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Abstract

This thesis addresses several related problems involving delay differential equations (DDEs). DDEs appear
in manufacturing processes including machine tool vibrations, robotics, controls, acoustics, traffic dynamics,
optics, chemical kinetics, biology, ecology, economics and other areas.

The thesis considers five different problems. The first two problems are mathematical in nature and deal
with asymptotic calculations pertaining to DDEs. The third problem involves obtaining some general finite-
dimensional ODE approximations for DDEs. The last two problems involve machine tool vibrations.

In the first problem studied, asymptotic expressions are obtained for the large characteristic roots of several
delayed systems including first and second order DDEs with single delays, and/or distributed as well as multiple
incommensurate delays. An example considering coefficients of disparate magnitude is also analyzed using an
alternative asymptotic strategy. These large root asymptotics are complemented with calculations using Padé
approximants to find all the roots of these systems.

In the second problem studied, the method of averaging has been used to study strongly nonlinear conser-
vative oscillators perturbed by delayed and/or fractional derivative terms. Fractional derivatives incorporate
distributed delayed effect over a time-varying interval. Interesting dynamics is uncovered in the strongly non-
linear case with small delayed terms, where arbitrarily many stable and unstable limit cycles can coexist, and
infinitely many simultaneous saddle-node bifurcations can occur (in the asymptotic limit).

In the third problem studied in the thesis, a Galerkin projection technique is presented by which finite-
dimensional ODE approximations for DDEs can be obtained in a straightforward fashion. The technique
requires neither the system to be near a bifurcation point, nor the delayed terms to have any specific restrictive
form, nor even the delay, nonlinearities and/or forcing to be small. An improvement and extension of this
technique to higher order DDEs and systems of DDEs is also presented. A detailed numerical convergence
analysis of these finite-dimensional projections is performed by approximating the first several characteristic
roots of linear DDEs. The order of convergence observed for the Galerkin projection techniques is 2 for large N
(i.e., error is proportional to N−2), where N is the dimension of the approximation. Other numerical studies,
involving bifurcation diagrams for nonlinear DDEs, show that the qualitative dynamics of the DDEs can be
captured satisfactorily with a modest number of shape functions in the Galerkin projection.

In the fourth problem studied, a practical application is considered. A study of a well known regenerative
machine tool vibration model near a codimension 2 Hopf bifurcation point is conducted using the method of
multiple scales. New analytical expressions are obtained for the double Hopf points. Both sub- and supercritical
bifurcations are predicted to occur near the reference point; and analytical conditions on the parameter variations
for each type of bifurcation to occur are obtained as well.

Finally, a preliminary study of self-interrupted regenerative turning is performed in the last part of this thesis.
To facilitate the analysis, a new approach is proposed to model the regenerative effect in metal cutting. This
model automatically incorporates the multiple-regenerative effect accompanying the self-interrupted cutting.
Some lower dimensional ODE approximations are obtained for this model using Galerkin projections. Using
these ODE approximations, a bifurcation diagram of the regenerative turning process is obtained. It is found
that the unstable branch resulting from the subcritical Hopf bifurcation meets the stable branch resulting from
the self-interrupted dynamics in a turning point bifurcation. A rough analytical estimate of the turning point
tool displacement is also obtained. This estimate helps to identify regions in the space of cutting parameters
where loss of stability leads to much greater amplitude self-interrupted motions than in some other regions.
Multiple stable periodic solutions and quasiperiodic solutions are observed in some parameter regimes.

The tools developed in this thesis should be useful for people studying delay differential equations, especially
focusing on machine tool vibrations. The contents of this thesis may, however, be interesting to a broader
audience in the field of nonlinear dynamics.
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Chapter 1

Introduction

This thesis presents a study of delayed dynamical systems.
The study is motivated by the dynamics of regenerative machine tool vibrations in metal cutting which is

modeled as a delayed dynamical system [1-25]. In the literature, the establishment of the regenerative effect as
the most important source of tool vibrations has been attributed to Tlusty et al. [1], Tobias [2], and Kudinov
[3]. The regenerative effect arises from the variation in the chip thickness due to a wavy workpiece surface
generated by a vibrating tool during its last pass; the mathematical models involved are delay differential
equations (DDEs).

Delayed dynamical systems also appear in many other areas of science and engineering. Delays appear
in robotic applications, either through information delay in telemanipulation or through delay in the feedback
control [26-30]. Time-delayed feedback control has been used to control complex chaotic systems [31-34]. Surface
acoustic wave sensors have been modeled using DDEs [35, 36]. DDEs have also been found useful in an
alternative approach to model musical instruments [37-39]. In particular, Barjau and Giblet [39] have provided
a comprehensive list of the various useful DDEs for woodwind-like and string instruments considering various
losses in the system. Hu and Eberhard [40] have used time delayed systems for modeling wave propagation
in longitudinal impacts. Delay differential equations have been used in modeling traffic dynamics [41, 42]. In
chemical kinetics, DDEs have been used to account for the reaction time and the time taken for mixing of the
reactants [43-46]. Delays have been found to be useful in laser dynamics [47-49]. Neural networks accounting
for the delay in the interaction between neurons have appeared in the literature [50, 51]. Apart from these
engineering applications, delayed dynamical systems have also been found useful in modeling biological systems
[52-55], population dynamics [56] and economic cycles [57].

The contribution of this thesis may be divided roughly into three parts. We present asymptotic calculations
pertaining to some mathematical aspects of DDEs; some general finite dimensional ODE approximations for
DDEs which could be useful in many of the application areas listed above; and finally a study of some aspects
of regenerative machine tool vibrations. In this thesis, we have only considered simple turning processes giving
rise to constant coefficient DDEs (as opposed to, say, milling which results in a DDE with periodic coefficients).

In the next section, we briefly provide some background material and models related to metal cutting.

1.1 A SDOF model of machine tool vibrations

A schematic of the turning process in 3-D, and a 2-D projection of the same on the x − y plane, are shown in
Figure 1.1.

The tool travels along the negative x-axis with a constant nominal feed rate of C0 (length units/revolution).
The workpiece rotates about the x-axis with a constant angular velocity of Ω̄ radians/time unit. The chip width
w is the depth of cut in this cutting process, and is along the negative z-axis. The tool and tool-holder assembly
is approximated by a single degree of freedom spring-mass-damper system in the x direction with coefficients
k, m and c, respectively. Let the instantaneous chip thickness be denoted by C(t). The equation of motion for
the tool is usually given as (e.g., see [8, 12, 14])

mẍ(t) + c ẋ(t) + k x(t) = Fx(C(t)) . (1.1)

Alternately, we can write

ẍ(t) + 2 ζ ωn ẋ(t) + ω2n x(t) =
Fx(C(t))

m
, (1.2)

where ωn =

√

k

m
is the natural angular frequency of the tool and ζ =

c

2
√
mk

is the damping ratio. We now
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Figure 1.1: A simple single degree of freedom model for tool vibrations.

scale time as t̄ = ωn t (and drop the bar for notational convenience) to obtain

ẍ(t) + 2 ζ ẋ(t) + x(t) =
Fx(C(t))

mω2n
. (1.3)

In this scaled time, the constant angular velocity of the workpiece is Ω =
Ω̄

ωn
. Also the tool velocity in the

x-direction in this scaled time is given by v = −C0 Ω
2π

.

Note that the mechanics of cutting is a big field in itself and a number of complicated slip-line field treatments
have been proposed in recent times (see, for example, [58, 59] and references therein) to obtain the cutting force
as a function of the cutting parameters. However, for people interested in machine tool vibration, a simple
and empirical way to obtain the cutting force is from an approximate curve fit to experimental data (see, for
example, [7, 20]). Shi and Tobias [7] obtained a third-order polynomial with a negative second-order term
suggesting a power law with exponent less than 1, while Kalmár-Nagy et al. [20] obtained a power law fit with
exponent 0.41. In this thesis, we use the power law model of Taylor [60], also used by Kalmár-Nagy et al. [12],
given by

Fx(C(t)) = K wC(t)3/4 ,

where w is the chip width and K incorporates the dependence on other cutting parameters like cutting velocity,
nominal feed, tool geometry etc., all assumed constant for our analyses. Substituting the above expression for
Fx(C(t)) in Eq. (1.3), we get

ẍ(t) + 2 ζ ẋ(t) + x(t) = PC(t)3/4 , (1.4)

where P =
K w

mω2n
. Equation (1.4) provides the basic model for the tool-workpiece dynamics. In this model, the

chip thickness is determined by the tool-workpiece dynamics, and vice versa. The instantaneous chip thickness
C(t) is usually given by

C(t) = C0 + x(t− τ)− x(t) , (1.5)

where τ = 2π/Ω is the time period of one revolution (for example, see [12])1. Equations (1.4) and (1.5) result
in the following delay differential equation (DDE)

ẍ(t) + 2 ζ ẋ(t) + x(t) = P (C0 + x(t− τ)− x(t))3/4 . (1.6)

In chapter 7, we will present an alternative to Eq. (1.5), suitable for self-interrupted cutting. Equation (1.6) is

linearized about the constant solution x(t) ≡ PC3/40 to perform a stability analysis by Kalmár-Nagy et al. [12].
This linear stability analysis gives the parameter values for stable steady cutting. In addition, Kalmár-Nagy
et al. [12] have analytically proven the existence of subcritical instability for Eq. (1.6), which here means that
unstable periodic motion exists near the nominally stable cutting; and some stable vibratory motions exist far
away as well. Such motions were observed experimentally by Hanna and Tobias [4], and Shi and Tobias [7].

1 Note that the expression used here actually corresponds to the width of cut which can be different from the actual thickness
of the chip material coming out. Though the term chip thickness in manufacturing terminology does not refer to the width of cut,
it is common in the machine tool vibration community to use chip thickness to refer to the width of cut. In this thesis, we would
stick to the latter nomenclature, and hence use chip thickness and width of cut interchangeably.
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At this point, we would like to note that there are various other physical mechanisms giving rise to machine
tool vibrations as well. The most notable among them are the temperature and velocity dependent friction
between the tool and the chip-workpiece contact surfaces [61-64], and the thermoplastic behavior of the chip
wherein the shear stress varies in the plastic deformation zone [61, 65, 66]. This thesis, however, focuses on
delay differential equations and applications to tool vibrations arising due to the regenerative effect.

In the next section, we briefly present a more general linear delayed model for machine tool vibration
proposed by Stépán, which gives better correspondence with observed stability behavior [8].

1.2 A more general model proposed by Stépán

In this more general delayed model, two qualitatively different delays are introduced. The first one is a “long”

discrete time delay τ =
2π

Ω
, where Ω is the speed of workpiece rotation in rad/sec. This is the time period of

one revolution. The second one is a “short” continuous delay h =
2L

ΩD
, where L is the length of the tool-chip

contact region and D is the diameter of the workpiece. This is the time during which the tool and the chip are
in contact.

The linear model of regenerative machine tool vibration in the x-direction, considering both the long discrete
and the short continuous delays, is given by Stépán [8] as

ẍ(t) + 2ψ ωn ẋ(t) + ω2n x(t) +
k1
m

∫ 0

−h
W (θ)x(t+ θ) dθ − k1

m

∫ −τ

−τ−h
W (τ1 + θ)x(t+ θ) dθ = 0 , (1.7)

where ωn =

√

k

m
is the natural angular frequency of the tool, ψ =

c

2
√
mk

is the damping ratio, k1 is the slope

of the Fx versus C(t) curve2 at C(t) = C0, and W (θ) with θ ∈ [−h, 0], represents the traction distribution
function over the tool-chip contact region.

When W (θ) = δ(θ), there is only the long discrete delay τ , and on suitable rescaling of time, Stépán obtains

ẍ(t) + 2ψ ẋ(t) + (1 + p)x(t)− p x(t− τ1) = 0 , (1.8)

where p =
k1
mω2n

, and τ1 = ωn τ . Equation (1.8) is also derived in [12]. If τ1 = 1, for simplicity, we have

ẍ + 2ψẋ + (1 + p )x − p x(t− 1) = 0 . (1.9)

We will study the characteristic roots of Eq. (1.9) in detail in section 2.3 of chapter 2.
When W (θ) 6= δ(θ) in Eq. (1.7), we have an integro-DDE which represents a distributed delay effect. If

W (θ) is approximated by more than one Dirac-delta function, e.g., W (θ) = δ(θ) + δ(θ + h), we get a delayed
system with multiple delays which could be incommensurate. Note that systems with incommensurate delays
are not amenable to analysis using Pontryagin’s criteria [67] (see also [68]). But we will consider such systems
in our analysis in the next chapter. Note that incommensurate delays can also arise in other applications, e.g.,
a system where a microphone picks up signals from two unequally distant speakers and gives it as a feedback
to the amplifier driving them.

1.3 Layout of the thesis

Chapters 2 and 3 deal with asymptotic calculations for some DDEs. In chapter 2, we have developed asymptotic
expressions for the large characteristic roots of some linear constant coefficient DDEs which in combination with
a few roots using Padé approximants give us all the characteristic roots. Material from this chapter has been
published in [69]. Some earlier results were also presented at [70] and [71]. In chapter 3, we study strongly
nonlinear conservative oscillators perturbed by delayed and/or fractional derivative terms. Material from this
chapter has been published in [72].

Chapters 4 and 5 constitute the second part of the thesis. In chapter 4, we present a novel Galerkin
projection technique to obtain finite-dimensional ODE approximations for DDEs in a straightforward fashion.
The technique requires neither the system to be near a bifurcation point, nor the delayed terms to have any
specific restrictive form, nor even the delay, nonlinearities and/or forcing to be small. This work has been
published in [73] and was also presented at [74]. In chapter 5, the Galerkin projection technique has been

2Here C(t) is the chip thickness as before, and Fx is the x-component of the cutting force.
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improved and extended to higher order DDEs and systems of DDEs. A detailed numerical convergence analysis
of these Galerkin projection techniques is also presented. Material from this chapter has been presented at [75].

Chapters 6 and 7 deal with studies of regenerative machine tool vibrations. In chapter 6, a well known
regenerative machine tool vibration model (a delay differential equation) is studied near a codimension 2 Hopf
bifurcation point. Material from this chapter has been published in [76] and was also presented at [77]. In
chapter 7, a study of the self-interrupted turning process is presented.

Finally, some concluding discussion is presented in chapter 8.
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Chapter 2

Characteristic roots of delayed systems

In this chapter, we find all the characteristic roots of some linear constant coefficient delay differential equations
(DDEs). These DDEs are infinite-dimensional systems and have transcendental characteristic equations with
infinitely many characteristic roots. In this chapter, we develop asymptotics for the large roots of some DDEs.
The material of this chapter has been published in [69] and was presented in [70] and [71].

2.1 Introduction

The simplest linear DDEs have constant coefficients, as in

ẋ(t) = αx(t) + βx(t−∆) , (2.1)

where ∆ > 0. The solution of Eq. (2.1) is a sum of terms of the form eλt, [56, 68, 78, 79, 80], where λ satisfies

λ = α+ βe−λ∆ .

This equation determines the infinitely many characteristic roots of the DDE, impossible to find in closed form.
If all these roots have negative real parts, then all solutions decay to zero and the system is stable. A root with
a positive real part implies an exponentially growing solution (system unstable).

The study of linear constant coefficient DDEs is important since analysis of general nonlinear DDEs often
begins with a preliminary study of the linearized DDE (e.g., [12]). Analysts often seek conditions under which the
system is stable. This search is nontrivial because there are infinitely many characteristic roots not obtainable
in closed form. Significant stability results have, nevertheless, been obtained (e.g., sections 1.2 and 1.4 in [56],
Theorems 4.1−4.3 in section 11.4, Theorems 5.1−5.3 in section 11.5 in [68], chapter 10 in [78] and chapter 2 in
[80], etc.; see also [81, 82]). The above references contain results pertaining to either all roots having negative
real parts, or specific parameter values for which a pure imaginary pair exists. It is also possible to count the
number of roots in the right half of the complex plane [80, 83].

Whether the system is stable or not, it is of further interest to find out where the characteristic roots lie.
The geometrical distribution of these characteristic roots is important in proving theorems on series expansion
and asymptotic behavior of solutions; see Bellman and Cooke [78]. Results in similar directions have also been
obtained for specific equations by others (e.g., section 1.4 of [68], section 11.3 of [84]). These theorems show for
certain DDEs, e.g., that there are finitely many roots in any vertical or horizontal strip in the complex plane.

Numerical algorithms for finding the characteristic roots of linear constant coefficient DDEs have been given
in [85, 86]. However, they are computationally efficient for finding the first few roots only. Sandquist and Rogers
[87] have sought the characteristic roots for scalar linear first order DDEs; they consider a single delay, and
graphically determine the roots of a transcendental equation in one variable.

As mentioned above, in this chapter we aim to determine all the roots of some linear constant coefficient
DDEs. Our approach is based on asymptotic calculations for the large roots, a Padé approximant for a small
number of roots that are not large, and numerics (the Newton-Raphson method) to refine these roots. Al-
ternative asymptotics are also used for the not very large roots of a DDE involving coefficients of disparate
magnitude.

It may be noted that Bellman and Cooke [78] have obtained leading order asymptotics for characteristic
roots of a class of DDEs with multiple commensurate delays. In contrast, here we find correction terms in
the expansions, giving very accurate estimates. Moreover, incommensurate delays are included in our study.
Finally, DDEs with coefficients of disparate magnitude are considered as well.

This chapter is organized as follows. Sections 2.2 through 2.5 concentrate on the large roots of four differ-
ent DDEs of increasing levels of difficulty including first and second order DDEs with single and/or multiple
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incommensurate and/or distributed delays. Sections 2.2 and 2.3 consider simpler first and second order cases.
In section 2.4, we consider a first order DDE with multiple incommensurate and distributed delays. The last
example is that of a DDE with multiple incommensurate delays with coefficients of disparate magnitude studied
in section 2.5. Some concluding remarks are made in section 2.6.

2.2 A preliminary example

We begin with the equation (e.g., [68, 56])

ẋ + a x(t− 1) = 0 . (2.2)

Assuming x(t) = C eλ t as usual, we obtain

λ + a e−λ = 0 (2.3)

Letting λ = α + i β and separating real and imaginary parts, we obtain

α + a e−α cosβ = 0 , (2.4)

β − a e−α sinβ = 0 . (2.5)

We assume a is nonzero and O(1) compared to |λ|, and that β ≥ 0 (−β gives another solution).

Proposition 1 In the large roots of Eq. (2.3), α < 0 and α = O(lnβ).

Proof If, in the large roots, α is not large (i.e., is bounded or O(1)) then Eq. (2.5) gives the contradiction
β = O(1). If α is large and positive, then Eq. (2.4) gives the contradictory α = o(1). Therefore, α is large and
negative. Then Eq. (2.4) implies, in the asymptotic limit, that cosβ = 0, which gives sinβ = ±1. By Eq. (2.5)
we can show that, for integer N À 1,

α ∼ − ln

(

β

|a|

)

and β ∼
(

2N +
sgn(a)

2

)

π . •

Roots found numerically by the Newton-Raphson method, along with the asymptotic approximations them-
selves, agree well in Fig. 2.1.

2.3 A second order DDE

We now consider the equation derived in chapter 1,

ẍ(t) + 2ψ ẋ(t) + (1 + p)x(t)− p x(t− 1) = 0 , (2.6)

For this equation, for small p, all characteristic roots lie in the left half plane[12]. Here, we develop large-root
asymptotics for p nonzero and finite. Note that second order delayed systems have long been of interest due to
mechanical applications [81, 82, 88].

In Eq. (1.9), we let x = C eλt, set λ = α + i β, and separate real and imaginary parts to get

α2 − β2 + 2ψ α + 1 + p − p e−α cosβ = 0 , (2.7)

2αβ + 2ψ β + p e−α sinβ = 0 . (2.8)

We now eliminate large regions of the complex plane from our consideration. We divide the upper half
plane qualitatively into the regions shown in Fig. 2.2, and investigate them one by one. The lower half plane is
symmetrical, hence excluded. We will eliminate regions not containing any roots. In the shaded area roots are
not large, and our asymptotics do not hold.

Proposition 2 For Eq. (2.6), large roots have large α and occur only in the left half of region 3, Fig. 2.2.
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Figure 2.1: Roots of Eq. (2.3) for a = 1.

Proof If α is O(1) in the large roots, it leaves an unbalanced β2 in Eq. (2.7). So α is large.
First consider regions 1 and 2, as well as the right half of region 3. Since α > 0 here, 0 < e−α < 1. In Eq.

(2.7), since large α means α2 À α, we balance the two largest terms to get α2 ∼ β2. Using this in Eq. (2.8), we
find nothing can balance the large term 2αβ.

Next, consider regions 4 and 5. Here, e−α is exponentially large compared to both α and β as well as
algebraic powers thereof. Equations (2.7) and (2.8) then lead to the contradictory

cos2 β + sin2 β ¿ 1.

By elimination, only the left half of region 3 contains large roots. •

Proposition 3 Equations (2.7) and (2.8) are satisfied by α = −2 lnβ+ln |p|+o(1) and β =

(

2N +
1 + sgn(p)

2

)

π+

o(1), for integer N À 1.

Proof By proposition 2, β À |α| À 1 for the large roots. We substitute α = µ lnβ + z in Eqs. (2.7) and
(2.8), with the assumption that |z| ¿ lnβ, to get

µ2 (lnβ)
2
+ 2µ(z + ψ) lnβ + z2 − β2 + 2ψz + 1 + p− p β−µe−z cosβ = 0 , (2.9)

2µβ lnβ + 2zβ + 2ψβ + p β−µe−z sinβ = 0 . (2.10)

In Eq. (2.9), β2 is asymptotically bigger than all other terms (including µ2 (lnβ)
2 ∼ α2) except possibly

p β−µ e−z cosβ, so these two terms must balance each other. Note, p 6= 0. This gives

β−µ e−z cos(β) = O
(

β2
)

. (2.11)

Taking absolute values and then logarithms,

−µ lnβ + ln |cosβ| ∼ 2 lnβ ,

where we have dropped z since it is smaller than lnβ.
In the above, we could conceivably have 0 < |cosβ| ¿ 1, and in fact small enough that ln |cosβ| = O(lnβ).

This, however, requires β−µe−z À β2 which leaves a large term β−µe−z sinβ (with sinβ ∼ ±1) unbalanced in
Eq. (2.10). Therefore, to balance terms, we must let µ = −2. Then Eqs. (2.9) and (2.10), on dividing by β2

and dropping smaller terms, give
p e−z cosβ ∼ −1, (2.12)
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Figure 2.2: Regions considered in the complex plane.

p e−z sinβ = o(1) (2.13)

Since pe−z = 0 violates Eq. (2.12), we must have sinβ = o(1) from Eq. (2.13), whence cosβ ∼ ±1. Consequently,
pe−z ∼ ∓1. The result follows. •

We can now develop formal series as follows (assuming p > 0; the other case is analogous). Having balanced
β2 terms, we still retain O(β) terms, which are relatively smaller by a factor of O(1/N). Accordingly, we write
(note the slightly different form for α, now dependent explicitly on N):

β = (2N + 1)π +
β1
N

+
β2
N2

+ · · · (2.14)

α = −2 ln[(2N + 1)π] + ln p +
α1
N

+
α2
N2

+ · · · (2.15)

Substituting into Eqs. (2.9) and (2.10), expanding in series, collecting terms (using MAPLE), and solving for
the unknown coefficients, we obtain:

β1 = −2 ln (2Nπ) − ψ − ln p

π
,

β2 =
2 ln (2Nπ)− ψ − ln p− 2

2π
,

α1 = 0 ,

α2 = − 1

4π2
(−1 + 8 lnπ lnN + 8 lnπ ln 2 + 8 ln 2 lnN − 4 ln (2Nπ) ln p

− 4ψ ln (2Nπ) + 2 ln p+ 2ψ ln p+ 2ψ2 − p + 4ψ) .

While collecting terms above, we have treated lnN as O(1) compared to N .
The above approximations agree well with roots obtained using Newton-Raphson; see Fig. 2.3. There are

just three relatively small roots (one real, one complex pair) not captured by the asymptotics; those are not
plotted here.

2.4 A DDE with multiple and distributed delays

Consider

ẋ(t) + a1 x(t) + a2 x(t− 1/
√
2) + a3 x(t− 1) + a4

∫ 1

0

x(t− s) cos s ds = 0 , (2.16)

with a3 6= 0. The characteristic equation is (we multiply by λ2 + 1 to simplify the expression, but introduce
spurious roots at λ = ±i which we ignore)

−a4 e(−λ) λ cos(1) + a4 e
(−λ) sin(1) + a4 λ+ a3 e

(−λ) λ2 + a2 e
(−λ) + a2 e

(−λ/
√
2 ) λ2

12
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Figure 2.3: Roots of Eq. (2.6) with ψ = 0.1 and p = 2.

+ a2 e
(−λ/

√
2 ) + a1 λ

2 + a1 + λ3 + λ = 0 .

Substituting λ = α + i β and separating real and imaginary parts, we get

−a4 e−α α cos 1 cosβ − a4 e−α β cos 1 sinβ + a4 e
−α sin 1 cosβ + a4 α− a3 e−α β2 cosβ

+2 a3 e
−α αβ sinβ + a3 e

−α α2 cosβ + a3 e
−α cosβ + 2 a2 e

−α/
√
2 αβ sin(β/

√
2)

+a2 e
−α/

√
2 α2 cos(β/

√
2)− a2 e−α/

√
2 β2 cos(β/

√
2) + a2 e

−α/
√
2 cos(β/

√
2)

+ a1 α
2 − a1 β2 + a1 + α3 − 3αβ2 + α = 0 , (2.17)

a4 e
−α α cos 1 sinβ − a4 e−α β cos 1 cosβ − a4 e−α sin 1 sinβ + a4 β − a3 e−α α2 sinβ

+2 a3 e
−α αβ cosβ + a3 e

−α β2 sinβ − a3 e−α sinβ + 2 a2 e
−α/

√
2 αβ cos(β/

√
2)

−a2 e−α/
√
2 α2 sin(β/

√
2) + a2 e

−α/
√
2 β2 sin(β/

√
2)− a2 e−α/

√
2 sin(β/

√
2)

+ 2 a1 αβ + 3α2 β − β3 + β = 0 . (2.18)

We again eliminate regions of the complex plane from consideration.

Lemma 1 In that portion of region 3 where β À |α| À 1, Eqs. (2.17) and (2.18) simplify to

2a3e
−ααβ sinβ − a3e−αβ2 cosβ + 2a2e

−α/
√
2αβ sin(β/

√
2)

− a2e−α/
√
2β2 cos(β/

√
2)− 3αβ2 = DST , (2.19)

and
2a3e

−ααβ cosβ + a3e
−αβ2 sinβ + 2a2e

−α/
√
2αβ cos(β/

√
2)

+ a2e
−α/

√
2β2 sin(β/

√
2)− β3 = DST , (2.20)

where DST stands for “demonstrably smaller terms”.
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Proof Consider first the coefficients of e−α cosβ among the terms appearing in Eq. (2.17), i.e.,

−a4α cos 1, a4 sin 1, −a3β2, a3α
2 and a3.

The largest of these is −a3β2, so we drop the other four. Similarly, of the two terms containing e−α sinβ, one

is dropped; among terms containing e−α/
√
2 cos(β/

√
2), all but one are dropped; among the rest excluding the

term with e−α/
√
2 sin(β/

√
2), only 3αβ2 needs to be retained. Similar simplifications are made for Eq. (2.18)

(details omitted). •

Proposition 4 The large roots of Eqs. (2.17) and (2.18) have large α and lie only in the left half of region 3,
Fig. 2.2.

Proof For large roots, α = O(1) leaves β3 unbalanced in Eq. (2.18). So α is large.
We first drop regions 1 and 2 from our consideration, as follows. In these regions, terms containing e−α can

be dropped, being smaller than other terms, giving:

a4 α + a1 α
2 − a1 β

2 + a1 + α3 − 3αβ2 + α = o(1) , (2.21)

a4 β + 2 a1 αβ + 3α2 β − β3 + β = o(1) . (2.22)

In region 1, the largest term α3 is unbalanced in Eq. (2.21). In region 2, the leading terms in Eqs. (2.21) and
(2.22) give α3 ∼ 3αβ2 and 3α2β ∼ β3 , which have no nonzero solutions.

Now we drop the right half of region 3, as follows. By lemma 1, Eqs. (2.19) and (2.20) hold in this region.

Since α > 0 in the right half, we have 0 < e−α < e−α/
√
2 < 1. This leaves the largest term β3 unbalanced in

Eq. (2.20).

We next consider regions 4 and 5. Here, α < 0 (and large), so e−α À e−α/
√
2, which in turn is much greater

than both α and β as well as algebraic powers thereof. Hence, retaining only the terms containing e−α in Eqs.
(2.17) and (2.18), we get

a4 sin 1 cosβ − a4α cos 1 cosβ − a4β cos 1 sinβ + a3α
2 cosβ

+ 2a3αβ sinβ − a3β2 cosβ + a3 cosβ = DST , (2.23)

and
a4α cos 1 sinβ − a4β cos 1 cosβ − a4 sin 1 sinβ − a3α2 sinβ

+ 2a3αβ cosβ + a3β
2 sinβ − a3 sinβ = DST . (2.24)

In region 4, the quadratic terms in α and β dominate in Eqs. (2.23) and (2.24), giving (since a3 6= 0)

−α2 sinβ + 2αβ cosβ + β2 sinβ = DST , (2.25)

α2 cosβ + 2αβ sinβ − β2 cosβ = DST . (2.26)

Multiplying Eq. (2.25) with sinβ, Eq. (2.26) with cosβ, and subtracting, we find

β2 − α2 = DST,

which means β ∼ α. However, that in turn leads to the contradictory

cosβ = o(1) and sinβ = o(1), i.e., cos2 β + sin2 β ¿ 1 . (2.27)

In region 5, α2 dominates in Eqs. (2.25) and (2.26), giving the same contradiction Eq. (2.27).
Hence, we conclude that asymptotically large roots lie only in the left half of region 3. •

Proposition 5 Equations (2.17) and (2.18) are satisfied by α = − lnβ+ln |a3|+o(1) and β =

(

2N +
sgn(a3)

2

)

π+

o(1).

Proof By proposition 4 and lemma 1, we have the simplified equations, Eqs. (2.19) and (2.20) (reproduced
below).

2a3e
−ααβ sinβ − a3e−αβ2 cosβ + 2a2e

−α/
√
2αβ sin(β/

√
2)

− a2e−α/
√
2β2 cos(β/

√
2)− 3αβ2 = DST , (2.28)
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and
2a3e

−ααβ cosβ + a3e
−αβ2 sinβ + 2a2e

−α/
√
2αβ cos(β/

√
2)

+ a2e
−α/

√
2β2 sin(β/

√
2)− β3 = DST . (2.29)

Here α < 0 and |α| À 1 so that e−α À e−α/
√
2 À 1. In Eq. (2.28), e−αβ2 cosβ is asymptotically larger than

any other term unless cosβ = o(1), whence sinβ ∼ ±1. Using this in Eq. (2.29), the two largest terms have
magnitudes e−α β2 and β3. This gives

a3e
−αβ2 sinβ − β3 = DST .

For a3 > 0, we require sinβ ∼ 1 which leads to

β = (2N + 1/2)π + o(1) and α = − lnβ + ln a3 + o(1) , (2.30)

while for a3 < 0, we require sinβ ∼ −1 and hence,

β = (2N − 1/2)π + o(1) and α = − lnβ + ln |a3|+ o(1) ,

for large integer N . •

We now find two correction terms in a formal series. The procedure is somewhat more complicated than
before.

The second largest terms in Eqs. (2.19) and (2.20) are of O(β−( 1−
1√
2
)
) compared to β3. This suggests a

formal series in powers of N
−(1− 1√

2
)
. However, there are terms of O(β−1), O(β−2), etc., whose powers are not

integer multiples of 1 − 1√
2
, and so the formal series should have mixed powers of N

−(1− 1√
2
)
and N−1. We

therefore anticipate a series of the form

β = (2N + 1/2)π +
β1

N
( 1− 1√

2
)
+

β2

N
2( 1− 1√

2
)
+ · · ·+ β11

N
+
β12
N2

+ · · ·+ mixed powers .

Note, however, that the first mixed power is of the form

1

N
1− 1√

2

× 1

N
¿ 1

N
,

and so if we retain only the first two small corrections, then we have the somewhat simpler expression

β = (2N + 1/2)π +
β1

N
( 1− 1√

2
)
+

β2

N
2( 1− 1√

2
)
+ h.o.t. (2.31)

where “h.o.t.” stands for higher order terms. Note that 1/
√
2 ≈ 0.7 and so (roughly) N

−(1− 1√
2
) ≈ N−0.3.

Similarly, N
−2(1− 1√

2
) ≈ N−0.6 À N−1 À “mixed powers”.

For analytical convenience, we take the leading order solution for α as α = − lnβ + z, where z ¿ lnβ and
express the correction z in a series as

z = ln(a3) +
z1

N
( 1− 1√

2
)
+

z2

N
2( 1− 1√

2
)
+ h.o.t. . (2.32)

Substituting α in Eqs. (2.19) and (2.20) and dividing throughout by β3, we get

−1 + a3 e
−z sin(β) + a2 sin

(

β√
2

)

e−z/
√
2 β
−(1− 1√

2
)
+O

(

lnβ

β

)

= 0 , (2.33)

a3 e
−z cos(β) + a2 cos

(

β√
2

)

e−z/
√
2 β
−(1− 1√

2
)
+O

(

lnβ

β

)

= 0 . (2.34)

Substituting Eqs. (2.31) and (2.32) in Eqs. (2.33) and (2.34), followed by expanding and collecting terms finally
gives1

β1 = 2
−2+

√
2

2 π
−2+

√
2

2 a2 a
− 1√

2

3 cos

(

(4N + 1)

2
√
2

π

)

,

1 Our calculations were done using MAPLE 6 (Windows), which, for these irrational powers, needs a little patience. We found
it useful to do the expansion one term at a time. For each term, we divided by the (known) largest surviving power of N , and then
asked for the limit as N →∞.
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β2 =
1

8π2

(

2
√
2π
√
2 a22 a

−
√
2

3

(

1−
√
2
)

sin

(

(4N + 1)√
2

π

))

,

z1 = 2
−2+

√
2

2 π
−2+

√
2

2 a2 a
− 1√

2

3 sin

(

(4N + 1)

2
√
2

π

)

,

z2 = − 1

8π2

(

2
√
2 π
√
2 a22 a

−
√
2

3

(

1−
√
2
)

cos

(

(4N + 1)√
2

π

))

.

Figure 2.4 shows some of the characteristic roots of Eq. (2.16) obtained numerically using the Newton-
Raphson method along with the asymptotic approximations, which are in good agreement.
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Figure 2.4: Characteristic roots of Eq. (2.16) for a1 = a2 = a3 = a4 = 1.

Remark 1 The smaller characteristic roots of DDEs can be found using Padé approximants ([89, 90]). These,
along with the asymptotics above, can give all the roots. The procedure requires arbitrary precision arithmetic
(in, e.g., MAPLE). See appendix A.

2.5 Asymptotics on coefficients

In the above DDEs the term with the largest delay essentially determined the large roots. For DDEs with
multiple delays, however, if the coefficients of delayed terms have disparate magnitudes, then the above asymp-
totics may only begin to hold for extremely large roots. In such cases, we could develop alternative asymptotic
expansions. A relevant example of such systems is addressed in [91]. Here, we present another example:

ẋ(t) +
x(t− 1/

√
2)

ε
+ a x(t− 1) = 0 , (2.35)

where 0 < ε ¿ 1. Note that this is a special case of Eq. (2.16) with a2 = 1/ε, a3 = a and a1 = a4 = 0.
Substituting λ = α+ iβ and separating real and imaginary parts, we get

α+
e−α/

√
2 cos(β/

√
2)

ε
+ ae−α cosβ = 0 , (2.36)
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β − e−α/
√
2 sin(β/

√
2)

ε
− ae−α sinβ = 0 . (2.37)

Remark 2 The above two equations each have three terms. However, there are regimes of root magnitudes
for which, in each equation, two of the terms are much bigger than the third. Our analytical search for roots
will focus on these regimes. In what follows, we adopt the following convention. If the mth and nth terms, with
m = 1, 2, 3 and n = 1, 2, 3, are negligible compared to the other terms in Eqs. (2.36) and (2.37) respectively,
then we refer to it as “Case (m,n)”. The large root asymptotics developed in the previous section correspond
to Case (2, 2).

Remark 3 The leading order solution of Eq. (2.16) given by Eq. (2.30) also represents roots of Eq. (2.35),
under Case (2,2). Substituting Eq. (2.30) in Eq. (2.37), the first and third terms turn out to be of O(N) while

the second term is of O
(

N1/
√
2

ε

)

. Hence, the second term is negligible for N À N1/
√
2

ε
, i.e., N À ε−(2+

√
2).

Alternatively, the asymptotic expressions of Eqs. (2.31) and (2.32), for the roots of Eq. (2.16), are based
on the correction term being o(1). For Eq. (2.35), viewed as a special case of Eq. (2.16) (with a2 = 1/ε),
substitution of β1 found in section 2.4 in the series solution for β, i.e., Eq. (2.31) gives the first correction term
to be

2
−2+

√
2

2 π
−2+

√
2

2 a
− 1√

2

εN
(1− 1√

2
)

cos

(

(4N + 1)

2
√
2

π

)

.

For the above to be o(1), we require N À ε−(2+
√
2), matching the above.

The asymptotics developed below are therefore for N smaller than the above estimate. How much smaller
is a somewhat tricky issue as discussed later.

By remark 2, our analytical search for the roots will concentrate on regimes where two of the three terms in
each equation, i.e., Eqs. (2.36) and (2.37), are much larger than the third one. Accordingly we have 9 different
possibilities, one of which, Case (2, 2), has been dealt with in the previous section. Here, we check the remaining
possibilities one by one for the existence of roots and obtain expressions for them.

Proposition 6 Case (1,1) yields a set of solutions for Eqs. (2.36) and (2.37).

Proof Equations (2.36) and (2.37) simplify to

e−α/
√
2 cos(β/

√
2)

ε
= −ae−α cosβ + ST , (2.38)

e−α/
√
2 sin(β/

√
2)

ε
= −ae−α sinβ + ST , (2.39)

where “ST” stands for an asymptotically smaller term. Squaring Eqs. (2.38) and (2.39) and adding, in the
asymptotic limit we get

e−
√
2α

ε2
= a2e−2α , (2.40)

whence to leading order we have
α = (2 +

√
2) ln(εa) . (2.41)

Substituting α in Eqs. (2.38) and (2.39) and rearranging, we get in the asymptotic limit

a−(1+
√
2)ε−(2+

√
2)
(

cos(β/
√
2) + cosβ

)

= 0 ,

a−(1+
√
2)ε−(2+

√
2)
(

sin(β/
√
2) + sinβ

)

= 0 .

Again squaring and adding we get

2a−(1+
√
2)ε−(2+

√
2)

(

1 + cos

(

β

2 +
√
2

))

= 0 .

which requires cos

(

β

2 +
√
2

)

= −1, whence

β = (2N + 1)(2 +
√
2)π . (2.42)
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Equations (2.41) and (2.42) give solutions for Eqs. (2.36) and (2.37). •

We further investigate these roots for small ε and large N as follows. Substituting Eqs. (2.41) and (2.42)

in Eq. (2.37), we note that the first term is of O(N) while the second and the third term are of O(ε−(2+
√
2)).

Hence, the assumption that the first term is negligible for Case (1, 1) is valid as long as N ¿ ε−(2+
√
2). Note

that this is complementary to Case (2, 2) where N À ε−(2+
√
2) (by remark 3).

We proceed to a correction term. We add corrections β1 and α1 to the leading order solutions for β and α,
i.e., in Eqs. (2.41) and (2.42), respectively. We substitute α and β in Eqs. (2.36) and (2.37), expand in a Taylor
series about α1 = β1 = 0, drop quadratic and higher order terms, and solve for β1 and α1 to get

β1 =
ε2+

√
2 a1+

√
2
(

(4N + 2)π cos
(

(2 +
√
2)(2N + 1)π

)

+ 2 ln(aε) sin
(

(2 +
√
2)(2N + 1)π

))

−3 + 2
√
2

,

α1 =
ε2+

√
2 a1+

√
2
(

(4N + 2)π sin
(

(2 +
√
2)(2N + 1)π

)

− 2 ln(aε) cos
(

(2 +
√
2)(2N + 1)π

))

−3 + 2
√
2

.

Since we are interested in N ¿ ε−(2+
√
2) for this case we find, self-consistently, that β1 = o(1) and α1 = o(1).

This concludes Case (1, 1).

Remark 4 In the above, we established the range of β (or equivalently N) over which the asymptotic expres-

sions hold, i.e., β ¿ ε−(2+
√
2). In what follows, such sharp estimates on β may not always be easily obtainable.

Sometimes, for simplicity, we will fix β at some ε-independent range of magnitudes and take the limit as ε→ 0.
Eventually, numerics will bear out the final analytical approximations.

Lemma 2 If r is an irrational number and either sin θ = 0 or cos θ = 0, then sin(rθ) 6= 0 and cos(rθ) 6= 0.

Proof sin θ = 0 requires θ = nπ, for some integer n. However, sin(rθ) = 0 requires rθ = mπ, for some integer

m. Simultaneous satisfaction of both the above requirements imply, contradictorily, that r =
m

n
. Similar

contradictions arise for the other cases. •

Proposition 7 Case (2,1) can be eliminated.

Proof From Eqs. (2.36) and (2.37), we have

α = −ae−α cosβ + ST , (2.43)

e−α/
√
2 sin(β/

√
2)

ε
= −ae−α sinβ + ST . (2.44)

Squaring and adding, we get in the asymptotic limit

e−
√
2α sin2(β/

√
2)

ε2
+ α2 = a2e−2α . (2.45)

There are three possibilities now: αÀ 1, α = O(1) and α¿ −1.
1. If α À 1, the RHS of Eq. (2.45), i.e., a2 e−2α = o(1). However, in the LHS, α2 À 1 while the first term

is positive, giving a contradiction.

2. If α = O(1), the first term remains unbalanced in Eq. (2.45) unless sin2(β/
√
2)¿ 1. However, Case (2, 1)

implies for Eq. (2.36) that cos2(β/
√
2)¿ 1 as well, giving a contradiction because sin2(.) + cos2(.) = 1.

3. If α¿ −1, then α2 ¿ e−2α and Eq. (2.45) simplifies to

e−
√
2α sin2(β/

√
2)

ε2
= a2e−2α + ST . (2.46)

Also, Case (2,1) implies for Eq. (2.36) that cos(β/
√
2) = o(1), whence sin2(β/

√
2) ∼ 1. In that case, Eq.

(2.46) simplifies to Eq. (2.40) which has Eq. (2.41) as the leading order solution for α. Substituting Eq.
(2.41) for α in Eq. (2.44), we require in the asymptotic limit

sin(β/
√
2) + sinβ = 2 sin

(

2 +
√
2

4
β

)

cos

(

2−
√
2

4
β

)

= 0 ,

which contradicts our prior conclusion that cos(β/
√
2) = 0 in the asymptotic limit2 (by lemma 2).

2Note that we have considered β fixed as ε→ 0. An argument allowing β to grow as ε→ 0 can be developed, but is trickier and
avoided here.
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Thus, Case (2, 1) gives no roots. •

Proposition 8 Cases (3,1), (1,2) and (3,2) can also be eliminated.

Proof The proof resembles that of proposition 7 and is not given here to save space. •

Proposition 9 The three Cases (m, 3), m = 1, 2, 3 lead to one set of solutions for Eqs. (2.36) and (2.37).

Proof

1. For Case (1,3), from Eqs. (2.36) and (2.37) we get

e−α/
√
2 cos(β/

√
2)

ε
= −ae−α cosβ + ST , (2.47)

β =
e−α/

√
2 sin(β/

√
2)

ε
+ ST . (2.48)

Note that Case (.,3) implies that β À ae−α| sinβ|. Accordingly, we have two subcases, in the asymptotic
limit, viz., sinβ = 0 and sinβ 6= 0.

(a) If sinβ = 0 in the asymptotic limit, we have cosβ = ±1. In that case, solving Eq. (2.47) for α, we
get

α = (2 +
√
2) ln

(

εa

| cos(β/
√
2)|

)

.

Substituting the above in Eq. (2.48), we will require

ε(2+2
√
2)/
√
2 a(2+

√
2)/
√
2 β = sin(β/

√
2) cos

2+
√

2√
2 (β/

√
2) .

In the asymptotic limit as ε → 0, we will require either sin(β/
√
2) = 0 or cos(β/

√
2) = 0 which

contradicts sinβ = 0 (by lemma 2).

(b) If sinβ 6= 0 in the asymptotic limit, we have β À ae−α. Also, from Eq. (2.48), we have
e−α/

√
2

ε
≥

β À ae−α. Hence, for balance in Eq. (2.47), we require cos(β/
√
2) = 0 (in the asymptotic limit),

whence
β = (2N + 1/2)

√
2π + o(1) . (2.49)

Substituting the above for β in Eq. (2.48) and solving for α, we get

α = −
√
2 ln

(

ε(2N + 1/2)
√
2π
)

+ o(1) . (2.50)

This concludes Case (1, 3).

2. For Case (2,3), we have
α = −ae−α cosβ + ST , (2.51)

β =
e−α/

√
2 sin(β/

√
2)

ε
+ ST . (2.52)

Again β À ae−α| sinβ|, giving two subcases as before.

(a) If sinβ = 0, we have cosβ = ±1 and Eq. (2.51) reduces, in the asymptotic limit, to

α± ae−α = 0 .

The above has at most one solution for α which, in turn, is O(1). In that case, e−α/
√
2 = O(1) and

Case (2,3) requires cos(β/
√
2) = 0 contradicting sinβ = 0.

(b) If sinβ 6= 0 in the asymptotic limit, we have β À ae−α. Also from Eq. (2.52), we have
e−α/

√
2

ε
≥ β.

Now, Case (2,.) requires
e−α/

√
2 cos(β/

√
2)

ε
¿ ae−α ¿ β. This is possible only when cos(β/

√
2) = 0

giving Eqs. (2.49) and (2.50) as the solutions again.
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3. For Case (3,3), we get from Eqs. (2.36) and (2.37)

α = −e
−α/

√
2 cos(β/

√
2)

ε
+ ST , (2.53)

β =
e−α/

√
2 sin(β/

√
2)

ε
+ ST . (2.54)

In the asymptotic limit, Eqs. (2.53) and (2.54) are the same as Eqs. (2.4) and (2.5) with a = 1/ε and the
delay being 1/

√
2 instead of 1. From proposition 1, we get the same expressions for α and β as given in

Eqs. (2.49) and (2.50).

Thus, all Cases (m, 3), m = 1, 2, 3 give the same solutions given by Eqs. (2.49) and (2.50). •

Remark 5 All three cases (.,3) lead to the same solution set. A finer analysis of small terms might tell them
apart. Note also that these solutions rest on β À 1, which implies “large” roots (though not larger than that
allowed by remark 4). As will be seen in numerics, all but a small number of roots are in fact captured accurately.

Remark 6 In the above, roots in different magnitude regimes were captured by different scalings of the nom-
inally small/large expansion terms. Equations (2.49) and (2.50) apply for N somewhat large, but not larger

than ε−(2+
√
2). Moreover, there ε itself is small. Elsewhere, we have held N fixed as ε → 0. Below, to obtain

correction terms to the leading order solutions, we set ε = ∆/N
1− 1√

2 , where ∆ = o(1) since N ¿ ε−(2+
√
2).

However, now ∆ will be held constant while we consider asymptotics for large N . These different scalings are
motivated by mathematical convenience alone, always keeping in mind that we are finally interested in some
finite nonzero values of ε and N , and it matters little how we get there. In final justification of these ideas,
numerics and approximations will match below.

For finding a correction term, we first scale ε as mentioned in remark 6, then substitute β = (2N+1/2)π
√
2+

β1 and α = −
√
2 ln(ε(2N+1/2)π

√
2)+α1 in Eqs. (2.36) and (2.37), expand in a Taylor series about α1 = β1 = 0

till first order, solve for α1 and β1, retain the largest power of N (a key step in simplifying very long expressions),

and reinsert ∆ = εN
1− 1√

2 to finally get

β1 =
2
1+ 3√

2 π1+
√
2 ε
√
2 a cos((2N + 1/2)π

√
2)

4π2N (1−
√
2) + 23

√
2 ε2

√
2 π2

√
2 a2N (

√
2−1) + 2

2+ 3√
2 π1+

√
2 ε
√
2 a sin((2N + 1/2)π

√
2)
, (2.55)

α1 =
2
1+ 3√

2 π1+
√
2 ε
√
2 a sin((2N + 1/2)π

√
2) + 23

√
2 π2

√
2 ε2

√
2 a2N

√
2−1

4π2N (1−
√
2) + 23

√
2 ε2

√
2 π2

√
2 a2N (

√
2−1) + 2

2+ 3√
2 π1+

√
2 ε
√
2 a sin((2N + 1/2)π

√
2)
. (2.56)

Figure 2.5 shows the converged roots obtained from Newton-Raphson iterations, each starting from a different
initial point on a large, uniform grid (exhaustive search); as well as the above analytical estimates. Agreement
is good except for a single root near the origin.

2.6 Concluding remarks

We have obtained asymptotic approximations for the roots of the characteristic equations of some linear DDEs
with constant coefficients. The term with the largest delay dominates in the asymptotic expansions for the large
roots. A few smaller roots obtained using a Padé approximant can complement these asymptotic expressions
to give all the characteristic roots of a DDE. However, if a very large coefficient is associated with a term
with a smaller delay (equivalently, the term with the largest delay has a small coefficient), the large root
asymptotics are useful only for extremely large roots. For such cases, determining the remaining roots using the
Padé approximant is impractical and alternative asymptotic expansions can be developed. This study provides
practical insight into the location of characteristic roots of DDEs on the complex plane, and may be useful for
further theoretical studies as well.
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Figure 2.5: Roots of Eqs. (2.36) and (2.37) for a = 1 and ε = 0.05. Plus signs: Newton-Raphson. Circles:
asymptotic, Case (1,1). Triangles: asymptotic, Case (.,3). Rectangles: asymptotic, Case (2,2).
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Chapter 3

Averaging with small fractional

damping and delayed terms

In this chapter, we use the method of averaging to study small perturbations of conservative oscillators. The
unperturbed conservative oscillators need not be linear. The perturbations studied involve delayed terms as well
as fractional derivative terms (fractional derivatives incorporate a distributed delay effect over a time-varying
interval). The material of this chapter has been published in [72].

3.1 Introduction

Differential equations with delayed terms (DDEs) have applications in many areas of science and engineering
as mentioned in chapter 1. Fractional derivatives (which incorporate distributed delay effects with an infinite
delay) are, among other things, useful in describing the frequency dependent damping behavior of many materials
[92, 93, 94, 95].

We first consider problems where the unperturbed system is linear.
Analytical treatment of even linear problems involving delayed terms or fractional derivatives is nontrivial.

However, when the delayed terms or the fractional derivative terms in the equation are small, the systems can
be studied analytically using perturbation methods.

The method of multiple scales, which is similar to the method of averaging [96], has been used to study
linear oscillators perturbed by small delayed terms [97, 98, 99]. If the delayed term is small but the delay itself
is large, then the method of multiple scales is applicable with some modifications (for example, see [91]).

For linear oscillators perturbed by small fractional derivative terms, Li et al. [100] have used averaging. Their
approach indirectly recovers the averaged equations after several modifications of the averaging method for the
periodic case. The problem, however, is directly amenable to averaging for the aperiodic case, as discussed below,
for which a short and simple procedure exists [101]. A similar problem has also been studied using multiple
scales by Rossikhin and Shitikova [102].

In this chapter, after briefly studying the aforementioned linear/weakly nonlinear cases involving delayed
terms and/or fractional derivatives, we use averaging to study the dynamics of some strongly nonlinear conser-
vative oscillators with small perturbations in the form of delays and/or fractional derivatives. This is the main
contribution of the present chapter. The method of averaging, implemented in an approximate sense as in [103],
gives “slow flows” governing the evolution of amplitude and phase of the oscillations under study. The slow flow
equations are ODEs, do not contain fractional derivatives or delayed terms, and are easy to study further using
standard numerical and/or analytical methods for ODEs.

3.2 Background and numerics

3.2.1 Delay differential equations

Consider a DDE of the form

ẋ(t) = H (x(t), x(t− s1), x(t− s2), · · · , x(t− 1)) , (3.1)

where x could be a vector and 0 < s1 < s2 < · · · < sn = 1 are finite time delays. Assuming sn = 1 is allowed
because time can be scaled to make it so. At instant t, the evolution of x depends explicitly on values it took
in the immediately preceding unit interval, [t− 1, t].
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For the numerical integration of DDEs in this thesis, we use the following method. We fit a cubic spline
over an interval somewhat longer than unity, say [t− 1− 10h, t]; and interpolate, using the fitted spline, at all
the desired time instants in the past. The portion of stored history longer than unity is optional. It is used
here because splines on intervals fit better at points not too close to the endpoints. This interpolation scheme is
convenient for software like Matlab, which has inbuilt commands for splines. Once the interpolated values are
available, we simply use a fixed-step fourth order Runge-Kutta method. Note that all numerics in this chapter
are solely for checking the accuracy of analytical approximations.

3.2.2 Differential equations with fractional derivatives

We adopt the Riemann-Liouville definition of the fractional derivative [104],

Dq
a[x(t)] ≡

dqx(t)

[d(t− a)]q ≡
1

Γ(n− q)
dn

dtn

[
∫ t

a

x(u)

(t− u)q−n−1 du
]

,

where n is the smallest integer greater than or equal to q and Γ represents the Gamma function. For systems
starting from rest (a case studied by many authors) we have x(t) = 0 for t < 0, so Dq

−∞ is identical to Dq
0 and

we drop the subscript a. In this chapter, we assume 0 < q < 1, the case most relevant to structural damping.
Hence,

Dqx(t) =
1

Γ(1− q)
d

dt

∫ t

0

x(u)

(t− u)q du =
1

Γ(1− q)

[

x(0)

tq
+

∫ t

0

ẋ(t− u)
uq

du

]

.

The latter form above is useful to us. In it, the first term has a singularity at t = 0, and the integral involves a
singular kernel. The singularity due to the first term can be treated1 using a local series expansion near t = 0,
but for simplicity we assume x(0) = 0 as in [105, 106]. Moreover, we change variables to ū = u1−q, which
removes the singularity in the kernel to give

Dqx(t) =
1

Γ(2− q)

∫ t(1−q)

0

ẋ(t− ū1/(1−q)) dū .

Uniformly spaced points in the original time t are non-uniformly spaced in ū. However, fitting a spline to ẋ(t)
and interpolating at uniformly spaced ū values, the integral can be evaluated numerically (Simpson’s rule). In
this way, knowing the history of ẋ(t), we evaluate Dqx(t). Finally, a modified fourth order Runge Kutta routine,
with access to the history needed for the integral, is used to integrate forward in time. Note, again, that our
numerics are solely for verifying analytical approximations.

We mention two final points. First, the cubic spline interpolant has higher order accuracy than Simpson’s
rule; so, for integration, we should interpolate at a fine mesh. Second, there might be numerical difficulties if q
approaches 0 or 1; here, we focus on q away from these limits (e.g., q = 1/2).

3.3 Weakly nonlinear oscillations

3.3.1 The method of averaging

The classical method of averaging (see, e.g., [101, 108, 109]) is applicable to systems of the form

ẋ = εG(x, t) , 0 < ε¿ 1 . (3.2)

In this section, we study
ẍ(t) + x(t) = εF̄ , (3.3)

where F̄ can depend on delayed values and fractional derivatives of x.
We now cast Eq. (3.3) in the form of Eq. (3.2) (a routine procedure). For ε = 0, the solution to Eq. (3.3) is

x(t) = R sin(t+ φ) for R and φ arbitrary constants. For small ε 6= 0 we let

x(t) = R(t) sin (t+ φ(t)) , (3.4)

where R(t) and φ(t) both change slowly with time. We also incorporate the usual constraint,

ẋ(t) = R(t) cos (t+ φ(t)) . (3.5)

1Initial conditions for linear problems have also been included in, e.g., Laplace transform based treatments [107].
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Proceeding in the usual manner [101, 108, 109], we finally obtain

Ṙ = ε cos (t+ φ) F (3.6)

φ̇ = −ε sin (t+ φ)

R
F , (3.7)

where F is simply F̄ with Eqs. (3.4) and (3.5) plugged in. Equations (3.6) and (3.7) have the form of Eq. (3.2).
Now, depending on whether the function G is periodic or aperiodic in its explicit dependence on time t, we have
two cases :

1. If G = G(·, t) is periodic in t, i.e., G(·, t+ T0) = G(·, t) for some 0 < T0 < ∞, then the correct averaging
procedure (see Theorem 3.2.10 in [101]) is to hold x constant in the right hand side of Eq. (3.2)2, while
t-averaging over the time period T0, as in

1

T0

∫ T0

0

Gdt.

2. If G is aperiodic in t, the correct averaging procedure (see Theorem 3.3.3 in [101]) is to average over an
“infinitely” long time, as in (holding x constant)

lim
T→∞

1

T

∫ T

0

Gdt.

3.3.2 Weakly nonlinear oscillation with delayed terms

For illustration, consider
ẍ(t) + x(t) = −2ζẋ(t)− µx(t)3 + 2uxs(t) + 2vẋs(t) , (3.8)

where we introduce the notation xs(t) = x(t− s) and ẋs(t) = ẋ(t− s), and ζ, µ, u and v are small quantities.
This is the same equation as in section 2.1 of [98], but without forcing. In [98], the method of multiple scales
was used; here, we will briefly demonstrate the use of averaging. We substitute ζ = εζ̄, µ = εµ̄, u = εū and
v = εv̄, where 0 < ε¿ 1. Note that we have replaced the delay τ (used in [98]) by s. We now have

ẍ(t) + x(t) = ε
(

−2ζ̄ẋ(t)− µ̄x(t)3 + 2ūxs(t) + 2v̄ẋs(t)
)

. (3.9)

Substituting x(t) = R(t) sin (t+ φ(t)) and following the routine steps described above, we obtain

Ṙ(t) = ε
(

−µ̄ R(t)3 cos (t+ φ(t)) sin3 (t+ φ(t)) + 2 ū Rs(t) cos (t+ φ(t)) sin (t− s+ φs(t))

+2 v̄ Rs(t) cos (t+ φ(t)) cos (t− s+ φs(t)) + 2 ζ̄ R(t) sin2 (t+ φ(t))− 2 ζ̄ R(t)
)

and

φ̇(t) = −ε sin (t+ φ(t))

R(t)

(

−2 ζ̄ R(t) cos (t+ φ(t))− µ̄ R(t)3 sin3 (t+ φ(t))

+2 ū Rs(t) sin (t− s+ φs(t)) + 2 v̄ Rs(t) cos (t− s+ φs(t)) ) ,

where we again denote delays using Rs(t) = R(t−s) and φs(t) = φ(t−s). For averaging, R and φ are to be held
constant while t-averaging the right hand sides of the above equations. Hence, we substitute R(t) = Rs(t) = R
and φ(t) = φs(t) = φ, which gives

Ṙ = εR
(

−µ̄ R2 cos(t+ φ) sin3(t+ φ) + 2 ū cos(t+ φ) sin(t− s+ φ)

+2 v̄ cos(t+ φ) cos(t− s+ φ) + 2 ζ̄ (sin(t+ φ))
2 − 2 ζ̄

)

and

φ̇ = −ε sin(t+ φ)
(

−2 ζ̄ cos(t+ φ)− µ̄ R2 sin3(t+ φ) + 2 ū sin(t− s+ φ) + 2 v̄ cos(t− s+ φ)
)

.

The right hand sides of both equations above are 2π-periodic in t. Averaging gives

Ṙ = −εR
(

ū sin(s)− v̄ cos(s) + ζ̄
)

(3.10)

and
φ̇ = − ε

8

(

−3 µ̄ R2 + 8 v̄ sin(s) + 8 ū cos(s)
)

. (3.11)

Going back to the old variables ζ, µ, u and v, we get the same results as obtained using multiple scales in [98].
For further verification, we have plotted the numerical solution of Eq. (3.8) along with that of the averaged
equations, i.e., Eqs. (3.10) and (3.11) in Fig. 3.1. The match is good.

We now turn to systems with light fractional derivative damping.

2Or to hold R and φ constant in the right hand sides of Eqs. (3.6) and (3.7).
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Figure 3.1: Solution of Eq. (3.8) and Eqs. (3.10) and (3.11) for s = 1, ζ = µ = u = v = 0.05. Initial conditions:
x(η) = 5 sin(η), ẋ(η) = 5 cos(η), for η ∈ [−1, 0], R(0) = 4.65, φ(0) = 0. For a discussion of the choice of initial
conditions, see Appendix B.

3.3.3 Weakly nonlinear oscillations with fractional damping

In what follows we take q = 1/2 in our fractional derivative, appropriate for a large variety of viscoelastic
damping materials (see appendix C for q 6= 1/2). To demonstrate the averaging calculation in this case, we
consider

ẍ(t) + εD1/2x(t) + x(t) = δ(t) . (3.12)

In the above δ(t) represents an instantaneous impulse 3 at t = 0, and 0 < ε ¿ 1 (light damping). After the
impulse has acted, we have the initial conditions x(t) = 0 for t ≤ 0, and ẋ(0+) = 1; and the governing equation
for t > 0 is

ẍ(t) + x(t) = −εD1/2x(t) . (3.13)

We again assume x(t) = R(t) sin(t+ φ(t)) as described above, and obtain

Ṙ = −ε cos (t+ φ)D1/2x(t) , (3.14)

φ̇ = ε
sin (t+ φ)

R
D1/2x(t) . (3.15)

For averaging, we write D1/2x(t) in terms of R(t) and φ(t) as

D1/2 x(t) =
1

Γ(1/2)

∫ t

0

ẋs(t)√
s
ds =

1√
π

∫ t

0

Rs(t) cos (t+ φs(t)− s)√
s

ds . (3.16)

We then write (recalling that we will set R(t) = Rs(t) = R and φ(t) = φs(t) = φ, to be held constant within
the averaging integral)

D1/2 x(t) =
1√
π

∫ t

0

R cos(t+ φ− s)√
s

ds

=
R cos(t+ φ)√

π

∫ t

0

cos(s)√
s
ds+

R sin(t+ φ)√
π

∫ t

0

sin(s)√
s
ds . (3.17)

3The instantaneous impulse is the Dirac delta function, which is a generalized function that is zero everywhere except at t = 0,
undefined at t = 0, and whose integral over any nonzero interval containing t = 0 is unity.
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The integrals above are aperiodic functions of t (case 2 in section 3.3.1), so we use an infinite time average
(unlike the case with merely delayed x). Substituting for D1/2x(t) in Eq. (3.14) will require evaluation of

lim
T→∞

1

T

∫ T

0

cos (t+ φ)

{

R cos(t+ φ)√
π

∫ t

0

cos(s)√
s
ds+

R sin(t+ φ)√
π

∫ t

0

sin(s)√
s
ds

}

dt . (3.18)

Integrating the first term above by parts, we get

lim
T→∞

R

4
√
π

{

[(

2 t

T
+

sin(2 t)

T

)
∫ t

0

cos(s)√
s
ds

]T

0

− 1

T

∫ T

0

[

(2
√
t cos(t) +

sin(2 t) cos(t)√
t

]

dt

}

.

The above can be simplified to

R

2
√
π

lim
T→∞

[

∫ T

0

cos(s)√
s
ds− 1

T

∫ T

0

√
t cos(t)dt

]

. (3.19)

Integrating the second term above by parts, we have

∫ T

0

√
t cos(t)dt =

√
t sin(t)

∣

∣

∣

T

0
−
∫ T

0

sin(t)

2
√
t
dt .

Substituting for

∫ T

0

√
t cos(t) in Eq. (3.19), we get (on dropping terms that go to zero)

R

2
√
π

lim
T→∞

∫ T

0

cos(s)√
s
ds =

R

2
√
2
.

Thus, the first term of expression (3.18) is

lim
T→∞

1

T

∫ T

0

R cos2(t+ φ)√
π

∫ t

0

cos(s)√
s
ds =

R

2
√
2
.

By similar calculations,

lim
T→∞

1

T

∫ T

0

R cos(t+ φ) sin(t+ φ)√
π

∫ t

0

sin(s)√
s
ds = 0 .

Using the above, we get the averaged equations for Ṙ as

Ṙ = −ε 1

2
√
2
R.

In a similar fashion, we also get

φ̇ = ε
1

2
√
2
.

The above results could be obtained using the following alternative and informal argument. The integrals
∫ t

0

sin(s)√
s
ds and

∫ t

0

cos(s)√
s
ds are bounded for small t in spite of the singular integrand in the latter. In the

infinite-time average, therefore, only the behaviors for t→∞ matter. For large t, we have

∫ t

0

cos(s)√
s

ds =

√

π

2
+

sin(t)√
t

+O
(

t−3/2
)

(3.20)

and
∫ t

0

sin(s)√
s

ds =

√

π

2
− cos(t)√

t
+O

(

t−3/2
)

. (3.21)

For our averaging purposes, we need to retain only the leading order, or constant, terms. The contributions
from the correction terms go to zero. Therefore, for our purposes, on substituting Eqs. (3.20) and (3.21) in Eq.
(3.17), we have

D1/2x(t) =
R cos(t+ φ)√

2
+
R sin(t+ φ)√

2
+ negligible terms. (3.22)

Substituting Eq. (3.22) in Eqs. (3.14) and (3.15) and dropping the negligible terms, we get

Ṙ = −ε R√
2

(

cos2(t+ φ) + sin(t+ φ) cos (t+ φ)
)

, (3.23)
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φ̇ = ε
1√
2

(

sin (t+ φ) cos(t+ φ) + sin2(t+ φ)
)

. (3.24)

On averaging the above, where we note that the aperiodicity is gone and we are back to the periodic case, we
obtain exactly as above

Ṙ = −ε 1

2
√
2
R (3.25)

and

φ̇ = ε
1

2
√
2
. (3.26)

These equations govern the evolution of the amplitude R and phase φ of the unforced oscillations (though
there is an instant of forcing, we examine the subsequent unforced oscillations only). The solution for R is
compared in Fig. 3.2 with the exact solution for the original equation (using the Laplace transform; see [104]).
The match is excellent.
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Figure 3.2: Impulse response of Eq. (3.12) for ε = 0.1. Initial conditions: x(0) = 0 and ẋ(0) = 1. The solution
of Eq. (3.25) is also shown for R(0) = 1.

We have now succeeded in averaging harmonic oscillators slightly perturbed with delayed terms and fractional
derivatives. For the delayed terms, our results match those obtained earlier by other authors using the method
of multiple scales. For fractional derivatives, we have shown how aperiodic averaging can be used more simply
than the approach developed in [100].

We now move on to strongly nonlinear oscillators, where the main contributions of this chapter lie.

3.4 Strongly nonlinear oscillations

In this section, we adapt a recently developed technique called harmonic balance based averaging [103] to tackle
small perturbations of some strongly nonlinear oscillators.

3.4.1 Harmonic balance based averaging

Averaging can not only be used to study small perturbations of the harmonic oscillator, but also (in principle
at least) to perturbations of strongly nonlinear oscillators. However, there are practical difficulties in applying
averaging to such strongly nonlinear problems. An approximate method for doing the averaging, called harmonic
balance based averaging (HBBA) [103], is used in this chapter. The method is outlined here for completeness.
Consider

ẍ+ g(x, ẋ) = εF , (3.27)
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where F is possibly a function of x, ẋ, D1/2x and/or x(t−1) or ẋ(t−1), and g(x, ẋ) has a two-parameter family
of periodic solutions. Consider Eq. (3.27) for ε = 0,

ẍ+ g(x, ẋ) = 0 . (3.28)

Equation (3.28) has a periodic solution expressible abstractly as x = h̃(R,ω(R), t), where R represents the
amplitude of the solution, and the time period is T = 2π/ω(R). The general solution is then

x = h̃(R,ω(R), t+ φ̃) , (3.29)

where both R and φ̃ are arbitrary constants (defining a two-parameter family of periodic solutions). We rescale
time through

dτ

dt
= ω(R(τ)) ,

where ω(R(τ)) is the same as in Eq. (3.29). Letting primes denote τ -derivatives, Eq. (3.27) becomes

ω2x
′′

+ ω
∂ω

∂R
R
′

x
′

+ g = εF . (3.30)

In τ -time, the unperturbed solution (Eq. (3.29)) may be rewritten as some new function

x = h(R,φ, τ) (3.31)

that is 2π-periodic in τ , and where R and φ are constants for ε = 0. We will take the above to be the solution
for Eq. (3.30), with R and φ as slowly varying functions of τ for 0 < ε ¿ 1. We also choose the constraint
equation

x
′

=
∂h

∂τ
. (3.32)

From Eqs. (3.31) and (3.32), we obtain
∂h

∂R
R
′

+
∂h

∂φ
φ
′

= 0 . (3.33)

Similarly, from Eqs. (3.30) and (3.32), we obtain

ω2
{

∂2h

∂τ2
+

∂2h

∂τ∂R
R
′

+
∂2h

∂τ∂φ
φ
′
}

+ ω
∂ω

∂R

∂h

∂τ
R
′

+ g = εF . (3.34)

In Eq. (3.34), we have

ω2
∂2h

∂τ2
+ g = 0

because h is an exact solution. Thus, we obtain

(

ω2
∂2h

∂τ∂R
+ ω

∂ω

∂R

∂h

∂τ

)

R
′

+ ω2
∂2h

∂τ∂φ
φ
′

= εF . (3.35)

Solving Eqs. (3.33) and (3.35), we obtain (using subscripts to denote partial derivatives)

R
′

= −ε hφF

ω2 (hRhτφ − hφhτR)− ωωRhτhφ
, (3.36)

φ
′

= ε
hRF

ω2 (hRhτφ − hφhτR)− ωωRhτhφ
. (3.37)

Equations (3.36) and (3.37) can be τ -averaged in principle. Subsequently, using the fact that τ̇ = ω, we can
recover the slow flow for R and φ in terms of the original unscaled time t.

The harmonic balance approximations of HBBA enter at this point. Since we do not have h̃ in closed form,
we use an approximation of the form

h̃ ≈ C0(R) +R sin(ω(R)t) +

N
∑

k=2

{Bk(R) sin(kω(R)t) + Ck(R) cos(kω(R)t)} ,

where R represents the amplitude of oscillation, the angular frequency ω(R) determines the fundamental period,
and the Bk’s, Ck’s and ω are known functions of R obtained using harmonic balance (or, in fact, any other good
approximation method). Replacing ω(R)t with τ + φ, we get an approximation to h from h̃.
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Substituting the above approximations for h and ω in Eqs. (3.36) and (3.37) provides closed form approxi-
mations to the true O(ε) vector field, in the form of Eq. (3.2), and which can in principle be averaged. However,
averaging typically presents difficulties in practice in that the required integrals cannot be found in closed form.
Here again, we use harmonic balance.

We assume the quantity to be averaged can be written as
r1(R,φ, τ)

r2(R,φ, τ)
, where r1 and r2 are trigonometric

polynomials. We choose an integer N ≥ 1 and approximate

r1(R,φ, τ)

r2(R,φ, τ)
≈ a0 +

N
∑

k=1

(ak cos kτ + ak+N sin kτ) ,

which in turn we rewrite as

r1(R,φ, τ) ≈ r2(R,φ, τ)×
{

a0 +
N
∑

k=1

(ak cos kτ + ak+N sin kτ)

}

. (3.38)

The above yields a system of 2N +1 simultaneous linear equations by harmonic balance [103], which are solved
for ak, k = 0, 1, · · · , 2N . The coefficient a0 then approximates the average. If k harmonics are used in the initial
approximation to the periodic solutions, and if N harmonics are used in the averaging procedure described
above, then the procedure is referred to as (k,N) averaging.

3.4.2 Delayed terms

Consider a cubic oscillator with light delayed damping

ẍ(t) + x(t)3 = −εx(t− 1) . (3.39)

We take two term harmonic balance and assume a solution of the form

x = R sinωt+ νR sin 3ωt . (3.40)

On balancing harmonics (see, e.g., [103]), we find ν ≈ −3/67. Also, ω ≈ 8R/9. The approximate solution h of
Eq. (3.31) is

x = R

(

sin(τ + φ)− 3

67
sin(3τ + 3φ)

)

. (3.41)

Also, x(t− 1) = x(τ −ω). Substituting for F = −x(τ −ω) in Eqs. (3.36) and (3.37) (the expressions are lengthy
and not reproduced here), and carrying out (2, 6) averaging, we get

R
′

=
ε

R

(

0.41284 sin

(

8R

9

)

+ 0.00226 sin

(

8R

3

))

,

φ
′

=
ε

R2

(

0.41599 cos

(

8R

9

)

+ 0.00116 cos

(

8R

3

))

.

Multiplying the above with ω(R), we get the averaged equations in the original time t as

Ṙ = ε

(

0.36697 sin

(

8R

9

)

+ 0.00201 sin

(

8R

3

))

, (3.42)

and

φ̇ =
ε

R

(

0.36977 cos

(

8R

9

)

+ 0.00103 cos

(

8R

3

))

. (3.43)

It is interesting to note, in the slow flows above, the trigonometric dependence on R. This is a consequence
of the delay as well as the strong nonlinearity. The slow flow predicts infinitely many limit cycles. For limit
cycles with very large R, however, ε may need to be very small indeed for the approximation to be good.

Solving the above two equations numerically along with

τ̇ = ω(R) =
8

9
R

gives the response of the system through Eq. (3.41). Results are shown in Fig. 3.3. Note that the maximum

value of the approximate solution is actually x =
70

67
R, and so a

70

67
scaled version of R has been plotted to

represent the averaged amplitude. The match is good, both for amplitude and phase (the latter shows a small
error over many cycles).
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Figure 3.3: Numerical solution of Eq. (3.39) and Eqs. (3.42) and (3.43) for ε = 0.1. Initial conditions: x(η) =
0.1 cos(η), ẋ(η) = −0.1 sin(η), η ∈ [−1, 0], R(0) = 0.14, φ(0) = π

2 . ‘Averaged amplitude’ refers to 70
67 R.

3.4.3 Fractional damping

We now consider the same cubic oscillator, but with light fractional damping

ẍ+ x3 = −εD1/2x . (3.44)

We use the same two term harmonic balance as before.
The relation between D1/2x(t) and D1/2x(τ) is obtained by introducing u = ωs in

D1/2x(t) =
1

Γ(1/2)

∫ t

0

ẋ(t− s)√
s

ds =
1

Γ(1/2)

∫ τ

0

ωx
′
(τ − u)√
u/
√
ω

du

ω
,

where, for our averaging purposes, ω is constant within the integral. This results in

D1/2x(t) =
√
ωD1/2x(τ) .

Using simplifications similar to those of section 3.3.3, we find that we may use

D1/2x(τ) =
2

201
R3/2

(

−3
√
3 sin(3 τ + 3φ) + 67 cos(τ + φ) + 67 sin(τ + φ)− 3

√
3 cos(3 τ + 3φ)

)

. (3.45)

Substituting for F = −D1/2x in Eqs. (3.36) and (3.37), we get the slow flow equations governing the evolution
of R and φ. After (2, 6) averaging and multiplying by ω(R), we obtain

Ṙ = −0.24697
√
Rε , (3.46)

φ̇ =
0.24770√

R
ε . (3.47)

For numerical comparisons, initial conditions for the averaged equations are obtained as follows. As men-
tioned earlier, x(0) = 0 and ẋ(0) > 0. From Eq. (3.41),

x(0) = R(0)

(

sin(φ(0))− 3

67
sin(3φ(0))

)

= 0,

where R(0) 6= 0 implies φ(0) = 0. Also

ẋ(0) =
dx(τ)

dτ

∣

∣

∣

∣

τ=0

dτ

dt

∣

∣

∣

∣

τ=0

= R(0)

(

cos(φ(0))− 9

67
cos(3φ(0))

)

ω(R(0))
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=
8

9
R2(0)

(

cos(φ(0))− 9

67
cos(3φ(0))

)

.

Substituting φ(0) = 0 and solving, we get

R(0) =

√

9

8

√

67

58

√

ẋ(0) =

√

603

464

√

ẋ(0) = 1.14
√

ẋ(0) .

The numerically computed averaged amplitude,
70

67
R as before, compares well with the full numerical solution

in Fig. 3.4.
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Figure 3.4: Numerical solution of Eq. (3.44) and Eqs. (3.46) and (3.47) for ε = 0.1. Initial conditions : x(0) = 0,
ẋ(0) = 3, R(0) = 1.14×

√
3 = 1.9745, φ(0) = 0.

3.4.4 Coexisting traditional, delayed and fractional damping

It is interesting to consider the following system, which has three types of damping (traditional, delayed and
fractional order)

ẍ(t) + x(t)3 = −ε
(

α ẋ(t) + β D1/2x(t) + γ ẋ(t− 1)
)

. (3.48)

Proceeding as above, the averaged equations are

Ṙ = ε

(

−0.33155αR− 0.32619 γ R cos

(

8R

9

)

− 0.00536 γ R cos

(

8R

3

)

− 0.24697β
√
R

)

,

φ̇ = ε

(

0.24770
β√
R

+ 0.32868 γ sin

(

8R

9

)

+ 0.00274 γ sin

(

8R

3

))

.

Figures 3.5 through 3.8 present numerical results for Eq. (3.48) and the averaged equations, for different values
of α, β and γ.

For γ = 0, i.e., in the absence of delayed damping, the amplitude evolves as

Ṙ = ε
√
R
(

−0.33155α
√
R− 0.24697β

)

.

There are no limit cycles.
For β = 0, the oscillator has traditional as well as delayed damping. The equation for amplitude is then

Ṙ = εR

(

−0.33155α − 0.32619 γ cos

(

8R

9

)

− 0.00536 γ cos

(

8R

3

))

.
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Figure 3.5: Ṙ versus R for β = 0, (a) α = 1, γ = 0.9, (b) α = 1, γ = 1.

Plots of Ṙ versus R for two sets of α and γ are shown in Fig. 3.5. For γ = 0.9 and α = 1, all the solutions
approach R = 0 (there are no limit cycles). Holding α = 1 fixed and increasing γ through 1, there occur
infinitely many simultaneous saddle-node bifurcations, and infinitely many pairs of stable and unstable limit
cycles are born (by first order averaging). Numerical solutions are shown in Fig. 3.6 for γ = 0.9 and α = 1. The
amplitude decay rates correspond well with Fig. 3.5.

Finally, we consider α = 0, when traditional linear damping is absent. Now the amplitude evolution is given
by

Ṙ = ε
√
R

(

−0.32619 γ
√
R cos

(

8R

9

)

− 0.00536 γ
√
R cos

(

8R

3

)

− 0.24697β

)

.

There are now infinitely many limit cycles whenever γ is nonzero; for large R the first order (delayed) damping
term overwhelms the half order derivative.

A plot of Ṙ versus R for two sets of β and γ is shown in Fig. 3.7. A phase plot of the original system for
ε = 0.06, α = 0, β = 1 and γ = 1 is given in Fig. 3.8 shows the first few stable limit cycles. The correspondence
with Fig. 3.7(a) is good.

3.4.5 A nonanalytic system

The strong cubic nonlinearity considered above could be tackled exactly (without harmonic balance approx-
imations) using elliptic functions as well (e.g., [110]). However, HBBA can handle a much broader range of
nonlinearities. To demonstrate, we now consider the nonanalytic system

ẍ(t) + x(t) |x(t)|+ ε
(

α ẋ(t) + β D1/2x(t) + γ ẋ(t− 1)
)

= 0 . (3.49)

Using a two term harmonic balance identical to Eq. (3.40), we obtain ω ≈ 63

68

√
R and approximate h as

x = R

(

sin(τ + φ)− 53

2005
sin(3τ + 3φ)

)

.

Proceeding as before and using (2, 6) averaging, we obtain

Ṙ = εR3/4
(

−0.29340β − 0.40050αR1/4 − 0.39785 γ R1/4 cos

(

63

68

√
R

)

− 0.00265 γ R1/4 cos

(

189

68

√
R

))
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Figure 3.6: Numerical solution of Eq. (3.48) and the corresponding averaged equations for ε = 0.1, β = 0, α = 1,
γ = 0.9. Initial conditions : x(η) = 12 cos(η), ẋ(η) = −12 sin(η), η ∈ [−1, 0], R(0) = 67/70 × 12 = 11.4857,
φ(0) = π

2 .

and

φ̇ =
ε

R1/4

(

0.29214β + 0.39729 γ R1/4 sin

(

63

68

√
R

)

+ 0.00065 γ R1/4 sin

(

189

68

√
R

))

.

Numerical results, in Fig. 3.9, are good. Thus, nonanalyticity in the unperturbed equation does not lead to any
trouble while using HBBA.

3.5 Concluding remarks

The method of averaging has been applied to study small perturbations to conservative oscillators which may
be strongly nonlinear. The perturbations studied include delayed terms and fractional derivative terms. Aver-
aging for the case of fractional derivatives corresponds to the general or aperiodic case and involves an infinite
time average which, however, can be replaced using asymptotic arguments by a simpler finite time average
corresponding to a periodic case.

A slightly perturbed harmonic oscillator is studied first to validate the averaging procedure in the presence
of delays and fractional derivative terms. For strongly nonlinear systems, the recently developed approximate
technique of HBBA [103] is used. Strongly nonlinear systems with cubic nonlinearity as well as a nonanalytic
nonlinearity are considered (the latter is not easily tractable using, say, elliptic functions). The averaged
dynamics closely match the full numerical solutions in all cases, verifying the validity of the averaging procedure
as well as the harmonic balance approximations therein. Moreover, interesting dynamics is uncovered in the
strongly nonlinear case with small delayed terms, where arbitrarily many stable and unstable limit cycles can
coexist, and infinitely many simultaneous saddle-node bifurcations can occur (in the asymptotic limit).
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Figure 3.7: Plot of Ṙ versus R for α = 0, (a) β = 1, γ = 1, (b) β = 1, γ = 0.25.
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Figure 3.8: Phase plot of Eq. (3.48) for α = 0, β = 1, γ = 1 and ε = 0.06.
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Figure 3.9: Numerical solution of Eq. (3.49) along with the numerical solution of the corresponding averaged
equations for ε = 0.1, α = 0.1, β = 1, γ = 1. Initial conditions : x(η) = 0, η ∈ [−1, 0], ẋ(η) = 0, η ∈ [−1, 0),
ẋ(0) = 15, R(0) = 6.6, φ(0) = 0.

35



Chapter 4

Galerkin projections

This chapter presents a simple and effective Galerkin technique for obtaining low dimensional systems of ordinary
differential equations (ODEs) which approximate the dynamics of the DDEs. The technique requires neither
the system to be near a bifurcation point, nor the delayed terms to have any specific restrictive form, nor even
the delay, nonlinearities and/or forcing to be small. The material of this chapter was published in [73] and also
presented in [74].

4.1 Introduction

Although DDEs are infinite dimensional, their dynamics is often effectively restricted to a fairly small number of
dimensions. Methods of describing and/or computing such low dimensional dynamics and their low dimensional
descriptions are therefore of broad practical interest. This chapter presents a simple and effective Galerkin
technique for obtaining low dimensional systems of ordinary differential equations (ODEs) which approximate
the dynamics of the DDEs.

Several numerical techniques for direct forward simulations of DDEs, not explicitly based on low dimensional
projections, are known [111, 112, 113, 114]. For the most part, these tend to be more complicated than (say)
the most popular methods for ODEs. Moreover, a lot of easily available software exists for numerical analysis
of ODEs, while the same is not yet true for DDEs. Thus projections giving ODEs from DDEs are of practical
as well as academic interest.

Formal mathematical treatment of lower dimensional projections for DDEs tend to be complicated by the
awkward functional analytic setting such calculations need for rigorous justification [68, 84]. Perhaps conse-
quently, practical Galerkin projections for DDEs have so far been restricted to harmonic balance or variations
thereof, to find either periodic or quasiperiodic solutions [9, 115, 116, 117, 118]. Harmonic balance is, however,
limited in that it cannot be used to study transient behavior, the stability or instability of periodic solutions
(except through additional Floquet theory calculations, see [9]), and complex aperiodic (chaotic) solutions.

If the delayed terms in a DDE are small, then straightforward application of well known perturbation
methods can lead to low dimensional descriptions of the dynamics (see, e.g., [97, 98, 99]). The problem is more
challenging when the delayed terms are not small. Available analytical techniques used for such cases include
center manifold reductions near Hopf bifurcations [119, 120, 121, 122], direct treatment via normal forms at such
near-bifurcation points (bypassing the center manifold reductions) [123, 124, 125], as well as direct application
of the method of multiple scales at such points (bypassing normal forms) [9, 126]. Such descriptions, restricted
near bifurcation points, are not well suited for detailed parameter studies.

A different analytical approach, not based on the usual perturbation methods, is provided by Roussel [45],
who develops approximate descriptions of the low dimensional dynamics using “smallness” in the delay interval
as well as simplifications afforded by assuming “long-time” behavior. Roussel’s approach is limited to certain
classes of DDEs, and not easily amenable to systematic refinement.

Another general approach to obtaining finite dimensional approximations for DDEs consists of developing
maps to describe the evolution of the system over discrete time intervals (often equal to the delay interval)
[23, 127, 128]. Within this approach is included the idea of temporal finite elements [127], where the delay
interval is split into a number of subintervals over which (cubic Hermite) polynomials are used as shape functions;
subsequently, the dynamics from delay interval to delay interval is expressed by a map. In the case of linear
DDEs, the map is simple, and given by matrices of size proportional to the number of subintervals used. A
related, but simpler, approach called semi-discretization [128] involves piecewise-constant approximations over
subintervals within the delay interval; this also leads to maps.

Here, in contrast to the above approaches, we will use a Galerkin projection technique to directly obtain
a set of ODEs that will provide excellent finite-dimensional approximations for the dynamics of several DDEs
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(verified by comparisons with direct numerical simulations). Transient, periodic and aperiodic solutions will
all be captured very satisfactorily by the low dimensional systems of ODEs. We note that ODEs have been
obtained from DDEs using other, conceptually different, approaches [85, 129].

4.2 Theory

4.2.1 Delay differential equations

Many DDEs or Retarded Functional Differential Equations (RFDEs) can be written in the form

ẋ(t) = f (t, x(t), xτ1(t), xτ2(t), · · · , xτn
(t)) , for t > 0, and xs(0) ≡ x(−s) = X(s), s ∈ (0, τn], (4.1)

where X(s) is a given “initial function.” In the above, we define

xτ (t) ≡ x(t− τ),

and assume n is a finite number, with

0 < τ1 < τ2 < · · · < τn = 1.

Note that if the largest delay in the system is finite, then scaling of time can always make it equal to unity.
It will be clear below that we can easily include the more general case where f also depends on one or more
quantities of the form (see pages 2− 8 of [68] for examples of applications)

z̃ ≡
∫ 1

0

z(s) g(x(t− s)) ds ,

where z(s) represents a distributed delayed effect and g is some possibly nonlinear function. Including one or
more such terms, we may write our general DDE as1

ẋ(t) = f (t, x(t), xτ1(t), xτ2(t), · · · , xτn
(t), z̃1, z̃2, · · ·) , with x(−s) = X(s), s ∈ (0, τn] . (4.2)

Note that ẋ(t) does not depend on delayed values of itself, i.e., terms like ẋ(t −∆); such equations, called
neutral equations, where the highest order derivatives themselves appear with delayed arguments, are not
considered here because their dynamics can be more complex than for DDEs.

By Eq. (4.2), ẋ at time t depends on the values of x at various times within the interval [t− 1, t]. Therefore,
in the interval (0, 1), ẋ has the same order of differentiability as x in the interval (−1, 0). For example, if x is
discontinuous for t ∈ (−1, 0), then ẋ is discontinuous for t ∈ (0, 1) but x is continuous there. In this way, as
time proceeds, the solution gets smoother and smoother (this is not the case for neutral equations, which we
avoid here). For this reason, in this chapter, we assume the solution is as smooth as necessary.

While calculating the evolution of x(t), we need to keep track of the solution over the immediately preceding
unit interval of time. To this end, we define an instantaneous local time interval [0, 1] with a local variable s.
In this local interval, the function x(t) coincides with a function F (t, s) given by

F (t, s) = xs(t) = x(t− s) . (4.3)

The DDE governs the evolution of F (t, s) with t.

4.2.2 Finite dimensional approximation

We approximate the function F (t, s) by

F (t, s) = a0(t) + a1(t) s +
N−2
∑

k=1

ak+1(t) sin(kπs) , (4.4)

where N is a finite number that we choose. Note that any function of interest can be expressed on a finite
interval as a Fourier sine series superposed on a straight line, as shown in Fig. 4.1.

Also, we automatically have
x(t) ≡ F (t, 0) = a0(t) . (4.5)

The other components ai(t) represent other dimensions in the dynamics, and will be coupled with a0(t) in the
ODEs we seek.

1We have retained for clarity the terms xτ (t) although they could be written as

∫

1

0

δ(s− τ)x(t− s) ds, where δ represents the

Dirac delta function.
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Figure 4.1: On a finite interval, an arbitrary function = a linear function + a Fourier sine series.

4.2.3 Standard Galerkin projections

Usually, in Galerkin projections for ODEs like

ẋ− f(t, x) = 0 ,

one substitutes an approximate solution of the form

x(t) ≈
N
∑

i=1

ai φi(t) ,

where the ai are undetermined constants and the φi are user-selected shape functions. One then sequentially
multiplies the residual with N distinct weighting functions (most commonly chosen to be the shape functions φi
themselves), integrates over an interval of interest, and sets the integral equal to zero in each case. This process
yields N simultaneous algebraic equations for the ai.

In contrast, for PDEs of the form (say)

ut − f(t, y, u, uy, uyy) = 0 ,

one substitutes an approximate solution given by

u(t, y) ≈
N
∑

i=1

ai(t)φi(y) ,

where the ai(t) are now undetermined functions of time and the φi(y) are user-selected shape functions. One
then sequentially multiplies the residual with N functions of y (often the φi themselves), integrates over y, sets
the integrals equal to zero, and obtains N simultaneous ODEs for the ai(t).

Our aim, for DDEs, is to obtain a system of ODEs governing the evolution of a finite number of state
variables. A straightforward Galerkin procedure seems somewhat awkward now (unlike the situation where one
seeks periodic solutions, uses harmonic balance, and obtains algebraic equations). For example, consider the
equation

ẋ(t) + x(t− 1) = 0 .

Galerkin projections involve inner products, which usually mean integration; and here the logical integration
domain seems to be a moving window of unit length. Since we also wish to retain some time dependence at the
end of the integration process, we must both integrate over a time-like variable while holding some time-like
variable constant. These issues motivate our Galerkin procedure.

4.2.4 Galerkin procedure for DDEs

As will be clear, our procedure pays particular attention to the right endpoint of the unit interval. Subsequently,
attention is paid to the whole unit interval. The steps in the procedure are given below.
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1. Differentiating Eq. (4.5) with respect to t, we obtain

ȧ0(t) = ẋ(t) . (4.6)

In the above, we substitute into the right hand side the quantity f from the right hand side of the original
DDE, i.e., Eq. (4.2), where in turn quantities like xτ1(t) are obtained by substituting s = τ1 in Eq. (4.4).
This gives an explicit equation of the form

ȧ0(t) = fre , (4.7)

where the subscript “re” denotes right endpoint.

2. We now turn to the interior of the unit interval. Here, from Eq. (4.3), we have

F (t, s) = x(t− s) .

The above implies
∂F

∂t
+
∂F

∂s
= 0 . (4.8)

Substituting Eq. (4.4) in the above we get

ȧ0(t) + ȧ1(t) s+
N−2
∑

k=1

ȧk+1(t) sin(kπs) + a1(t) +
N−2
∑

k=1

ak+1(t)kπ cos(kπs) = 0 .

The above equation cannot hold identically but gives us, instead, the framework for a Galerkin projection.
Having obtained a condition for the evolution of a0(t) (Eq. (4.7)), we now seek the evolutions of the
remainingN−1 coefficients ai(t). Accordingly, we take inner products with the shape functions multiplying
these coefficients, to obtain the following N − 1 equations:

∫ 1

0

{

ȧ0(t) + ȧ1(t) s+

N−2
∑

k=1

ȧk+1(t) sin(kπs) + a1(t) +

N−2
∑

k=1

ak+1(t)kπ cos(kπs)

}

· s ds = 0 (4.9)

and

∫ 1

0

{

ȧ0(t) + ȧ1(t) s+

N−2
∑

k=1

ȧk+1(t) sin(kπs) + a1(t) +

N−2
∑

k=1

ak+1(t) kπ cos(kπs)

}

· sin(mπs) ds = 0 , (4.10)

for m = 1, 2, · · · , N − 2.

Note that the above integrals are not dependent on the original DDE. Only the assumed form of Eq. (4.4)
enters these calculations. However, ȧ0(t), itself determined by Eq. (4.7), drives the other ȧi(t) in Eqs.
(4.9) and (4.10).

3. Combining Eqs. (4.7), (4.9) and (4.10), we obtain N simultaneous linear algebraic equations in the N
unknowns, ȧ0, ȧ1, · · · , ȧN−1, which gives our system of ODEs for subsequent analysis.

4.3 Examples

In this section, we will apply the foregoing method to several different DDEs. In each case, suitable comparisons
will be made between numerical results obtained directly from the DDE and those obtained from the ODEs.
In what follows, numerical solutions of nonlinear DDEs were all obtained using a fixed step fourth order Runge
Kutta routine adapted to remember, interpolate and incorporate past values.

4.3.1 A linear DDE

Consider

ẋ(t) + x(t) + x(t− 1/
√
2) + x(t− 1) +

∫ 1

0

x(t− s) cos(s) ds = 0 . (4.11)

We note that the characteristic roots of this equation is studied in detail in chapter 2. Taking N = 4, we obtain

F (t, s) = a0(t) + a1(t)s+ a2(t) sin(πs) + a3(t) sin(2πs).
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Equation (4.7), applied to Eq. (4.11), becomes

ȧ0 = −
{

F (t, 0) + F (t, 1/
√
2) + F (t, 1) +

∫ 1

0

F (t, s) cos(s) ds

}

.

The remaining three equations needed are given by Eqs. (4.9) and (4.10). Finally, we obtain

ȧ0 = −3.8415 a0 − 2.0889 a1 − 1.3413 a2 + 0.8888 a3 ,

ȧ1 = 4.5463 a0 + 1.2887 a1 + 4.2390 a2 − 11.6582 a3 ,

ȧ2 = 1.9968 a0 + 0.5660 a1 − 0.9908 a2 + 8.9568 a3 ,

ȧ3 = 1.4471 a0 + 0.4102 a1 − 1.3174 a2 − 3.7109 a3 .

The eigenvalues of the coefficient matrix in the above system of ODEs are −0.1662±2.4979 i and −3.4611±
3.9056 i . The first one matches well with the numerically obtained −0.1639± 2.4749 i.

Table 4.1: Characteristic roots of Eq. (4.11)
N Roots

4 −0.1662 −3.4611 – – – –
± 2.4979 i ±3.9056 i

6 −0.1675 −1.1387 −4.7083 – – –
± 2.4826 i ± 8.8467 i ±5.0461 i

8 −0.1670 −1.7552 −0.9704 −5.6091 – –
± 2.4784 i ± 8.9150 i ± 14.6150 i ±6.1852 i

10 −0.1650 −2.1044 −1.5400 −0.6828 −6.5094 –
± 2.4770 i ± 8.7924 i ± 14.6970 i ± 20.6504 i ±7.3185 i

12 −0.1647 −2.2899 −1.9803 −1.1054 −0.6164 −7.2903
± 2.4763 i ± 8.6498 i ± 14.7132 i ± 20.7812 i ± 26.7833 i ±8.4698 i

14 −0.1647 −2.3819 −2.3482 −1.4425 −1.0126 −0.5678
± 2.4760 i ± 8.5320 i ± 14.6663 i ± 20.8671 i ± 26.9623 i ±32.8533 i

16 −0.1645 −2.4022 −2.6084 −1.6974 −1.3125 −0.9378
± 2.4756 i ± 8.4484 i ± 14.5422 i ± 20.8954 i ± 27.1081 i ±32.9952 i

18 −0.1643 −2.4070 −2.7790 −1.8982 −1.5513 −1.2372
± 2.4756 i ± 8.3957 i ± 14.3950 i ± 20.8933 i ± 27.2184 i ±33.1424 i

20 −0.1643 −2.4150 −2.9001 −2.0729 −1.7611 −1.5008
± 2.4754 i ± 8.3598 i ± 14.2541 i ± 20.8792 i ± 27.3073 i ±33.2691 i

Numerical −0.1639 −2.3946 −2.8736 −2.6442 −3.2404 −3.8703
± 2.4749 i ± 8.2369 i ± 13.6232 i ± 20.2466 i ± 27.0141 i ±32.8338 i

The match improves with increasing N , as shown in Tab. 4.1. The last row of Tab. 4.1 represents the roots of
the characteristic equation of Eq. (4.11) found numerically using the Newton-Raphson method to 12 significant
digits (not all shown here). Hence, we have treated them as the exact roots and the Galerkin projection roots
are compared with these numerically found roots. In the first five rows of the tabulated results, a spurious root
of steadily increasing magnitude and with fairly large negative real part (corresponding to rapid decay) is shown
in boldface. It is seen that as N increases, this root eventually goes off far into the left half plane (see also Tab.
4.2). All other roots are seen converging towards their correct values (numerically found values as described
above).

Table 4.2: Spurious root goes off into left half plane.
N 14 16 18 20

−7.9866 −8.8018 −9.6101 −10.3091
± 9.6362 i ± 10.730 i ± 11.7743 i ± 12.8320 i

It is worthwhile to examine the pair of spurious roots in some detail. The pair of spurious roots represent
rapidly decaying dynamics that plays no significant role over the time-scale of interest. The presence of this pair
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of spurious roots is thus an insignificant artifact of the approximation scheme. As the approximation is refined,
i.e., N increased, this root increases in magnitude and goes off to infinity towards the far left of the complex
plane. Note that the correct large characteristic roots for this equation, found using asymptotics in [69], have
real parts logarithmically related to the imaginary parts. The spurious roots obtained here are not one of these
large roots in disguise.

The above discussion has a parallel with an issue in computing the natural frequencies of a structure using
the finite element method. If we fix a range of frequencies (say 0 − 1000 Hz) and refine the FE mesh further
and further, the frequencies within this range converge to their exact values. However, for any given mesh the
highest frequencies obtained are unreliable. Similarly for our problem, if we fix a circle of some radius around
the origin and refine the approximation, i.e., increase N , the approximate roots contained in that semi-circle
will converge to their exact values. The pair of spurious roots will eventually leave this circle, go into the far
left half of the complex plane and become dynamically insignificant.
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Figure 4.2: Characteristic roots of Eq. (4.11). Dots : converging roots through Galerkin Projection. Triangles
: spurious roots. Circles : exact roots.

Note that several excellent methods for computing the characteristic roots of linear constant coefficient DDEs
are available [69, 130, 86, 131], as are methods for determining the stability of given DDEs without necessarily
finding the characteristic roots [14,15,39-42].The present Galerkin projection is not meant to compete with
them. The foregoing example merely serves to illustrate the convergence of results obtained using this method,
whose main utility is expected to be in obtaining ODE representations of nonlinear DDEs.

4.3.2 A nonlinear DDE

We now consider a periodically forced DDE with a single linear delayed term and an undelayed cubic nonlinearity,

ẋ(t) + b1 x(t− 1) + b2 x(t)
3 = F sin(ωt) . (4.12)

The system of nonlinear ODEs corresponding to Eq. (4.12) for N = 5 is presented below for clarity of
expression

ȧ0 = F sin(ωt)− b1a0 − b1a1 − b2a30 ,

ȧ1 =
−1

5 (6π2 − 49)

(

45π2F sin(ωt)− 400F sin(ωt)− 276 a4π + 400 b1a1 + 45 a1π
2 − 45π2b1a1
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−400 a1 − 45π2b1a0 − 45π2b2a
3
0 − 60 a2π + 400 b1a0 + 400 b2a

3
0 + 96 a3π

)

,

ȧ2 =
−2

15π(6π2 − 49)

(

45 a1π
2 − 45π2b1a0 − 45π2b1a1 + 45π2F sin(ωt)− 45π2b2a

3
0

−270F sin(ωt) + 828 a4π − 120 a3π
3 + 270 b1a1 − 270 a1

+270 b1a0 + 270 b2a
3
0 + 180 a2π + 692 a3π

)

,

ȧ3 =
−1

15π(6π2 − 49)

(

135π2F sin(ωt)− 1200F sin(ωt) + 2700 a4π − 432 a4π
3 + 1200 b1a1

+135 a1π
2 − 135π2b1a1 − 1200a1 − 135π2b1a0 − 135π2b2a

3
0

−2140 a2π + 240 a2π
3 + 1200 b1a0 + 1200 b2a

3
0 + 288 a3π

)

,

ȧ4 =
−2

5π(6π2 − 49)

(

−620 a3π + 30 b2a
3
0 + 30 b1a1 + 30b1a0 − 30F sin(ωt) + 5 a1π

2 + 92 a4π

+20 a2π + 72 a3π
3 − 30 a1 + 5π2F sin(ωt)− 5π2b2a

3
0 − 5π2b1a1 − 5π2b1a0

)

.

But for computational purposes, we use N = 9 and choose the initial function as identically zero (all 9
state variables in the Galerkin projection also start from zero initial conditions). Results from direct numerical
integration of the DDE and the corresponding ODEs are compared for two sets of parameter values, and
somewhat different qualitative behaviors, in Figs. 4.3 and 4.4. In both cases, the match is very good both in
the transient as well as the steady state behavior.
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Figure 4.3: Numerical solution of Eq. (4.12) and the corresponding system of ODEs for b1 = b2 = 1, F = 3,
ω = 4, and N = 9.
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Figure 4.4: Numerical solution of Eq. (4.12) and the corresponding system of ODEs for b1 = 3π/4, b2 = π/4,
F = 3π/2, ω = 2π, N = 9.

4.3.3 More than one delay

We now consider
ẋ(t) + b1 x(t− 1) + b2 x(t)

3 + b3 x(t− 1/2) = F sin(ωt) , (4.13)

which has two different delays.
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Figure 4.5: Numerical solution of Eq. (4.13) and the corresponding system of ODEs for b1 = b2 = b3 = F = π/2,
ω = 3π/2, N = 15.
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In this case good accuracy is achieved with N = 15, as seen from Fig. 4.5 (as before, all initial conditions were
taken to be zero). With smaller N , the modulations in the solution were qualitatively present but quantitatively
less accurate.

4.3.4 A nonlinear delayed term

Consider
ẋ(t) + b1x(t− 1) + b2x(t)

3 + b3x(t− 1/2)2 = F sin(ωt) . (4.14)

Results, shown in Fig. 4.6 for N = 9 and zero initial conditions, are very good.
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Figure 4.6: Numerical solution of Eq. (4.14) and the corresponding system of ODEs for b1 = b2 = b3 = F = π/2,
ω = 3π/2, N = 9.

4.4 Parameter studies

The numerical study of any system often involves systematic investigation of the effects of changing parameters.
The results are often displayed in bifurcation diagrams. Galerkin projections can be useful in this regard both
in easy incorporation of bifurcation analysis algorithms for ODEs, as well as potential savings in run time (our
own ODE calculations took 3 to 5 times less computer time than our corresponding DDE calculations, but
further study with codes geared for efficiency is needed to verify this aspect).

We first study Eq. (4.12) under varying b1, which represents the strength of the delayed term. For each b1,
we numerically solve the equations at hand (DDE or ODE), and locate those instants in time when ẋ = 0; we
then find the values of x at those times and plot them, using dots, against the varying parameter. Results are
shown in Figs. 4.7 through 4.9, for the original DDE, for ODEs with N = 5, and for N = 9 respectively. The
pointwise match between DDE and ODE improves with increasing N ; however, a qualitative picture that might
be accurate enough for most purposes is obtained for a modest value of N .

In each figure, the two curves seen for near-zero values of the bifurcation parameter represent a single periodic
motion (which has two points within each period when ẋ = 0).

Figure 4.10 shows zoomed portions of Figs. 4.7 through 4.9 with finer details. It is seen that the match is
not perfect, but better for N = 9 than for N = 5.

It was mentioned above that in generating Figs. 4.7 through 4.9, the ODE solutions were obtained about
three to five times (depending on N) more quickly than the DDE results. Thus, the Galerkin procedure allowed,
at least in our study, significant savings in time at a modest cost in accuracy. More rigorous tests with well
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written DDE codes, as well as possibly more efficient implementations of the Galerkin projections, may shed
further light on the issue of time savings with the present Galerkin procedure. An anonymous reviewer of the
journal version of this work [73] has expressed the opinion that the Galerkin projection may not, in the end,
compete as well against DDE codes as our abovementioned results may suggest. Resolution of this question is
a matter of future work.
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Figure 4.7: Equation (4.12) by direct numerical simulation: b2 = π/4, F = 3π/2, ω = 2π.
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Figure 4.8: Equation (4.12) by numerical simulation of ODEs: same parameter as in Fig. 4.7, N = 5.
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Figure 4.9: Same parameters as Fig. 4.7 with N = 9.
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Figure 4.10: Zoomed portions, with finer details, of (a) Fig. 4.7, (b) Fig. 4.8, and (c) Fig. 4.9.

Next, we also generate bifurcation diagrams for Eqs. (4.13) and (4.14). Results are shown in Figs. 4.11 and
4.12 for Eq. (4.13), and Figs. 4.13 and 4.14 for Eq. (4.14). For both cases, the agreement is good between the
bifurcation diagrams obtained from the original DDE and the reduced ODEs.
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Figure 4.11: Equation (4.13) by direct numerical simulation: b2 = b3 = F = π/2, ω = 3π/2.
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Figure 4.12: Equation (4.13) by numerical simulation of ODEs: same parameters as in Fig. 4.11, N = 15.
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Figure 4.13: Equation (4.14) by direct numerical simulation: b2 = b3 = F = π/2, ω = 3π/2.
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Figure 4.14: Equation (4.14) by numerical simulation of ODEs: same parameters as in Fig. 4.13, N = 9.
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4.5 Concluding remarks

We have presented a Galerkin projection technique by which finite-dimensional ODE approximations for DDEs
can be obtained in a straightforward fashion. The technique requires neither the system to be near a bifurcation
point, nor the delayed terms to have any specific restrictive form, nor even the delay, nonlinearities and/or
forcing to be small. The method presented here is not applicable to neutral systems.

We have shown through several numerical examples that the systems of ODEs obtained using this procedure
can in fact accurately capture the dynamics of the DDEs under study. The accuracy of solutions increases with
increasing numbers of shape functions used in the Galerkin projection. We expect the present technique to be
useful in detailed numerical studies, including parameter studies, of nonlinear DDEs. In this preliminary work,
we have presented the basic procedure and demonstrated its effectiveness using several numerical examples.

A numerical study of the convergence of this technique is presented in the next chapter, where we also
improve and extend this technique to higher order DDEs and systems of DDEs.
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Chapter 5

Improvement and extension of the

Galerkin procedure

In this chapter, we first present a brief numerical study of the performance and convergence of the Galerkin
technique presented in the previous chapter by approximating the characteristic roots of linear constant coef-
ficient DDEs. Then, we present a modification of the Galerkin technique that gives better performance. For
demonstration, we use this modified technique to obtain finite dimensional descriptions used for approximating
the characteristic roots of several linear constant coefficient DDEs. While the Galerkin technique itself is useful
for nonlinear time-varying problems as well, its application to the linear constant coefficient problem serves as
a detailed numerical investigation of its performance.

We also extend the technique to higher order DDEs and systems of DDEs.
Natarajan and Chatterjee have developed a finite element implementation of this improved scheme [134].

Vivek Natarajan also did several of the calculations in this chapter, under my supervision. Some material from
this chapter was presented in [75].

5.1 Introduction

To illustrate the basic issues relevant to this chapter, consider the DDE

ẋ = −x(t− 1).

Its characteristic equation is
λ+ e−λ = 0,

which is transcendental and has infinitely many roots as mentioned in chapter 2. Such equations typically
cannot be solved in closed form.

A Galerkin projection technique has been developed in the previous chapter to obtain finite-dimensional ODE
approximations for DDEs. Here, we first present a brief numerical study of its performance and convergence.
We then present a modification to the Galerkin procedure henceforth called the modified Galerkin projection,
which outperforms the one presented in the previous chapter. We use both these techniques to find the first
several characteristic roots of some linear constant coefficient DDEs. For large N , where N is the dimension
of the approximation, the error in approximating a given root goes to zero like N−2. For any given N , the
modified Galerkin technique provides a larger number of accurate estimates than the technique presented in the
previous chapter. This modified technique, and its detailed numerical evaluation, are the main contributions of
this chapter. A smaller contribution of this chapter is the extension of the technique to higher order DDEs.

As mentioned in chapter 2, several methods for finding the first few characteristic roots of linear DDEs exist
in the literature [85, 86, 133]. The approach in [86, 133] is to approximate the solution operator by a finite-
dimensional matrix that maps the function from one delay interval to another. The characteristic roots are
then the logarithms of the eigenvalues of that matrix. The approximating matrix in [133] is based on subspace
iteration of the integration operator of the DDE, while in [86] the matrix is based on a finite-difference scheme.
In [85], the DDE is reduced to a system of ODEs by using a finite-difference scheme over the delay interval.
The characteristic roots are then directly obtained as the eigenvalues of the coefficient matrix associated with
the ODEs. Our approach, like [85], obtains a system of ODEs, but is conceptually different in that it is based
on global shape functions and a Galerkin projection (as opposed to finite differences in time).

In this chapter, the modified Galerkin procedures will be applied to several different DDEs. These are

1. ẋ+ x(t− 1) = 0, which is the simplest case.
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2. ẋ + x + x(t − 1/
√
2) + x(t − 1) +

∫ 1

0

x(t − u) cos(u) du = 0 , which is a first order DDE with multiple

incommensurate delays as well as a distributed delay effect also studied in chapter 2.

3. ẍ+ 0.2 ẋ(t− 1/2) + 3x− 2x(t− 1) = 0 , which is a second order DDE.

4. ẋ+10x+x(t− 1)+2y(t− 1) = 0 and ẏ+10y+x(t− 1)+ y(t− 1) = 0 , which is a system of two coupled
DDEs.

5. ẋ+ 10x+ x(t− 1/
√
2) + y(t− 1) = 0 , ẏ + 10y + z(t− 1) = 0 and ż + 10z + x(t− 1) = 0 , which is a

system of three coupled DDEs with incommensurate delays.

In the next section, we briefly present the Galerkin technique again with a pictorial representation of the
technique for clarity and then perform a detailed performance analysis of the same. To this end, we write the
reduced system from the previous chapter using a matrix notation that clarifies algorithmic issues.

5.2 The Galerkin procedure of chapter 4

Consider a general DDE with finite and nonzero, possibly distributed, delays

ẋ(t) = f̂ (t, x(t),delayed values ofx(t)) . (5.1)

We let the largest delay be unity (by scaling time if necessary). We define the function

F (t, s) = xs(t) = x(t− s) , s ∈ [0, 1]. (5.2)

In the interior of the s-interval we have from Eq. (5.2)

∂F

∂t
+
∂F

∂s
= 0. (5.3)
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Figure 5.1: PDE from DDE

Figure 5.1 depicts our strategy pictorially. We have replaced the real-line domain with a semi-infinite strip
in the (t, s) plane. In this semi-infinite domain the PDE defined in Eq. (5.3) is the governing equation. On the
edge t = 0, s goes from 0 to 1 and the initial function of the DDE acts as the boundary condition for the PDE.
On the semi-infinite edge where s = 0 and t > 0, the DDE itself acts as the boundary condition as will be seen
below. No boundary condition is needed on the other semi-infinite edge where s = 1 and t > 0.

We now develop our approximation scheme. We approximate

F (t, s) ≈ a0(t) + a1(t) s +

N−2
∑

k=1

ak+1(t) sin(kπs) , (5.4)
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where N is finite. From Eqs. (5.2) and (5.4), we have x(t) ≡ F (t, 0) = a0(t) , which on differentiation with
respect to t gives

ȧ0(t) = ẋ(t) = f (t, a0(t), a1(t), a2(t), · · · , aN−1(t)) , (5.5)

where the function f is obtained by substituting Eqs. (5.2) and (5.4) in f̂ of Eq. (5.1). Equation (5.5) defines
the boundary condition on the semi-infinite edge where s = 0 and t > 0, as it governs the evolution of the
function F (t, s) on this boundary.

Substituting Eq. (5.4) in Eq. (5.3), we define

r(t, s) = ȧ0(t) + ȧ1(t) s+

N−2
∑

k=1

ȧk+1(t) sin(kπs) + a1(t) +

N−2
∑

k=1

ak+1(t)kπ cos(kπs) , (5.6)

where r(t, s) is called the residual. The residual is made orthogonal to the shape functions (this is the Galerkin
projection) to obtain the following N − 1 equations:

∫ 1

0

{

ȧ0(t) + ȧ1(t) s+

N−2
∑

k=1

ȧk+1(t) sin(kπs) + a1(t) +

N−2
∑

k=1

ak+1(t)kπ cos(kπs)

}

· s ds = 0 (5.7)

and

∫ 1

0

{

ȧ0(t) + ȧ1(t) s+

N−2
∑

k=1

ȧk+1(t) sin(kπs) + a1(t) +

N−2
∑

k=1

ak+1(t) kπ cos(kπs)

}

· sin(mπs) ds = 0 , (5.8)

for m = 1, 2, · · · , N − 2.
Equations (5.5), (5.7) and (5.8) constitute N ODEs which can be written in the form

Aȧ+Ba = b(a, t) , (5.9)

where A and B are N × N matrices, a is a vector containing ai and b(a, t) is a vector with a single nonzero
element representing time varying and/or nonlinear terms from the DDE (Eq. (5.1)). Almost all elements of
both A and B can be evaluated once and for all, independent of the specific DDE (the last N − 1 rows as
determined by Eqs. (5.7) and (5.8)). Expressions for the elements of A and B are given in Tables 5.1 and 5.2,
respectively.

Table 5.1: Coefficients of ȧis using old residual.

Equation No. ȧ0 ȧ1 ȧk+1, k = 1, · · · , N − 2

5.7
1

2

1

3

(−1)k+1
kπ

5.8
2

mπ
for m odd, 0 otherwise .

(−1)m+1
mπ

1

2
for k = m , 0 otherwise .

For a linear constant coefficient DDE, b(a, t) = 0 and hence Eq. (5.9) represents an eigenvalue problem of
the form ȧ = Ca, where C = −A−1B. Eigenvalues of the matrix C approximate the first several characteristic
roots of the DDE under consideration1.

For a numerical study of the performance of the Galerkin technique, we consider

ẋ+ x(t− 1) = 0 . (5.10)

Using Eqs. (5.2) and (5.4) this can be written as

ȧ0 + a0 + a1 = 0. (5.11)

Hence along with Eqs. (5.7) and (5.8) we have N ODEs which can be written as ȧ = Ca.

1For the invertibility of A, see Appendix D.
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Table 5.2: Coefficients of ais using old residual.

Equation No. a0 a1 ak+1, k = 1, · · · , N − 2

5.7 0
1

2
− 2

kπ
for k odd , 0 otherwise .

5.8 0
2

mπ
for m odd , 0 otherwise .

2km

m2 − k2 for k +m odd , 0 otherwise .

For any characteristic root of the DDE, absolute error is |λexact − λc|, where λexact is the highly accurate
characteristic root of the DDE via Newton-Raphson and λc is the eigenvalue of C closest to λexact. The absolute
errors for the first and second characteristic roots of Eq. (5.10) are calculated for different values of N and plotted
on a log-log scale in Fig. 5.2 (right). On fitting a straight line, it is observed that the error is proportional to
N−2 for large N .
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Figure 5.2: Left: Eigenvalues of C for N = 100 and exact roots of Eq. (5.10). By exact, we mean highly accurate
roots numerically obtained via Newton-Raphson. Right: Convergence with N of first two characteristic roots
of Eq. (5.10).

Figure 5.2 (left) shows the exact characteristic roots of the DDE, along with the eigenvalues of the matrix
C for N = 100. We stress again that the exact roots of the DDE are the roots obtained via Newton-Raphson
with a high degree of accuracy. The first few eigenvalues (about 12) are accurate to plotting precision.

Overall, the numerical results may be summarized as follows. As N increases, individual eigenvalues converge
to the corresponding exact (in the sense mentioned above) characteristic roots of the DDE. Also, the number
of eigenvalue estimates with error less than some given tolerance increases with N .

In the next section we present an analysis of a second order DDE with a delayed derivative which motivates
the modification in the Galerkin procedure by which a much larger number of accurate estimates will be obtained.
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5.3 A second order DDE

From Eq. (5.3), we note that −∂F (t, s)
∂s

and
∂F (t, s)

∂t
are the same and both of them can be used for approx-

imating ẋ(t − s). However, in numerical implementations of the Galerkin procedure for higher order systems

which involve terms of the form ẋ(t−τ), we have observed that the results obtained are better if we use
∂F (t, s)

∂t
.

To clarify the issue, consider the second order DDE

ẍ+ 20ẋ+ 2ẋ(t− 1) + 20x(t− 1) + 100x = 0 . (5.12)

From Eq. (5.3), we can write Eq. (5.12) as either

∂2F

∂t2

∣

∣

∣

∣

s=0

+ 20
∂F

∂t

∣

∣

∣

∣

s=0

+ 2
∂F

∂t

∣

∣

∣

∣

s=1

+ 20 F |s=1 + 100 F |s=0 = 0 (5.13)

or
∂2F

∂t2

∣

∣

∣

∣

s=0

+ 20
∂F

∂t

∣

∣

∣

∣

s=0

− 2
∂F

∂s

∣

∣

∣

∣

s=1

+ 20 F |s=1 + 100 F |s=0 = 0. (5.14)

Equations (5.7) and (5.8) still continue to be useful for both the equations. For the above two equations
using the approximation presented in the previous chapter, we note that a0 would be the only variable with
a second derivative involved here. Accordingly, introducing a new variable y = ȧ0, we can write both the
system of equations, i.e., Eqs. (5.7), (5.8) and (5.13) or Eqs. (5.7), (5.8) and (5.14), as Aȧ + Ba = 0, where
a = {y, a0, a1, · · · , aN−1}T . Again the eigenvalues of C = −A−1B would approximate the first few characteristic
roots of the DDE, Eq. (5.12). The results for both the cases are presented in Fig. 5.3.
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Figure 5.3: Left: From Eq. (5.13). Right: From Eq. (5.14).

It is clear from the figure that using the t-derivative (Eq. (5.13)) gives better convergence (N−2 against N−1

for the s-derivative (Eq. (5.14)).
The above observation suggest that using the s-derivative of the function F (t, s) is probably not a good idea

at least for the choice of the shape functions used in this work. This motivates our modification of the Galerkin
procedure presented in the next section.

5.4 Modified Galerkin procedure

Motivated by the analysis presented in the previous section, we replace Eq. (5.3) by

∫ s

0

(

∂F (t, s)

∂t
+
∂F (t, s)

∂s

)

ds =

∫ s

0

∂F (t, s)

∂t
ds+ F (t, s)− F (t, 0) = 0, s ∈ [0, 1] , (5.15)

so as to get rid of the s-derivative. A pictorial representation of our modified strategy would be similar to Fig.
5.1, except that the governing equation inside the domain would now be given by Eq. (5.15) instead of Eq. (5.3).
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We now proceed with our approximation scheme. Substituting Eq. (5.4) for F (t, s) in Eq. (5.15), we define

rm(t, s) = ȧ0(t) s+ ȧ1(t)
s2

2
+

N−2
∑

k=1

ȧk+1(t)
(1− cos(kπs))

kπ
+ a1(t) s+

N−2
∑

k=1

ak+1(t) sin(kπs) , (5.16)

where rm is a residual (the m-subscript for “modified” is used to differentiate from the r of Eq. (5.6)). Again
making this modified residual orthogonal to the shape functions used in Eq. (5.4), we obtain

∫ 1

0

{

ȧ0(t) s+ ȧ1(t)
s2

2
+

N−2
∑

k=1

ȧk+1(t)
(1− cos(kπs))

kπ
+ a1(t) s+

N−2
∑

k=1

ak+1(t) sin(kπs)

}

· s ds = 0 (5.17)

and

∫ 1

0

{

ȧ0(t) s+ ȧ1(t)
s2

2
+

N−2
∑

k=1

ȧk+1(t)
(1− cos(kπs))

kπ
+ a1(t) s+

N−2
∑

k=1

ak+1(t) sin(kπs)

}

· sin(mπs) ds = 0 ,

(5.18)
for m = 1, 2, · · · , N − 2.

Equations (5.5), (5.17) and (5.18) now constitute N ODEs which are written in the form

Am ȧ+Bm a = b(a, t) ,

where a and b(a, t) have the same meaning as before, and where Am and Bm are new (modified) N × N
matrices. For linear constant coefficient DDEs, we obtain ȧ = Cm a, where Cm = −Am

−1Bm. The eigenvalues
of Cm approximate the first several characteristic roots of the DDE 2. The N −1 rows of matrices Am and Bm,
determined by Eqs. (5.17) and (5.18), are again independent of the specific DDE. They are given in Tables 5.3
and 5.4, respectively.

Table 5.3: Coefficients of ȧis using modified residual.

Equation No. ȧ0 ȧ1 ȧk+1, k = 1, · · · , N − 2

5.17
1

3

1

8

1

2kπ
+

2

k3π3
for k odd ,

1

2kπ
otherwise .

5.18
(−1)m+1
mπ

1

2mπ
− 2

m3π3
for m odd ,

−2m
kπ2(m2 − k2) +

1− (−1)m
kmπ2

for k +m odd ,

− 1

2mπ
otherwise .

1− (−1)m
kmπ2

otherwise .

We now consider the same equation as was considered in section 5.2, i.e.,

ẋ+ x(t− 1) = 0 . (5.19)

Equation (5.11) holds, and along with Eqs. (5.17) and (5.18) gives N ODEs which can be written as ȧ = Cm a.
Figure 5.4 shows the eigenvalues of Cm, for N = 100 (left) and N = 200 (right), along with the exact roots

(highly accurate roots via Newton-Raphson) of Eq. (5.19). The y-axis for both the plots in Fig. 5.4 is the same.
Two points may be noted. First, for fixed N (say N = 100), this method provides many more usefully

accurate roots than the method presented in chapter 4 (Fig. 5.2 (left)). Second, as N increases (say from 100
to 200) the number of useful roots increases as well. Quantitative comparisons of the performance of the two
procedures will be presented later (Table 5.5).

Convergence for this method, corresponding to Fig. 5.2 (right) for the earlier procedure, is shown in Fig.
5.5.

2For the invertibility of Am, see Appendix D
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Table 5.4: Coefficients of ais using modified residual.

Equation No. a0 a1 ak+1, k = 1, · · · , N − 2

5.17 0
1

3

(−1)k+1
kπ

5.18 0
(−1)m+1
mπ

1

2
for k = m, 0 otherwise .
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Figure 5.4: Eigenvalues of Cm for N = 100 (left) and 200 (right) along with exact roots (highly accurate
numerical roots) of Eq. (5.19).

Again, the error goes to zero like N−2. However, the coefficients of N−2 for the modified method are much
smaller than that for the method presented in chapter 4 which can be seen from the coefficients in the linear fits.
This means that the modified method not only gives more usefully accurate roots, but for any given root and
N , the error in the root is much smaller for the modified method. For example, for ln(N) ≈ 5, ln(error) ≈ −6
for the first root in Fig. 5.2, while ln(error) ≈ −10 in Fig. 5.5.

We next consider a first order DDE with incommensurate delays as well as a distributed delay studied before
in chapters 2 and 4,

ẋ + x + x(t− 1/
√
2) + x(t− 1) +

∫ 1

0

x(t− u) cos(u) du = 0 . (5.20)

Using Eqs. (5.2) and (5.4) this can be written as

ȧ0 + 3a0 + a1

(

1 +
1√
2

)

+
N−2
∑

k=1

ak+1 sin

(

kπ√
2

)

+

∫ 1

0

(

a0 + a1u+
N−2
∑

k=1

ak+1 sin(kπu)

)

cos(u)du = 0. (5.21)

Again, along with Eqs. (5.17) and (5.18), we have N ODEs which can be written as ȧ = Cm a.
Figure 5.6 (left) shows the eigenvalues of Cm for N = 100 and the exact roots (in the sense defined earlier)

of Eq. (5.20). About 40 eigenvalues are visibly close to their corresponding exact roots. Figure 5.6 (right) shows
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Figure 5.5: Convergence with N of first two characteristic roots of Eq. (5.19).

absolute error versus N for the first two characteristic roots of Eq. (5.20), on a log-log scale. The order of the
method is 2 again.
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Figure 5.6: Left: Eigenvalues of Cm for N = 100 and exact roots (in the sense defined earlier) of Eq. (5.20).
Right: Convergence with N of first two characteristic roots of Eq. (5.20).

For comparison, the performance of the original Galerkin projection (chapter 4) is presented in Fig. 5.7.

5.5 Higher order DDEs

The procedure for second order DDEs shown in section 5.3 is simple. Still higher orders require some extra
calculations.

In this section, we briefly present another second order example before moving to higher order cases. Consider

ẍ+ 0.2 ẋ(t− 1/2) + 3x− 2x(t− 1) = 0 . (5.22)
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Figure 5.7: Left: Eigenvalues of C for N = 100 and exact roots (in the sense defined earlier) of Eq. (5.20).
Right: Convergence with N of first two characteristic roots of Eq. (5.20).

Using Eqs. (5.2) and (5.4) this can be written as

ä0 + 0.2ȧ0 + 0.1ȧ1 + 0.2
N−2
∑

k=1

ȧk+1 sin(kπ/2) + 3a0 − 2(a0 + a1) = 0 . (5.23)

Equations (5.17) and (5.18) continue to be useful in this case. Again noting that a0 is the only variable with a
second derivative and introducing a new variable y = ȧ0, we can write the system of equations, i.e., Eqs. (5.17),
(5.18) and (5.23), as Amȧ+Bma = 0, where a = {y, a0, a1, · · · , aN−1}T .

Figure 5.8 (left) shows the eigenvalues for N = 100 and the exact roots (in the sense defined earlier) of Eq.
(5.22). About 30 eigenvalues are close to the exact roots. Figure 5.8 (right) shows error versus N for the first
and second characteristic roots of Eq. (5.22) on a log-log scale. The order of convergence is 2, as before.
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Figure 5.8: Left: Eigenvalues of Cm for N = 100 and exact roots (in the sense defined earlier) of Eq. (5.22).
Right: Convergence with N of first two characteristic roots of Eq. (5.22).

Figure 5.9 presents the same results as Fig. 5.8 but obtained using the method of chapter 4. As before, the
new method outperforms the old one.

More generally, any second order DDE can be reduced using Eqs. (5.2) and (5.4) to an equation which will
consist only of ȧi and ai along with ä0, and the above procedure will be applicable.
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Figure 5.9: Left: Eigenvalues of C for N = 100 and exact roots (in the sense defined earlier) of Eq. (5.22).
Right: Convergence with N of first two characteristic roots of Eq. (5.22).

5.5.1 System of two DDEs

The system of two coupled linear DDEs is an example related to the second order linear DDE. This system can
be reduced to an equivalent second order linear DDE. For illustration, consider

ẋ+ 10x+ x(t− 1) + 2y(t− 1) = 0 , (5.24)

ẏ + 10y + x(t− 1) + y(t− 1) = 0 . (5.25)

We will replace this system with an equivalent second order DDE, as follows. The characteristic equation for
the system is

λ2 + 2λe−λ + 20λ− e−2λ + 20e−λ + 100 = 0 . (5.26)

By inspection, a second order DDE with the same characteristic equation is

ẍ+ 2ẋ(t− 1) + 20ẋ− x(t− 2) + 20x(t− 1) + 100x = 0 . (5.27)

On scaling time by t = 2τ , Eq. (5.27) is transformed to

x′′ + 4x′(τ − 1/2) + 40x′ − 4x(τ − 1) + 80x(τ − 1/2) + 400x = 0 , (5.28)

where (′) denotes τ -derivative. We can now proceed as we did for Eq. (5.22). Figure 5.10 (left) shows the
eigenvalues of Cm for N = 100 and the exact roots (in the sense defined earlier) of Eq. (5.28). Around 28
eigenvalues are visibly close to the roots of the DDE. The roots of the original system, Eqs. (5.24) and (5.25),
can be obtained from these roots upon division by 2 (because of time scaling).

Figure 5.10 (right) shows error versus N on a log-log scale for the first and second characteristic roots of
Eq. (5.28). The order of convergence is 2 again.

5.5.2 DDEs of order higher than 2

For DDEs of order higher than 2, the equivalent of Eq. (5.23) generally contains higher derivatives of the ai
(i > 0). To illustrate, consider the following DDE.

˙̈x + ẍ(t− 1) + x = 0. (5.29)

Substituting Eqs. (5.2) and (5.4) into Eq. (5.29) gives (equivalent to Eq. (5.23))

˙̈a0 + ä0 + ä1 + a0 = 0. (5.30)

Note the second derivative of a1.
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Figure 5.10: Left: Eigenvalues of Cm for N = 100 and exact roots (in the sense defined earlier) of Eq. (5.28).
Right: Convergence with N of first two characteristic roots of Eq. (5.28).

In such cases, we proceed as follows. We can write Eqs. (5.17) and (5.18) in the form

Âmċ+ B̂mc+ a0w1 + ȧ0w2 = 0, (5.31)

where Âm and B̂m are (N−1)×(N−1) matrices,w1 andw2 are vectors of sizeN−1, and c = {a1, a2, · · · , aN−1}T ,
i.e., all the ai excluding a0. For clarity, we mention that Âm, B̂m, w1 and w2 are just sub-matrices of the
matrices Am and Bm defined earlier. Equation (5.31) is solved for ċ to get

ċ = −Â−1

m
(B̂mc+ a0w1 + ȧ0w2). (5.32)

Equation (5.32) is differentiated as many times as required, substituting for ċ after each differentiation to get
the higher derivatives of ai, i = 1, · · · , N − 1, in terms of ȧi, ai, a0 and derivatives of a0. For example

c̈ = Â−1
m

(−B̂mċ− ȧ0w1 − ä0w2), (5.33)

which can be used to write Eq. (5.30) in terms of ai, ȧi, a0, ȧ0, ä0 and ˙̈a0. Similarly

˙̈c = Â−1
m

(−B̂mc̈− ä0w1 − ˙̈a0w2). (5.34)

In the above we can substitute for c̈ from Eq. (5.33) and get ˙̈ai , i ≥ 1, in terms of ai, ȧi, a0, ȧ0, ä0 and ˙̈a0.
In this way, any higher order DDE can be written using ai, ȧi, a0, and higher derivatives of a0 alone. Finally
we represent this rewritten DDE and Eqs. (5.17) and (5.18) in the form Amȧ +Bma = 0 where a is a vector
containing ai, a0 and several derivatives of a0.

Now that we can treat a scalar DDE of order M , we consider systems of M first order DDEs. The first step

is to find the characteristic equation of the given system. An equivalent M th order linear DDE can then be
identified (along the lines of section 5.3, Eqs. (5.24) and (5.25)) which will have the same characteristic equation.

As an example, we now consider the following system of three coupled DDEs:

ẋ+ 10x+ x(t− 1/
√
2) + y(t− 1) = 0 , (5.35)

ẏ + 10y + z(t− 1) = 0 , (5.36)

ż + 10z + x(t− 1) = 0 . (5.37)

The characteristic equation of this system is

λ3 + 30λ2 + e−λ/
√
2λ2 + 300λ+ 20e−λ/

√
2λ+ 100e−λ/

√
2 + e−3λ + 1000 = 0 . (5.38)

An equivalent third order DDE is

˙̈x + 30ẍ+ ẍ(t− 1/
√
2) + 300ẋ+ 20ẋ(t− 1/

√
2) + 100x(t− 1/

√
2) + x(t− 3) + 1000x = 0 . (5.39)
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Scaling time by t = 3τ , we get

x′′′+90x′′+3x′′
(

τ − 1

3
√
2

)

+2700x′+180x′
(

τ − 1

3
√
2

)

+2700x

(

τ − 1

3
√
2

)

+27x(τ−1)+27000x = 0 . (5.40)

Equation (5.40) can now be analyzed and its characteristic roots obtained as described above. These roots
are 3 times the characteristic roots of the original system. Figure 5.11 (left) shows the eigenvalues of Cm for
N = 100 and the exact roots (in the sense defined earlier) of Eq. (5.40). About 24 eigenvalues seem accurate to
plotting accuracy.
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Figure 5.11: Left: Eigenvalues of Cm for N = 100 and exact roots (in the sense defined earlier) of Eq. (5.40).
Right: Convergence with N of first two characteristic roots of Eq. (5.40).

Figure 5.11 (right) shows on a log-log scale, error versus N for the first and second characteristic roots of
Eq. (5.40). Once again, the error goes to zero like N−2.

5.6 Comparison between the two methods

We consider two measures for gauging the performance of the Galerkin projections. The first is the order of
convergence, which is N−2 for both methods. The second and more important measure of performance is the
number of usefully accurate eigenvalues (by usefully accurate, we mean something like, for example, close enough
to the actual root that Newton-Raphson iteration can reliably take over). It is in the second measure that the
modified method outperforms the old one (of chapter 4). The number of eigenvalues p that lie within some
specified distance from the characteristic roots of the DDE are used here as the number of usefully accurate
eigenvalues. These estimates can be refined further using Newton-Raphson method to get arbitrarily accurate
roots of the DDE. Table 5.5 shows this number p, for the five DDEs considered here, using both the old and
the modified methods, taking N = 200 and and the error tolerance as 0.05.

Table 5.5: Number of eigenvalues p with error ≤ 0.05 and N = 200.

Equation No. p from old method p from modified method
5.19 12 72
5.20 10 74
5.22 7 39
5.28 7 47
5.40 2 28
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5.7 Concluding remarks

In this chapter, we have presented a modified Galerkin procedure. We have used this modified procedure as
well as the Galerkin procedure of chapter 4 for calculating the first several characteristic roots of some constant
coefficient DDEs. The methods can be implemented easily. The order of these methods is 2 (i.e., for an N ×N
matrix approximation, the error in any root goes to zero like N−2). The modified procedure gives us several
usefully accurate roots which can be rapidly refined further using Newton-Raphson iteration. Though the
Galerkin techniques are also applicable to nonlinear DDEs, we have restricted ourselves to linear DDEs in this
chapter.

Our procedures also allow for special-purpose low dimensional models using specialized shape functions,
e.g., from experimental data using proper orthogonal decomposition [135, 136, 137]. Such applications are not
considered here.

We mention that the conceptually different framework of finite differencing has also been used to obtain
characteristic roots of DDEs [85, 86], often with faster convergence ( e.g., N−3, N−5). These fast converging
methods have their strengths, but are not in conflict with the present approach for the following two reasons.

First, Newton-Raphson refinement requires O(N) calculations added to the O(N 3) for the eigenvalue solver
(i.e., Newton-Raphson refinement is essentially free). So the number of usefully accurate roots is more important
than the asymptotic convergence rate, and that is fairly good for the modified method presented in this chapter.

Secondly, other shape functions may give faster than N−2 convergence. Here, we have laid the foundation
for such investigations, e.g., involving finite element implementations with faster convergence.
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Chapter 6

Regenerative tool chatter near a

codimension 2 Hopf point

With this chapter, we begin to study systems relevant to metal cutting. We first study a double Hopf bifurcation
in a tool vibration DDE derived from Hanna and Tobias [4] and Kalmár-Nagy et al. [12]. The double Hopf
point considered in this chapter corresponds to high-speed cutting. The material from his chapter has also been
published in [76] and presented at [77].

6.1 Introduction

The regenerative effect in metal cutting is an important source of undesirable vibrations in machine tools [2],
leading to poor surface finish and enhanced tool wear. Mathematical models of such vibrations are delay
differential equations (DDEs). Stépán [8] has listed several DDEs relevant to machine tool vibrations, and
addressed stability analyses of the same.

Linear stability analyses of constant coefficient DDEs relevant to machine tools [8, 9, 12] are usually presented
in the form of stability charts containing various stability “lobes.” The stability chart depicts the boundary
between stable and unstable regimes. Hopf bifurcations in these models arise when parameter values cross these
stability boundaries. Points of intersection of curves defining different stability lobes indicate codimension 2 Hopf
bifurcations. These points are of practical interest since they represent local optima in operating conditions:
in a finite neighborhood of cutting speeds, they represent the greatest possible stable chip width (or material
removal rate).

In this chapter, we use direct multiple scales (bypassing a center manifold reduction, as discussed below) to
study a double Hopf bifurcation in a tool vibration DDE derived from Hanna and Tobias [4] and Kalmár-Nagy
et al. [12]. The double Hopf point considered here corresponds to high-speed cutting. We use a nonstandard
definition of the associated small parameter ε that allows us to not treat the vibration amplitude as extremely
small near the bifurcation point. We do treat the damping in the system as small, thereby obtaining analytical
expressions for the nominal double Hopf points. These double Hopf points are all resonant. Both sub- and
supercritical Hopf bifurcations are observed here, depending on how two key parameters vary near the double
Hopf point. Numerical simulations are used to verify analytical simplifications and approximations.

The analytical technique adopted here follows easily from prior related work on ODEs, PDEs and DDEs.
Codimension 2 (or double) Hopf bifurcations arising in systems of nonlinear ODEs have been studied using the
method of multiple scales by Yu [138]. In PDEs, center manifold reductions and normal form theory [139, 140]
or multiple scales [141, 142] have been used. Simple Hopf bifurcations arising in DDEs have also been studied
using center manifold reductions [12, 119, 120, 121, 122], normal form theory (bypassing the center manifold
reductions) [123, 124, 125], and the method of multiple scales or MMS (bypassing the normal forms as well)
[9, 10, 126]. Fofana [13] used center manifold reductions to study double Hopf bifurcations in a DDE model
for regenerative machine tool chatter, while Stépán and Haller [26] used the theory of normal forms along
with a center manifold analysis for a DDE model for robot control. The application of the methods given in
[13, 26] is more difficult for the tool vibration DDE considered herein, primarily because of the non-symmetric
nonlinearity and the complicated center manifold reduction. Our approach, being more direct, is simpler than
that in [13, 26].

Quasi-periodic tool motion has been experimentally observed for thread cutting by Stépán [14]. A bifurca-
tion diagram near the double Hopf point representing the “most likely scenario” is also proposed therein. A
qualitative discussion of quasiperiodic motions along with possible loss of contact (between tool and workpiece)
is also presented in [16]. In this chapter we complement the above two works; we directly and analytically treat
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a double Hopf point and obtain mathematical descriptions of the slow dynamics near this point.
This chapter is organized as follows. In section 6.2, we briefly outline the derivation of the machine tool

vibration DDE studied herein. Linear stability analysis of the DDE is presented in section 6.3, wherein we also
obtain analytical expressions for the double Hopf points. Multiple scales analysis of the DDE near a double
Hopf bifurcation point is presented in section 6.4. Some analysis and verification of the slow flow equations
obtained using MMS are given in section 6.5. Conclusions are presented in section 6.6.

6.2 A SDOF model for tool vibration

We will consider the non-dimensionalized 1 DOF model for regenerative tool vibrations derived in [12], but with
an added stiffening cubic nonlinearity in the restoring force (as in [4]). The governing equation then will be:

ẍ(t) + 2 ζ ẋ(t) + (1 + p)x(t) + αx(t)3 − p x(t− τ) = 3p

10

{

(x(t)− x(t− τ))2 − (x(t)− x(t− τ))3
}

, (6.1)

where α is small (in a sense defined below), p is a parameter proportional to chip width, and τ , the time-delay,
is inversely proportional to the cutting speed.

A derivation of Eq. (6.1) is outlined below.
We start with Eq. (1.4) derived in chapter 1. In this chapter, we wish to account for the structural nonlinear-

ities and hence we assume that the spring has a weak stiffening cubic nonlinearity which modifies the equation
to

ẍ(t) + 2 ζ ẋ(t) + x(t) + k3x(t)
3 = PC(t)3/4 , (6.2)

where P is a parameter proportional to the chip width as defined in chapter 1 and k3 ¿ 1.
The instantaneous chip thickness (see footnote 1) C(t) is given by

C(t) = C0 + x(t− τ)− x(t) = C0 + xτ (t)− x(t) , (6.3)

where τ = 2π/Ω is the time period of one revolution.
Now we substitute the above equation for the instantaneous chip thickness in Eq. (6.2), set the origin of x(t)

at the steady-state deflection due to the cutting force at the nominal chip thickness C0 to obtain

ẍ(t) + 2 ζ ẋ(t) + x(t) + αx(t)3 = P (C0 + xτ (t)− x(t))3/4 − PC3/40 ,

Now expanding the right hand side of the above equation locally in a power series about C0 up to third order,
rearranging and nondimensionalizing as in [12], we obtain

ẍ(t) + 2 ζ ẋ(t) + (1 + p)x(t) + αx(t)3 − p xτ (t) =
3 p

10

{

(x(t)− xτ (t))2 − (x(t)− xτ (t))3
}

, (6.4)

where α =
25 k3
144C20

and p =
3P

4C
1/4
0

is the nondimensional bifurcation parameter proportional to the chip width

w for a given C0. The only difference between Eq. (6.4) and the one derived in [12] is the presence of αx(t)3.
We assume α¿ 1.

6.3 Linearization

Linearizing Eq. (6.4) about x(t) ≡ 0, we get

ẍ(t) + 2 ζ ẋ(t) + (1 + p)x(t)− p xτ (t) = 0 . (6.5)

A stability analysis of Eq. (6.5) is given in [12]. Here, the stability boundaries showing the first two lobes in the
p− τ plane for ζ = 0 and ζ = 0.1 are plotted in Fig. 6.1. Q = (2π, 5/8) = (6.283, 0.625) and Q′ = (5.980, 0.877)
represent double Hopf points for ζ = 0 and ζ = 0.1, respectively. Observe that, though the presence of small
nonzero damping affects the stability boundary, the curves near Q and Q′ are qualitatively very similar.

The numerical values of ζ reported in the literature generally correspond to very light damping (ζ = 0.02−
0.03 [10], ζ = 0.025 [14], ζ = 0.0417 [17], ζ = 0.03 [18], ζ = 0.0138 [19], ζ = 0.0135 [20], ζ = 0.01 [21], ζ = 0.0038
[22], ζ = 0.0032 [24]). Accordingly, we drop the damping term from Eq. (6.5) to get the following unperturbed
linear equation

ẍ(t) + (1 + p)x(t)− p xτ (t) = 0 . (6.6)

The characteristic equation corresponding to Eq. (6.6) is

λ2 + (1 + p)− pe−λ τ = 0 .
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Figure 6.1: Stability boundary of Eq. (6.5), thick line: ζ = 0 and thin line: ζ = 0.1.

On the stability boundary, the characteristic equation has a pair of pure imaginary roots with all other roots
having negative real parts. To find the stability boundary, we substitute λ = ±i ω, with ω ≥ 0, into the above
and obtain

−ω2 + 1 + p− p cos(ω τ) + i p sin(ω τ) = 0 .

Separating real and imaginary parts, we get

1− ω2 + p (1− cos(ω τ)) = 0 , (6.7)

p sin(ω τ) = 0 . (6.8)

An immediate observation is that p = 0 and ω = 1 satisfies the above equations. However, this corresponds to
not cutting at all; we are ultimately interested in p > 0.

From Eq. (6.8), we get for p 6= 0, either ωτ = 2Nπ or ωτ = (2M +1)π, for some integers N and M (for ease
of identification, N represents even multiples of π, and M represents odd).

First consider an even case. When ωτ = 2Nπ, from Eq. (6.7) we get ω = 1 and hence, τ = 2Nπ. In this
case, p remains indeterminate (i.e., this solution is valid for all p). The indeterminacy in p is represented by the
thick vertical line in Fig. 6.1.

Now consider an odd case. When ωτ = (2M + 1)π, from Eq. (6.7) we get

p =
ω2 − 1

2
.

Since p ≥ 0 by assumption, we must have ω ≥ 1. Since

τ =
(2M + 1)π

ω
,

we then have τ ≤ (2M + 1)π. Finally, for τ = 2Mπ < (2M + 1)π, this solution branch intersects the even
solution branch labeled using the symbol N as discussed above (see also the thick lines in Fig. 6.1).

By the foregoing, we simultaneously have two solutions in (τ, p) space whenever N = M . These are given
by

1. ω1τ = 2Nπ, whence ω1 = 1 and τ = 2Nπ, and
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2. ω2τ = (2N + 1)π, whence

ω2 =
2N + 1

2N
and p =

4N + 1

8N2
.

In other words, at τ = 2Nπ and p =
4N + 1

8N2
, we have two pairs of pure imaginary roots corresponding to

ω1 = 1 and ω2 =
2N + 1

2N
(all such points are resonant).

Note that the solution branches obtained above intersect at other points in (τ, p) space as well; but those
points are all already unstable by virtue of being above some other branch. Thus, the above set of intersections
represents all possible double Hopf points on the stability boundary in parameter space.

We will henceforth restrict attention to the case N = 1, whereby τ = 2π, p = 5/8 and the two frequencies
are ω1 = 1 and ω2 = 3/2.

For this choice of the parameters, the first few of the remaining roots (found numerically) are−0.1544,−0.3150±
2.445 i,−0.4499 ± 3.452 i and −0.5400 ± 4.458 i. For a special case of Eq. (6.5) with τ = 1, it has been shown
analytically in [69] that the large roots have logarithmically large negative real parts, i.e., for a large root λ,
Re(λ) = O (− ln |λ|). The above numerically obtained roots, though not very large, already confirm this pre-
dicted asymptotic trend. Hence, all the λ’s except the pure imaginary ones obtained above have negative real
parts and this choice of parameters, i.e., (τ, p) = (2π, 5/8) = (6.283, 0.625), represents a double Hopf point on
the stability boundary. The rest of this chapter presents an analysis of Eq. (6.4) in the neighbourhood of this
double Hopf point.

Note from Fig. 6.1 that in the presence of a small amount of damping the double Hopf point shifts a little.
For ζ = 0.1, it is

(τ, p) = (5.980, 0.877) = (2π − 0.303, 5/8 + 0.252) . (6.9)

This will be accounted for by detuning and perturbing the parameters as described in the next section.

6.4 Multiple scales

Scaling: To perform multiple scales analysis, we could scale x(t) as ε y(t), where ε is some “small” parameter
(as in [9, 10, 11]). However, this restricts x(t) to be infinitesimal. Instead, noting that p = 5/8 for the double
Hopf point, we take 3 p/10 = 3/16 = 0.1875 as ε in Eq. (6.4), allowing x(t) = O(1) with respect to this ε. The
multiple-scales analysis that follows is based on the smallness of ε, and so is strictly valid only in the limit as
ε → 0, while our interest lies in the strictly finite ε = 3/16. However, it will be seen that the analysis gives
useful qualitative insights into the behavior of the system. Numerical values match imperfectly but acceptably
well. For further discussion on the nonrigorous modeling decision implicit in this scaling, see appendix E.

Detuning: To indirectly account for variations in τ near the double Hopf point, we stretch time as t̄ = (1+ε∆)t
(and then drop the overbar for notational simplicity). A delay of 2π in this new time scale represents a time

delay of
2π

(1 + ε∆)
in the original time t. An increase in ∆ thus corresponds to a decrease in the delay (or an

increase in the rotational speed of the workpiece). In the above, we mean that ∆ is arbitrary while ε is really
the finite-nonzero number 3/16. However, the analysis will be based on asymptotics for small ε (see appendix
E).

Further scaling: We substitute p =
5

8
+ εp1 to account for the variation in p near the double Hopf point.

Again, we mean here that p1 is arbitrary while ε is really the finite-nonzero number 3/16. However, as mentioned
above, the analysis will be based on asymptotics for small ε (see appendix E). In a similar spirit, we set ζ = εζ1
and α = εα1.

Now, scaling as above, we get from Eq. (6.4)

(1 + ε∆)2ẍ(t) + 2 ε (1 + ε∆) ζ1ẋ(t) +

(

13

8
+ ε p1

)

x(t)−
(

5

8
+ ε p1

)

x2π(t)

+ ε α1 x(t)
3 =

3

10

(

5

8
+ ε p1

)

(

(x(t)− x2π(t))2 − (x(t)− x2π(t))3
)

,

where we rearrange the coefficient on the right hand side to get

(1 + ε∆)2ẍ(t) + 2 ε (1 + ε∆) ζ1ẋ(t) +

(

13

8
+ ε p1

)

x(t)−
(

5

8
+ ε p1

)

x2π(t)
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+ ε α1 x(t)
3 =

3

16

(

1 +
8

5
ε p1

)

(

(x(t)− x2π(t))2 − (x(t)− x2π(t))3
)

.

So far, in spite of our declared intentions of using ε = 3/16, we have not really done so. Now setting 3/16 = ε
in the right hand side above, we finally get

(1 + ε∆)2ẍ(t) + 2 ε (1 + ε∆) ζ1ẋ(t) +

(

13

8
+ ε p1

)

x(t)−
(

5

8
+ ε p1

)

x2π(t)

+ ε α1 x(t)
3 = ε

(

1 +
8

5
ε p1

)

(

(x(t)− x2π(t))2 − (x(t)− x2π(t))3
)

.

Dividing throughout by (1 + ε∆)2, we obtain

ẍ(t) +
2 ε ζ1

(1 + ε∆)
ẋ(t) +

1

(1 + ε∆)2

[(

13

8
+ ε p1

)

x(t)−
(

5

8
+ ε p1

)

x2π(t)

]

+
ε α1

(1 + ε∆)2
x(t)3

=
ε

(1 + ε∆)2

(

1 +
8

5
ε p1

)

(

(x(t)− x2π(t))2 − (x(t)− x2π(t))3
)

. (6.10)

So far, no small-ε approximations have been made. Solution of the above equation with ε = 3/16 is exactly
equivalent to solution of the original unscaled equation. Now, making a small-ε approximation, we expand the
above in a Taylor series and retain terms up to O(ε) to get

ẍ(t) +
13

8
x(t)− 5

8
x2π(t) = ε

(

2∆

(

13

8
x(t)− 5

8
x2π(t)

)

− 2 ζ1ẋ(t)− α1 x(t)3 − p1B +B2 −B3
)

, (6.11)

where B = x(t)− x2π(t).
For ε = 0 Eq. (6.11) is linear and hence has as general solution an infinite linear combination of terms of the

form eλt. Of these infinitely many λ’s, there are two pairs of pure imaginary roots given by ±i and ± 3

2
i, with

all other roots having negative real parts. Thus, after the transients are dead, we have the following steady
state solution

x(t) = A1 sin t+A2 cos t+A3 sin

(

3t

2

)

+A4 cos

(

3t

2

)

, (6.12)

where A1, A2, A3 and A4 are arbitrary constants. We will take the above as the solution to the unperturbed
equation, i.e., Eq. (6.11) with ε = 0 (see also Nayfeh et al. [9, 10, 11] and the discussion in Das and Chatterjee
[126]).

We introduce two time scales as: t, the original time scale and T = ε t. The solution to Eq. (6.11) is assumed
to be a function of these two time scales and it is further assumed that the solution can be expressed as

x(t) = X(t, T ) = X0(t, T ) + εX1(t, T ) + · · · . (6.13)

Substituting Eq. (6.13) in Eq. (6.10), we get

∂2X0
∂t2

+
13

8
X0 −

5

8
X0(t− 2π) + ε

{

∂2X1
∂t2

+
13

8
X1 −

5

8
X1(t− 2π) + 2

∂2X0
∂t ∂T

+2 ζ1
∂X0
∂t

+
∂X0
∂T

(t− 2π) + α1X
3
0 + p1 (X0 −X0(t− 2π)) +

5

4
∆X0(t− 2π)

−13

4
∆X0 +

5π

4
− (X0 −X0(t− 2π))

2
+ (X0 −X0(t− 2π))

3

}

+O(ε2) = 0 . (6.14)

where, for brevity, we have shown the t-dependence for delayed quantities only. To lowest order, Eq. (6.14)
becomes

∂2X0
∂t2

+
13

8
X0 −

5

8
X0(t− 2π) = 0 . (6.15)

The solution of Eq. (6.15) (by Eq. (6.12)) is

X0 = A1 sin t+A2 cos t+A3 sin

(

3t

2

)

+A4 cos

(

3t

2

)

, (6.16)

where Ai = Ai(T ), i = 1, 2, 3, 4.
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Substituting Eq. (6.16) into Eq. (6.14) and simplifying, at the next order we obtain

∂2X1
∂t2

+
13

8
X1 −

5

8
X1(t− 2π) +

9
∑

m=0

Nm cos

(

mt

2

)

+

9
∑

m=1

Mm sin

(

mt

2

)

= 0 , (6.17)

where Ni andMi are given by some lengthy expressions found using MAPLE. In what follows,
∂Ai
∂T

, i = 1, 2, 3, 4,

are written simply as
dAi
dT

because slower time scales are not retained and Ai = Ai(T ) only. The various

coefficients Ni and Mi are

N0 = −2A24 − 2A23 ,

N1 =
3

4
α1A

2
2A4 +

3

2
α1A1A2A3 −

3

4
α1A

2
1A4 ,

N2 =
3

4
α1A

2
1A2 +

3

2
α1A2A

2
3 +

3

2
α1A2A

2
4 − 2∆A2 +

3

4
α1A

3
2 +

5

4
π
dA2
dT

+ 2 ζ1A1 + 2
dA1
dT

,

N3 = 6A23A4 −
5

4
π
dA4
dT

+ 3 ζ1A3 + 2 p1A4 +
3

2
α1A

2
2A4 +

3

4
α1A

2
3A4

− 9

2
∆A4 +

3

4
α1A

3
4 +

3

2
α1A

2
1A4 + 3

dA3
dT

+ 6A34 ,

N4 =
3

2
α1A1A3A4 −

3

4
α1A2A

2
3 +

3

4
α1A2A

2
4 ,

N5 = 0 ,

N6 = −2A24 + 2A23 +
1

4
α1A

3
2 −

3

4
α1A

2
1A2 ,

N7 = −
3

2
α1A1A2A3 +

3

4
α1A

2
2A4 −

3

4
α1A

2
1A4 ,

N8 = −
3

2
α1A1A3A4 −

3

4
α1A2A

2
3 +

3

4
α1A2A

2
4 ,

N9 = 2A34 −
3

4
α1A

2
3A4 − 6A23A4 +

1

4
α1A

3
4 ,

M1 =
3

2
α1A1A2A4 +

3

4
α1A

2
1A3 −

3

4
α1A

2
2A3 ,

M2 = −2
dA2
dT
− 2∆A1 +

5

4
π
dA1
dT
− 2 ζ1A2 +

3

2
α1A1A

2
4 +

3

4
α1A1A

2
2 +

3

2
α1A1A

2
3 +

3

4
α1A

3
1 ,

M3 = −3 ζ1A4 + 2 p1A3 − 9/2∆A3 −
5

4
π
dA3
dT

+
3

4
α1A

3
3 +

3

4
α1A3A

2
4

+ 6A33 − 3
dA4
dT

+
3

2
α1A

2
2A3 + 6A3A

2
4 + 3/2α1A

2
1A3 ,

M4 =
3

2
α1A2A3A4 +

3

4
α1A1A

2
3 −

3

4
α1A1A

2
4 ,

M5 = 0 ,

M6 = −
1

4
α1A

3
1 +

3

4
α1A1A

2
2 − 4A3A4 ,

M7 =
3

2
α1A1A2A4 −

3

4
α1A

2
1A3 +

3

4
α1A

2
2A3 ,
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M8 =
3

2
α1A2A3A4 −

3

4
α1A1A

2
3 +

3

4
α1A1A

2
4 ,

M9 = −2A33 +
3

4
α1A3A

2
4 + 6A3A

2
4 −

1

4
α1A

3
3 .

Now to avoid secular terms in the solution, the coefficients of sin t, cos t, sin

(

3 t

2

)

and cos

(

3 t

2

)

in Eq.

(6.17) are set to zero, i.e., M2 = 0, N2 = 0,M3 = 0 and N3 = 0. Solving these four equations, we obtain
dA1
dT

,

dA2
dT

,
dA3
dT

and
dA4
dT

.

Finally the evolution of A1, A2, A3 and A4 in the original time scale t can be obtained as

Ȧi = ε
∂Ai
∂T

+O(ε2) , i = 1, 2, 3, 4 .

The expressions obtained (using MAPLE) up to O(ε) are

Ȧ1 =
ε

64 + 25π2
{

40π ζ1A2 − 64 ζ1A1 + 40π∆A1 + 64∆A2 − 24α1A
3
2 − 24α1A

2
1A2 − 15π α1A1A

2
2

−15π α1A31 − 30π α1A1A
2
3 − 30π α1A1A

2
4 − 48α1A2A

2
3 − 48α1A2A

2
4

}

,

Ȧ2 =
−ε

64 + 25π2
{

40π ζ1A1 + 64 ζ1A2 − 40π∆A2 + 64∆A1 − 24α1A
3
1 − 24α1A1A

2
2 + 15π α1A

2
1A2

+15π α1A
3
2 + 30π α1A2A

2
3 + 30π α1A2A

2
4 − 48α1A1A

2
3 − 48α1A1A

2
4

}

,

Ȧ3 =
−ε

144 + 25π2
{

144 ζ1A3 + 60π ζ1A4 + 90π∆A3 − 216∆A4 + 288A34 + 288A23A4 − 15π α1A3A
2
4

−15π α1A33 − 120π A33 − 120π A3A
2
4 + 36α1A

3
4 + 36α1A

2
3A4 + 72α1A

2
1A4

+72α1A
2
2A4 − 30π α1A

2
1A3 − 30π α1A

2
2A3 − 40π p1A3 + 96 p1A4

}

,

Ȧ4 =
ε

144 + 25π2
{

60π ζ1A3 − 144 ζ1A4 − 90π∆A4 − 216∆A3 + 288A33 + 288A3A
2
4 + 15π α1A

2
3A4

+ 15π α1A
3
4 + 120π A23A4 + 120π A34 + 36α1A

3
3 + 36α1A3A

2
4 + 72α1A

2
1A3

+72α1A
2
2A3 + 30π α1A

2
1A4 + 30π α1A

2
2A4 + 40π p1A4 + 96 p1A3

}

.

We finally change to polar co-ordinates using

A1 = R1 cos(φ1) and A2 = R1 sin(φ1) ,

and

A3 = R2 cos

(

3φ2
2

)

and A4 = R2 sin

(

3φ2
2

)

.

Solving for Ṙ1, Ṙ2, φ̇1 and φ̇2, we obtain till O(ε)

Ṙ1 = ε

(

40π∆− 64 ζ1 − 15π α1R
2
1 − 30π α1R

2
2

)

R1

25π2 + 64
, (6.18)

Ṙ2 = ε
(40π p1 − 144 ζ1 − 90π∆+ 120π R22 + 15π α1R

2
2 + 30π α1R

2
1)R2

25π2 + 144
, (6.19)

φ̇1 = ε
−8 (5π ζ1 − 3α1R

2
1 − 6α1R

2
2 + 8∆)

25π2 + 64
, (6.20)

and

φ̇2 = ε
8 (8 p1 + 5π ζ1 − 18∆ + 3α1R

2
2 + 6α1R

2
1 + 24R22)

25π2 + 144
. (6.21)

The above system can be studied effectively as a two-dimensional system of equations involving R1 and R2 only
(Eqs. (6.18) and (6.19)) because the amplitude equations are decoupled from the angular variables (at least till
first order). The bifurcation structure of Eqs. (6.18) and (6.19) in the p1/ζ1 −∆/ζ1 plane is shown in Fig. 6.2,
where the plane is divided into 5 regions with distinct behaviors.
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Figure 6.2: Bifurcation structure of Eqs. (6.18) and (6.19). Numerically, for ζ = 0.1 or ζ1 =
0.1

ε
=

8

15
, Z

represents (p, τ) = (5.979, 0.854), agreeing well with numerics (Eq. (6.9)). For each of the phase portraits
above, the horizontal axis represents R1 and the vertical axis represents R2.

6.5 Analysis

In region 1, there are two qualitatively different fixed points (along with reflections of the same) marked A and
B in Fig. 6.2. Point A, the origin, is a stable node while point B is a saddle representing an unstable periodic
solution of Eq. (6.10). The basin of attraction of A is shaded grey.

On crossing line 2 and entering region 2, we find two more qualitatively different fixed points (along with
reflections of the same totalling six new equilibria). This results in a total of four qualitatively different fixed
points marked C, D, E and F in Fig. 6.2. Point C, the origin, has lost stability and become a saddle while
the fixed point F is a stable node, representing a stable periodic solution of Eq. (6.10). The overall basin of
attraction for stable periodic solutions is again shaded grey.

Numerical simulation results of Eq. (6.10) in region 2, with ζ1 = 1, α1 = 1, ∆ = 8/(5π)+1/4 and p1 = 36/(5π)
are plotted in Fig. 6.3. The steady state amplitude found numerically is 0.75, comparing reasonably if imperfectly
with 0.82 predicted from first order MMS.

Numerical simulations for two typical points marked M and N in Fig. 6.2, region 2 (one outside the basin of
attraction and one inside it) also show behavior consistent with that predicted by the phase portrait (see Figs.
6.4 and 6.5).

Figure 6.4 shows a numerical simulation corresponding to the point M in Fig. 6.2, region 2. M lies just outside
the grey region and the solution starting from M is thrown out to infinity eventually. The phase portrait predicts
that at the beginning of rapid growth in the amplitude which corresponds to the trajectory being very close to
the saddle point, both frequencies, i.e., ω = 1 and ω = 3/2 should be present in the solution. For ζ1 = 1, α1 = 1,
∆ = 8/(5π) + 1/4 and p1 = 36/(5π), the fixed point D in Fig. 6.2, region 2, is R1 = 0, R2 = 0.41. However, the
numerically estimated value from other detailed simulation-searches of Eq. (6.10) is R1 = 0, R2 = 0.53. Guided
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Figure 6.3: Numerical solution of Eq. (6.10) for ζ1 = 1, α1 = 1, ∆ = 8/(5π) + 1/4 and p1 = 36/(5π). Initial
conditions: x(η) = 0.1 sin(η), ẋ(η) = 0.1 cos(η), η ∈ [−2π, 0].

by this numerical value, we choose R1 = 0.031, R2 = 0.55 to represent the point M. Accordingly, the initial
function for the DDE is x(η) = 0.55 sin(3η/2) + 0.031 sin(η), ẋ(η) = 0.825 cos(3η/2) + 0.031 cos(η), η ∈ [−2π, 0].
The numerical solution of Eq. (6.10) thus obtained is plotted in Fig. 6.4 (top). Figure 6.4 (middle and bottom)
shows the power spectral density (PSD) of the numerical solution till the onset of instability (beginning of rapid
growth), i.e., till t ≈ 250, on semilog and linear scales, respectively. There are clearly two dominant frequencies,
close to 1 and 3/2 (the difference observed is technically O(ε), and arises from Eqs. (6.20) and (6.21)). Other
frequencies involving relatively smaller amplitudes are seen here as well; these represent various harmonics and
linear combinations of the two dominant frequencies.

Figure 6.5 corresponds to the point N in Fig. 6.2, region 2. The phase portrait predicts that an initially
higher value of R2 will eventually decay to R2 = 0. For the same parameter values as used for the point M
(Fig. 6.4), we use R1 = 0.051, R2 = 0.5 to represent the point N. The numerical solution of Eq. (6.10) for the
initial function x(η) = 0.5 sin(3η/2)+0.051 sin(η), ẋ(η) = 0.75 cos(3η/2)+0.051 cos(η), η ∈ [−2π, 0], is shown in
Fig. 6.5 (top). PSD’s of the solution over two time windows, early and late, clearly show the decay of R2 over
time. It is also clear that R1 stabilizes to 0.75 as in Fig. 6.3 (and compares reasonably well with the analytical
prediction of 0.82).

On crossing from region 2 to region 3 along line 3, a reverse subcritical pitchfork bifurcation occurs in
the amplitude equations. Note that a pitchfork bifurcation in the amplitude equations corresponds to a Hopf
bifurcation in the original system. No stable bounded solutions remain either for the amplitude equations or
Eq. (6.10). Numerical simulation of a point marked O in Fig. 6.2, region 3, for ζ1 = 1, α1 = 1, ∆ = 8/(5π) + 1
and p1 = 36/(5π) + 1 is shown in Fig. 6.6. The initial function is x(η) = 0.6 sin(3η/2) + 0.0001 sin(η), ẋ(η) =
0.9 cos(3η/2)+0.0001 cos(η), η ∈ [−2π, 0], which represents a point very close to the R2 axis. The phase portrait
predicts that R2, the frequency = 3/2 component, should decay initially with R1, the frequency = 1 component,
growing. The solution should slow down near the saddle point marked I in Fig. 6.2, region 3, before eventually
blowing up. All of these are observed in Fig. 6.6, from direct numerical simulation of Eq. (6.10).

On entering region 4 from region 3 along line 1, two unstable nodes merge with the saddle at the origin in
another reverse pitchfork bifurcation, leaving a single unstable node at the origin (point J). Again there are no
stable bounded solutions.

On crossing from region 4 to region 5 along line 2, the saddles and the unstable node at the origin merge in
yet another reverse pitchfork bifurcation, leaving a single saddle at the origin (point L). Here also, there are no
stable bounded solutions.

Thus, regions 1 and 2 provide stable bounded solutions of the original equation while regions 3, 4 and 5
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Figure 6.4: Numerical solution of Eq. (6.10) for ζ1 = 1, α1 = 1, ∆ = 8/(5π) + 1/4 and p1 = 36/(5π).
Initial Conditions: x(η) = 0.55 sin(3η/2)+ 0.031 sin(η), ẋ(η) = 0.825 cos(3η/2)+ 0.031 cos(η), η ∈ [−2π, 0]. This
corresponds to the point M in Fig. 6.2. Middle: PSD of data until beginning of rapid growth, i.e., t = 85π ≈ 250
on a log scale. Bottom: PSD on a linear scale showing only two dominant frequencies corresponding to 1 and
3/2 (the difference observed is technically O(ε), and arises from Eqs. (6.20) and (6.21)).

correspond to no such solutions.

6.6 Concluding remarks

By treating the damping in the system as a small perturbation, analytical expressions have been obtained for
all the double Hopf points in the DDE, though the subsequent analysis is restricted to N = 1 (the double
Hopf point corresponding to a high cutting speed). The unperturbed double-Hopf points obtained herein are all
resonant. The direct use of MMS without center manifold reductions simplifies the calculations near the double
Hopf point. Our choice of ε allowed the previously non-dimensionalized x(t) = O(1), allowing us to study the
dynamics for not-too-small amplitudes. Both sub- and supercritical Hopf bifurcations are observed depending
on how two key parameters are varied near the double Hopf point.

Our analysis is not valid for large amplitudes because of our local power series expansion of the expression
for the cutting force. For initial conditions outside the domain of attraction of bounded solutions (if any),
the amplitudes predicted by our equations become arbitrarily large. For such cases, there are other attractors
related to another nonlinearity (see [14] and chapter 7 of this thesis), which involves loss of contact between
the tool and the workpiece; this effect has not been considered in this chapter. We note that, for the particular
strength of nonlinearity in stiffness proposed by Hanna and Tobias [4], Nayfeh et al. [11] showed the presence
of bounded global attractors without considering loss of contact; the amplitudes there might be large enough
in some physical situation to also lead to loss of contact. For correct physical modeling of the global dynamics
of cutting, therefore, models should probably incorporate both nonlinear stiffness as well as loss of contact.
However, Prof. Gábor Stépán1 has suggested that loss of contact may be the more important effect, and I share
his views now. For example, in this chapter we have seen that there are significant regions of parameter space
where bifurcations are subcritical even with a stiffening nonlinearity. Loss of contact may have a strong role
to play in such situations. Accordingly, in the next chapter we incorporate loss of contact but not nonlinear
stiffness.

1personal communication
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Figure 6.5: Numerical solution of Eq. (6.10) for ζ1 = 1, α1 = 1, ∆ = 8/(5π) + 1/4 and p1 = 36/(5π).
Initial Conditions: x(η) = 0.5 sin(3η/2) + 0.051 sin(η), ẋ(η) = 0.75 cos(3η/2) + 0.051 cos(η), η ∈ [−2π, 0]. This
corresponds to the point N in Fig. 6.2. Bottom left: PSD of data from t0 = 0 to tf = 20π ≈ 60. Bottom right:
PSD of data from t0 = 170π ≈ 540 to tf = 190π ≈ 600.
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Figure 6.6: Numerical solution of Eq. (6.10) for ζ1 = 1, α1 = 1, ∆ = 8/(5π) + 1 and p1 = 36/(5π) + 1.
Initial Conditions: x(η) = 0.6 sin(3η/2) + 0.0001 sin(η), ẋ(η) = 0.9 cos(3η/2) + 0.0001 cos(η), η ∈ [−2π, 0]. This
corresponds to point O in Fig. 6.2.
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Chapter 7

Self-interrupted regenerative turning

As pointed out in chapter 6, for correct physical modeling of the global dynamics of cutting, models should
incorporate intermittent loss of contact due to large amplitude vibrations. Such cutting is called self-interrupted.

7.1 Introduction

In this chapter, we study the self-interrupted regenerative turning arising after the loss of linear stability of
steady cutting. Self-interrupted machining occurs due to a loss of contact between the tool and the workpiece
when the relative vibrations between the tool and the workpiece grow large. Self-interruption can give rise to
globally stable periodic solutions under broad parameter ranges where the primary bifurcation to instability is
subcritical.

We develop a new approach to model the regenerative effect in turning operations. The dynamics of the
cutting process is modeled using a direct approach which leads to a partial differential equation (PDE) along
with an ordinary differential equation (ODE). The coupled PDE-ODE model describes the full dynamics of the
turning process, in the sense that the PDE describes the cut surface while the ODE describes the motions of
the cutting tool. This model automatically incorporates self-interruption due to the loss of contact between the
tool and the workpiece as well as the multiple-regenerative effects accompanying it.

Recall the basic dynamical model for cutting without loss of contact (Eq. (1.6)). Here, due to loss of contact
over some interval, some portion of the workpiece fails to get cut. If it gets cut during the next pass of the tool,
then the delay in the DDE jumps from τ to 2τ (multiple regenerative effect [5, 6, 7, 17, 25]). The delay could
conceivably be 3τ , 4τ , or higher. These possibilities require tracking of the delay to be used in the DDE model
during phases of contact. As will be seen below, our approach requires no such delay tracking while retaining
the ability to model self-interruption, at the cost of introducing an extra PDE.

The rest of the chapter is organized as followed. In section 7.2, we present our model for the dynamics of chip
formation. In section 7.3, we present numerical simulation results of the model using a finite-difference scheme
as well as Galerkin projections. Some qualitative aspects of the solution are also discussed. The bifurcation
structure of the regenerative turning process along with some discussion of the same is presented in section
7.4. In section 7.5, we present some solutions other than single globally stable periodic solutions. Concluding
remarks are made in section 7.6.

7.2 Chip formation

In this chapter, we will use Eq. (1.4), which is reproduced below

ẍ(t) + 2 ζ ẋ(t) + x(t) = PC(t)3/4 , (7.1)

where the parameter P is proportional to the chip width (or depth of cut). We note that studies focusing on
the effect of impact during re-entry after loss of contact have appeared in the literature [62, 143]. In case we
wish to incorporate an impulsive impact interaction at re-entry, Eq. (7.1) should be modified to

ẍ(t) + 2 ζ ẋ(t) + x(t) = PC(t)3/4 + sgn(Ċ(t)) δ(C(t)) g(Ċ(t)) ,

where g(Ċ(t)) ≥ 0 incorporates the effect of impact. However, we have modeled re-entry as smooth in this work,
and will work with Eq. (7.1).

Our modeling approach is independent of any particular model for tool-workpiece dynamics, and could be
trivially extended to other models (e.g., incorporating nonlinear tool stiffness, nonlinear damping, impacts, etc.).
We restrict attention to impact-free re-entry and linear tool dynamics for greatest simplicity.
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Given the governing equation for the tool-workpiece dynamics, it remains to determine the instantaneous
chip thickness C(t). In cutting with sustained contact, the instantaneous chip thickness C(t) (see footnote 1) is

C(t) = C0 + x(t− τ)− x(t) , (7.2)

where C0 is the nominal chip thickness and τ = 2π/Ω is the time period of one revolution of the workpiece
[12, 14, 16, 76]. However, when the relative displacement becomes so large that the tool leaves the workpiece,
the above definition of the instantaneous chip thickness no longer remains valid. Delayed displacements from
more than one immediate pass have to be considered (hence, the possible delays of 2τ, 3τ , etc.).

We use a new approach to model chip formation which is somewhat similar in spirit to that of Batzer et
al. [25], in that we both define the cut surface by essentially the same function L (defined below). However,
their application (drilling) is different from ours; we introduce a new solution method; and we also present new
results specific to turning operations.

A schematic of the turning process is shown in Fig. 7.1. The tool travels along the negative x-direction
with a velocity v and the workpiece rotates about the positive x-axis at an angular rate Ω. The tool velocity is
related to the nominal chip thickness C0 by

v =
C0 Ω

2π
.

L(φ,t)

Ω

φ=2π

φ

nominal tool position = L(0,0) - vt

actual tool position = L(0,0) - vt + x

φ=0

x

angular coordinate

(tool position)

discontinuity at φ=2π gives chip thickness

Lab Fixed

Reference plane

Figure 7.1: A schematic of turning process.

We define a function L(φ, t), φ ∈ [0, 2π], which represents the perpendicular distance of points on the cut
surface from a reference plane as shown in Fig. 7.1. The angle φ is measured in lab-fixed coordinates, φ = 0 ≡ 2π
representing the position of the tool. Note that even though φ = 0 and φ = 2π are the same points in the
lab-fixed coordinate system, they imply different things for the workpiece. That is, φ = 0 represents the freshly
exposed surface just past the tool, while φ = 2π represents the one-revolution old surface location just reaching
the tool. In particular, the function L(φ, t) can have a discontinuity at φ = 0 ≡ 2π which determines the
instantaneous chip thickness C(t) (see footnote 1). Thus, the instantaneous chip thickness C(t) is given by

C(t) = L(2π, t)− L(0, t) (7.3)

whenever it is positive, i.e., whenever the tool is in contact with the workpiece. When the tool leaves the
workpiece, the chip thickness becomes zero and the discontinuity in the function L(φ, t) vanishes, i.e.,

L(2π, t) = L(0, t) .

The nominal position of the tool is L(0, 0) − vt. Due to vibrations, the actual position of the tool is
L(0, 0) − vt + x(t). When there is contact between the tool and the workpiece, it follows that L(0, t) =
L(0, 0)− vt+ x(t). Equation (7.3) then gives

C(t) = max {L(2π, t)− L(0, 0) + vt− x(t), 0} ,
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valid whether the tool is in contact with the workpiece or not. Also, L(0, 0) can be taken as zero, giving

C(t) = max {L(2π, t) + vt− x(t), 0} . (7.4)

The above value of C(t) is to be used in Eq. (7.1).
Now, consider a material point on the cut surface at some angle φ ∈ (0, 2π). Over a small time duration ∆t,

the workpiece rotates by an angle ∆φ = Ω∆t. Therefore,

L(φ+Ω∆t, t+∆t) = L (φ, t) .

It follows that
∂L

∂t
= −Ω∂L

∂φ
. (7.5)

The above PDE governs the evolution of L(φ, t) for φ ∈ (0, 2π).
We now consider the boundary condition for this PDE. Equation (7.3) is rewritten as

L(0, t) = L(2π, t)− C(t) , (7.6)

where C(t) is given by Eq. (7.4). The above equation expresses the physical fact that L(2π, t) and C(t) together
determines L(0, t). This equation acts as a boundary condition for the PDE, as will be discussed in greater
detail below. It is an important feature of our model. In particular, it automatically and implicitly incorporates
any and all regenerative effects.

We now define L̄ = L+ vt. This leads to

C(t) = max
{

L̄(2π, t)− x(t), 0
}

. (7.7)

The PDE is modified to
∂L̄

∂t
= v − Ω

∂L̄

∂φ
(7.8)

and the boundary condition becomes
L̄(0, t) = L̄(2π, t)− C(t) . (7.9)

Using Eq. (7.7), the boundary condition can be written as

L̄(0, t) = min
{

L̄(2π, t), x(t)
}

. (7.10)

Equations (7.7), (7.8) and (7.10) together define the kinematics of the formation. These in combination with
Eq. (7.1) determine the complete dynamics of the regenerative turning process.

A pictorial representation of our approach is provided in Fig. 7.2.
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Figure 7.2: Pictorial representation of the chip formation model.
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7.3 Numerical results

7.3.1 Finite-difference solution

We use a second-order finite difference scheme to approximate the φ-derivative of L̄(φ, t) in Eq. (7.8). Note that,

since
∂L̄

∂φ
has a discontinuity at points where tool-workpiece contact is initiated or lost, the second order finite-

difference approximation is not accurate at those isolated points. However, it is accurate at other points, and in
our numerical work we have verified that refining the finite-difference mesh does in fact give useful convergence.
The algorithmic complication of tracking those discontinuities are therefore avoided. The discretization scheme
can be summarized below as

1. Discretize the φ-domain [0, 2π] into N sub-intervals. Accordingly, the mesh size h is h = 2π/N .

2. Let the value of the function L̄(φ, t) at φ = 0, h, 2h, · · · , Nh be denoted by a0(t), ah(t), a2h(t), · · · , aNh(t),
respectively.

3. The chip-thickness is calculated using Eq. (7.7) as

C(t) = max {aNh(t)− x(t), 0} . (7.11)

4. Using Eq. (7.10), we get a0(t) as
a0(t) = min {aNh(t), x(t)} . (7.12)

We note from Eq. (7.12) that a0(t) is a dummy variable and hence, no differential equation is required to
govern its evolution.

5. The evolution of the remaining variables akh(t), k = 1, 2, · · · , N are obtained by discretizing Eq. (7.8).
They are

d

dt
akh(t) = v − Ω

a(k+1)h(t)− a(k−1)h(t)
2h

, k = 1, 2, · · · , N − 1 , (7.13)

d

dt
aNh(t) = v − Ω

3aNh(t)− 4a(N−1)h(t) + a(N−2)h(t)

2h
, (7.14)

where Eq. (7.12) is substituted for a0(t). The one-sided finite-difference derivative in Eq. (7.14) is also
second order accurate.

Eqs. (7.13), (7.14), (7.11) and (7.1) determine the dynamics of the turning process. Numerical results for
ζ = 0.1, Ω = 2, v = 1/π, P = 0.5 and two different values of N (200 and 300) are presented in Fig. 7.3. Initial
conditions are chosen to be all zeros, i.e., ai(0) = 0 for i = 1, 2, · · · , N ; x(0) = 0 and ẋ(0) = 0.

The two solutions are near-indistinguishable in Fig. 7.3 (bottom). Hence, for our purposes, we take the
solution with N = 200 as the exact solution of the set of equations Eqs. (7.7), (7.8), (7.10) and (7.1).
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Figure 7.3: Top: Numerical solution of Eqs. (7.13), (7.14), (7.11) and (7.1) for N = 200 and N = 300. Other
parameters are ζ = 0.1, Ω = 2, v = 1/π, and P = 0.5. Initial conditions are chosen to be all zeros, i.e., ai(0) = 0
for i = 1, 2, · · · , N ; x(0) = 0 and ẋ(0) = 0. Bottom: A zoomed view of the boxed portion from the top.

7.3.2 Solution using Galerkin projection

Note that Eq. (7.8) is very similar to Eq. (4.8) obtained in chapter 4 where a Galerkin projection was used
to obtain a finite set of ODEs (see also [73]). Here, we develop Galerkin projection approximations on similar
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lines. We approximate the function L̄(φ, t) as

L̄(φ, t) = a0(t)

(

1− φ

2π

)

+ a1(t)
φ

2π
+

N−1
∑

k=1

ak+1(t) sin

(

kφ

2

)

, (7.15)

where N is a finite number that we choose. Note a slight difference in the shape functions (from the ones used
in chapter 4) required to account for the different boundary condition (Eq. (7.10)).

We emphasize that our choice of the shape functions represents a smooth function over the domain φ ∈ [0, 2π].
However, the function L̄(φ, t) potentially has slope discontinuities due to loss and reestablishment of contact. Our
choice of shape functions leads to an artificial smoothening of these discontinuities in the Galerkin approximation.
However, it will be seen below that this does not introduce significant errors in the approximation and a good
match is obtained even with a modest number of shape functions.

From Eq. (7.15), we note that L̄(0, t) = a0(t) and L̄(2π, t) = a1(t). Hence, the chip thickness from Eq. (7.7)
is given as

C(t) = max {a1(t)− x(t), 0} . (7.16)

Using Eq. (7.10), we have
a0(t) = min (a1(t), x(t)) . (7.17)

Once again, a0(t) acts as a dummy variable. In particular, we take

ȧ0(t) =

{

ẋ(t) , x(t) < a1(t) ,
ȧ1(t) , otherwise .

(7.18)

Substituting Eq. (7.15) in Eq. (7.8) and rearranging, we get

ȧ0(t)

(

1− φ

2π

)

+ ȧ1(t)
φ

2π
+

N−1
∑

k=1

ȧk+1(t) sin

(

kφ

2

)

− v− Ω a0(t)

2π
+

Ω a1(t)

2π
+Ω

N−1
∑

k=1

k ak+1(t)

2
cos

(

kφ

2

)

= 0 .

The above equation cannot hold identically, and gives us the framework for the Galerkin projection. We call
the left hand side (LHS) of the above equation the residual and make this residual orthogonal to the shape
functions corresponding to the real variables, i.e., ak(t), k = 1, 2, · · · , N . This gives us N equations

∫ 2π

0

{

ȧ0(t)

(

1− φ

2π

)

+ ȧ1(t)
φ

2π
+

N−1
∑

k=1

ȧk+1(t) sin

(

kφ

2

)

− v

− Ω a0(t)

2π
+

Ω a1(t)

2π
+ Ω

N−1
∑

k=1

k ak+1(t)

2
cos

(

kφ

2

)

}

· φ
2π

dφ = 0 (7.19)

and
∫ 2π

0

{

ȧ0(t)

(

1− φ

2π

)

+ ȧ1(t)
φ

2π
+

N−1
∑

k=1

ȧk+1(t) sin

(

kφ

2

)

− v

− Ω a0(t)

2π
+

Ω a1(t)

2π
+ Ω

N−1
∑

k=1

k ak+1(t)

2
cos

(

kφ

2

)

}

· sin
(

mφ

2

)

dφ = 0 , (7.20)

for m = 1, 2, · · · , N − 1. In the above equations, we substitute a0(t) from Eq. (7.17), ȧ0(t) from Eq. (7.18) and
obtain the ODEs in terms of ȧi(t), ai(t), i = 1, 2, .., N , ẋ(t) and x(t).

These equations, i.e., Eqs. (7.16), (7.19) and (7.20) along with Eq. (7.1) define our finite-dimensional ODE
model for the turning dynamics.

Numerical simulation results for the parameter values ζ = 0.1, Ω = 2, v = 1/π, and P = 0.5, initial
conditions all zeros (same as used in Fig. 7.3), and N = 25 are presented in Fig. 7.4.

It can be seen from Fig. 7.4 that the solution of ODEs obtained using Galerkin projection matches very
well with the accurate finite-difference solution. The slight difference in phase seen in Fig. 7.4 (bottom) is not
of primary importance because the system is autonomous. The match in amplitude and time period is good
enough for the bifurcation diagrams to be presented later. We will use Eqs. (7.16), (7.19), (7.20) and (7.1) for
detailed parameter studies in section 7.4. Before that, we discuss some qualitative aspects of the solution.
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Figure 7.4: Top: Numerical solution of Eqs. (7.16), (7.19), (7.20) and (7.1) for ζ = 0.1, Ω = 2, v = 1/π, P = 0.5,
and N = 25. Initial conditions: ai(0) = 0 for i = 1, 2, · · · , 25; x(0) = 0 and ẋ(0) = 0. For comparison, the
solution obtained using finite-difference with N = 200 is also plotted. Bottom: A zoomed view of the boxed
portion from the top.

7.3.3 Qualitative aspects of the solution

Figure 7.5 show the function L̄(φ, t) with φ ∈ [−π, π] and a contour plot of the same on the (φ, t) plane. The
t-range is from 98π to 100π. The time interval depicts two workpiece rotations, but clearly not two solution
periods of x(t). The φ domain is [−π, π] using periodic extension to emphasize the discontinuities at φ = 0 ≡ 2π.
Transients are dead, and the steady state response is seen.

The discontinuity at φ = 0 corresponds to cutting, or contact between tool and workpiece. In particular,
the two distinct edges at φ = 0 in Fig. 7.5 represent the profiles of the cut surface. The upper edge represents
the cut surface from the previous pass while the lower edge represents the freshly generated surface. The gap
between the two edges represents the chip thickness. In the time interval t ≈ [309.5, 310.5], the function L̄(φ, t)
is continuous across the edge φ = 0 which corresponds to zero chip thickness, or lack of contact between tool
and workpiece.
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7.4 Periodic solutions

7.4.1 Turning points

The bifurcation structure of the regenerative turning process with changing P (or equivalently, the chip width
or depth of cut) for ζ = 0.1, Ω = 2, and v = 1/π is presented in Fig. 7.6. To generate the bifurcation diagram,
we have used a fixed arc-length based continuation scheme in conjunction with a numerical scheme for obtaining
periodic solutions of ODEs. Details of the numerical scheme are provided in appendix F. It can be seen in a
zoomed view of the boxed portion that the unstable branch from the subcritical Hopf bifurcation (see [12]) and
the stable branch from the self-interrupted motion meet in a turning point bifurcation. The point of impending
loss of contact occurs on the unstable branch, close to the turning point. At our level of numerical precision, it
may be unreliable to try to pinpoint the separation between these two points, and we do not attempt it. For
many qualitative purposes, however, the two points may be treated as coincident.
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Figure 7.6: Bifurcation diagram for ζ = 0.1, Ω = 2, v = 1/π and N = 25. Thick lines represent stable solutions
while thin lines represent unstable solutions. See text for further details.

In Fig. 7.7, we have plotted the bifurcation diagram for ζ = 0.1, Ω = 2, and v = 1/π for different numbers of
shape functions in the Galerkin approximation, viz. N = 5, N = 15 and N = 25. The qualitative structure of the
bifurcation diagram remains the same. The quantitative agreement between the various bifurcation diagrams
improves with increasing N . There is very little difference between the diagrams for N = 15 and N = 25,
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Figure 7.7: Bifurcation diagram for N = 5, N = 15 and N = 25. Parameter values: ζ = 0.1, Ω = 2, and
v = 1/π.

showing convergence of the solution. In general, the number N required for acceptable accuracy will depend on
Ω; for example, a very small value of Ω implies many tool oscillations during one workpiece rotation, and large
N may be needed to resolve their effect on the cut surface.

Next, we consider the bifurcation diagram for three different values of nondimensionalized damping ζ, viz.,

ζ = 0.05, ζ = 0.1 and ζ = 0.2, presented in Fig. 7.8. In the figure, we have subtracted xstatic = PC
3/4
0 , the static

displacement due to the nominal cutting force corresponding to the nominal chip thickness, from the extremal
x-values in the vertical axis. The bifurcation diagram is not symmetric about zero; this is expected because of
the nonlinear cutting force model as well as due to the loss of contact for large enough x.

The turning points are located approximately at P = 0.935Pcritical independent of ζ. Hence, steady cutting
is stable under even large perturbations when P is below 0.935Pcritical. In general, however, the turning point
location changes with changing ζ as seen, for example, for Ω = 1.2 in Fig. 7.9. Numerically, we have observed for
various values of Ω, that the value of P/Pcritical at the turning point seems to lie within the interval [0.92, 0.95]
for ζ ∈ [0, 0.2]. This observation may have practical relevance.

7.4.2 Amplitudes at turning points

From Figs. 7.8 and 7.9, we note that the maximal tool displacement at the turning point increases with the
damping parameter ζ. The turning point displacement seems to be converging to some specific value as ζ
approaches 0. It is about 0.5 (half the nominal chip thickness C0 = 1 for the parameter values of our choice) in
Fig. 7.8. This can be interpreted as follows.

The turning point roughly corresponds to the minimum value of the amplitude of the solution for which
the tool can leave the workpiece. Approaching the turning point from the unstable branch, there is no loss of
contact until (essentially) the turning point. Hence, the usual τ -delayed model can be used as there is no loss
of contact. Using Eq. (1.5), we find that the tool leaves the workpiece when

x(t)− x(t− τ) = C0 .

Now, as a rough approximation, assuming a pure sinusoidal solution x(t) = A cos(ωt) about the static deflection
xstatic where A is the amplitude and ω is the angular frequency of the periodic solution, we have

A cos(ωt)−A cos(ωt− ωτ) = C0 .
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Figure 7.8: Bifurcation diagram for different values of ζ, viz., ζ = 0.05, ζ = 0.1 and ζ = 0.2. Other parameters:
Ω = 2, v = 1/π, N = 25.

In addition, we assume that ω = ωcritical, i.e., the time-period of the periodic solutions on the unstable branch
do not change much (the time periods obtained from the continuation scheme with N = 25 for Ω = 2 and
ζ = 0.1 changes from 4.9816 at the stability boundary to 4.9798 at the turning point). Now, the condition for
loss of contact can be written as

A cos(ωcriticalt− ωcriticalτ)−A cos(ωcriticalt) = C0 .

We replace ωcriticalt by a yet to be determined phase θ, since the tool does not necessarily leave the workpiece
at its maximum displacement. This gives us

−2A sin

(

2 θ − ωcriticalτ
2

)

sin
(ωcriticalτ

2

)

= C0. (7.21)

In addition, for impending loss of contact, we must have

max
θ

{

−2A sin

(

2 θ − ωcriticalτ
2

)

sin
(ωcriticalτ

2

)

}

= C0,

which occurs when

sin

(

2 θ − ωcriticalτ
2

)

= −1

or

θ =
3π

2
+
ωcriticalτ

2
.

The amplitude for which the tool leaves the workpiece is then given by

A =
C0

2 sin
(

ωcriticalτ
2

) . (7.22)

In the limiting case of zero damping, i.e., ζ = 0, the analysis of chapter 6 shows that ωcriticalτ = (2M +1)π,
for some integer M . Then Eq. (7.22) gives

A =
C0
2
,
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the value observed in Fig. 7.8. Another bifurcation diagram for ζ = 0 and Ω = 2.5, in Fig. 7.10, shows that the
tool displacement at the turning point is again about 0.5.
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Figure 7.10: Bifurcation diagram for ζ = 0, Ω = 2.5, v = 2.5/2π and N = 25.
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We point out that stable periodic solutions in the case of zero damping, i.e., ζ = 0, are probably strongly
influenced by multiple regenerative effects. The system may well be stable for a delay of 2τ or 3τ , although it
is unstable for a delay of τ . An investigation of this possibility is left for future work.

However, we note from Fig. 7.9 that the maximal tool displacements at the turning points are quite different
from 0.5 and they seem to be converging to a value closer to 1 instead. To better understand this observation,
we reexamine the stability analysis of the linearized DDE model presented in section 6.3.

7.4.3 Linear stability reexamined

Figure 6.1 is reproduced below in Fig. 7.11. Note from section 6.2 that P and p are related by P =
4C

1/4
0 p

3
;

the vertical axis now shows P for C0 = 1. In Fig. 7.11, we have additionally marked lines corresponding to the
values of Ω used in this section. Each lobe of the stability boundary for ζ = 0 consists of three parts: a curved
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Figure 7.11: Stability boundary from chapter 6. Thick line: ζ = 0 and thin line: ζ = 0.1.

part corresponding to ωcriticalτ = (2M + 1)π, a horizontal part corresponding to P = 0 (with ωcritical = 1 and
a vertical part corresponding to ωcriticalτ = 2Mπ. For ζ > 0, the stability lobe is a continuous curve which
approaches the ζ = 0 curves as ζ → 0. Accordingly, for small ζ, and for the first stability lobe we have

sin
(ωcriticalτ

2

)

≈ 1 , for τ ∈ (0, π)

and
sin
(ωcriticalτ

2

)

≈ sin
(τ

2

)

, for τ ∈ (π, 2π) .

A numerically obtained plot of sin
(ωcriticalτ

2

)

versus τ (for values corresponding to the first stability lobe of Fig.

7.11) for different nonzero values of ζ is presented in Fig. 7.12. It can be seen that the ζ = 0 approximation is good

for light damping. Figure 7.12 shows that sin
(ωcriticalτ

2

)

monotonically decreases with increasing τ ∈ (0, 2π).

Equation (7.22) therefore implies that the amplitude of the stable periodic solutions will monotonically increase
with increasing τ (or equivalently decreasing Ω) within the stability lobe. It is clear that points sufficiently far
to the left have

sin
(ωcriticalτ

2

)

= 1
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with corresponding A = C0/2 (Eq. (7.22)), while points sufficiently far to the right of ΩZ correspond to

sin
(ωcriticalτ

2

)

taking small values with corresponding A large. In particular, for Ω = 1.2, we find (for small ζ)

sin
(ωcriticalτ

2

)

≈ 0.5

with corresponding A ≈ C0, as observed previously in Fig. 7.9.
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Figure 7.13: Bifurcation diagram for ζ = 0.1, Ω = 1.06, v = 1.06/2π, and N = 25.
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The above discussion suggest possibly important practical conclusion. If the stability boundary correspond-
ing to any stability lobe is crossed, in general a subcritical bifurcation will occur and there will immediately arise
finite (nonzero) amplitude stable periodic self-interrupted solutions. However, restricting attention to stability
loss through the boundary of that same lobe, cutting at higher (conversely, lower) speeds will lower (raise) the
amplitude of the ensuing self-interrupted solutions. In the example studied here, and for the first lobe, the
variation in amplitude at the turning point can be by as much as a factor of 8 as can be seen in Fig. 7.13.
In this figure, the maximal tool displacement at the turning point is approximately 4, 8 times the maximal
tool displacement of approximately 0.5 for ζ = 0.1 observed in Fig. 7.8. Note that the relative variation in
amplitude in the stable self-interrupted branch between the turning point and the Hopf point is not much (may
be 20-30%), in all cases studied so far. In contrast, we have seen that the turning point amplitude can vary
by an order of magnitude as Ω is changed. Thus, the position within a given stability lobe range can have an
important effect, should stability be lost. In other words, instability under some identifiable cutting conditions
can be much worse than under other cutting conditions.

7.5 Other solutions

For ζ = 0.1, the codimension 2 Hopf point occurs at Ω = 1.0507 and P = 1.1692. The set of possible solutions
near this point depends on how the parameters Ω and P are varied (see, for example, Fig. 6.2). There might
be multiple periodic solutions (as shown below) as well as quasiperiodic solutions as discussed in [8, 14, 16].
The quasiperiodic solutions can not be obtained by the numerical procedure described in appendix F. For
demonstration of some of the possibilities in quasiperiodic solutions, results of some direct numerical simulations
are presented below.

We first consider the bifurcation diagram for ζ = 0.1, Ω = 1.05 (a value close to the codimension 2 Hopf
point) and v = 1.05/2π in Fig. 7.14. It can be seen from the figure that there are two different branches of
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Figure 7.14: Bifurcation diagram for ζ = 0.1, Ω = 1.05, v = 1.05/2π and N = 25.

periodic solutions. Above P ≈ 1.17, there are two distinct stable periodic solutions. Numerical simulation
results for ζ = 0.1, Ω = 1.05, v = 1.05/2π, P = 1.3, and two different initial conditions quite close to each other
are presented in Fig. 7.15.

From Fig. 7.15, we note that slightly different initial conditions lead to two different stable periodic solu-
tions. These stable periodic solutions seem to be separated by an unstable quasiperiodic solution, indicated by
quasiperiodic transients in Fig. 7.15 (see Fig. 7.16 as well).
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Figure 7.15: Numerical solution of Eqs. (7.16), (7.19), (7.20) and (7.1) for ζ = 0.1, Ω = 1.05, v = 1.05/2π,
P = 1.3, and N = 25. Top figure initial conditions: ai(0) = 0 for i = 1, 2, · · · , 25; x(0) = 10.4 and ẋ(0) = 0.
Bottom figure initial conditions: ai(0) = 0 for i = 1, 2, · · · , 25; x(0) = 10.43 and ẋ(0) = 0

As P is increased further, the periodic solutions eventually lose stability and a quasiperiodic solution can
become stable. Numerical simulations for ζ = 0.1, Ω = 1.1, v = 1.1/2π and P = 2.4, with zero initial conditions,
give a stable quasiperiodic solution shown in Fig. 7.17.
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Figure 7.16: A zoomed view of the boxed portion in Fig. 7.15(top).
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Figure 7.17: Numerical solution of Eqs. (7.16), (7.19), (7.20) and (7.1) for ζ = 0.1, Ω = 1.1, v = 1.1/2π, P = 2.4,
and N = 25. Initial conditions: ai(0) = 0 for i = 1, 2, · · · , 25; x(0) = 0 and ẋ(0) = 0.

The actual amplitudes obtained here are quite large and may not be of practical interest; also, the P value
here is far above the critical value. Nevertheless, from a dynamical systems point of view, these results are
interesting and point to a rich, unexplored dynamics in simple models of self-interrupted turning. Perhaps some
of that dynamics might eventually prove to have practical relevance as well.

90



7.6 Concluding remarks

A preliminary analysis of the self-interrupted regenerative turning has been presented in this chapter. A new
approach to model the regenerative effect in turning operations has been developed. The dynamics of the cutting
process has been modeled using a direct approach which leads to a partial differential equation (PDE) along
with an ordinary differential equation (ODE). The PDE describes the cut surface while the ODE describes
the motions of the cutting tool. This model automatically incorporates self-interruption due to the loss of
contact between the tool and the workpiece in the post-instability region and the multiple-regenerative effects
accompanying it. Some lower dimensional ODE approximations have also been obtained for the overall dynamics
using Galerkin projections. Using these ODE approximations, we have obtained a bifurcation diagram of the
regenerative turning process. It has been found that the unstable branch of periodic solutions resulting from the
subcritical Hopf bifurcation and the stable periodic branch resulting from the self-interrupted dynamics meet
in a turning point bifurcation. A rough analytical estimate of the turning point tool displacement under light
damping has also been obtained and verified numerically. This estimate helps to identify regions in the space of
cutting parameters where loss of stability leads to much greater amplitude self-interrupted motions than in some
other regions. Multiple stable periodic solutions and quasiperiodic solutions have also been observed beyond
the point of initial instability.
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Chapter 8

Conclusions

We have studied various aspects of Delay Differential Equations (DDEs) and applied the analysis to practical
machine tool vibrations problem.

In chapter 2, we have obtained asymptotic approximations for the roots of the characteristic equations of
some linear DDEs with constant coefficients. It has been found that the term with the largest delay dominates
in the asymptotic expansions for the large roots. However, for coefficients of disparate magnitude, the large
root asymptotics may be useful only for extremely large roots and there are not-very-large roots determined by
the smaller delayed terms.

In chapter 3, the method of averaging has been applied to study small perturbations in the form of delayed
terms and fractional derivative terms to conservative oscillators which may be strongly nonlinear. Interesting
dynamics is uncovered in the strongly nonlinear case with small delayed terms, where arbitrarily many stable
and unstable limit cycles can coexist, and infinitely many simultaneous saddle-node bifurcations can occur in
the asymptotic limit.

In chapter 4, we have presented a Galerkin projection technique by which finite-dimensional ODE approx-
imations for DDEs can be obtained in a straightforward fashion. The technique requires neither the system
to be near a bifurcation point, nor the delayed terms to have any specific restrictive form, nor even the delay,
nonlinearities and/or forcing to be small. The accuracy of solutions increases with increasing numbers of shape
functions used in the Galerkin projection.

In chapter 5, a numerical convergence study of the Galerkin approximations is presented based on approxima-
tion of the first several characteristic roots of some constant coefficient DDEs. A modification and an extension
of the Galerkin projection technique to higher order DDEs and system of DDEs is also presented therein. The
order of the Galerkin approximations is found to be 2 (i.e., for an N × N matrix approximation, the error in
any root goes to zero like N−2). The modification to the procedure gives us many more usefully accurate roots.

In chapter 6, we have studied the classical single degree of freedom machine tool vibration model, which is a
delay differential equation (DDE), near a double Hopf point. By treating the damping in the system as a small
perturbation, new analytical expressions have been obtained for all the double Hopf points in the DDE. Both
sub- and supercritical Hopf bifurcations are observed depending on how two key parameters are varied near
the double Hopf point. However, the region of supercritical bifurcation is limited and globally stable solutions
can largely be obtained only by considering loss of contact between the tool and the workpiece. An attempt to
incorporate loss of contact is made in the last part of this thesis where we have studied self-interrupted turning.

In chapter 7, a preliminary analysis of the self-interrupted regenerative turning has been presented. To
facilitate the analysis, a new approach to model the regenerative effect in metal cutting has been proposed.
This model has been designed to incorporate self-interruption and multiple-regenerative effects accompanying
it. Some lower dimensional ODE approximations have been obtained for the overall dynamics using Galerkin
projections. Using these ODE approximations, we have obtained a bifurcation diagram of the regenerative
turning process. It has been found that the unstable branch of periodic solutions resulting from the subcritical
Hopf bifurcation and the stable periodic branch resulting from the self-interrupted dynamics meet in a turning
point bifurcation. A rough analytical estimate of the turning point tool displacement under a light damping
assumption has also been obtained. This estimate helps to identify regions in the space of cutting parameters
where loss of stability leads to much greater amplitude self-interrupted motions than in some other regions.
Multiple stable periodic solutions and quasiperiodic solutions have been observed as well.

The contributions made in this thesis may be viewed, in terms of future work, as follows. The study of
characteristic roots of DDEs in chapter 2 sheds light on the locations of roots in the complex plane, possibly
useful for future theorems or approximations. Averaging for conservative oscillators (chapter 3) perturbed
by small terms involving delays and fractional derivatives is a straightforward addition to the set of nonlinear
oscillators amenable to perturbation methods. The Galerkin projection technique presented in chapters 4 and 5 is
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a promising technique, potentially useful in detailed numerical studies of delayed systems in different fields. The
multiple scales analysis near a codimension 2 Hopf point in chapter 6 may help understand possible complexities
in the dynamics of other, similar, systems which are not as easily tractable. The analysis of self-interrupted
turning in chapter 7 leads to practical predictions which may be experimentally verified in future work. The new
approach therein, to model the regenerative effect along with its lower dimensional ODE approximations, may
prove useful in studying the rich dynamics of self-interrupted cutting, which has been only partially uncovered
in this thesis.
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Appendix A

Smaller Roots of DDEs using Padé

approximants

We use MAPLE, to find Padé approximants (as in [89] and [90]) to obtain the smaller roots of the characteristic
equations of the DDEs. MAPLE does both symbolic algebra and arbitrary-precision floating point arithmetic.
To see the issues involved, consider

p−
√
2e−p − e−p/

√
3 = 0 . (A.1)

Expanding in a Taylor series, we obtain

−1−
√
2 +

(√
2 + 1 +

1√
3

)

p−
(

1√
2
+

1

6

)

p2 + · · ·

Retaining terms up to p10, we obtain the Padé approximant of order (5,5). We seek the zeroes of this approxi-

mant. The numerator is of the form

5
∑

k=0

ckp
k , where c0 is

6688184704014240− 1634855556025440
√
6 + 2840749923049920

√
2− 3855543089257440

√
3, (A.2)

and the other coefficients are comparably lengthy. The first few roots of the numerator polynomial give good
approximations to the first few roots of Eq. (A.1). However, the accuracy of the Padé roots increase with the
digits of precision used in the floating point arithmetic. Results for the smallest root of Eq. (A.1), which is
1.04464369, are given in Table A.1.

Table A.1: Root improves with precision of arithmetic.

Digits used 6 8 10
First root 1.0452 1.0446398 1.04464353

In practice, to find several roots of a DDE, high order Padé approximants need to be used. The numerator
polynomial then involves long/large coefficients. We therefore numerically evaluate the coefficients of the Taylor
series at the start, before Padé approximants are calculated. Moreover, many floating point digits are needed
for accurate results.

For the three examples studied in chapter 2, we used 650 digits of precision (numerical inaccuracies were
observed with our previous choice of 540 digits; no optimization was done on number of digits) and took a Padé
approximant of order either (21, 21) or (22, 22) depending on the number of real roots obtained. Results, in
Tables A.2 through A.4, show good agreement.
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Table A.2: First 6 roots of Eq. (2.2) for a = 1.

No. Padé approximant Newton-Raphson
1 −0.3181 + 1.3372i −0.3181 + 1.3372i
2 −2.0623 + 7.5886i −2.0623 + 7.5886i
3 −2.6532 + 13.9492i −2.6532 + 13.9492i
4 −3.0202 + 20.2465i −3.0202 + 20.2725i
5 −3.2878 + 26.5805i −3.2878 + 26.5805i
6 −3.4997 + 32.8805i −3.4985 + 32.8807i

Table A.3: First 6 roots of Eq. (2.6) for p = 2, ψ = 0.1.

No. Padé approximant Newton-Raphson
1 −0.44008 −0.44008
2 −0.5762 + 2.4326i −0.5762 + 2.4326i
3 −3.7516 + 8.5961i −3.7516 + 8.5961i
4 −4.8189 + 15.095i −4.8190 + 15.095i
5 −5.4984 + 21.4961i −5.4984 + 21.4962i
6 −6.0014 + 27.8552i −6.0014 + 27.8553i

Table A.4: First 6 roots of Eq. (2.16) for a1 = a2 = a3 = a4 = 1.

No. Padé approximant Newton-Raphson
1 −0.1639 + 2.4749i −0.1639 + 2.4749i
2 −2.3946 + 8.2369i −2.3946 + 8.2369i
3 −2.8736 + 13.6232i −2.8736 + 13.6232i
4 −2.6442 + 20.2466i −2.6442 + 20.2466i
5 −3.2404 + 27.0141i −3.2404 + 27.0141i
6 −3.8715 + 32.8327i −3.8703 + 32.8338i
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Appendix B

Initial conditions in the presence of

delayed terms

In applying averaging to conservative oscillators perturbed by terms with delays, we note that they are infinite
dimensional for any nonzero ε. The solutions have infinitely many fast decaying components which rapidly
converge to a slow invariant manifold, as shown schematically in Figure B.1. The slow flow equations for
amplitude and phase obtained in chapter 3 capture only the dynamics on the slow manifold. Hence, for
purposes of numerical comparison with the “full” solutions, the choice of the initial function for the DDEs
requires attention.

The full-solution should not, as an extreme example, approach the slow manifold at the origin: in such cases
there will be no slow dynamics observed at all. Moreover, initial conditions for the averaged equations should
correspond to that trajectory on the slow manifold to which the full solution converges (adjustments in initial
conditions may be required to achieve this). The idea is shown schematically in Figure B.1.

Initial condition for the full solution

Appropriate initial condition for the averaged equation

Slow manifold

Fast trajectory

Slow trajectory

Figure B.1: Solution trajectories for a DDE. Double arrows represent the fast portion of the full-solution
trajectory, which eventually converges to a slow manifold where it coincides with a slow trajectory (single
arrow).

For example, consider a simple second order linear DDE,

ẍ(t) + x(t) + εẋ(t− 1) = 0 . (B.1)

The corresponding averaged equations are

Ṙ = −0.27015R ε ,
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φ̇ = 0.42074 ε .

The first three characteristic roots of this equation for ε = 0.05 are −0.01351 ± i 1.02176, −4.56003 and
−5.17593±i 7.21996. The slow manifold in this linear case is simply the subspace spanned by e(−0.01351±i 1.02176)t.
The behavior of any initial function which has no significant components along e−4.56003t or e(−5.17593±i 7.21996)t

(neglecting the infinitely many roots which decay even faster) will be captured well by the averaged equations
(see Figure B.2 (a)). However, for the initial function e−4.56003t, the solution trajectory has no portion lying on
the slow manifold, has little in common with the averaged solution (see Figure B.2 (b)).

Numerical Solution
Averaged Amplitude

(a)
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Figure B.2: Solution of Equation (B.1) and the corresponding averaged slow flow equations for ε = 0.05. Initial
conditions: (a) x(η) = 1, ẋ(η) = 0, for η ∈ [−1, 0], R(0) = 1, (b) x(η) = e−4.56003η, ẋ(η) = −4.56003 e−4.56003η,
for η ∈ [−1, 0], R(0) = 1.
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Appendix C

Averaging with fractional order

derivatives for general q

In chapter 3, we have used q = 1/2 in our fractional derivative terms, which is the value most encountered in
structural dynamics. However, the procedure is applicable for q 6= 1/2. A procedural detail is that we will be
required to evaluate

∫ t

0

sin τ

τ q
dτ and

∫ t

0

cos τ

τ q
dτ

or equivalently,
∫ t(1−q)

0

sin s1/(1−q)ds and

∫ t(1−q)

0

cos s1/(1−q)ds .

As before, only the behavior of the above as t → ∞ is of interest to us. Using contour integration, it can be
shown that

∫ ∞

0

sin s1/(1−q)ds = Γ(1− q) sin(qπ/2)

and
∫ ∞

0

cos s1/(1−q)ds = Γ(1− q) cos(qπ/2) .

The above integrals are also derivable from related results on page 110 of [104].
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Appendix D

Invertibility of matrices A and Am

obtained in chapter 5

D.1 Invertibility of matrix A

In section 5.2 it is mentioned that Aȧ+Ba = 0 is represented in the form ȧ = Ca. Here it is assumed that A

is invertible. Consider an M th order DDE. It can be written as M first order equations, M − 1 of which are
of the form xn+1 = ẋn. It can be shown that the determinant of the matrix A constructed for this equation is

given by
Co

2N−2

(

1

3
− 2

π2

N−2
∑

m=1

1

m2

)

where Co is the coefficient of the highest derivative in the equation (in all

our examples, Co = 1). Since all the terms in the sum are positive and
2

π2

∞
∑

m=1

1

m2
=

1

3
, the determinant of A

is strictly positive for finite N , and hence A is invertible.

D.2 Invertibility of matrix Am

In section 5.4 we presumed that Am is invertible and hence defined Cm = −Am

−1Bm. Like in section D.1 the
determinant of Am is Co × det(Âm), where Âm is the N −1 × N −1 matrix which is the right bottom block of
matrix Am. Finding an analytical expression for the determinant of the matrix Âm is difficult. But we can get
some idea about the invertibility of Am by looking at the condition number of Âm. Figure D.1 shows the plot
between the condition number and N on a log-log scale. It is seen that the condition number is proportional to
N2. Thus Am is invertible for finite N .
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Figure D.1: Invertibility of Âm.
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Appendix E

What is ε?

Textbooks on perturbation methods discuss problems where the small term is already labeled (usually by
the symbol ε). In practical applications of perturbation methods, however, we have problems with finite and
nonzero parameter values; and which of these may be treated as small, and how small, is in some sense a
modeling decision. In chapter 6 we have studied a problem where we arbitrarily chose a parameter of value 3/16
to be ε. There is no theoretical justification for this. The subsequent analysis made qualitative and quantitative
predictions, and the final test of suitability for the choice of ε lay in comparison with numerical solutions.

To further clarify this issue, we present here a simple equation which we can solve using two different schemes
for choosing ε. Consider

x1+a = 1 + b,

where a and b are positive valued parameters. Let us consider the case a = 1 and b = 1/2, for which we have

x2 =
3

2
, (E.1)

with a positive root at x = 1.2247.
Let us now consider the equation

x1+ε = 1 +
ε

2
, (E.2)

which reduces to Equation (E.1) when ε = 1. Note that we are here interested only in the strictly nonzero value
of ε = 1; any perturbation scheme for solving Equation (E.2) using a small-ε expansion will stand or fall based
on its performance for ε = 1.

Posing a solution for Equation (E.2) in the form

x = x0 + ε x1 + ε2 x2 + · · · ,
we find using routine methods that

x = 1 +
1

2
ε− 1

2
ε2 +

3

8
ε3 − 11

48
ε4 +

19

192
ε5 +O(ε6),

which upon truncation and for ε = 1 gives
x = 1.2448,

a reasonable approximation.
But the choice of what ε should be is in our hands. We could also consider, for example, the equation

x
1 +

ε

1− ε = 1 + ε, (E.3)

which reduces to the desired Equation (E.1) for ε = 1/2. A similar expansion for the solution now gives

x = 1 + ε− ε2 − 1

2
ε3 +

2

3
ε4 − 1

12
ε5 +O(ε6),

which upon truncation and for ε = 1/2 gives
x = 1.2266,

a ten times better approximation.
Both solutions above, using Equations (E.2) and (E.3) respectively, are equally correct in that they are

formally identical. The scaling used in the latter case appears to be better for the problem at hand for the
specific, finite and nonzero values of a and b that are of interest. As far as we know there is no rigorous method
of predicting, in advance, which of these is better.

In this sense, choice of ε in practical problems often involves a nonrigorous modeling decision that precedes
the formal (or rigorous) part of the analysis.
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Appendix F

A numerical scheme to obtain branches

of periodic solutions of ODEs

F.1 Numerical search for periodic solutions of unknown period

Here, we explain the numerical procedure for a second order ODE only. The extension of the method to higher
order ODEs and systems of ODEs is straightforward.

Consider the system to be
ẍ+ f(α, x, ẋ) = 0 , (F.1)

where α is a parameter and f(α, x, ẋ) is known and is such that Eq. (F.1) has a periodic solution. For each
value of the parameter α, we seek the amplitude A and the time period T of the periodic solution. Hence, if we
use x(0) = A and ẋ(0) = 0 as initial conditions and numerically integrate the above equation for a time interval
T , then x(T ) and ẋ(T ) should be equal to x(0) = A and 0, respectively. Thus the desired amplitude A and
time period T are required to satisfy the following equations:

x(T )−A = 0 , (F.2)

ẋ(T ) = 0 . (F.3)

It is emphasized that x(T ) and ẋ(T ) are each actually functions of both A and T . Denoting

y =

(

A
T

)

,

we can write Eqs. (F.2) and (F.3) as
g(y) = 0. (F.4)

Equation (F.4) can now be solved numerically using the Newton-Raphson method. Note that evaluation of g in
the solution procedure involves background numerical solution of ODEs. If an analytical solution were available
for the ODE, then the map g would be known and Runge-Kutta (or other numerical integration) would not be
needed. However, the basic principle of obtaining the amplitude and the time-period of the unknown periodic
solution of the ODEs remain the same.

For obtaining the amplitudes and time-period corresponding to periodic solutions for a range of values of
the parameter α, we can use an arc-length based branch following technique. The method is described next.

F.2 Fixed arc-length based continuation scheme

Initially, we fix the parameter α at some particular value, say α0, and obtain the corresponding amplitude A0
and the time-period T0 as explained above. Then we repeat the same procedure for another α value close to α0.
This new parameter value α and the corresponding new amplitude A and time-period T are required to satisfy
both Eq. (F.4) as well as an arc-length constraint given by

√

(A−A0)2 + (T − T0)2 + (α− α0)2 = d, (F.5)

where d is a small number that we have chosen. This parameter d represents the length of the arc in the three
dimensional (A, T, α) space. The new values of α, A and T are now denoted byα0, A0 and T0, and the process
is repeated. This summarizes the fixed arc-length continuation technique.
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