr, φθ, φz, r, z) r dAe =

∫ 1

−1

∫ 1

−1

f (S0, φr, φθ, φz, ξ, η) r J dξ dη,

where ξ and η are the natural coordinates of the parent element and J is the Jacobian

of the transformation. We use a three point Gauss quadrature scheme to evaluate this

integral. Note that in spite of apparent division by r in the integrand, there is actually

no singularity at r = 0; and there are no Gauss points at r = 0 either; so the integrals

converge satisfactorily and three point Gauss quadrature is good enough.

10.4.2
∫

V ρφ · φ dV

This integral is unity if the mode shapes are normalized with respect to the mass matrix.

However, our extraction of mode shape from ANSYS involves a minor trick which results

in a mode shape that is not mass-normalized. Hence, we directly evaluate this integral.

Evaluated over each element, this becomes

∫

Ve

ρφ · φ dVe =

∫

Ae

∫ 2π

0

ρ
(
φ2

r cos2 θ + φ2
θ sin2 θ + φ2

z cos2 θ
)
r dθ dAe

= πρ

∫

Ae

(
φ2

r + φ2
θ + φ2

z

)
r dAe.
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10.4.3
∫

V ρ (n̂ × n̂ × φ) · φ dV

Since the axis of spin is along the Z axis, n̂ = k̂ and this integral becomes

∫

Ve

ρ (n̂ × n̂ × φ) · φ dVe = −ρ
∫

Ae

∫ 2π

0

(
φ2

r cos2 θ + φ2
θ sin2 θ

)
r dθ dAe

= −πρ
∫

Ae

(
φ2

r + φ2
θ

)
r dAe.

In all the numerically evaluated integrals above, φr, φθ and φz are interpolated using

standard bilinear shape functions from their nodal values. The derivatives of these displace-

ment components are evaluated using routine finite element procedures as described, e.g.,

in [34]. This routine procedure is not discussed here in detail.

10.5 Results

We consider six axisymmetric geometries as shown in figure 10.1, identical to those in

chapter 8 in geometry and material properties.

The first two rotors are modeled as having simply supported end faces, approxi-

mately implemented in the finite element model by restricting endface nodes to have axial

displacements only; the last four have their left faces fully fixed, with no other restraints.

From Eq. 5.2 it is seen that the boundary conditions for the first two geometries

involve surface terms that are not zero. However, for our calculation we have neglected

these terms (an estimate of this term for the cylinder in chapter 8 showed that it is only

about 8% of the volume term, which is itself only a part of the calculation). For the other

four geometries the surface term is zero.

We use a single mode projection for the first three geometries while we use a two

mode projection for the remaining three geometries. Table 10.1 compares the critical speeds

obtained using our modal projection method with harmonic elements against critical speeds

obtained using the load-stepping calculation in ANSYS (chapter 2) and our nonlinear finite

element code (appendix A). It is seen that our modal projection method predicts the
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Figure 10.1: Rotor geometries considered.

critical speeds very well. The key point to note here is the match between the results

obtained here using harmonic elements and the results obtained in chapter 8 using the

more computationally demanding three dimensional formulation.

Next we consider the remaining three geometries. Table 10.2 compares the critical

speeds as estimated by our modal projection method with the analytical estimates. It is

seen that our method makes excellent prediction of the critical speeds. As noted earlier

in chapter 8, we capture imaginary critical speeds, representing suppression of conceivable

whirling modes due to gyroscopic effects. As mentioned above, the key point here is the

match between the results obtained here using harmonic elements and the results obtained

using the more computationally demanding three dimensional formulation.

10.6 Concluding remarks

We have computed the critical speeds of arbitrary axisymmetric rotors using two dimen-

sional harmonic elements and a prestress based continuum level formulation with no need

for explicitly added on gyroscopic terms. For simplicity, we have also used modal projec-
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Rotor ωf Critical speed Ωc

(harmonic ANSYS Our code 3D modal Harmonic modal

element) projection projection

(chap. 2) (appendix A) (chap. 8)

1499.48 1546.46 1545.38 1544.96 1546.00

Cylinder

969.24 990.70 991.48 990.38 990.42

Cone

363.77 381.18 380.05 380.18 381.03

Bottle

Table 10.1: Comparison of critical speeds from various methods. All speeds and frequencies

in rad/s. Note that the difference between bending and whirling frequencies is relatively

small (e.g., about 3% for the cylinder). Nevertheless, this small difference is captured to

within about 1.4%.

Rotor ωf Critical speeds Ωc

(harmonic Analytical 3D modal Harmonic modal

element) (Approximate) projection projection

(chap. 6) (chap. 8)

0.125 0.234 0.234 0.234

Beam Cyl. (2.59) 1.98i 1.96i 1.95i

0.171 0.477i 0.462i 0.474i

Shell (4.02) 1.73 1.76 1.72

0.109 0.330 0.334 0.330

Bell (3.59) 1.55i 1.51i 1.53i

Table 10.2: Comparison of critical speeds from various methods. All speeds and frequencies

in rad/s. Modal projections performed with two modes. The imaginary values represent

conceivable whirling motions that are actually suppressed by gyroscopic terms.
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tions, which allows the calculation to be done using routinely available commercial code

along with some volume integrals on the side (the actual numerical integration is done over

areas and not volumes).

The new harmonic element formulation was checked against the results of three di-

mensional modal projection described in chapter 8. The match is excellent: as discussed

before, the difference between the lateral non-spinning bending frequencies and the synchro-

nous whirl frequencies was captured accurately therein, and those results have now been

well matched by the computationally much more efficient harmonic element formulation.



Chapter 11

Asynchronous whirl

In this chapter we use our formulation to study asynchronous whirl. We have already de-

scribed asynchronous whirl through an analytical example in chapter 6 (see section 6.2.2.2).

We now present numerical solutions for arbitrary shaped rotors.

11.1 Modal projections

We now derive the modal projection formulation for asynchronous whirl. The method

developed is valid for both axisymmetric and non-axisymmetric rotors. We begin with the

dynamic equilibrium equation,

∇ · (FS) = ρ0
∂2χ

∂t2
. (11.1)

The difference between synchronous and asynchronous whirl is that in the latter

case the shaft is no longer static when viewed in a frame rotating at the shaft spin speed.

If we write our equations in such a rotating frame, the displacement of each point on the

rotor is now a function of time. Hence, if

u =
∑

k

ak φk

represents the displacements of points on the rotor expressed in the rotating coordinate

system, the coefficients ak are now functions of time. In the synchronous whirl case, a was

constant. This will have consequences for the acceleration term.
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We write our equations in a reference frame rotating about the bearing centerline at

the spin speed of the shaft (see figure 11.1). We express the motion of the rotor as a linear

combination of lateral vibration modes. Since in this case points on the rotor will in general

not move in straight lines as seen in the rotating frame, we need at least two non-coplanar

modes to describe the motion of the rotor. We will illustrate our calculation by choosing

two modes, say φ1 and φ2, corresponding to lateral vibrations in different planes. For an

axisymmetric rotor, two modes with the same natural frequency will be used.

Shaft spin

X

Y
X'Y'

Ω

+

Figure 11.1: The frame X ′-Y ′ rotates about the bearing centerline at the rate Ω. A typical

point on the centerline of the shaft moves along an arbitrary curve.

The displacement of any point on the rotor, as seen in the rotating frame, is

u = u0 + a(t)φ1(X) + b(t)φ2(X),

where u0 is, as before, the spin-induced deformation and a(t) and b(t) are generalized

coordinates describing the configuration of the rotor. Substituting into Eq. 11.1, using the

St. Venant-Kirchhoff material relation and using approximations similar to those made in

section 4.3, we get

∇ · S0 + a∇ · S1 + b∇ · S2 + a∇ · (∇φ1S0) + b∇ · (∇φ2S0) = ρ0
∂2χ

∂t2
, (11.2)

where

S0 = λ (trE0) I + 2µE0 with E0 =
1

2

(
∇u0 + ∇uT

0

)
,
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S1 = λ (trE1) I + 2µE1 with E1 =
1

2

(
∇φ1 + ∇φT

1

)
,

S2 = λ (trE2) I + 2µE2 with E2 =
1

2

(
∇φ2 + ∇φT

2

)
.

The acceleration of the point with position vector χ is given by [31]

∂2χ

∂t2
=
d2a

dt2
φ1 +

d2b

dt2
φ2 + 2Ω ×

(
da

dt
φ1 +

db

dt
φ2

)

+ Ω × Ω × (X + aφ1 + bφ2) .

where X is the initial position vector of the point, i.e., before deformation.

Choosing two different virtual displacements, one for each of the two mode shapes,

as

δw1 = δaφ1,

δw2 = δbφ2,

virtual work gives:

∫

V

(∇ · S0 + a∇ · S1 + b∇ · S2 + a∇ · (∇φ1S0)

+b∇ · (∇φ2S0)) · δwk dV =

∫

V

ρ0
∂2χ

∂t2
· δwk dV, k = 1, 2. (11.3)

Since φ1 and φ2 are chosen as mass normalized mode shapes of the rotor, we obtain some

simplifications in the virtual work calculation. In particular we have, as described in section

5.2, ∫

V

(∇ · Sm) · φn dV = −ρ0ω
2
m

∫

V

φm · φn dV = −ρ0ω
2
mδmn,

where δmn = 1 if m = n and 0 otherwise. Also the term ∇ · S0 on the left side of Eq. 11.3

is balanced by the body force that causes it, the ρ (Ω×Ω×X) term on the right side, and

these terms drop out of the equation.

Substituting the virtual displacements into Eq. 11.3, we get

−aω2
1+a

∫

V

(∇ · (∇φ1S0))·φ1 dV+b

∫

V

(∇ · (∇φ2S0))·φ1 dV = ä+ρȧ

∫

V

:0
(2Ω × φ1) · φ1 dV

+ ρḃ

∫

V

(2Ω × φ2) · φ1 dV + aρ

∫

V

(Ω × Ω × φ1) · φ1 dV + bρ

∫

V

(Ω × Ω × φ2) · φ1 dV,

(11.4)
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and

−bω2
2+a

∫

V

(∇ · (∇φ1S0))·φ2 dV+b

∫

V

(∇ · (∇φ2S0))·φ2 dV = b̈+ρȧ

∫

V

(2Ω × φ1)·φ2 dV

+ ρḃ

∫

V

:0
(2Ω × φ2) · φ2 dV + aρ

∫

V

(Ω × Ω × φ1) · φ2 dV + bρ

∫

V

(Ω × Ω × φ2) · φ2 dV,

(11.5)

where the dots above a and b denote time derivatives. These equations, written in matrix

notation, appear as

[

1 0

0 1

]{

ä

b̈

}

+

[

0 G1,2

−G1,2 0

]{

ȧ

ḃ

}

+

[

K1,1 K1,2

K1,2 K2,2

]{

a

b

}

= 0. (11.6)

The above governs motion of the rotor written in a rotating coordinate system that

spins at the shaft speed Ω, as projected onto two modes. This equation is identical in

structure to similarly motivated but differently derived equations in the literature [16]. For
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k

Ω

L

R

Ω

Ω

x

y

Figure 11.2: Ewins’s rotor with asymmetric springs on supports that rotate with the disc.

example, consider Ewins’s rotor of chapter 6. The springs now have different stiffnesses kx

and ky and rotate with the disc as shown in figure 11.2. The governing equation of motion
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of this rotor is (Eq. 2.118 pg. 97 of [25] with k replaced by kx or ky)





I0
L2

0

0
I0
L2






{

ẍR

ÿR

}

+






0 −2ΩI0
L2

+
JΩ

L2

2ΩI0
L2

− JΩ

L2
0






{

ẋR

ẏR

}

+






−I0Ω
2

L2
+
JΩ2

L2
+ kx 0

0 −I0Ω
2

L2
+
JΩ2

L2
+ ky






{

xR

yR

}

= {0} , (11.7)

where xR and yR are the coordinates in the rotating frame and the remaining parameters are

as defined in section 6.2. As can be seen, Eq. 11.6 and Eq. 11.7 are identical in structure.

However, Eq. 11.6 uses modal generalized coordinates that are different from Cartesian

coordinates, and can be transferred to the inertial coordinate system by multiplication

with a rotation matrix only after a and b are suitably reinterpreted as components of a

vector. We will now consider some examples.

11.2 Axisymmetric rotor example

We now present the results for the cylinder example considered in chapter 8. This is an

axisymmetric geometry and consequently the two modes chosen, as per the above discus-

sion, have the same natural frequency (ωf = 1498.73 rad/s). The cylinder spins about its

axis (the Z direction).

We start with Eq. 11.6, substitute

a = Aeλt and b = Beλt

and solve for λ. We get two pairs of complex conjugate eigenvalues with corresponding

complex conjugate eigenvectors. The synchronous whirl speed is that speed at which the

rotor is stationary as seen in the rotating frame. This happens when λ = 0. For other

values of λ the actual motion, as seen in an inertial frame, can be obtained as follows. After

deformation, the coordinates of a point P on the rotor, with reference position (xP , yP , zP ),

in the rotating coordinate system, are






xR

yR

zR







=







xP

yP

zP







+ Aeλt







φx
1,P

φy
1,P

φz
1,P







+Beλt







φx
2,P

φy
2,P

φz
2,P







, (11.8)
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where (φx
1,P , φ

y
1,P , φ

z
1,P ) and (φx

2,P , φ
y
2,P , φ

z
2,P ) are the components of mode 1 and 2 respec-

tively for the point P. This can be transformed to the inertial coordinate system using






xI

yI

zI







=







cos(Ωt) − sin(Ωt) 0

sin(Ωt) cos(Ωt) 0

0 0 1













xR

yR

zR







, (11.9)

where Ω is the spin speed of the shaft. One can determine the path of point P on the
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Figure 11.3: Campbell diagram of the cylindrical rotor. The eigenvalue plotted is λ + iΩ

which is purely imaginary at all speeds for this rotor geometry. Note that the horizontal

and vertical scales are unequal.

rotor using Eq. 11.9. If one of the possible paths is a circle, then a steady circular whirling

solution exists and one can determine the natural frequency of the spinning rotor using the

relation

ωf = λ+ iΩ,

where we note that λ is purely imaginary. For the cylinder geometry, as is well known, such

a whirling solution does exist and we can determine the natural frequency as a function of

the spin speed. Such a plot, called a Campbell diagram [16], is shown in figure 11.3 where

our results are compared with analytical results given in [38]. Our results match well with

the analytical results.
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There are two branches shown in the plot above. The upper one with positive

slope corresponds to forward whirl and the lower one with negative slope corresponds to

backward whirl. The thin line shown in the plot is the x = y line and the intersection of

this with the forward whirl line corresponds to the critical speed of the shaft.

Next, we consider the orbit of the rotating cylinder at a non-critical speed. First,

the eigenvalue problem arising from Eq. 11.6 is solved for some non-critical speed Ω. The

solution yields two pairs of complex conjugate eigenvalues: λ1, λ1, λ2 and λ2. The eigenval-

ues along with the eigenvectors yield the path of the rotor as seen in a rotating coordinate

system through Eq. 11.8. For example, for one complex conjugate pair of eigenvalues, say

λR + i λI and λR − i λI , with complex conjugate eigenvectors u + i v and u − i v, we have

the solution {

a1

b1

}

= α(u+ i v)eλRt+i λI t + α(u− i v)eλRt−i λI t

for any α such that a1 and b1 are real. Similarly for the second pair of complex conjugate

eigenvalues we would have another solution
{

a2

b2

}

of a similar form. And finally, the general solution is of the form
{

a

b

}

=

{

a1

b1

}

+

{

a2

b2

}

.

The path in the rotating coordinate system of a typical point P on the rotor is then given

by 





xR

yR

zR







=







xP

yP

zP







+ a







φx
1,P

φy
1,P

φz
1,P







+ b







φx
2,P

φy
2,P

φz
2,P







, (11.10)

The path in the inertial frame can then be computed using Eq. 11.9.

Figure 11.4 shows the orbits in the X-Y plane for a point P located on the axis of

the cylinder near the center of the rotor span. The governing equations, from Eq. 11.6, in

the rotating coordinate system at a speed Ω are
[

1 0

0 1

]{

ä

b̈

}

+

[

0 1.938 Ω

−1.938 Ω 0

]{

ȧ

ḃ

}

+

[

ω2
f − 0.941 Ω2 0

0 ω2
f − 0.941 Ω2

]{

a

b

}

= 0,
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where ωf = 1498.7 rad/s is the natural frequency of the rotor. For the computation we

choose Ω = 900 rad/s, which is less than the critical speed of 1546.4 rad/s. For Ω = 900

rad/s, the four eigenvalues are obtained as

λ1 = 626.18 i, λ1 = −626.18 i, λ2 = 2370.17 i and λ2 = −2370.17 i,

and the corresponding four eigenvectors are

v1 =

{

−3.78 i

3.78

}

, v2 =

{

3.78 i

3.78

}

, v3 =

{

1

−i

}

and v4 =

{

1

i

}

,

where in the above, all elements have been arbitrarily normalized with respect to the

first element of v3 as returned by MATLAB. Note that the first entry of the eigenvector

corresponds to the modal coordinate a and the second to the modal coordinate b.

Figure 11.4 (a) shows the path corresponding to the eigenvalue pair λ1 and λ1 as

seen in the rotating frame. The position (xR, yR, zR) of the point P (chosen to be on the

centerline of the cylinder) tracing this path at any time t is obtained by first calculating

the modal coordinates using the solution
{

a

b

}

= v1e
λ1 t + v2e

λ1 t

and then using Eq. 11.10. The path as seen in an inertial frame can now be computed

using Eq. 11.9 and is shown in figure 11.4 (b). The paths are seen to be perfect circles

representing steady circular whirling motion.

The same is true for the path corresponding to eigenvalue pair λ2 and λ2 shown in

figures 11.4 (c) (rotating frame) and 11.4 (d) (inertial frame). The position of the point P

for this path (in the rotating frame) is calculated using the solution
{

a

b

}

= v3e
λ2 t + v4e

λ2 t

followed by Eq. 11.10. The path as seen in the inertial frame can then be computed using

Eq. 11.9.

Figures 11.4 (e) and (f) show one possible solution obtained as a combination of all

eigenvectors. The path is no longer a circle. Here
{

a

b

}

= v1e
λ1 t + v2e

λ1 t + v3e
λ2 t + v4e

λ2 t,
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Figure 11.4: Orbital paths of a point on the axis of the cylinder for Ω = 900 rad/s. There

are four eigenvalues (λ = ±626.18 i and λ = ±2370.17 i) describing the motion in the

rotating coordinate system. Figures (a), (c) and (e) are the paths seen in the rotating

frame while (b), (d) and (f) correspond to those in the inertial frame. Displacements are

arbitrarily scaled.
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and the positions of the point P at time t as seen in the inertial and rotating frame are

calculated using Eq. 11.9 and Eq. 11.10 respectively.

11.3 A non-axisymmetric rotor example

Now we consider a non-axisymmetric rotor where the two principal area moments of inertia

of the cross-section are different. There is a difference in the stiffness in the two principal

directions. The behavior of such rotors is qualitatively different from that of an axisym-

metric rotor in that these rotors have a nonzero region of instability, where the real part of

an eigenvalue is positive.

Consider a shaft of rectangular cross-section. The rotor is 2 m long and the cross-

section is 0.5 m × 0.1 m. The mesh used for the computation is shown in figure 11.5. It

has 5135 elements (10 noded tetrahedral) and 9254 nodes.

Figure 11.5: The mesh of the non-axisymmetric rotor geometry considered.

The procedure for setting up the eigenvalue problem in the rotating coordinate sys-

tem is as described before in section 11.2. In this case we use the first lateral bending mode

in each of the two principal planes, i.e., for a rotor with its axis along the Z direction, the
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first mode in the X-Z plane and the first mode in the Y -Z plane are used. The corre-

sponding natural frequencies are ωf1 = 368.73 rad/s and ωf2 = 1691.24 rad/s respectively.

The eigenvalues are then determined as a function of the spin speed. The speed at which

the eigenvalue becomes zero corresponds to the critical speed or synchronous whirl speed.

At this speed the rotor performs synchronous whirl. For the two mode approximation con-

sidered, two such speeds exist: 369.48 rad/s and 1755.25 rad/s. Between these speeds the

real part of one eigenvalue is positive and the rotor is unstable. A plot of variation of the

real part of that eigenvalue with spin speed is shown in figure 11.6.

We mention that since stiffnesses in the two principal directions are quite different,

two lateral modes in the X-Z plane have natural frequencies less than that of the first

lateral mode in the Y -Z plane. However, the plot in figure 11.6 is made using only one

mode in each principal plane. It is possible that the region of instability corresponding

to the second mode might overlap the present instability zone. However, the onset of

instability at a speed of 369.48 rad/s is beyond doubt.

0 500 1000 1500

0

200

400

600

800

Shaft speed (rad/s)

R
e

a
l 
p

a
rt

 o
f 

th
e

 e
ig

e
n

v
a

lu
e

 (
  λ

  
 )

Unstable Range 

Figure 11.6: Real part of the instability causing eigenvalue λ as a function of spin speed.

The region where this is positive is the instability region. The edges of the instability region

are the synchronous whirl speeds.

The governing equations, from Eq. 11.6, in the rotating coordinate system at a speed
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Ω are (correct to 2 decimal places)

[

1 0

0 1

]{

ä

b̈

}

+

[

0 −1.96 Ω

1.96 Ω 0

]{

ȧ

ḃ

}

+

[

ω2
f1 − 1.00 Ω2 0

0 ω2
f2 − 0.93 Ω2

]{

a

b

}

= 0.

(11.11)

Now we discuss the motion of this rotor at a speed less than the first critical speed,

say 300 rad/s. The solution of the eigenvalue problem for this speed again yields two pairs

of complex conjugate eigenvalues and corresponding complex conjugate eigenvectors. They

are

λ1 = 202.80 i, λ1 = −202.80 i, λ2 = 1768.51 i and λ2 = −1768.51 i,

and

v1 =

{

−27.25 i

−1.19

}

, v2 =

{

27.25 i

−1.19

}

, v3 =

{

1

2.96 i

}

and v4 =

{

1

−2.96 i

}

.

Using these eigenvalues and eigenvectors, the path of a point on the rotor can again be

generated using procedures similar to that described in section 11.2. Figure 11.7 shows a few

possible paths traced by a point P on the rotor centerline. To obtain these paths, { a b }T

is first calculated as: v1e
λ1 t + v2e

λ1 t for the path shown in figure 11.7 (a), v3e
λ2 t + v4e

λ2 t

for figure 11.7 (c) and v1e
λ1 t + v2e

λ1 t + v3e
λ2 t + v4e

λ2 t for figure 11.7 (e). Then the path

in the rotating frame is calculated using Eq. 11.10. Finally, the path in the inertial frame

is calculated using Eq. 11.9.

In this case, the orbits are no longer a circle when viewed in the rotating frame

that spins at the rotor speed. Instead, they are now ellipses as shown in figures 11.7 (a)

and (c). Consequently, the orbits as viewed in the inertial frame are complicated as shown

in figures 11.7 (b) and (d). Any motion of the rotor at this speed can be expressed as a

linear combination of the orbits corresponding to the four eigenvalues. This again will be

a complicated orbit as shown in figures 11.7 (e) and (f).

Unlike the axisymmetric rotor, a non-axisymmetric rotor in general cannot perform

steady circular whirling at any speed (see appendix D). Hence it is not possible to define a

natural frequency for these rotors at a general speed. The above is not always clearly stated

in the rotor literature. It is not uncommon to see the eigenvalue problem (from Eq. 11.6)

supposedly transformed back into the inertial coordinates by multiplying Aeλt with ei Ωt to

get Aei(λ0+Ω)t (see, e.g., section 8.4 of [40]), where iλ0 = λ. However, the term (λ0 +Ω) has



Chapter 11. Asynchronous whirl 108

-5 0 5
-5

0

5

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

-6 -4 -2 0 2 4 6
-5

0

5

-6 -4 -2 0 2 4 6
-5

0

5

-6 -4 -2 0 2 4 6
-5

0

5

-5 0 5
-3

-2

-1

0

1

2

3

(b)(a)

(d)(c)

(f)(e)

INERTIAL

 FRAME
ROTATING

  FRAME

Figure 11.7: Orbital path of a point on the axis of the rotor for Ω = 300 rad/s. There are

four eigenvalues (λ = ±202.80 i and λ = ±1768.51 i) describing the motion in the rotating

coordinate system. Figures (a), (c) and (e) are the paths seen in the rotating frame while

(b), (d) and (f) correspond to those in the inertial frame. Displacements are arbitrarily

scaled.
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no physical meaning for non-axisymmetric rotors and is not the natural frequency of the

rotor. A plot of (λ0 + Ω) against the spin speed Ω only serves to indicate the instability

regions and the critical speeds.
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Figure 11.8: Variation of imaginary part of λ1 with shaft spin speed Ω.

Finally, we consider the following question. Are there spin speeds for which periodic

solutions exist for this rotor? The orbit corresponding to even one of the eigenvalues (λ1

or λ2), as seen in the inertial frame, is not typically periodic in that the path never closes

(see figures 11.7 (a) and (c)). However, if the spin speed Ω and the imaginary part of

the eigenvalue are rational multiples, then the orbit will close and periodic motions exist.

Figure 11.8 plots the variation of imaginary part of λ1 with Ω. The intersections of the

above curve with curves of the form nX−mY = 0 for integer values of m and n correspond

to speeds where a periodic solution exists. Figure 11.9 illustrates four such periodic orbits

corresponding to λ = Ω/2, Ω, 2Ω and 3Ω. The most intriguing is figure 11.9 (b) which

shows a perfect circle that is off-center. Perhaps such a whirling motion might be excited

by self weight of a horizontal non-axisymmetric rotor.
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Figure 11.9: Periodic orbits in the inertial frame. Black dot indicates the bearing centerline.

11.4 Concluding remarks

In this chapter we have extended our prestress based formulation to study asynchronous

whirl. We have done this for both an axisymmetric and a non-axisymmetric rotor. For

the axisymmetric rotor, we found that steady circular whirling solutions exist at all speeds

and one can define a natural frequency of the spinning rotor at all speeds. For the non-

axisymmetric rotor, synchronous whirling occurs at critical speeds. There is also a region

of instability between the two critical speeds. An important finding, not always clearly

recognized in the literature, is that a non-axisymmetric rotor in general cannot perform

steady circular whirling at speeds other than critical speeds. At a typical speed (not in the

instability region) the orbit of the rotor is a complex path as seen in the inertial frame.

Periodic solutions, where the orbit of the rotor is closed, can exist at special speeds. A few

such periodic solutions were also plotted for the non-axisymmetric example considered.
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Internal viscous damping

In this chapter we extend our formulation to include the effect of internal viscous damping.

12.1 Formulation

The internal damping of rotors is frequently modeled by including a term proportional to

the strain rate in the expression for stress. For example, Bolotin [26] uses the following

constitutive relation to account for internal damping:

σ = E

(

ε+ Civ
dε

dt

)

,

where σ is the stress at the point of interest, ε is the corresponding strain, E is the Young’s

modulus and Civ is a damping coefficient. Motivated by this, we will include the effect

of damping in our formulation by adding a term proportional to the strain rate in the

expression for stress:

S = λ tr(E + CivĖ) I + 2µ
(

E + CivĖ
)

, (12.1)

where

E =
1

2

(
∇u + ∇uT

)
and Ė =

1

2

(
∇u̇ + ∇u̇T

)
. (12.2)

As is done everywhere in this thesis, we write the displacement of a point on the rotor as

u = u0 + aφ1 + bφ2,

111
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where only the modal generalized coordinates a and b are functions of time; the spin-

induced deformation u0 and non-coplanar mode shapes φ1 and φ2 are functions of position

only. Thus

u̇ = ȧφ1 + ḃφ2,

where the derivative of the vector is in the rotating frame, for use in Eqs. 12.1 and 12.2.

Substituting the above relations into the equilibrium equation (Eq. 4.1) and proceeding as

in section 4.3 we get

∇ · S0 + (a+ Civȧ)∇ · S1 + (b+ Civ ḃ)∇ · S2 + a∇ · (∇φ1S0) + b∇ · (∇φ2S0) = ρ
∂2χ

∂t2
,

where

Sk = λtr(Ek)I + 2µEk with Ek =
1

2

(
∇φk + ∇φT

k

)
k = 1 , 2.

Choosing virtual displacements δw1 = δa1φ1 and δw2 = δa2φ2, virtual work gives
∫

V

(

∇ · S0 + (a+ Civȧ)∇ · S1 + (b+ Civ ḃ)∇ · S2 + a∇ · (∇φ1S0)

+b∇ · (∇φ2S0)) · δwk dV =

∫

V

ρ
∂2χ

∂t2
· δwk dV, k = 1, 2. (12.3)

The acceleration of the point with position vector χ is given by [31]

∂2χ

∂t2
=
d2a

dt2
φ1 +

d2b

dt2
φ2 + 2Ω ×

(
da

dt
φ1 +

db

dt
φ2

)

+ Ω × Ω × (X + aφ1 + bφ2) ,

where X is the initial position vector of the point, i.e., before deformation.

As discussed in section 5.2,
∫

V

(∇ · Sm) · φn dV = −ρω2
m

∫

V

φm · φn dV = −ρω2
mδmn,

where δmn = 1 if m = n and 0 otherwise. Again the term ∇·S0 is balanced by ρ (Ω×Ω×X)

and these terms drop out of the equation.

Substituting the virtual displacements into Eq. 12.3, we get

− (a+ Civȧ)ω
2
1 + a

∫

V

(∇ · (∇φ1S0)) · φ1 dV + b

∫

V

(∇ · (∇φ2S0)) · φ1 dV

= ä+ ȧρ

∫

V

(2Ω × φ1) · φ1 dV + ḃρ

∫

V

(2Ω × φ2) · φ1 dV

+ aρ

∫

V

(Ω × Ω × φ1) · φ1 dV + bρ

∫

V

(Ω × Ω × φ2) · φ1 dV, (12.4)
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and

− (b+ Civ ḃ)ω
2
2 + a

∫

V

(∇ · (∇φ1S0)) · φ2 dV + b

∫

V

(∇ · (∇φ2S0)) · φ2 dV =

b̈+ ȧρ

∫

V

(2Ω × φ1) · φ2 dV + ḃρ

∫

V

(2Ω × φ2) · φ2 dV

+ aρ

∫

V

(Ω × Ω × φ1) · φ2 dV + bρ

∫

V

(Ω × Ω × φ2) · φ2 dV, (12.5)

where the dots above a and b denote time derivatives.

These equations, written in matrix notation, appear as

[

1 0

0 1

]{

ä

b̈

}

+

[

G1,1 G1,2

G2,1 G2,2

]{

ȧ

ḃ

}

+

[

K1,1 K1,2

K2,1 K2,2

]{

a

b

}

= 0. (12.6)

The above set of equations can be set up as an eigenvalue problem in the rotating

coordinate system. Further, we will only consider an axisymmetric geometry for simplicity

and greater relevance. We set

a = Aeλt and b = Beλt

in Eq. 12.6 and solve for the eigenvalue λ. Since we have damping, the eigenvalue λ will

be complex.

12.2 Results for a cylindrical rotor

We again consider the cylinder geometry of chapter 8. The governing equations at any

speed Ω for this rotor are

[

1 0

0 1

]{

ä

b̈

}

+

[

Civ ω
2
f 1.938 Ω

−1.938 Ω Civ ω
2
f

]{

ȧ

ḃ

}

+

[

ω2
f − 0.941 Ω2 0

0 ω2
f − 0.941 Ω2

]{

a

b

}

= 0,

where ωf = 1498.7 rad/s is the natural frequency of the rotor. We use three different

values for Civ: 4 × 10−6 s, 5 × 10−6 s and 6 × 10−6 s. A plot of the imaginary part of

the eigenvalue against the spin speed Ω is shown in figure 12.1 (left). Figure 12.1 (right)

shows the variation of the real part with Ω . It is seen that the real part of λ is negative
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Figure 12.1: Left: plot of imaginary part of λ against spin speed Ω. Right: plot of real

part of λ against spin speed Ω.

at speeds below the critical speed (1546.4 rad/s for this geometry) and the rotor is stable

at these speeds. At the critical speed the real part is zero. This can be intuitively seen in

that, at the critical speed, the shaft performs synchronous whirl and is static when viewed

in a rotating frame spinning with the shaft. Hence ȧ and ḃ are zero and internal viscous

damping plays no role at this speed. Beyond the critical speed the real part of λ is positive

and the rotor is unstable. In practice, the rotor may be stabilized by external damping [40]

not included here.



Chapter 13

Conclusions

In this thesis we have approached rotordynamics from a fresh perspective. The central

insight of this thesis is that gyroscopic terms used in conventional formulations arise from

the spin-induced prestress in the rotor.

With this insight we have developed a new continuum level three dimensional for-

mulation for describing rotordynamics in chapter 4. Two modal projection methods were

then developed in chapter 5 as an approximate implementation of our formulation. The

first method is non-iterative and involves computation of two volume integrals in addition

to the standard modal analysis. The second method is iterative and involves computation

of one volume integral in addition to a prestressed modal analysis. The prestress based

formulation along with the two modal projection methods form the main contribution of

this thesis.

The validity of our formulation was analytically checked with several examples in

chapter 6. In this chapter we first used our formulation to solve a few classical buckling

problems. In particular, we were able to derive the equation governing buckling of Euler-

Bernoulli beams. This approach, while not new to buckling, showed the fundamental

similarity between buckling and rotor whirl. Both involve a state of prestress that offers

a non-negligible restoring force upon infinitesimal disturbances. We then considered a

detailed analytical rotor example from Ewins [25]. The validity of our formulation was

established by matching the equations of motion at a general speed. Two more examples

were considered: a spinning torque free rigid cylinder and the foreshortening of a rod
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rotating like a helicopter blade. Analytical matches with known solutions showed the

versatility of our formulation.

A semi-analytical application of our formulation to the problem of a spinning cylin-

der under axial loads was taken up in chapter 7. There were two key aspects to the study.

One, it provided further evidence to the correctness of our formulation. Second, it illus-

trated the fundamental role played by the assumed kinematics in the virtual work method.

The nominal Timoshenko kinematics (without warping) was seen to be unsuitable for use

in our formulation. We then resorted to a kinematics obtained from a three dimensional

elasticity solution. This kinematics was found to perform very well and a good match was

obtained with results from Timoshenko theory, for L/D ≥ 4.

The real strength of our approach was demonstrated in chapter 8. Here we showed

the numerical implementation of our formulation using three dimensional finite element

method. Seven different rotor geometries including an asymmetric one were chosen. Three

of these were beam-plus-rigid-body models where an analytical solution (procedure de-

scribed in chapter 6) was available for comparison. One was a cylinder for which analytical

answers were available. For the remaining three geometries, two different techniques were

used to provide a reliable answer for comparison: a laborious load-stepping method (de-

scribed in chapter 2) using ANSYS and a direct implementation using our own nonlinear

finite element code (described in appendix A using hybrid elements and chapter 9 using

isoparametric elements). The comparison showed that the modal projection based approx-

imation of our formulation gave excellent results.

The implementation of our formulation using harmonic elements for axisymmetric

rotors was shown in chapter 10. Harmonic elements reduce the dimension of the problem

from three to two resulting in large savings in computational time. This offers perhaps the

quickest way for accurate computation of critical speeds of arbitrary axisymmetric rotors.

In chapter 11 we used our formulation to study asynchronous whirl. Two examples

were considered; a cylinder and a rotor with rectangular cross-section. We showed that

steady circular whirling is possible for the cylinder at all speeds. Hence, a Campbell

diagram plotting the natural frequency as a function of the spin speed is meaningful.

However, it was found that the non-axisymmetric rotor considered cannot execute steady

circular whirling at all speeds. In fact the orbit of a typical point on the rotor does not even
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close except at some special speeds. It is then not possible to associate a natural frequency

with this rotor at a general speed. The rotor can nevertheless execute periodic motion at

some special speeds.

Finally, in chapter 12 we used our formulation to study the effect of internal viscous

damping. We incorporated this damping by adding a term proportional to the strain rate

in the expression for stress. It was found that such damping destabilizes the rotor at all

speeds above the critical speed. In practice the rotor may be stabilized by external damping

not considered here.



Appendix A

Direct nonlinear finite element

analysis

This description of nonlinear finite element analysis of rotors using hybrid elements is taken

from [19].

Our direct nonlinear analysis follows the approach and notation of Jog and Kelkar

[39]. The strategy for this specific rotor whirl application, as was also discussed in chapter 9,

is to write equations in a rotating coordinate system; to compute the nonlinear axisymmetric

spin-induced deformation solution (in a 3-dimensional setting) as a function of rotation

speed; and to identify the particular speed at which infinitesimal displacements (which

we expect to be non-axisymmetric from physical intuition) exist which also satisfy the

governing equations. In other words, we seek the speed at which the whirling solution

bifurcates from the straight solution. We used isoparametric elements in chapter 9; here

we use hybrid elements. Note that this formulation retains all terms that were dropped

from our formulation in chapter 4.

We now briefly describe the strong form of the governing equations and the two-

field variational formulation that is used to derive the finite element equations. All the

equations are written with respect to the reference configuration V whose boundary Γ is

composed of two open, disjoint regions, Γ = Γu ∪ Γt. The spatial variables in the reference

and deformed configurations are denoted by X and x, respectively, and within the context

of the static problems that we consider in this work, we assume a one-to-one mapping χ
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that takes X to x, i.e., x = χ(X) = X + u, where u is the displacement field. The

deformation gradient is given by F := ∇χ = I + ∇u, where the gradient is with respect

to the material coordinates X.

We consider the following boundary value problem:

Find the displacements u, second-Piola Kirchhoff stress S, Green strain E and

tractions t0, such that

∇ · (FS) + ρ0b
0 = 0 on V, (A.1)

E = Ê(S) on V, (A.2)

E = Ē(u) :=
1

2
[(∇u) + (∇u)T + (∇u)T (∇u)] on V, (A.3)

t0 = FSn0 on Γ, (A.4)

t0 = t̄
0
, on Γt (A.5)

u = 0, on Γu, (A.6)

where ρ0 = (det F )ρ is the density in the reference configuration in terms of the density

ρ in the deformed configuration, n0 is the outward normal to Γ , t0 := ‖cof F ‖ t are the

tractions defined on the reference configuration in terms of the actual tractions t on the

deformed configuration, and b0(X) := b(χ(X)) = ρΩ2(X̃ + ũ) is the body force field on

the reference configuration, where X̃ and ũ are obtained by excluding the angular velocity

direction component from X and u, respectively (if the rotor nominally spins about the

Z-axis, this means the Z-component of these vectors is set to zero). We emphasize that

Eq. (A.2) does not imply that the stress-strain relation S = Ŝ(E) needs to be analytically

inverted – numerical inversion is acceptable.

The two field variational principle on which our finite element formulation is based

[39] enforces Eqs. (A.1) and (A.5), and Eq. (A.3) in a weak sense. Thus, if

Vu := {uδ : uδ = 0 on Γu}

VS := {Sδ : ST
δ = Sδ on V }

denote the space of variations of the displacements and second Piola-Kirchhoff stress, the

two-field variational formulation (after carrying out an appropriate integration by parts of
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the first variational statement) is given by
∫

V

S : Ēδ dV =

∫

V

ρ0uδ · b0dV +

∫

Γt

uδ · t0 dΓ ∀uδ ∈ Vu, (A.7)

∫

V

Sδ :
[

Ē(u) − Ê(S)
]

dV = 0 ∀Sδ ∈ VS, (A.8)

where Ē is given by Eq. (A.3), and its variation δĒ is given by

Ēδ(u,uδ) =
1

2
[(∇uδ) + (∇uδ)

T + (∇u)T (∇uδ) + (∇uδ)
T (∇u)].

To obtain the finite element matrices, we introduce the discretizations

u = Nû, Sc = Pβ,

uδ = Nûδ, (Sδ)c = Pβδ,

u∆ = Nû∆, (S∆)c = Pβ∆.

Let the “strain-displacement” matrices BL and BNL, and the stress matrix SM be the

same as in a conventional (nonlinear) finite element formulation (see, e.g., [41]), and let

Q =

∫

V

BNLSk
MBNL dV,

A =

∫

V

P T BL dV,

H =

∫

V

P T
C

−1
c P dV,

f 1 = Ω2

∫

V

ρ0Ñ
T
(X̃ + ũk) dV +

∫

Γt

NT t0 dΓ −
∫

V

BT
LSk

c dV,

f 2 =

∫

V

P T
[

Êc(S
k) − Ēc(u

k)
]

dV,

(A.9)

where Ñ is obtained by excluding the shape functions associated with the angular velocity

direction from N . Then the finite element equations are given by

(K − Ω2M)û∆ = f∆, (A.10)

where

K = Q + AT H−1A,

M =

∫

V

ρÑ
T
Ñ dV,

f∆ = f 1 + AT H−1f 2.

(A.11)
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The critical speed of the rotor is the angular velocity Ω at which the matrix (K −
Ω2M ) becomes singular. For actual computation we start with an angular velocity Ω which

is slightly less than the natural frequency of the fundamental mode of lateral vibration.

Then Ω is increased slowly and the reciprocal of the condition number (RCOND) of the

matrix (K − Ω2M ) is monitored. RCOND steadily decreases and then increases again.

The spin speed at which it becomes zero is calculated by extrapolation from either side and

this speed is the critical speed. Results for the Timoshenko rotor are given below in figure

A.1. Two other geometries were also studied, and similar consistency with other results

was obtained.
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Figure A.1: Zoomed plot of reciprocal of condition number (RCOND) against speed.



Appendix B

Some relevant formulae

B.1 Grad and Div in Cylindrical Coordinates

Let φ be a vector with cylindrical components φr, φθ and φz. Then

∇φ =










∂φr

∂r

1

r

(
∂φr

∂θ
− φθ

)
∂φr

∂z
∂φθ

∂r

1

r

(
∂φθ

∂θ
+ φr

)
∂φθ

∂z
∂φz

∂r

1

r

∂φz

∂θ

∂φz

∂z










.

For a second order tensor T,

∇ · T =







∂Trr

∂r
+

1

r

∂Trθ

∂θ
+
Trr − Tθθ

r
+
∂Trz

∂z

∂Tθr

∂r
+

1

r

∂Tθθ

∂θ
+
Trθ + Tθr

r
+
∂Tθz

∂z

∂Tzr

∂r
+

1

r

∂Tzθ

∂θ
+
Tzr

r
+
∂Tzz

∂z







.

B.2 The Function g in Eq. (6.10)

g (R, q, E, θ, r) =
1

2rAR3
(40 qR3r cos(4 θ) − 24 qR3r
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−15 qR4 cos(4 θ) + 9 qR4 − 27Er2AR cos(4 θ)

+21Er2AR + 15ErAR2 cos(4 θ) − 9ErAR2

+20 qR2r2 − 20 qR2r2 cos(4 θ) − 12Er3A+ 12Er3A cos(4 θ)).



Appendix C

Numerical integration in MATLAB

In this section we describe the details of the numerical integration to evaluate the integrals

involved in computing the critical speed.
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Figure C.1: Ten noded tetrahedral element. ξ1, ξ2, ξ3 and ξ4 are the local volume coordi-

nates.

Figure C.1 shows the 10 noded tetrahedral element. ξ1, ξ2, ξ3 and ξ4 are the local

volume coordinates. Only three of these are independent since ξ1 + ξ2 + ξ3 + ξ4 = 1. The

shape functions for this element are [34]
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Ni = ξi (2ξi − 1) for i = 1, 2, 3, 4.

N5 = 4ξ1ξ2 N6 = 4ξ2ξ3 N7 = 4ξ3ξ1

N8 = 4ξ1ξ4 N9 = 4ξ2ξ4 N10 = 4ξ3ξ4

The integrals to be evaluated numerically are of the form
∫

V

f (u) dV,

where the domain V is the volume of the rotor, f is a scalar function of vector u defined

on the mapped element whose values at the nodes are known. For a finite element mesh

with Ne elements this integral becomes

Ne∑

k=1

∫

Ve

f (u) dVe,

where Ve is the volume of the kth element. Using routine isoparametric mapping these

integrals are evaluated over the parent element. The integral over the domain Vp of a

parent element is ∫

Vp

f (U) JdVp, (C.1)

where J is the determinant of the Jacobian [34] and

u = [N ]3×30 {U},

where {U}30×1 is the nodal values of vector u arranged component-wise as

{U} = {u1
x u

1
y u

1
z u

2
x ... u

10
z }.

and

[N ]3×30 =







N1 0 0 N2 0 0 . . . N10 0 0

0 N1 0 0 N2 0 . . . 0 N10 0

0 0 N1 0 0 N2 . . . 0 0 N10







The integration in Eq. C.1 is evaluated numerically using a five point Gauss quadra-

ture scheme (see table C.1 for details). Thus

∫

Vp

f (U) JdVp =
5∑

k=1

wkfkJk, (C.2)
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Gauss Pt. ξ1 ξ2 ξ3 ξ4 weight

1 1
4

1
4

1
4

1
4

- 4
30

2 1
2

1
6

1
6

1
6

9
120

3 1
6

1
2

1
6

1
6

9
120

4 1
6

1
6

1
2

1
6

9
120

5 1
6

1
6

1
6

1
2

9
120

Table C.1: Gauss points and weights.

where fk and Jk are respectively the values of the function f and the Jacobian J at the

kth Gauss point. There are two different integrals that are calculated separately in Matlab.

The first one is ∫

V

(n̂× n̂× φ) · φ dV,

where n is the column vector corresponding to the unit vector along the axis of the rotor.

Thus for this case the vector function f in Eq. C.1 is

f = (n̂× n̂× φ) · φ.

Now

φ = [N ]3×30 {Φ},

where {Φ}30×1 is the nodal values of vector φ arranged component-wise as

{Φ} = {φ1
x φ

1
y φ

1
z φ

2
x ... φ

10
z }.

To evaluate the integral, the function f is evaluated at each of the Gauss points and summed

using Eq. C.2.

The second integral to be evaluated is
∫

V

∇φS0 : ∇φ dV,

and hence

f = ∇φS0 : ∇φ = tr
(
S0∇φT∇φ

)
.

Also

S0 = λ tr

(∇u0 + ∇uT
0

2

)

I + 2µ

(∇u0 + ∇uT
0

2

)

.
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The integral can be evaluated once ∇φ and ∇u0 are known. The procedure for evaluating

∇φ and ∇u0 is identical. We will illustrate it for ∇φ. Now

∇φ =












∂φx

∂x

∂φx

∂y

∂φx

∂z

∂φy

∂x

∂φy

∂y

∂φy

∂z

∂φz

∂x

∂φz

∂y

∂φz

∂z












, where φx, φy and φz are components of φ.

Again, the procedure for evaluation of each of the entries of the above matrix is similar.

We evaluate
∂φx

∂x
:

∂φx

∂x
=

∂

∂x

10∑

k=1

Nkφ
k
x =

10∑

k=1

∂Nk

∂x
φk

x =
10∑

k=1

3∑

j=1

∂Nk

∂ξj

∂ξj
∂x

φk
x,

where φk
x is the value of φx at node k and the summation over j runs only till 3 since

ξ4 is not independent and can be expressed in terms of ξ1, ξ2 and ξ3. The above double

summation can be easily evaluated at Gauss point locations. Once each component of ∇φ
and ∇u0 is known, the integral is easily evaluated using Eq. C.2.



Appendix D

Circular motion of non-axisymmetric

rotors

It was stated in chapter 11 that it is not possible for a general non-axisymmetric rotor to

perform steady circular whirling at a non-critical speed. We now prove it for the rectangular

cross-sectioned rotor considered in section 11.3. The governing equations for this rotor at

a speed Ω are (correct to 2 decimal places)

[

1 0

0 1

]{

ä

b̈

}

+

[

0 −1.96 Ω

1.96 Ω 0

]{

ȧ

ḃ

}

+

[

ω2
f1 − 1.00 Ω2 0

0 ω2
f2 − 0.93 Ω2

]{

a

b

}

= 0.

(D.1)

For the rotor to perform steady circular whirling (circular motion in the inertial

frame) it should follow a circular path when viewed in the rotating frame as well. For the

non-axisymmetric rotor considered, with eigenvalues λ1, λ1, λ2, λ2, |λ1| 6= |λ2| and hence

any motion obtained as a combination of eigenvectors corresponding to λ1 and λ2 will not

be circular. It remains to check if the motion involving one pair (say, λ1 and λ1) can be

circular. The eigenvalues of the system represented by Eq. D.1 can be verified to be purely

imaginary at all speeds outside the instability region. So we take λ1 = i λ. The eigenvectors

corresponding to i λ and −i λ at any speed are then of the form (see, e.g., [42])

e1 =

{

i G

H

}

and e2 =

{

−i G
H

}

,

128



Appendix D. Circular motion of non-axisymmetric rotors 129

for some real values of G and H. A general real solution for the modal coordinates can

then be written as
{

a

b

}

= (α+ i β)ei λt

{

i G

H

}

+ (α− i β) e−i λt

{

−i G
H

}

,

for some real α and β. We can choose the phase such that β = 0. Using this and Eq.

11.10, the position of a typical point P on the centerline of the rotor can be calculated as

(assuming the reference position of P to be (0, 0))

xR = −2Gα sin(λ t)φx
1,P + 2Hα cos(λ t)φx

2,P ,

yR = −2Gα sin(λ t)φy
1,P + 2Hα cos(λ t)φy

2,P .

We note that for the rectangular cross-sectioned rotor considered, the mass-normalized

mode shapes are physically orthogonal to one another. Thus

φx
1,P φ

x
2,P + φy

1,P φ
y
2,P = 0. (D.2)

Also, we can choose a coordinate system where φx
2,P = 0. This with Eq. D.2 implies

φy
1,P = 0.

Now if the path of P is to be a circle of some constant radius R, we have

x2
R + y2

R = R2.

On combining trigonometric terms, the above becomes an equation involving sin 2λt and

cos 2λt. Since the equation is true for all t, we get two equations by setting the coefficient

of sin 2λt and cos 2λt to zero. The first equation is just the orthogonality condition Eq.

D.2. The second equation is

α2(Gφx
1,P −Hφy

2,P )(Gφx
1,P +Hφy

2,P ) = 0. (D.3)

For a general rotor (including the rectangular cross-sectioned rotor considered) neither

Gφx
1,P −Hφy

2,P = 0 nor Gφx
1,P +Hφy

2,P = 0. The only possibility is

α = 0,

which means that xR ≡ yR ≡ 0 for all t. The rotor cannot perform steady circular whirling

in a circle of nonzero radius at a non-critical speed outside the instability region. For speeds
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in the instability region the rotor orbit spirals out, again precluding circular orbits. Thus,

barring rotor geometries for which Eq. D.3 is satisfied (e.g., a square cross-sectioned rotor)

there are in general no purely circular orbits.

For an axisymmetric rotor, on the other hand, the chosen mass-normalized modes

have a further property due to symmetry:

φx
1,P = φy

2,P and φy
1,P = −φx

2,P .

Also the eigenvectors are such that G = ±H. Using the above relations, Eq. D.3 is identi-

cally zero for any α. Thus steady circular whirling exists at all speeds for an axisymmetric

rotor.

It is emphasized that, since steady circular whirling does not exist for a general

non-axisymmetric rotor, one cannot define a ‘natural frequency’ for these rotors at non-

critical speeds. This constitutes a fundamental difference between axisymmetric and non-

axisymmetric rotors.
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